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On Stabilization of Linear Systems With Here the matrixC' can be viewed either as a design choice or as a given
Limited Information constraint in the problem. Of course, we need to ensure that the output

contains enough information for the controller to be able to stabilize
Daniel Liberzon the system. Since the system (1) is assumed to be stabilizable by state

feedback—but not assumed to be stabilizable by output feedback for
. . ) o any particular output—a reasonable requirement to impose in this re-
Abstract—We consider the problem of stabilizing a linear time-invariant gard is tha(C, A) be an observable pair. Transmitting fewer variables
system using sampled encoded measurements of its state or output. We de- S . S
five a relationship between the number of values taken by the encoder and ©Ver the limited capacity communication channel, one reduces the er-
the norm of the transition matrix of the open-loop system over one sam- rors introduced by the encoder. The price to pay, however, is that the
pling period, which guarantees that global asymptotic stabilization can be decoder needs to recover state information. The resulting overall state
achi_e\_/ed. A coding scheme and a stabilizing control strategy are described astimation error is a product of the output encoding error and a quantity
explicity. that characterizes observability of the system.
Index Terms—Asymptotic stabilization, coding, limited information, To summarize, we are given system (1) and three numbers: a positive
linear system, sampling. real number (the sampling period), a positive integ&r(the number
of values of each encoding function), and a positive integ€rn (the
I. INTRODUCTION glimension ofthe transmitte_d output). The prob_lem und_er consider{_:\tion
is to choose a communication protocol of the kind previously described
Suppose that we are given a stabilizable linear time-invariant systgy a controller so that the closed-loop system is globally asymptoti-
cally stable. Our main goal is to derive precise relationships between
* = Azr + Bu, € R". (1) N, andp which guarantee that this task can be accomplished. Solutions
in situations where some of these quantities are fixed, while others need
In this note we study the problem of designing a controller that asymo-be minimized or maximized, are then easy to obtain.
totically stabilizes the system (1) using limited information about its To solve the aforementioned problem, we build on ideas from the
stater. This problem arises, for example, when the state measuremanitsk on quantized feedback stabilization reported in [1] and [2] (the
are to be passed to the controller via a limited capacity communicati@tter reference essentially contains in implicit form some of the re-
channel. We specify what we mean by limited information as followsults given here). Recent references that describe related developments
Sampling:The measurements are to be received by the controli&ithough in settings different from ours) include [3]-[8] and the arti-
at discrete time$, 7, 27, ..., wherer > 0 is a fixedsampling clesin [9]. Loosely speaking, we will show that if the amount by which
period the open-loop system can expand during one sampling period is not too
Encoding: At each of the aforementioned times, the measuréarge compared t&/, then itis possible to obtain an asymptotically cor-
ment received by the controller must be a number in the s&ct estimate of and use it to stabilize the system. More precisely, we

{1,2,...,N}, whereN is a fixed positive integer. will give a constructive proof of the following statement (the notation
In other words, the data available to the controller consists of tieclarified at the beginning of Section Il).
stream of integers Theorem 1: In the state encoding case, global asymptotic stabiliza-

tion is possible ifN > 2™ and

q0(2(0)), 1 (z(7)), @2 (2(27)), . ...

whereq.(-) : R" — {1.2,...,N} is, for eachk, someencoding Juax le* |l < [ VN]. )

function For different values of we can use different encoding func- -

tions. As we will see, itis natural to use the previous vales(iv)),  |n the output encoding case, global asymptotic stabilization is possible

i =0,...,k— 1todefine the function;(-). We assume that the con-ijf ;v > 97 and

troller knows the initial encoding functiap () as well as the rule that -

definesy; (-) on the basis of the previously received encoded measure-

ments, so that for each the functiong,. is known to the controller. IIW*IIOOIICIIOO i ||6At||igfl < [WJ 3)

In other words, there is a communication protocol satisfying the above 0<t<r

constraints upon which the process (encoder) and the controller (de-

coder) agree in advance. wherey is the observability index of the pai€’, e*™) andW is a left
Instead of sending to the controller the sampled and encoded migxerse of the matrix

surements of the entire statewe can work with an output = Cz €

R?, » < n. In this case, the data available to the controller will consist

of the stream of integers ¢
.”7 CleAf

20 (5(0)). 1 (4(7)). 4> (y(27)). .. “)

