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Abstract

We present constructions of a local and global common Lyapunov function for a finite family of pairwise commuting
globally asymptotically stable nonlinear systems. The constructions are based on an iterative procedure, which at each step
invokes a converse Lyapunov theorem for one of the individual systems. Our results extend a previously available one which
relies on exponential stability of the vector fields.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction among globally asymptotically stable (GAS) systems
(see, e.g[4,9]). Itis then interesting to study uniform
A family of dynamical systems and a switching sig- asymptotic stability of switched systems with respect
nal which specifies the active system at each time give to switching signals, which is the property that the
rise to a switched system. Switched systems are com-switched system state goes to zero asymptotically re-
mon in situations where system behavior can hardly gardless of what a switching sequencddg If this
be described by a single ordinary differential equa- property holds for all initial conditions, we have global
tion, for instance, when a physical system exhibits uniform asymptotic stability (GUAS).
several modes or when there are several controllers Stability of switched systems under arbitrary
and a switching among them. As is well known, it is switching has been the subject of a number of stud-
possible to have unstable trajectories when switching ies, and several classes of switched systems that
possess the GUAS property have been identified
- [1,2,8,16,17,19,7] In particular, it is known that a
";SSESgst%/S’\F‘QS;UEFSSF'géggcl)loz ?ACE’ZQ‘SF EtCS'01147251 switched system generated by a finite family of GAS
an* Corresponding author. Tel.: 12172446750; fg:(?r:]LZSi72442352. pairwise commuting ?’Ubsys.ter.ns Is GUAS. Wher.]
E-mail addresses: linhvu@control.csl.uiuc.edu (L. Vu), the subsystems are linear, it is easy to prove this
liberzon@uiuc.eduliberzon@control.csl.uiuc.ed(D. Liberzon). fact by manipulating matrix exponentials. When the
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subsystems are nonlinear, which is the subject of our ing switched system under perturbations. We then use
study here, the GUAS property has been proved by Kurzweil's method to obtain a common Lyapunov
using comparison functions ji1]. function which is valid on the whole state space. The

The converse Lyapunov theorem for switched sys- latter construction actually does not rely on GUAS of
tems asserts the existence of a common Lyapunovthe switched system. As with non-switched systems, a
function when the switched system is GUAR]. A smoothing procedure can be used to achieve arbitrary
Lyapunov function is of theoretical interest and also smoothness of the Lyapunov functions.
useful for perturbation analysis. For a GUAS switched
system generated by locally exponentially stable sys-
tems, a construction of a common Lyapunov func- 2. Background
tion is studied irf15,3]. The general construction of a
common Lyapunov function for GUAS switched non- 2.1. Notations and definitions
linear systems presented [ib2] is a consequence of
the converse Lyapunov theorem for robust stability of ~ Recall that a continuous functioi : D € R" —
nonlinear systempl0]. Although these constructions [0, co) is positive definitef V(x) =0 < x =0. A
can be applied to a family of pairwise commuting sys- continuous function : [0, a) — [0, c0) is of class#”
tems, they are too general for our setting since they if it is increasing and«(0) = 0. If a = oo anda(r) —
do not utilize commutativity. The alternative construc- oo asr — oo, we say that: belongs toclass.# . A
tions considered here involve handling the individual continuous functiorf : [0, a) x [0, c0) — [0, 00) is
systems sequentially rather than simultaneously, re- of class.#".% if for each fixedt, f(r, t) is of class#”
sulting in more constructive procedures (as compared and for each fixed, f(r, s) is decreasing with respect
with, e.g.,[3,12]). Further, one of our constructions tosand limy_ f(r,s) =0.
also gives a bound on the gradient of the Lyapunov  For a nonlinear system,
function and thus allows us to infer about stability of
the switched system under perturbations (which is not X (1) = f(x(1)), 1)
possible with the approach §£2]).

For a finite family of pairwise commuting systems,
we are interested in iterative procedures for construct-
ing a common Lyapunov function, which employ Lya-
punov functions of individual systems. Such a pro-
cedure was first proposed for a family of linear sys-
tems in[17] and later applied to a family of expo-
nentially stable nonlinear systemsJit8]. In this pa-
per, we provide more general constructions of com-
mon Lyapunov functions for a finite family of pairwise
commuting GAS—but not necessarily locally expo-
nentially stable—nonlinear systems. We achieve this
by basing the iterative procedures on general converse
Lyapunov theorems for GAS nonlinear systems.

