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Abstract

We present constructions of a local and global common Lyapunov function for a finite family of pairwise commuting
globally asymptotically stable nonlinear systems. The constructions are based on an iterative procedure, which at each step
invokes a converse Lyapunov theorem for one of the individual systems. Our results extend a previously available one which
relies on exponential stability of the vector fields.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A family of dynamical systems and a switching sig-
nal which specifies the active system at each time give
rise to a switched system. Switched systems are com-
mon in situations where system behavior can hardly
be described by a single ordinary differential equa-
tion, for instance, when a physical system exhibits
several modes or when there are several controllers
and a switching among them. As is well known, it is
possible to have unstable trajectories when switching
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among globally asymptotically stable (GAS) systems
(see, e.g.,[4,9]). It is then interesting to study uniform
asymptotic stability of switched systems with respect
to switching signals, which is the property that the
switched system state goes to zero asymptotically re-
gardless of what a switching sequence is[9]. If this
property holds for all initial conditions, we have global
uniform asymptotic stability (GUAS).

Stability of switched systems under arbitrary
switching has been the subject of a number of stud-
ies, and several classes of switched systems that
possess the GUAS property have been identified
[1,2,8,16,17,19,7]. In particular, it is known that a
switched system generated by a finite family of GAS
pairwise commuting subsystems is GUAS. When
the subsystems are linear, it is easy to prove this
fact by manipulating matrix exponentials. When the
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subsystems are nonlinear, which is the subject of our
study here, the GUAS property has been proved by
using comparison functions in[11].

The converse Lyapunov theorem for switched sys-
tems asserts the existence of a common Lyapunov
function when the switched system is GUAS[12]. A
Lyapunov function is of theoretical interest and also
useful for perturbation analysis. For a GUAS switched
system generated by locally exponentially stable sys-
tems, a construction of a common Lyapunov func-
tion is studied in[15,3]. The general construction of a
common Lyapunov function for GUAS switched non-
linear systems presented in[12] is a consequence of
the converse Lyapunov theorem for robust stability of
nonlinear systems[10]. Although these constructions
can be applied to a family of pairwise commuting sys-
tems, they are too general for our setting since they
do not utilize commutativity. The alternative construc-
tions considered here involve handling the individual
systems sequentially rather than simultaneously, re-
sulting in more constructive procedures (as compared
with, e.g., [3,12]). Further, one of our constructions
also gives a bound on the gradient of the Lyapunov
function and thus allows us to infer about stability of
the switched system under perturbations (which is not
possible with the approach of[12]).

For a finite family of pairwise commuting systems,
we are interested in iterative procedures for construct-
ing a common Lyapunov function, which employ Lya-
punov functions of individual systems. Such a pro-
cedure was first proposed for a family of linear sys-
tems in [17] and later applied to a family of expo-
nentially stable nonlinear systems in[18]. In this pa-
per, we provide more general constructions of com-
mon Lyapunov functions for a finite family of pairwise
commuting GAS—but not necessarily locally expo-
nentially stable—nonlinear systems. We achieve this
by basing the iterative procedures on general converse
Lyapunov theorems for GAS nonlinear systems.

There are primarily two ways of constructing a con-
verse Lyapunov function for a GAS nonlinear sys-
tem. One is the integral construction due to Massera
[14], the other is Kurzweil’s construction[6]. Utiliz-
ing GUAS property, we describe an integral construc-
tion of a common Lyapunov function for a family
of pairwise commuting GAS systems on a bounded
region around the origin. This Lyapunov function is
used to derive a result on stability of the correspond-

ing switched system under perturbations. We then use
Kurzweil’s method to obtain a common Lyapunov
function which is valid on the whole state space. The
latter construction actually does not rely on GUAS of
the switched system. As with non-switched systems, a
smoothing procedure can be used to achieve arbitrary
smoothness of the Lyapunov functions.

2. Background

2.1. Notations and definitions

Recall that a continuous functionV : D ⊆ Rn →
[0,∞) is positive definiteif V (x) = 0 ⇔ x = 0. A
continuous function� : [0, a) → [0,∞) is of classK
if it is increasing and�(0)= 0. If a = ∞ and�(r) →
∞ asr → ∞, we say that� belongs toclassK∞. A
continuous function� : [0, a) × [0,∞) → [0,∞) is
of classKL if for each fixedt, �(r, t) is of classK
and for each fixedr, �(r, s) is decreasing with respect
to s and lims→∞ �(r, s) = 0.

For a nonlinear system,

ẋ(t) = f (x(t)), (1)

wherex(t) ∈ Rn is the state vector andf : Rn → Rn

is a locally Lipschitz vector field, denoted by�(t, �)
the solution with initial conditionx(0) = � ∈ Rn. If
for each�, the solution is defined for allt ∈ [0,∞),
the system isforward complete. If the solution is
defined for allt ∈ (−∞,0], the system isbackward
complete. The system (1) iscompleteif it is both
backward and forward complete. The system is GAS
if there exists a classKL function � such that
|�(t, �)|��(|�|, t) ∀� ∈ Rn,∀t�0, where| · | de-
notes the Euclidean norm. We denote byBr the open
ball of radiusr centered at the origin,Br := {x ∈
Rn : |x|<r}.