Cdezi(nfl)r
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Il. SEMIGLOBAL ASYMPTOTIC STABILIZATION u(t) 4= Azt Bu x(t) l:lcoder

In what follows, we find it convenient to use the notfal|e :=
max{|x;| : 1 <7 < n}onR" and the induced matrix norffd ||« :=

n . . . nXn :
max{}>"_, [4i] : 1 <4 < n}onR"*". We define WK .
A= max |le?t
A= Juax [le™" ||ee > 1. (5)
- (t) X '
The largest integer smaller than or equal to a given numizedenoted $=(A+BK)3 [ ET) > decoder
by | z|. We let B, (w0, r) denote the square box ii* centered at,

with edge=2r, i.e.,
Fig. 1. Closed-loop system.

Bl (zo,7):={z € R" : ||z — zo||ec <7}
] . _Fort € [r,27), define the control by (8), where
Assume for the moment that an upper bound on the size of the initial
state is known. Namely, let us assume that for some known constant B(t) = ATBRET) gy,
Ey, > 0 we have

We have
(0)]] < Eo. ®) | E,
: : @) =@ (0)]eo SAfJ2(T) = #(T)loe £ = TS E< 2T
Such a bound may be given to us in advance or may be obtained on (VYN)?

the basis of prior measurements (see Section Ill). The purpose of thi
section is to describe a coding scheme and a dynamic feedback corg
law that achieve asymptotic stabilization for this situation.

rZ.‘[ontinuing this process, we obtain a system that can be represented
y the block diagram in Fig. 1. We see that the upper bourjfot) —
#(t)||~ is divided by /N at the times-, 27, . .. and grows by a factor
A. State Encodin of A on every interval between these times. This clearly implies that if

_ g o A < /N, which is equivalent to (2) sinc&/N is taken to be an in-
We begin by considering the case when sampled encoded measti§er, therj|x(t) — & (¢)||~ converges to 0 as— oo. We assume from

ments of the entire staieare transmitted. The inequality (6) means thakow on that (2) holds. The closed-loop system can, thus, be written as
the state of the system at time= 0 lies in B%, (0, Ey). Assume for

notational convenience thd!V is an integer, so thdt/ N | = {/N. i=(A+BK)x+e 9)
(Otherwise, replac&’ by the largest integeV’ < N such thaty/ N’
is an integer.) We also require thd{N > 2. Let us define the en- Wheree := BEK (& — z) — 0. It follows at once that:(¢) — 0 as
coding functiony, as follows: divideB™ (0, E,) into N equal square ¢ — 0.
boxes, numbered from 1 & in some specific way, and lgt (=) be Having established asymptotic convergence to the origin, we only
the number of the box that containsIn caser lies on the boundary Nneed to show stability in the sense of Lyapunov. In the following argu-
of several boxes, the valug (=) can be chosen arbitrarily among thement, we assume thgt[»] V is odd so that the equilibrium at the origi@
candidates. is preserved; to have Lyapunov stability whefl:] IV is even, a slight

We have thus Sing|ed outa square box with edges atm W modification to the above Strategy is needed. LVQI'L) = il)[P;lf be

which contains:(0). Denoting the center of this box biy0), we obtain & quadratic Lyapunov function for the systém= (A + BK ), and
denote byA.in (P) and \uax(P) the smallest and the largest eigen-

12(0) — #(0)]| s Eo ) @) value of P, respectively. Take an arbitrary> 0. It is straightforward
- YN to show that there existsa> 0 such that solutions of the system (9)

Fort € [0,7), let starting in the region

u(t) = If;i’(t) (8) R := vr s V(J;) <e Amin (P)}

remain in this region as long #8||- < ~. Choose a sufficiently large
integerk > 0 such that

(t) = C(A+Br()t§?(0) A\ FH
IBE]| By (—) <.
and K is chosen so that the eigenvaluesiof B K have negative real VN

parts. From the equatioris= A& + Bu andi: = Az + Bu,and (5) Then, our previous analysis implies tha(t)||.. < ~ for allt > kr.