There are primarily two ways of constructing a con-
verse Lyapunov function for a GAS nonlinear sys- . ., _ p
tem. One is the integral construction due to Massera HO=fp®) pe? @
[14], the other is Kurzweil's ConstrUCtiO[ﬁ]. Utiliz- Wherefp R R”, p € P are |Oca||y L|psch|tz
ing GUAS property, we describe an integral construc- vector fields parameterized by a finite index get=

tion of a common Lyapunov function for a family (1 ... u} for some positive integen. This gives rise
of pairwise commuting GAS systems on a bounded to aswitched system

region around the origin. This Lyapunov function is
used to derive a result on stability of the correspond- x (1) = fo()(x(2)), 3)

wherex () € R" is the state vector anfl : R" — R"
is a locally Lipschitz vector field, denoted lay(z, &)
the solution with initial conditionc(0) = ¢ € R". If
for each¢, the solution is defined for all € [0, 00),
the system isforward complete If the solution is
defined for allz € (—o0, 0], the system idackward
complete The system (1) iompleteif it is both
backward and forward complete. The system is GAS
if there exists a class?".¥ function f such that
lp@, HI<P(E], 1) VE € R, V>0, where| - | de-
notes the Euclidean norm. We denote Bythe open
ball of radiusr centered at the originB, := {x €
R*: |x| <r}.

Consider a family of dynamical systems
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whereo : [0, 00) — 2 is a piecewise constagatvitch-
ing signal Such a functiors has a finite number of
discontinuities, which we caliwitching timeson ev-

ery bounded time interval, and takes a constant value

on every interval between two consecutive switching
times. We denote b§ the set of all admissible switch-

ing signals for the switched system (3). With the as-
sumption of locally Lipschitz vector fields, piecewise

constant switching signals, and no impulse effects, a

unique solution of (3) for each € S and each initial
condition exists and is continuous and piecewise dif-
ferentiable. We writej (¢, £) for the solution of the
switched system (3) starting &tat time 0 for a partic-
ular switching signab € S and we writeg , (, ) for
solutions of the individual nonlinear systems indexed
by p € 2. Sometimes, we will Write;S’p(&j) instead of

¢ ot &) for the ease of writing compositions of flows.

We denote byf)f; (&) the composition of flows over a
finite index sets,

PO =Pl ooy (D), (4)

whereky, ..., k, are elements off in the increas-
ing order and, ..., t, are the corresponding times.
When we writer , >0 (resp.> 0, <0, <0, =0), itis
equivalent to writings; >0Vi € . (resp.>0, <0,
<0, =0). We writes » = (r + 1) , meaning thas; =

t; +1; Vi € J. Accordingly,zy >1 4 (resp.>, <, <,
=) means; >1; Vi € . (resp.>, <, <, =).

We now briefly review some stability concepts for
switched systems (see, e [J]). The switched system
(3) is GUAS if there exists a clasg”.# function f8
such that for every switching signale S, we have

®)

Itis easy to see that a necessary condition for GUAS is
that all individual systems of (2) are GAS. A sufficient
(as well as necessary) condition for GUAS is the exis-
tence of &aommon Lyapunov functidar the family of
systems (2), which is a positive definite, continuously
differentiable functionV : R" — [0, co) such that

Ly, V() :=VV(Ofp(O)< —W(©)
ViéeR" pe?,

o (r, DI<PUCL 1) VEeR, 120

(6)

whereVYV is the gradient (row vector) ¢f andW is
some positive definite function. A weaker version only
requiresV to be continuous, positive definite, locally
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Lipschitz away from zero and satisfying
.1
Dy, V(&) = Sll)lrg+ E[V(qﬁp(e, ) — V(]
S-W(© VEeRN\{0}, pe2, (7)

for some positive definiteV, where Dy, V() is
the directional derivative of/ along the solution of
x(t) = fp(x()). WhenV is continuously differen-
tiable, Dy, V becomed. s, V.

We say that the family of systems (2) pairwise
commutingif

bi 0 §5(&) = ' 0 Pi(&)

Vi,je?, teR", t,s>0. (8)

If the systems are complete, it is easy to see that the
property (8) is automatically extended tos € R. If

the vector fields are continuously differentiable, pair-
wise commutativity is equivalent to the Lie bracket of
every two vector fields being zero.