Consider a family of dynamical systems

ẋ(t) = fp(x(t)), p ∈ P, (2)

wherefp : Rn → Rn, p ∈ P are locally Lipschitz
vector fields parameterized by a finite index setP :=
{1, . . . , m} for some positive integerm. This gives rise
to aswitched system

ẋ(t) = f�(t)(x(t)), (3)
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where� : [0,∞) → P is a piecewise constantswitch-
ing signal. Such a function� has a finite number of
discontinuities, which we callswitching times, on ev-
ery bounded time interval, and takes a constant value
on every interval between two consecutive switching
times. We denote byS the set of all admissible switch-
ing signals for the switched system (3). With the as-
sumption of locally Lipschitz vector fields, piecewise
constant switching signals, and no impulse effects, a
unique solution of (3) for each� ∈ S and each initial
condition exists and is continuous and piecewise dif-
ferentiable. We write��(t, �) for the solution of the
switched system (3) starting at� at time 0 for a partic-
ular switching signal� ∈ S and we write�p(t, �) for
solutions of the individual nonlinear systems indexed
by p ∈ P. Sometimes, we will write�t

p(�) instead of
�p(t, �) for the ease of writing compositions of flows.

We denote by�tI
I (�) the composition of flows over a

finite index setI,

�tI
I (�) := �t1

k1
◦ · · · ◦ �tm

km
(�), (4)

wherek1, . . . , km are elements ofI in the increas-
ing order andt1, . . . , tm are the corresponding times.
When we writetI�0 (resp.>0, <0, �0, =0), it is
equivalent to writingti �0 ∀i ∈ I (resp.>0, <0,
�0, =0). We writesI = (t + �)I meaning thatsi =
ti + �i ∀i ∈ I. Accordingly,tI��I (resp.>, <, � ,
=) meansti ��i ∀i ∈ I (resp.>, <, � , =).

We now briefly review some stability concepts for
switched systems (see, e.g.,[7]). The switched system
(3) is GUAS if there exists a classKL function �
such that for every switching signal� ∈ S, we have

|��(t, �)|��(|�|, t) ∀ � ∈ Rn, t�0. (5)

It is easy to see that a necessary condition for GUAS is
that all individual systems of (2) are GAS. A sufficient
(as well as necessary) condition for GUAS is the exis-
tence of acommon Lyapunov functionfor the family of
systems (2), which is a positive definite, continuously
differentiable functionV : Rn → [0,∞) such that

LfpV (�) := ∇V (�)fp(�)� − W(�)
∀ � ∈ Rn, p ∈ P, (6)

where∇V is the gradient (row vector) ofV andW is
some positive definite function. A weaker version only
requiresV to be continuous, positive definite, locally

Lipschitz away from zero and satisfying

DfpV (�) := lim
ε→0+

1

ε
[V (�p(ε, �)) − V (�)]

� − W(�) ∀� ∈ Rn\{0}, p ∈ P, (7)

for some positive definiteW, where DfpV (�) is
the directional derivative ofV along the solution of
ẋ(t) = fp(x(t)). When V is continuously differen-
tiable,DfpV becomesLfpV .

We say that the family of systems (2) ispairwise
commutingif

�t
i ◦ �s

j (�) = �s
j ◦ �t

i (�)
∀i, j ∈ P, � ∈ Rn, t, s�0. (8)

If the systems are complete, it is easy to see that the
property (8) is automatically extended tot, s ∈ R. If
the vector fields are continuously differentiable, pair-
wise commutativity is equivalent to the Lie bracket of
every two vector fields being zero.

2.2. Converse Lyapunov theorems for nonlinear
systems

In this section, we quickly review converse Lya-
punov theorems for non-switched nonlinear systems
(see, e.g.,[5]) on which our subsequent results will
be built. Basically, there are two constructions of
converse Lyapunov functions for GAS nonlinear sys-
tems. One is due to Massera[14], the other is due to
Kurzweil [6]. Massera’s construction, sometimes re-
ferred to as theintegral construction, seeks a converse
Lyapunov function of the form

V (�) =
∫ ∞

0
G(|�(t, �)|)dt (9)

with G : [0,∞) → [0,∞) being chosen by the fol-
lowing lemma, known asMassera’s lemma.

Lemma 1. Let g : [0,∞) → [0,∞) be a continu-
ous and decreasing function withg(t) → 0 as t →
∞. Let h : [0,∞) → (0,∞) be a continuous and
nondecreasing function. There exists a functionG :
[0,∞) → [0,∞) such that:

• G and its derivativeG′ are classK functions
defined on[0,∞).
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There exist positive real numbersc1 and c2 such
that for all continuous functionsu : R → [0,∞)

satisfying0�u(t)�g(t) ∀t�0, we have∫ ∞

0
G(u(t))dt < c1;∫ ∞

0
G′(u(t))h(t)dt < c2.

If the nonlinear system (1) is asymptotically sta-
ble, one can show that withG provided by Massera’s
lemma with suitableg andh, the integral (9) is well-
defined and satisfies other conditions forV being a
Lyapunov function on some bounded region around
the origin. Note that if the system is exponentially sta-
ble, the functionG in (9) can be taken as a quadratic
one:G(z) = z2. The following statement summarizes
the converse Lyapunov theorem based on this con-
struction.