where

and (7), we conclude that Now, choose a sufficiently smail > 0 such that
N R AE
2(t) = &)l < A2(0) = #(0)]|loo < =2, 0<E<T. X . [ EA*T e [ Amin(P)
YN A6 <min ———, — | ———+
( W)k \/ﬁ )\ulax (P)
This means that fol) < ¢ < 7, the statex(t) belongs to
B (#(t),AEy/ V/N). This inequality ensures that if
Let &(r—) := lim, . &(¢). At the time = we divide
B (#(77),AEy/¥/N) into N equal square boxes and lgt(x) be l2(0)]le <& (10)

the number of the box that containsDenoting the center of this box

by #(r), we have theni(t) = 0 on the time interval0, #7) and

3 >\Inin (P)

AE,
e el < <=/ 32

(7)) = (7)o <
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on the same time interval. This implies thatz(t)) < £*Amin(P) for  Fort € [y7, 27), letu(t) = K#(t), where
all ¢ € [0, k7]. In light of the analysis given before for> k7, we

conclude thaRR is an invariant region for the system (9) with initial aray o (A+BE)(t—nr) o
conditions satisfying (10). It remains to notice tifatis contained in

the ball{z : |z| < =}. We proved the following result.

Proposition 2: If the inequalities (2) andV > 2" hold, then the andK is chosen so that the eigenvaluesiof BK™ have negative real
previous state coding/feedback strategy makes the origin an asympeétts. Using the same arguments as before, we can show that
ically stable equilibrium of the closed-loop system, with a region of
attraction containing all initial conditions that satisfy the bound (6). R |wi

The inequality (2) characterizes the tradeoff between the amount of ~ ¥(k7) €BL <Cl‘("”’)a
information provided by the encoder at each sampling time and the
required sampling frequency. This relationship depends explicitly on a
measure of instability of the open-loop system, expressell which
is defined via (5). We see, for instance, that i given, thenV needs For each k € {m,m + L1,....2n — 1}, divide
to be sufficiently large for asymptotic stabilization to be possible. B2 (C#(k7), W[l [|C[Z A"~ T* By / ¢/N) into N equal square

Remark 1: Itis not hard to see from the above proof that the state §Pxes, and legx (y(k7)) be the number of the box that contains
the system actually converges to zero exponentially fast. This follok¥&noting the center of that box iy %), we obtain
from the fact that the evolution of is described by the system (9),

nT)

oollcllii\”_“"“Eo)
N
k=n,n+1,...,2n—1.

in which the autonomous part is exponentially stable and the rate of R W | |CI12 AT By
convergence of the error signato zero is exponential. ly(kT) — §(k7)[|oc < /)

B. Output Encoding F=nnt L. 2=
We now turn to the case when sampled encoded measurements ONQ\% we know that

outputy = C'z are transmitted, whelg is somep x n matrix such that ’

the pair(C', A) is observable. There is no loss of generality in assuming

that the paiC, ¢*") is also observable (see, e.g, [10, Ch. 6]). Denote y(n7)

by 1 the corresponding observability index (the largest integer between z(nT) = wt : +v

1 andn for which the matrix (4) has rank). 9((2n = 1)7)
Assume again that the initial state satisfies the bound (6). This im- ’

plies that||y(0)||cc < ||C||sEo, i-€.,y(0) € BE(0,||C||sEo). For

t € [0,7), letu(t) = 0. Then, we have wherev is a known vector (computed from the variation of constants

formula). Thus, we define

y(kt) € BL(0.]|C]|cA Ey),  k=0,1.....n—1
§(nT)

whereA is defined by (5) as before. Let us suppose for convenience #(2n7) —eAnTyyt

that ¢/V is an integer, which is required to be greater than or equal o

to 2 (cf. the remarks at the beginning of Section II-A). For each l/((iﬂr— D7)
kE€{0,1,...,9 — 1}, definegx (y (k7)) in the following way: divide + ATy 4 /'7 ACTT0 By (4)dt
B2_(0,]|C)|«A*Es) into N equal square boxes, and tat(y(k7)) nr

be the number of the box that containdenote the center of this box
by 4(k7). We have which leads to the inequality

[l A" Eo

y(k — gk oo <
ly (k) = 4(kT)|leo < I

, k=0,1,...,7n—1. (11)

a7t 12 |2 4n—2
fo2ar) = a2l < IHICR 2
(, _j\r)z

We know that

4(0) Repeating this procedure, we §1rrive at an upper bournan(t) —
u(t)|]so which is multiplied byl| W || oo || C |lcec A"~ / ¥/ N at the times
2(0) =w' : n7, 207, ... and grows by a factor k" on every interval between
y((n —1)7) these times. Thus, if the inequality (3) is satisfied, then asymptotic
stability follows as in the state encoding case. We established the fol-
whereWW T is a left inversé of the matrixiV" defined by (4). Let lowing result.
Proposition 3: If the inequalities (3) andv > 2” hold, then the
9(0) previous output coding/feedback strategy makes the origin an asymp-
#(nr) == MW : ) totically stable equilibrium of the closed-loop system, with a region of

) ’ attraction containing all initial conditions that satisfy the bound (6).