2.2. Converse Lyapunov theorems for nonlinear
systems

In this section, we quickly review converse Lya-
punov theorems for non-switched nonlinear systems
(see, e.g.[5]) on which our subsequent results will
be built. Basically, there are two constructions of
converse Lyapunov functions for GAS nonlinear sys-
tems. One is due to Masse€®4], the other is due to
Kurzweil [6]. Massera’s construction, sometimes re-
ferred to as thntegral constructionseeks a converse
Lyapunov function of the form

oo
Vo= [ Guse ond ©)
with G : [0, o0) — [0, c0) being chosen by the fol-
lowing lemma, known adlassera’s lemma

Lemma 1. Let g : [0,00) — [0, c0) be a continu-
ous and decreasing function wig(z) — 0 ast —
oo. Leth : [0,00) — (0, 00) be a continuous and
nondecreasing function. There exists a funct@n
[0, 00) — [0, c0) such that

e G and its derivativeG’ are class.#" functions
defined on0, c0).
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There exist positive real numbers and ¢2 such
that for all continuous functions : R — [0, co)
satisfying0<u(r) <g(t) Vt>0,we have

/OO G(u(t))dr <cq;

0

/OO G (u(t))h(t) dt < co.
0

If the nonlinear system (1) is asymptotically sta-
ble, one can show that witB provided by Massera’s
lemma with suitabley andh, the integral (9) is well-
defined and satisfies other conditions ¥6teing a
Lyapunov function on some bounded region around
the origin. Note that if the system is exponentially sta-
ble, the functionG in (9) can be taken as a quadratic
one:G(z) = z2. The following statement summarizes
the converse Lyapunov theorem based on this con-
struction.

Theorem 1. Suppose that the nonlinear systéhyis
asymptotically stable oB,, r < co. Suppose that the
Jacobian matri{o f/0x] is bounded orB,. Then there
is a constantg € (0, r), and a continuously differen-
tiable functionV : B,, — [0, co) such that

a1 (IE) <V (O <o2(<D)s
LV ()< —as(€D,
IVV(OI<aa(lc)

forall ¢ € B,,, whereoy, oo, a3, o4 are class#” func-
tions on[0, o).

The second construction, due to Kurzweil, com-
prises two primary steps. The first step creates a func-
tion g : R" — [0, 00) as

g(®:

tigfo{lqb(t, Il

which is non-increasing along solutions of the nonlin-
ear system (1) for all initial states in forward time:
g(p(t,9))<g(l) Vvt=0, Ce R (10)

The second step modifies the functigrobtained in
step 1 as

V(&) 1= sup{g(p(t, )k(t)} (11)
t>0
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so that the resulting function is strictly decreasing
along solutions of the nonlinear system except at the
origin:

V(p(t, ) <V () VEeR\{0}, >0, 12)
wherek : [0, c0) — R s a strictly increasing, smooth
function satisfying the following properties:

K1. c1<k(t)<cp forall >0 and some G c1 <2
< OQ.

K2. There is a decreasing continuous function
[0, o0) — (0, 00) such that

% k(t)y=t(t) Vt=O0.

From this point onwards, when we write we refer

to some fixed functiok satisfying the above two con-
ditions (for examplek () = (1 + 2t)/(1 + ¢) is such

a function). We state Kurzweil's method in a lemma.
Because we frequently refer to functions with specific
properties, for a functio’v : R" — [0, o0), we call
the following two properties P1 and P2.

P1. Positive definite and radially unbounded. (This
is equivalent to the existence af, 02 € #
such thaty (I€) <V (&) <oa(|E]) VEe R")

P2. Locally Lipschitz orlR"\{0} and continuous on
R".

Lemma 2. Given the GAS nonlinear systdf), sup-
pose that a functiog : R" — [0, co) satisfies prop-
erties P1, P2 and inequality(10). Define a function
V by (11). Then V satisfies propertieRl, P2 and

DeV(O)< —as(lE) V¢ e RM\{0},

whereas is some positive definite function @b co).

The functionV is continuous and locally Lipschitz
but may not be continuously differentiable. However,
it can be smoothed to get a smooth Lyapunov function.
In particular, it can be modified to be a continuously
differentiable function. Kurzweil’s construction leads
to the following global converse Lyapunov theorem.

Theorem 2. Suppose that the nonlinear systéfr)
is GAS. Then there is a continuously differentiable
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functionV : R" — [0, co) such that whereT > T* and T* is some appropriately chosen
constant. With the additional assumption of uniform
a1 (IED <V (©) <aa(lED), boundedness of the Jacobian matrices of the vector
LpV(&)< —az(|€)). fields, i.e., if there existé < oo such that
for all ¢ € R", whereuy, ap € # o and ag is some 0fp(x)
positive definite function of0, co). H o (é)H <L VCe B, pe?, (14)
Kurzweil's construction is defined on the whole Wwhere||- || is the induced matrix 2-norm, one has the

state space and provides a global result. In contrast, following theorem.

the integral method works on a bounded region only.