Theorem 1. Suppose that the nonlinear system(1) is
asymptotically stable onBr , r <∞. Suppose that the
Jacobianmatrix[�f/�x] is bounded onBr .Then there
is a constantr0 ∈ (0, r), and a continuously differen-
tiable functionV : Br0 → [0,∞) such that

�1(|�|)�V (�)��2(|�|),
Lf V (�)� − �3(|�|),
|∇V (�)|��4(|�|)
for all � ∈ Br0,where�1, �2, �3, �4 are classK func-
tions on[0, r0).

The second construction, due to Kurzweil, com-
prises two primary steps. The first step creates a func-
tion g : Rn → [0,∞) as

g(�) := inf
t �0

{|�(t, �)|}

which is non-increasing along solutions of the nonlin-
ear system (1) for all initial states in forward time:

g(�(t, �))�g(�) ∀t�0, � ∈ Rn. (10)

The second step modifies the functiong obtained in
step 1 as

V (�) := sup
t �0

{g(�(t, �))k(t)} (11)

so that the resulting function is strictly decreasing
along solutions of the nonlinear system except at the
origin:

V (�(t, �))<V (�) ∀� ∈ Rn\{0}, t�0, (12)

wherek : [0,∞) → R is a strictly increasing, smooth
function satisfying the following properties:

K1. c1�k(t)�c2 for all t�0 and some 0<c1 <c2
<∞.

K2. There is a decreasing continuous function� :
[0,∞) → (0,∞) such that

d

dt
k(t)��(t) ∀t�0.

From this point onwards, when we writek, we refer
to some fixed functionk satisfying the above two con-
ditions (for example,k(t) = (1 + 2t)/(1 + t) is such
a function). We state Kurzweil’s method in a lemma.
Because we frequently refer to functions with specific
properties, for a functionV : Rn → [0,∞), we call
the following two properties P1 and P2.

P1. Positive definite and radially unbounded. (This
is equivalent to the existence of�1, �2 ∈ K∞
such that�1(|�|)�V (�)��2(|�|) ∀� ∈ Rn.)

P2. Locally Lipschitz onRn\{0} and continuous on
Rn.

Lemma 2. Given the GAS nonlinear system(1), sup-
pose that a functiong : Rn → [0,∞) satisfies prop-
ertiesP1, P2 and inequality(10).Define a function
V by (11).Then V satisfies propertiesP1, P2 and

DfV (�)� − �3(|�|) ∀� ∈ Rn\{0},
where�3 is some positive definite function on[0,∞).

The functionV is continuous and locally Lipschitz
but may not be continuously differentiable. However,
it can be smoothed to get a smooth Lyapunov function.
In particular, it can be modified to be a continuously
differentiable function. Kurzweil’s construction leads
to the following global converse Lyapunov theorem.

Theorem 2. Suppose that the nonlinear system(1)
is GAS. Then there is a continuously differentiable
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functionV : Rn → [0,∞) such that

�1(|�|)�V (�)��2(|�|),
Lf V (�)� − �3(|�|).
for all � ∈ Rn, where�1, �2 ∈ K∞ and �3 is some
positive definite function on[0,∞).

Kurzweil’s construction is defined on the whole
state space and provides a global result. In contrast,
the integral method works on a bounded region only.
However, with the additional assumption of bounded-
ness of the Jacobian matrix of the vector field, the lat-
ter construction gives a bound on the gradient of the
converse Lyapunov function and hence, it is possible
to infer about stability of the system under perturba-
tions.

2.3. Available results on common Lyapunov functions
for pairwise commuting systems

A method for constructing a common Lyapunov
function for a finite family of pairwise commutinglin-
ear systems was first proposed in[17]. For a family
of pairwise commuting Hurwitz matrices{Ap, p ∈
P}, a common quadratic Lyapunov functionV (�) =
�TP�, P >0 such thatAT

pP + PAp <0 ∀p ∈ P
could be obtained as follows:

AT
1P1 + P1A1 = −P0,

AT
pPp + PpAp = −Pp−1, 2�p�m,

P := Pm,

whereP0 is some positive definite matrix. For a fam-
ily of pairwise commuting exponentially stablenon-
linear systems, i.e., nonlinear systems with solutions
satisfying

|�p(t, �)|�c|�|e−�t ∀ t�0, � ∈ Bcr , p ∈ P (13)

for somer, c, �>0, a common Lyapunov function is
constructed as follows[18]:

V1(�) :=
∫ T

0
|�1(t, �)|2 dt,

Vp(�) :=
∫ T

0
Vp−1(�p(t, �))dt, 2�p�m,

V (�) := Vm(�),

whereT >T ∗ andT ∗ is some appropriately chosen
constant. With the additional assumption of uniform
boundedness of the Jacobian matrices of the vector
fields, i.e., if there existsL<∞ such that∣∣∣∣
∣∣∣∣�fp(x)�x

(�)

∣∣∣∣
∣∣∣∣<L ∀� ∈ Bcr , p ∈ P, (14)

where‖ · ‖ is the induced matrix 2-norm, one has the
following theorem.