9 = 1)7) Note that in the generic case whadris a cyclic matrix, i.e., a matrix
with exactly one Jordan block for each distinct eigenvalue, it is pos-
sible to find a scalar output through which the system is observable
W oo [[Clloe A27 ' Eo (see, e.g., [10, Ch. 8]). An interesting optimization problem, directly

= . motivated by the previous result, consists in minimizing the left-hand
VA side of (3) over all integers between 1 and and allp x » matrices”'
IThis can be defined dd’ := (WTW)—tW7T, (observability is needed to ensure that this expression is well defined).

In view of (11) and the equality(7) = ¢*""2:(0), we obtain

2(n7) = #(7)lee <
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This problem can be studied numerically using tools from semidefinite be optimal in any sense. Without proper modifications, it is also not

programming.

robust with respect to disturbances or modeling errors.

From conditions (2) and (3), it is not clear whether in the present

Ill. OBTAINING A STATE BOUND

context there is any advantage to be gained by takirgr. However,

) ) the additional flexibility of working with an output may be useful in
The developments of Section Il relied on an upper bound on the sizggjications where some sensors are more reliable than others.

of the state. We now explain how such a bound can be obtained, foj

tis of interest to extend the techniques presented here to nonlinear

an arbitrary initial state. It turns out that = 2 (binary encoding) gystems. One ingredient in achieving this goal is the requirement of

is sufficient for this task. Since the requireme¥it > 2 is already

input-to-state stabilizability of the given system with respect to mea-

incorporated in the hypotheses of Propositions 2 and 3, no additioQglement errors (cf. [2] and [11]).

assumptions need to be imposed. This will therefore complete the proof
of Theorem 1.

We consider the state encoding case first. Set the cangqual to 0.
Pick a sequencgy, ji1, jt2, - -
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2[[Alloo T 2| All oo 27

we can letuy = 1, 41 = e L e = 27¢° , and so on.
Then there exists an integks > 0 such that|=(ko7)||e < ik, - FOr
k=0,1,..., define the encoding functiap. by the formula

k() := {

We haveyy, (z(ko7)) = 0, so thatk, can be determined on the basis
of the encoded state measurements. Therefore, the procedure described
in Section II-A can be applied starting at the time: (ko + 1)7 with
Eo = Apgg.

Let us now turn to the output encoding case. Sequal to 0, and
take the same sequenfe: } as before. There exists an integer> 0
such that we have

(1]

0, (2]

1,

if © € BZ(0, pe)
otherwise.

(3]

(6]

lz(k)lloo < pks k= ko ko + 1, ko +n— L.

[7]
Fork =0,1,..., define the encoding functiop. by the formula

_ [0, ify €BL0.IC]leopr)
a(y) = {1, otherwise.

(8]

9]

We have [10]

a(y(k7)) =0,  k=koko+ 1l ko+n—1 (12) [

so that k; can be determined on the basis of the encoded
output measurements. Formula (12) implies thatko7)|le <
Wl l|Cllsettrg y_1- Therefore, the procedure described in
Section 1I-B can be applied starting at the time= (ko + n)7 with
By = W |oo[|Clloo A" g -1 -

Finally, it is not hard to see that stability in the sense of Lyapunov is
preserved when the two stages (obtaining a state bound and achieving
asymptotic convergence) are combined.

IV. CONCLUDING REMARKS

We studied the problem of stabilizing a linear system using sampled
encoded measurements of its state or output. Our main result (Theorem
1) describes a relationship between the number of values taken by the
encoder and the norm of the transition matrix of the open-loop system
over one sampling period, which is sufficient for global asymptotic
stabilization. The stabilizing control law takes the form of a “certainty
equivalence” feedback.

Theorem 1 provides a sufficient but not necessary condition for sta-
bilizability. Although very simple, our encoding scheme is not claimed
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