However, with the additional assumption of bounded- Theorem 3(Shim et al.[18]). Consider the family
ness of the Jacobian matrix of the vector field, the lat- (2) of pairwise commuting systems. Suppose that they
ter construction gives a bound on the gradient of the are exponentially stable as {13) and have property
converse Lyapunov function and hence, it is possible (14). There is a continuously differentiable function
to infer about stability of the system under perturba- V : B, ,m-1 — [0, 00) satisfying the following in-
tions. equalities

2.3. Available results on common Lyapunov functions aldf<V©<azlcl’,
for pairwise commuting systems Ly, V(< — as|é)® Vpe 2,
IVV(OI<aald]
A method for constructing a common Lyapunov
function for a finite family of pairwise commutinm- for all ¢ € B, -1, whereas, az, as, a4 are positive
ear systems was first proposed [ih7]. For a family constants
of pairwise commuting Hurwitz matricefd,, p €

2}, a common quadratic Lyapunov functiof(é) = The theorem is stated locally. A finife such that
éTPaf, P >0 such thatA;P +PA,<0 Vpe2? T > T* ensures the existence@f > 0. If T =0, the
could be obtained as follows: first two inequalities are still valid but the third one on

- IVV (&) no longer holds. Ifr = co, the result holds
A1 PL+ PLAL=—Po, globally.
A;Pp +P,A,=—P,_1, 2<p<m, We see that the above construction is based on the
P:=P,, special case of Massera’s construction wahbeing

guadratic. The next section provides general results on
where Py is some positive definite matrix. For a fam- common Lyapunov functions for a family of pairwise
ily of pairwise commuting exponentially staben- commuting GAS systems, following both Massera’s
linear systems, i.e., nonlinear systems with solutions construction and Kurzweil’s construction.
satisfying

|, (1. OI<cléle™ Vi>0, E€By. pe? (13) 3. Main results

for somer, ¢, A> 0, a common Lyapunov function is

3.1. Local common Lyapunov function
constructed as followEL8]: yap

T 5 We need the following extension of Massera’s
Vi(d) i=/0 |1 (2, O)|=dt, lemma for multivariable functions.

T
V(&) :2/ Vo1, (1. ) dr,  2<p<m, Lemma 3. Let g : [0,00) — [0, c0) be a continu-

0 ous and decreasing function wig(z) — 0 ast —

V(&) = Vi (9, oo. Let i : [0, 00) — (0, 00) be a continuous and
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nondecreasing function. Then there exists a differen- For & € B,,, construct a functioV as follows:
tiable functionG : [0, co) — [0, co) such that o
e G and its derivativeG’ are class#” functions on Vi(Q) = /o Gla (e, OD dr, 17)
[0, 0). 00
For every positive integer there exist positive real ~ Vp(<) = /0 Vpa(g,t, O)dt, 2<p<m, (18)
numbersc1 and c¢» such that for all continuous o
functiony : R! — [0, oo) satisfying V(©) = Vin(©) (19)
for some functionG satisfying Lemma 3 witlg (r) =
O<u(ty,....tp<gltr+---+1) pr, 1), h(t)=exp(Lt). We have the following theorem.
v, >0, 1<i<|,
Theorem 4. Consider the family2) of pairwise com-
we have muting asymptotically stable systems Bn Suppose
that for eachp e 2, the vector fieldf, is continu-

o o ously differentiable onB,. There is a constanty €
/o /0 Gu(sy, ..., s))dsp...dsy <1 (_0, r), such that thg continuously Qifferentiable func—
tion V constructed irff{17)—(19)satisfies the following
and inequalities
00 o a1 (|E) <V () <aa(|ED, (20)
fo fo G (ulss, -, 1)) Ly, V(< —o3(E)) Vpe?, (21)
x h(sy+---+s)dsy...ds; <co. IVV ()| <aa(IE]) (22)

for all ¢ € B,,, whereoy, az, a3, o4 are class#” func-

Proof. Th f long the i fth fo
roo e proof proceeds along the lines of the proo tions on[0, o).

of Massera’s lemma and is included in the appendix.

- Proof. By the asymptotic stability assumption, there

are class# % functions ﬁp, p € 2 such that for

[ he family (2) of pairwi i ,
Consider the family (2) of pairwise commuting eachp < 2, we have

asymptotically stable systems on a b&ll. There ex-
ist a class#".% function  and a positive number

such that for every nonempty subsgbf 2, we have |¢1’(t’ Ol gﬂp(lé" f) VCEB, 120 (23)