Theorem 3 (Shim et al.[18] ). Consider the family
(2) of pairwise commuting systems. Suppose that they
are exponentially stable as in(13) and have property
(14). There is a continuously differentiable function
V : Br/cm−1 → [0,∞) satisfying the following in-
equalities:

a1|�|2�V (�)�a2|�|2,
LfpV (�)� − a3|�|2 ∀p ∈ P,

|∇V (�)|�a4|�|
for all � ∈ Br/cm−1, wherea1, a2, a3, a4 are positive
constants.

The theorem is stated locally. A finiteT such that
T >T ∗ ensures the existence ofa4 >0. If T =∞, the
first two inequalities are still valid but the third one on
|∇V (�)| no longer holds. Ifr = ∞, the result holds
globally.

We see that the above construction is based on the
special case of Massera’s construction withG being
quadratic. The next section provides general results on
common Lyapunov functions for a family of pairwise
commuting GAS systems, following both Massera’s
construction and Kurzweil’s construction.

3. Main results

3.1. Local common Lyapunov function

We need the following extension of Massera’s
lemma for multivariable functions.

Lemma 3. Let g : [0,∞) → [0,∞) be a continu-
ous and decreasing function withg(t) → 0 as t →
∞. Let h : [0,∞) → (0,∞) be a continuous and
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nondecreasing function. Then there exists a differen-
tiable functionG : [0,∞) → [0,∞) such that

• G and its derivativeG′ are classK functions on
[0,∞).
For every positive integer l, there exist positive real
numbersc1 and c2 such that for all continuous
functionu : Rl → [0,∞) satisfying

0�u(t1, . . . , tl)�g(t1 + · · · + tl)

∀ti �0, 1� i� l,

we have

∫ ∞

0
· · ·

∫ ∞

0
G(u(s1, . . . , sl))ds1 . . .dsl < c1

and

∫ ∞

0
· · ·

∫ ∞

0
G′(u(s1, . . . , sl))

× h(s1 + · · · + sl)ds1 . . .dsl < c2.

Proof. The proof proceeds along the lines of the proof
of Massera’s lemma and is included in the appendix.
�

Consider the family (2) of pairwise commuting
asymptotically stable systems on a ballBr . There ex-
ist a classKL function � and a positive numberr0
such that for every nonempty subsetQ of P, we have

|�tQ
Q (�)|��(|�|, t1 + · · · + tq)

∀� ∈ Br0, tQ�0, q = card(Q). (15)

If the individual systems are GAS, the foregoing in-
equality holds for all� ∈ Rn. This is the uniform
asymptotic stability property of a switched system
generated by a family of pairwise commuting asymp-
totically stable systems[11]; details are in the proof
below. Suppose that the vector fields are continuously
differentiable onBr . Since the ballBr is compact and
P is a finite index set, there exists a positive number
L such that

∣∣∣∣
∣∣∣∣�fp(x)�x

(�)

∣∣∣∣
∣∣∣∣<L ∀p ∈ P, � ∈ Br. (16)

For � ∈ Br0, construct a functionV as follows:

V1(�) :=
∫ ∞

0
G(|�1(t, �)|)dt, (17)

Vp(�) :=
∫ ∞

0
Vp−1(�p(t, �))dt, 2�p�m, (18)

V (�) := Vm(�) (19)

for some functionG satisfying Lemma 3 withg(t) =
�(r, t),h(t)=exp(Lt). We have the following theorem.

Theorem 4. Consider the family(2) of pairwise com-
muting asymptotically stable systems onBr . Suppose
that for eachp ∈ P, the vector fieldfp is continu-
ously differentiable onBr . There is a constantr0 ∈
(0, r), such that the continuously differentiable func-
tion V constructed in(17)–(19)satisfies the following
inequalities:

�1(|�|)�V (�)��2(|�|), (20)

LfpV (�)� − �3(|�|) ∀p ∈ P, (21)

|∇V (�)|��4(|�|) (22)

for all � ∈ Br0,where�1, �2, �3, �4 are classK func-
tions on[0, r0).

Proof. By the asymptotic stability assumption, there
are classKL functions�p, p ∈ P such that for
eachp ∈ P, we have

|�p(t, �)|��p(|�|, t) ∀� ∈ Br, t�0. (23)

Let �̃p(s) := �p(s,0), p ∈ P; they are classK
functions on[0,∞). Define�̃(s) := max{�̃p(s), p ∈
P}. Let r∗

0 = min{r, �̃−1(r), . . . , �̃−1 ◦ · · · ◦ �̃−1(r)}
where�̃−1 ◦ · · · ◦ �̃−1 is the composition of̃�−1 with
itself l times, 1� l�m. For every nonemptyQ ⊆ P,
since |�tQ

Q (�)|� �̃1 ◦ · · · ◦ �̃q(|�|), q = card(Q), it

is guaranteed that|�tQ
Q (�)|<r, ∀tQ�0, ∀� ∈ Br0

if 0 <r0 <r∗
0. It is easy to prove that for arbi-

trary �1,�2 ∈ KL, there is a� ∈ KL such
that �1(�2(r, s), t)��(r, s + t) ∀r, s, t�0 (see[11,
Lemma 2.2]). It follows that for every nonempty
Q ⊆ P, there exists a�Q ∈ KL such that

|�tQ
Q (�)|��Q(|�|, t1 + · · · + tq)