. Let a,(s) := ﬁp(s,O), p € Z2; they are class?”
(¢ (DISPUEL 1+ -+ + 1) functions on[0, co). Defined(s) := maxa,(s), p €
V& € By, 1920, g = card 2). (15) 2}. Let rg = min{r, &’l(r), U R R &*l(r)}
wherei Yo ... 03 ! is the composition of~* with
If the individual systems are GAS, the foregoing in- jtself | times, 1</ <m. For every nonempty C 2,
equality holds for allé € R". This is the uniform ; N _ 9\ i
agymp}t/otic stability Ffroperty of a switched system ?smce 92 (g)|d< uhl ° 19 ° aleD, q>_ cayrcLQ), !
generated by a family of pairwise commuting asymp- '? guarantei Itt "?‘M)Q(é)' <tr’ V@/Ot,hvtg fe Brob.
totically stable systemfL1]; details are in the proof lcrar <ﬁr0 ; " o flffe?rfgreoisp;o[\flee ; forsueghl-
below. Suppose that the vector fields are continuously thatyﬁ (13 (Zr 9 t)/<ﬁ,(r s+ 1) Vrs t>0‘ (see[11
differentiable onB,. Since the balB, is compact and L 1 222 I f\“ ’ hat f = '
2 is a finite index set, there exists a positive number emma 2.2]. t. Ollows t/at or every nonempty
L such that 2 C 2, there exists &, € ¥ such that

197N BoEl tr+ - +19)

afp(x)
Ox V& € By, V1920, g =card2).

(é)H<L Vpe?, &€ B,. (16
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Let f(r, 1) := max{fy(r.1), 2 € 2, 2 # ¢}. We
then have the inequality (15) for every nonempty-
2. For a nonempty?2 C 2, let

V(&) ;=/O /0 G(|q§i§(f)|)dt1...dl‘q,

q = card 2). (24)

As can be seen from (17), (18) and (2%)(¢&) is ob-
tained by iteratively following (17), (18) on the index
set2 starting withqﬁj (¢, &) for somej € 2. We have

VQ<5></ f GBAE. 11+ -
0 0

+1g))dty ...t
= ap(I<)) VC € B, g=card?)

by virtue of (15). The functiony is well-defined, in
view of Lemma 3 applied with: = |¢>i;j|. It is clear
thatay € .

From the construction, the explicit formula for
Vy(&) is

(25)

Vp(é)zfo /0 G(|¢Z:(f)|)dt1...dt

= V]p(é) Vé € Br, p € '@’ (26)
wheres , .= {1, ..., p}. We then have
V@) <oz p(IC)) YCe€ By, pe? (27)

for someoy, , € 4 by virtue of (25). For allp € 2,
V, is positive definite sinc& e 4. The composition
of flows qﬁtj(i) for every nonempty?2 C £ is con-
tinuous since the flowbp(t, &) is continuous for all
p € 2. By commutativity, for eactp € 2, we have

V() = /0 Vo, O)d VEe B, (28)
where
Vp(©) :=Vp,(8), 2,:=2\Ip). (29)

Eq. (28) is justified by Fubini's theorem (see, e.g.,
[13]); we can change the order of the integrals since

for every nonempty2 C 2, Vy(&) is well-defined

andG(|<i>>Z (©))) is continuous. By boundedness of the
Jacobian matrices of the vector fields as in (16), itis ¢ = <15J ©, 2, ={i+1,.

411
easy to show (see, e.d5, Excercise 3.17]that for
eachp € 2, we have

|, (@, O =I¢lexp(—Lt) Vi =0,
Héqﬁ (O

(30)

<exp(Lt) Vt=0 (31)

for all ¢ € B,,. From (30), for every nonempty subset
9 C 2, we have

|<i> (O = Clexp(—L1+ -+ + 1))

Vty >0, g =card2). (32)
The inequality (32) together with (24) yields
Vg(é)>/ / ( lfl) ..

=196 (5141) = 1,2, (33)

whereT =1n 2/(gL), ¢ = card2). SinceG € x4,
the functionoy , is of class#". Combining (27) and
(33) with 2 = .7, yields the inequality (20) fo¥, in
which p =m; o1 := 01, 02 1= 02,,.

For eachp € 2, the derivative oV along¢ ,(z, <)
will be

L, VO =V, )IF ==V, VEe By

since lim_ « d)p(t, & =0andV(0) =0. There is a

class#" function, such thath(é)>&p(|g“|) Vé e
B, by using (32), (24) and (33) wit = 2. If we
define

o3(s) ;= mina,(s), s €[0,7),
pEP

thenas € 7 and the inequality (21) follows.
By the chain rule, the gradient &fis

0
V(é) / / G (|¢y<é>|>|f;1|

x [@1(t1, O ... [Prqg s O)]
64) .dty,
o¢

where [¢; (1, £)] denotes the partial derivative with
respect to¢ of the solution ¢, (¢, £) evaluated at

om)for 1<i<m — 1.

— (tm, O dty .. (34)
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Taking the norm of both sides of (34) and using (31), is close enough to the origin, the trajectory of the
we have the inequality (22): perturbed switched system is ultimately bounded for
arbitrary switching.

av(¢&) *© O s s
— | < G'(197 (DD ) .
¢ 0 0 Corollary 1. Consider the perturbed switched system
x el efmdn...d, (35) on B,. Assume that the family of non-perturbed
o0 00 . systems(2) satisfies the hypotheses of Theordm
— / 7 - i
= /(; o ‘/0 G197 D There are constants> 0, ¢ > 0 such that if the per-

 h(t 4 -+ tp) diy ... 0y, = 0a(1E]) turbation termsf, (x) satisfy

for all ¢ € B,,, whereh(r) =exp(Lt). The functionu, |fp(DI<S VEeB,, pe?

exists by the choice o as in Lemma 3 Withtg(t) = for somed € (0, 5), then there exist/ > 0 and f e
Br. 1), h(t) = exp(Lt), andu(ty, ..., tm) = |5 ()] A% such that for every initial staté¢ € B;, and
a every switching signad € S, the solutiony,(z, &) of

. - the perturbed switched system satisfies
We stated the theorem for a family of pairwise com-

muting asymptotically stablesystems. If individual ¥4, )| <B(El 1) 0<t<T

systems are GAS, clearly they satisfy the conditions

of the theorem. Further, if the Jacobian matrices of the

vector fields are uniformly bounded on the whole state [/, (t,O)|<M Vt>T.

spacelR”, then there is no restriction on how large

is, provided it is a finite number. Note also that the

boundedness of the Jacobian matrices helps establishs oot By Theorem 4, there exist a positive con-

the bound (22) on the gradient d If we do not gt ,) <, and a functionV satisfying (20)—(22).

have the inequality (16), we still have the constructed | ot 5 .— 9a3(a2_1(a1(ro)))/a4(ro) for some posi-

V satisfying conditions (20) and (21) on a bounded tive constantd <1, 7 = o5 (on(r0)), and M =

region B,,, which imply local asymptotic stability of 1 1 T2 Lo

the corresponding switched system. The existence of %1_(%2(#3" (0%4(r0)/0))). The proof is similar to
the proof for non-switched systems but the common

a functionoy € " in (20) can be concluded from the L functionV i din ol f a sinale L
positive definiteness df, without relying on (33). yapunov functiorv'is used in piace ot a singie Lya-
Theorem 4 enables one to infer about stability of punov function. Due to space limitation, details are
omitted (cf.[5, Lemma 9.3]. O

a switched system generated by a family of pair-
wise commuting asymptotically stable systems un-
der perturbations, similarly to well-known results
for non-switched nonlinear systems (see, e[§,,
Lemma 9.3]. Consider a family of pairwise commut-
ing asymptotically stable systems in the presence o
perturbations,

for some finitel” > 0.

3.2. Global common Lyapunov function

In this section, we construct a global common Lya-
¢ punov function for the family of pairwise commuting
GAS systems (2), following Kurzweil's construction.
In the previous section, we only required individual
x(t) = fp(x(®) + fp(x(t)), peEP, (35) systems to be forward complete and utilized GUAS
property of the corresponding switched system. Here,
we do not invoke GUAS property but assume that the
individual systems are complete.Hence, our con-
struction yields a Lyapunov-based proof of the fact

wheref,, : R" — R" is a locally Lipschitz function
on B, for eachp € #. The corresponding switched
system is

x(t) = forry(x(@)) + for)(x(@)).
= ishi turbati th L 1 Note that completeness was not assumed in Theorem 2 be-
Or non-vanishing perturbations, € orgin 1s no cause it can always be achieved by time resca[bigp. 669}

Ionger_ a common equilibrium. However, if the PEr- however, we cannot apply this technique to the system (2) because
turbation is small in some sense and the initial state it does not preserve commutativity.
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that a switched system generated by a finite family Since |¢p(t, 5)|<ﬁp(|£|,t)<ﬁp(|é|, 0 =: o,
of pairwise commuting GAS complete subsystems is V 1» >0, ¢ € R", we have

GUAS. . '
Define a functiorg : R" — [0, c0) as |05 (O <oz o0, (€)= a(l])
Vip >0, & e R".