∀� ∈ Br0,∀tQ�0, q = card(Q).
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Let �(r, t) := max{�Q(r, t), Q ⊆ P, Q �= ∅}. We
then have the inequality (15) for every nonemptyQ ⊆
P. For a nonemptyQ ⊆ P, let

VQ(�) :=
∫ ∞

0
· · ·

∫ ∞

0
G(|�tQ

Q (�)|)dt1 . . .dtq ,

q = card(Q). (24)

As can be seen from (17), (18) and (24),VQ(�) is ob-
tained by iteratively following (17), (18) on the index
setQ starting with�j (t, �) for somej ∈ Q. We have

VQ(�)�
∫ ∞

0
· · ·

∫ ∞

0
G(�(|�|, t1 + · · ·

+ tq))dt1 . . .dtq
=: �Q(|�|) ∀� ∈ Br, q = card(Q) (25)

by virtue of (15). The function�Q is well-defined, in

view of Lemma 3 applied withu = |�tQ
Q |. It is clear

that�Q ∈ K.
From the construction, the explicit formula for

Vp(�) is

Vp(�) =
∫ ∞

0
· · ·

∫ ∞

0
G(|�tIp

Ip
(�)|)dt1 . . .dtp

= VIp
(�) ∀� ∈ Br, p ∈ P, (26)

whereIp := {1, . . . , p}. We then have

Vp(�)��2,p(|�|) ∀� ∈ Br, p ∈ P (27)

for some�2,p ∈ K by virtue of (25). For allp ∈ P,
Vp is positive definite sinceG ∈ K. The composition

of flows �
tQ
Q (�) for every nonemptyQ ⊆ P is con-

tinuous since the flow�p(t, �) is continuous for all
p ∈ P. By commutativity, for eachp ∈ P, we have

V (�) =
∫ ∞

0
V p(�p(t, �))dt ∀� ∈ Br, (28)

where

V p(�) := VPp
(�), Pp := P\{p}. (29)

Eq. (28) is justified by Fubini’s theorem (see, e.g.,
[13]); we can change the order of the integrals since
for every nonemptyQ ⊆ P, VQ(�) is well-defined

andG(|�tQ
Q (�)|) is continuous. By boundedness of the

Jacobian matrices of the vector fields as in (16), it is

easy to show (see, e.g.,[5, Excercise 3.17]) that for
eachp ∈ P, we have

|�p(t, �)|� |�| exp(−Lt) ∀t�0, (30)∣∣∣∣∣
∣∣∣∣∣��p(t, �)

��

∣∣∣∣∣
∣∣∣∣∣ � exp(Lt) ∀t�0 (31)

for all � ∈ Br0. From (30), for every nonempty subset
Q ⊆ P, we have

|�tQ
Q (�)|� |�| exp(−L(t1 + · · · + tq))

∀tQ�0, q = card(Q). (32)

The inequality (32) together with (24) yields

VQ(�)�
∫ T

0
· · ·

∫ T

0
G

(
1

2
|�|

)
dt1 . . .dtq

= T qG

(
1

2
|�|

)
=: �1,q(|�|), (33)

whereT = ln 2/(qL), q = card(Q). SinceG ∈ K,
the function�1,p is of classK. Combining (27) and
(33) withQ = Ip yields the inequality (20) forV, in
which p = m; �1 := �1,m, �2 := �2,m.

For eachp ∈ P, the derivative ofV along�p(t, �)
will be

LfpV (�) = V p(�p(t, �))|∞0 = −V p(�) ∀� ∈ Br0

since limt→∞ �p(t, �) = 0 andV (0) = 0. There is a

classK function �p such thatV p(�)��p(|�|) ∀� ∈
Br by using (32), (24) and (33) withQ = Pp. If we
define

�3(s) := min
p∈P

�p(s), s ∈ [0, r),

then�3 ∈ K and the inequality (21) follows.
By the chain rule, the gradient ofV is

�V (�)

��
=

∫ ∞

0
· · ·

∫ ∞

0
G′(|�tP

P (�)|) �T
1

|�1|
× [�′

1(t1, �)] . . . [�′
m−1(tm−1, �)]

× ��m

��
(tm, �)dt1 . . .dtm, (34)

where [�′
i (t, �)] denotes the partial derivative with

respect to� of the solution �i (t, �) evaluated at

� = �
tQi
Qi

(�), Qi = {i + 1, . . . , m} for 1� i�m − 1.
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Taking the norm of both sides of (34) and using (31),
we have the inequality (22):∣∣∣∣�V (�)

��

∣∣∣∣ �
∫ ∞

0
· · ·

∫ ∞

0
G′(|�tI

I (�)|)
× eLt1 . . .eLtm dt1 . . .dtm

=
∫ ∞

0
· · ·

∫ ∞

0
G′(|�tI

I (�)|)
× h(t1 + · · · + tm)dt1 . . .dtm =: �4(|�|)

for all � ∈ Br0, whereh(t)=exp(Lt). The function�4
exists by the choice ofG as in Lemma 3 withg(t) =
�(r, t), h(t) = exp(Lt), andu(t1, . . . , tm) = |�tP