8(c) = |nf{|¢ ©l, 12<0}. (36) Replacingé by ¢> (&), by commutativity property,

Thus, the functiorg is the infimum of the solutions the above mequallty becomes

V4 (t, &) of the switched system (3) running backward |¢(¢+r),,(£)| < (|¢ 7)) Vip=0, & e R".
in time for all possible switching signatse S. Con- _
struct a functiorV as follows: Letting ( + 7)» = 0, we obtain

Vi(E) == suplg(q(t, ENKD)}, (37) 1€l <a(l9s (D <a(g) Vip<O, e R
=0 We then have property P1 fog

(D <O < VE e R

We now prove thatg has property P2. Consider a
wherek is some function satisfying conditions K1 and compact setd = {¢ € R" : a;<|¢|<a2} where
K2 as in Section 2.2. We have the following theorem. 0 < a1 < ap. From the GAS property of the individual

systems, we hav€|< 8, (¢, (t, &I, —1),Vt <0, p €
Theorem 5. Consider the family2) of pairwise com- 2, ¢ e R". Then,
muting GAS complete systems. The function V con- 4 1 it
structed in(37)—(39)is continuous orR" and locally ar< SISyt o0 By (195 (D),

Vp(Q) == S>ng{Vp—1(¢p(t, Nk}, 2<p<m,(38)
1>
V(&) = Vn(9), (39)

Lipschitz onR"\{0} and satisfies the following in- V¢e H, tp <0, (43)
equalities where f,(x) = f,(x,1). Since Bo(r)=r ¥r>0,
o1 (|E) <V () <on(|E]) VE e R, (40) there existg» >0 such that

Dy, V(O< —a3(l) VEe R0}, pe 2, (41) But o0 f1" (2a2) = ax. (44)

For example, we can take somg such that; (a1 +
Ai, 1)) = a1 + A — 1) where 4 = (2ap — a1)/m,
1<i <m;note that there may be more than age<0

Proof. Firstly, we prove that the functioy con- such that (44) holds. For all, < — 7,
structed as in (36) has properties P1, P2 and satisfiesalgﬁzl o°- ﬁfm(|¢“/’(g)|) vée H
the following inequality:

whereas, ap € A« andag is some positive definite
function on[0, 00).

by virtue of (43). The foregoing inequality together
g(¢,(1,9)<g(d) Vi=0, EeR', per. (42)  With (44)yield

107 (E) > 2a2>2/¢) > 25 (&)

From the definition oy in (36), we havey (&) < (€], as VEe H.1p< — 1y, (45)

can be seen by taking, = 0. By commutativity, we o _ _ o _
haveqb (f)—q’ﬁf(qﬁ (t. &)= (]5 o(/);”(f) with 2, Thls_ implies thatg is WeII-deflned_ (|nf|mum is
defined as in (29), and |nequal|ty (42) is verified as achieved for some; € [—;,0] and is unique for
each fixed¢ € H). Since f), is locally Lipschitz for

17 ’ all p € 2, cz) (&) is Lipschitz for¢ € H for any

8(9, (1, ) = inHi$, d)-‘?p ©I: <0, 17,<0} compact time mterval Since the norm functipn is
417 ) locally Lipschitz onH, it follows thatg is Lipschitz

<inf{ldy o ¢, (DI, 1,<0, 15, <0} y Lip : g'is Lip
or ¢J” ; P / 7r on H and henceg is locally Lipschitz onR"\{0}.
=g(OVi=20, CeR", pe?. It is clear thatg(¢) — 0 asé — 0 following (45).
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Sinceg(0) =0, it follows thatg(¢) is continuous ev-
erywhere. Thusg has property P2.
The functionV; defined by (37) is well-defined and

has properties P1 and P2 by Lemma 2 with the function

g as in (36). We have

Vi(o(t, €)) = sup{g(¢ o p5(E)k (1))

t1>0

= sup{g(¢h o PL(ENk(t1)}
t1>0

< sup{g(PH(ENk(t)} = Va(d)
t1>0

VvVt >0, V¢ e R",

by virtue of (42). It follows thatVs is well-defined
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For all p € 2, we have

V@, )

= sup (g(@," (&) 0 ¢, (DKL) .. k(i 1))
120,15,>0 d
= sup {(g(¢, 0 ¢, (EDK(D) .. k(tm1))
120,1p,>0 ’
Ip .
< sup {g(d)yp (ENk(t1) - .- k(tma)}
17,20 b

=V, V=0 feR,

by virtue of (42). Applying Lemma 2 witly = V,,,
we then have that satisfies

Dy, V(O —u3,(IE) VEe RN\{0}, pe 2,

and has properties P1 and P2 by Lemma 2. Continuing Whereos , € 4. Define

this procedure, we see thd, is well-defined and has
properties P1 and P2 for evepye Z. It remains to
prove (41). For eaclp € 2, we have