P (�)|.
�

We stated the theorem for a family of pairwise com-
muting asymptotically stablesystems. If individual
systems are GAS, clearly they satisfy the conditions
of the theorem. Further, if the Jacobian matrices of the
vector fields are uniformly bounded on the whole state
spaceRn, then there is no restriction on how larger0
is, provided it is a finite number. Note also that the
boundedness of the Jacobian matrices helps establish
the bound (22) on the gradient ofV. If we do not
have the inequality (16), we still have the constructed
V satisfying conditions (20) and (21) on a bounded
regionBr0, which imply local asymptotic stability of
the corresponding switched system. The existence of
a function�1 ∈ K in (20) can be concluded from the
positive definiteness ofV, without relying on (33).

Theorem 4 enables one to infer about stability of
a switched system generated by a family of pair-
wise commuting asymptotically stable systems un-
der perturbations, similarly to well-known results
for non-switched nonlinear systems (see, e.g.,[5,
Lemma 9.3]). Consider a family of pairwise commut-
ing asymptotically stable systems in the presence of
perturbations,

ẋ(t) = fp(x(t)) + f̃p(x(t)), p ∈ P, (35)

wheref̃p : Rn → Rn is a locally Lipschitz function
on Br for eachp ∈ P. The corresponding switched
system is

ẋ(t) = f�(t)(x(t)) + f̃�(t)(x(t)).

For non-vanishing perturbations, the origin is no
longer a common equilibrium. However, if the per-
turbation is small in some sense and the initial state

is close enough to the origin, the trajectory of the
perturbed switched system is ultimately bounded for
arbitrary switching.

Corollary 1. Consider the perturbed switched system
(35) on Br . Assume that the family of non-perturbed
systems(2) satisfies the hypotheses of Theorem4.
There are constants̄r >0, 	̄>0 such that if the per-
turbation termsf̃p(x) satisfy

|f̃p(�)|�	 ∀� ∈ Br, p ∈ P

for some	 ∈ (0, 	̄), then there existM >0 and � ∈
KL such that for every initial state� ∈ Br̄ , and
every switching signal� ∈ S, the solution��(t, �) of
the perturbed switched system satisfies

|��(t, �)|��(|�|, t) 0� t�T

and

|��(t, �)|�M ∀t > T .

for some finiteT >0.

Proof. By Theorem 4, there exist a positive con-
stant r0 <r and a functionV satisfying (20)–(22).
Let 	̄ := 
�3(�

−1
2 (�1(r0)))/�4(r0) for some posi-

tive constant
<1, r̄ := �−1
2 (�1(r0)), and M :=

�−1
1 (�2(�

−1
3 (	�4(r0)/
))). The proof is similar to

the proof for non-switched systems but the common
Lyapunov functionV is used in place of a single Lya-
punov function. Due to space limitation, details are
omitted (cf.[5, Lemma 9.3]). �

3.2. Global common Lyapunov function

In this section, we construct a global common Lya-
punov function for the family of pairwise commuting
GAS systems (2), following Kurzweil’s construction.
In the previous section, we only required individual
systems to be forward complete and utilized GUAS
property of the corresponding switched system. Here,
we do not invoke GUAS property but assume that the
individual systems are complete.1 Hence, our con-
struction yields a Lyapunov-based proof of the fact

1 Note that completeness was not assumed in Theorem 2 be-
cause it can always be achieved by time rescaling[5, p. 669];
however, we cannot apply this technique to the system (2) because
it does not preserve commutativity.
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that a switched system generated by a finite family
of pairwise commuting GAS complete subsystems is
GUAS.

Define a functiong : Rn → [0,∞) as

g(�) := inf {|�tP
P (�)|, tP�0}. (36)

Thus, the functiong is the infimum of the solutions
��(t, �) of the switched system (3) running backward
in time for all possible switching signals� ∈ S. Con-
struct a functionV as follows:

V1(�) := sup
t �0

{g(�1(t, �))k(t)}, (37)

Vp(�) := sup
t �0

{Vp−1(�p(t, �))k(t)}, 2�p�m,(38)

V (�) := Vm(�), (39)

wherek is some function satisfying conditions K1 and
K2 as in Section 2.2. We have the following theorem.

Theorem 5. Consider the family(2) of pairwise com-
muting GAS complete systems. The function V con-
structed in(37)–(39)is continuous onRn and locally
Lipschitz onRn\{0} and satisfies the following in-
equalities:

�1(|�|)�V (�)��2(|�|) ∀� ∈ Rn, (40)

DfpV (�)� − �3(|�|) ∀� ∈ Rn\{0}, p ∈ P, (41)

where�1, �2 ∈ K∞ and �3 is some positive definite
function on[0,∞).