V(&) = sup

tm =0

H sup{g(@ oo Plr (&)

t1>0

k(tl)}---} k(tm)},

sup{g(¢’) (Eki(t1) ... k(tm)}

tp >0
= sup{V (o, tp, ODk(tp)} Vp € 2,
tp >0

where

V(@) = sup (g(¢., (ODk(tn) ... k(tn-1)),

t/)pZO

-—/)]p = 9\{17}

The functionV ,(x) is obtained by following the pro-
cedure in (37) and (38) along the index $&4 starting
with ¢;(z, x) for somej € Z,,. As proved previously,

V ,(x) is well-defined and has properties P1 and P2.
In particular, it is continuous and locally Lipschitz on
R"\{0} and there exisky, ,, %2 , € # « such that

a1, (IED SV (O < p(IE]) VEE R

o3(r) == min{az ,(r)}, r € [0, 00), (46)
peP

so thataz € # «, and the inequality (41) is verified.

O

Remark 1. The functionV constructed in Theorem

5 is not necessarily continuously differentiable. For
a single nonlinear system, smoothing a locally Lips-
chitz Lyapunov function is a well-known result (see,
e.g.,[20]). The functionV constructed here can be
smoothed by the smoothing procedure described in
[10]. In particular, we can obtain a global continuously
differentiable Lyapunov function. It is noted that we
can also smooth the local Lyapunov functidrcon-
structed in Section 3.1 to get a local smooth common
Lyapunov function.

4. Conclusion

We have presented iterative constructions of com-
mon Lyapunov functions for a family of pairwise
commuting GAS nonlinear systems, both local and
global. Based on the iterative procedure proposed in
[17], our constructions relax the exponential stability
assumption imposed ifl8] by employing general
converse Lyapunov theorems for nonlinear systems.
The local construction leads to the result that for the
perturbed switched system, the state is ultimately
bounded for arbitrary switching if perturbations are
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uniformly bounded and the initial state is sufficiently (47), we have

small. The global construction directly implies GUAS

of the switched system generated by a family of pair-
wise commuting GAS complete subsystems, thereby
providing a Lyapunov-based proof of this fact (estab-

lished in[11] by time-domain arguments).
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Appendix A. Proof of Lemma 3

Proof. There exists a sequengg such thatg(z,) <
1/(1+n), n=1,2,... sinceg(t) is decreasing. We
constructy(z) as follows:
e 1(t,) = 1/n, betweent,, andr,41, 5(t) is linear,
in the interval O<t <11, n() = (11/1)? where

p is a large enough positive integer such that

) <n'@).
The function# is decreasing by construction and
g(t) <n(t) for t >r. We also havey(r) — oo as
t — 0F. The inverse functiom—1(¢) is a decreasing
function andy~1(s) — oo ass — 0. Then for all
s; >0 such thaky + - - - + s, > 11, we have

W_l(u(sl, ..., 87) 211_1(g(s1 +45))
> rms1 4 s)) =514+ s (47)
Define
expl—n ()]
H = _— 0’
© = o)

and H(0):=0
thenH is of class.#". Define
G(r) :=/ H(s)ds
0

then G is well-defined and is also of clasg". Its
derivative G'(r) = H(r) is of class.#". By virtue of

415
expl—n (s, .-, 51))]
G (u(s1,...,s)) =
: AU CIC )
e—(s1++s1)
g -
h(sy+---+s)
Vs 4+ s> (48)

The foregoing inequality leads to

/ / G'(u(sy, ..., s1))
1 1

X h(sy+---+s)dsy...ds;
o0 o
g/ / et e dsy.. dy <1
151 11

Foragivenindex, 1<i </, if s; >t we then have; +
---4s; =1 sinces; >0, 1< j </. Thus the inequality
(48) holds and hence, the integral

/ / G (st ..., 1)
0 0

X h(sy+---+s)ds1...ds;

is bounded by some constant(loosely speaking, the
integral [;° -+ [5° is the sum of multiple integrals,

each of which is a combination (ﬁl andflfo; there
are 2 of them;fé1 is always bounded).

For all s; >0 such that + - - - + s; > 11, we have

“Le) expl—n ()]

G =
(2o /0 h(s)

@ (s14--+s1)

< e —
h(0)
@ (s14-+s1)

éWg(sl‘F“""Sl)

@ (s14-+s1)
h(0)

u(s1, ..., 8)

~

sinceh is non-increasing and by virtue of (47). Then,

o o0
/ / G(u(st,...,s7))dsq...ds;
11 15

1 o0 o
g_/ .. / e (sat-tsi) ds1...ds; < oo.
h(O) t1 1
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It follows that

o0 o
f / G(u(s1,...,s1))dsq...ds
0 0

is bounded by some constant [
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