Proof. Firstly, we prove that the functiong con-
structed as in (36) has properties P1, P2 and satisfies
the following inequality:

g(�p(t, �))�g(�) ∀t�0, � ∈ Rn, p ∈ P. (42)

From the definition ofg in (36), we haveg(�)� |�|, as
can be seen by takingtP = 0. By commutativity, we

have�tP
P (�)=�

tPp

Pp
(�p(t, �))=�t

p ◦�
tPp

Pp
(�) with Pp

defined as in (29), and inequality (42) is verified as

g(�p(t, �)) = inf {|�tp+t
p ◦ �

tPp

Pp
(�)|, tp�0, tPp

�0}
� inf {|�tp

p ◦ �
tPp

Pp
(�)|, tp�0, tPp

�0}
≡ g(�)∀t�0, � ∈ Rn, p ∈ P.

Since |�p(t, �)|��p(|�|, t)��p(|�|,0) =: �p(|�|)
∀ tP�0, � ∈ Rn, we have

|�tP
P (�)|��1 ◦ · · · ◦ �m(|�|) =: �(|�|)
∀tP�0, � ∈ Rn.

Replacing� by ��P
P (�), by commutativity property,

the above inequality becomes

|�(t+�)P
P (�)|��(|��P

P (�)|) ∀tP�0, � ∈ Rn.

Letting (t + �)P = 0, we obtain

|�|��(|��P
P (�)|)��(g(�)) ∀�P�0, � ∈ Rn.

We then have property P1 forg,

�−1(|�|)�g(�)� |�| ∀� ∈ Rn.

We now prove thatg has property P2. Consider a
compact setH = {� ∈ Rn : a1� |�|�a2} where
0<a1 <a2. From the GAS property of the individual
systems, we have|�|��p(|�p(t, �)|,−t), ∀t <0, p ∈
P, � ∈ Rn. Then,

a1� |�|��−t1
m ◦ · · · ◦ �−tm

1 (|�tP
P (�)|),

∀� ∈ H, tP<0, (43)

where �t
p(x) := �p(x, t). Since �0

p(r)�r ∀r�0,
there exists�P�0 such that

��1
m ◦ · · · ◦ ��m

1 (2a2) = a1. (44)

For example, we can take some�P such that�i (a1 +
�i, �i ) = a1 + �(i − 1) where � = (2a2 − a1)/m,
1� i�m; note that there may be more than one�P�0
such that (44) holds. For alltP� − �P,

a1���1
1 ◦ · · · ◦ ��m

m (|�tP
P (�)|) ∀� ∈ H

by virtue of (43). The foregoing inequality together
with (44) yield

|�tP
P (�)|�2a2�2|�|�2g(�)
∀� ∈ H, tP� − �P. (45)

This implies that g is well-defined (infimum is
achieved for someti ∈ [−�i ,0] and is unique for
each fixed� ∈ H ). Sincefp is locally Lipschitz for
all p ∈ P, �tP

P (�) is Lipschitz for � ∈ H for any
compact time interval. Since the norm function| · | is
locally Lipschitz onH, it follows thatg is Lipschitz
on H and hence,g is locally Lipschitz onRn\{0}.
It is clear thatg(�) → 0 as� → 0 following (45).
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Sinceg(0) = 0, it follows thatg(�) is continuous ev-
erywhere. Thus,g has property P2.

The functionV1 defined by (37) is well-defined and
has properties P1 and P2 by Lemma 2 with the function
g as in (36). We have

V1(�2(t, �)) = sup
t1 �0

{g(�t1
1 ◦ �t

2(�))k(t1)}

= sup
t1 �0

{g(�t
2 ◦ �t1

1 (�))k(t1)}

� sup
t1 �0

{g(�t1
1 (�))k(t1)} ≡ V1(�)

∀t�0, ∀� ∈ Rn,

by virtue of (42). It follows thatV2 is well-defined
and has properties P1 and P2 by Lemma 2. Continuing
this procedure, we see thatVp is well-defined and has
properties P1 and P2 for everyp ∈ P. It remains to
prove (41). For eachp ∈ P, we have

V (�) = sup
tm �0

{{
· · · sup

t1 �0
{g(�t1

1 ◦ · · · ◦ �tm
m (�))

k(t1)} · · ·
}
k(tm)

}
,

= sup
tP �0

{g(�tP
P (�))k1(t1) . . . k(tm)}

= sup
tP �0

{V p(�p(tp, �))k(tp)} ∀p ∈ P,

where

V p(�) := sup
tPp �0

{g(�tPp

Pp
(�))k(t1) . . . k(tm−1)},

Pp = P\{p}.

The functionV p(x) is obtained by following the pro-
cedure in (37) and (38) along the index setPp starting
with �j (t, x) for somej ∈ Pp. As proved previously,

V p(x) is well-defined and has properties P1 and P2.
In particular, it is continuous and locally Lipschitz on
Rn\{0} and there exist�1,p, �2,p ∈ K∞ such that

�1,p(|�|)�V p(�)��2,p(|�|) ∀� ∈ Rn.

For all p ∈ P, we have

V p(�p(t, �))

= sup
t �0,tPp �0

{g(�tPp

Pp
(�) ◦ �t

p(x))k(t1) . . . k(tm−1)}

= sup
t �0,tPp �0

{g(�t
p ◦ �

tPp

Pp
(�))k(t1) . . . k(tm−1)}

� sup
tPp �0

{g(�tPp

Pp
(�))k(t1) . . . k(tm−1)}

≡ V p(�) ∀t�0, � ∈ Rn,

by virtue of (42). Applying Lemma 2 withg = V p,
we then have thatV satisfies

DfpV (�)� − �3,p(|�|) ∀� ∈ Rn\{0}, p ∈ P,

where�3,p ∈ K. Define

�3(r) := min
p∈P

{�3,p(r)}, r ∈ [0,∞), (46)

so that�3 ∈ K∞ and the inequality (41) is verified.
�

Remark 1. The functionV constructed in Theorem
5 is not necessarily continuously differentiable. For
a single nonlinear system, smoothing a locally Lips-
chitz Lyapunov function is a well-known result (see,
e.g., [20]). The functionV constructed here can be
smoothed by the smoothing procedure described in
[10]. In particular, we can obtain a global continuously
differentiable Lyapunov function. It is noted that we
can also smooth the local Lyapunov functionV con-
structed in Section 3.1 to get a local smooth common
Lyapunov function.

4. Conclusion

We have presented iterative constructions of com-
mon Lyapunov functions for a family of pairwise
commuting GAS nonlinear systems, both local and
global. Based on the iterative procedure proposed in
[17], our constructions relax the exponential stability
assumption imposed in[18] by employing general
converse Lyapunov theorems for nonlinear systems.
The local construction leads to the result that for the
perturbed switched system, the state is ultimately
bounded for arbitrary switching if perturbations are
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uniformly bounded and the initial state is sufficiently
small. The global construction directly implies GUAS
of the switched system generated by a family of pair-
wise commuting GAS complete subsystems, thereby
providing a Lyapunov-based proof of this fact (estab-
lished in[11] by time-domain arguments).
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Appendix A. Proof of Lemma 3

Proof. There exists a sequencetn such thatg(tn)�
1/(1 + n), n = 1,2, . . . sinceg(t) is decreasing. We
construct�(t) as follows:
• �(tn) = 1/n, betweentn and tn+1, �(t) is linear,

in the interval 0< t� t1, �(t) = (t1/t)
p where

p is a large enough positive integer such that
�′(t−1 )< �′(t+1 ).

The function � is decreasing by construction and
g(t)< �(t) for t� t1. We also have�(t) → ∞ as
t → 0+. The inverse function�−1(t) is a decreasing
function and�−1(s) → ∞ as s → 0+. Then for all
si �0 such thats1 + · · · + sl � t1, we have

�−1(u(s1, . . . , sl))��−1(g(s1 + · · · + sl))

> �−1(�(s1 + · · · + sl)) = s1 + · · · + sl . (47)

Define

H(s) := exp[−�−1(s)]
h(�−1(s))

, s >0,

and H(0) := 0

thenH is of classK. Define

G(r) :=
∫ r

0
H(s)ds

then G is well-defined and is also of classK. Its
derivativeG′(r) = H(r) is of classK. By virtue of

(47), we have

G′(u(s1, . . . , sl)) = exp[−�−1(u(s1, . . . , sl))]
h(�−1(u(s1, . . . , sl)))

� e−(s1+···+sl )

h(s1 + · · · + sl)

∀s1 + · · · + sl � t1. (48)

The foregoing inequality leads to

∫ ∞

t1

· · ·
∫ ∞

t1

G′(u(s1, . . . , sl))

× h(s1 + · · · + sl)ds1 . . .dsl

�
∫ ∞

t1

· · ·
∫ ∞

t1

e−s1 · · · e−sl ds1 . . .dsl �1.

For a given indexi, 1� i� l, if si � t1 we then haves1+
· · ·+sl � t1 sincesj �0, 1�j � l. Thus the inequality
(48) holds and hence, the integral

∫ ∞

0
· · ·

∫ ∞

0
G′(u(s1, . . . , sl))

× h(s1 + · · · + sl)ds1 . . .dsl

is bounded by some constantc2 (loosely speaking, the
integral

∫ ∞
0 · · · ∫ ∞

0 is the sum of multiple integrals,
each of which is a combination of

∫ t1
0 and

∫ ∞
t1

; there

are 2l of them;
∫ t1

0 is always bounded).

For all si �0 such thats1 + · · · + sl � t1, we have

G(u(s1, . . . , sl)) =
∫ u(s1,...,sl )

0

exp[−�−1(s)]
h(�−1(s))

ds

<
e−(s1+···+sl )

h(0)
u(s1, . . . , sl)

� e−(s1+···+sl )

h(0)
g(s1 + · · · + sl)

� e−(s1+···+sl )

h(0)

sinceh is non-increasing and by virtue of (47). Then,

∫ ∞

t1

· · ·
∫ ∞

t1

G(u(s1, . . . , sl))ds1 . . .dsl

� 1

h(0)

∫ ∞

t1

· · ·
∫ ∞

t1

e−(s1+···+sl ) ds1 . . .dsl <∞.
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It follows that∫ ∞

0
· · ·

∫ ∞

0
G(u(s1, . . . , sl))ds1 . . .dsl

is bounded by some constantc1. �
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