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Abstract

In this paper, we define a notion of controllability that is suitable for
digital systems, i.e., with sampling, quantization, and operating with a finite
data-rate. In particular, we study that notion for linear time-varying systems
by proving a necessary condition and a sufficient condition for such systems
to be controllable with quantized controls and finite data-rate.

1 Introduction
Digital controllers for continuous-time systems control are ubiquitous. Hence, it
is natural to ask what constraints the connection between the digital and analog
worlds imposes on capabilities of such controllers. For example, there are well-
known constraints imposed on the controllability of periodic sampling of linear
time-invariant (LTI) systems [11]. However, sampling is not the only characteristic
of digital control that imposes constraints on the controller.

Another aspect of digital controllers is that they have a finite number of output
and input values. Furthermore, these controllers can only receive and transmit
information with a finite data-rate. This latter fact is a consequence of a digital
clock and the circuit timing of the controller components [13]. These facts imply
that, in digital control, we need to work not only with sampled data, but also with
quantized controls and with a finite data-rate.

There exists an extensive literature on quantized control [14, 2, 5, 8]. Many
of these works concern the control over communication channels with minimal
data-rates [8], stabilization [2, 5], or containability [14]. However, controllability
did not play a central role in those works. One of the goals of this paper is to
propose a suitable notion of controllability for systems with quantized controls and
finite data-rate. It is also worth mentioning that the literature on conditions for
stabilization with quantized control of linear time-invariant systems is vast [5, 2, 4].
Also, there is some literature on linear time-varying (LTV) systems, mainly for
switched linear systems [7, 12, 15]. Nonetheless, most of the results found in the
literature only provide sufficient conditions for stabilizability of switched linear
systems but not for general LTV systems. Furthermore, even for switched systems,
necessary conditions for stabilization of linear time-varying systems with quantized
controls are missing in the literature. In view of this, another goal of this paper is
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to present a necessary condition and a sufficient condition for controllability with
quantized controls and finite data-rate for LTV systems. In this way, we hope to
reduce the previously mentioned gap in the literature.

To address our goals, we borrow concepts from the paper [4]. In that article, the
author defined a notion of stabilization with finite data-rate, which we strengthen
to define what we mean by controllability for quantized LTV systems. We also
note that [4] addressed the stabilization problem for LTI and autonomous nonlinear
systems but not time-varying systems.

The structure of the paper is as follows: first, in section 1, we introduce the
motivation and notations. Next, in section 2, we describe the problem and needed
concepts. Further, we introduce the concept of controllability with finite data-
rate and discuss why this concept is natural. Then, in section 3, we state some
necessary results, recall the concept of complete controllability, and define persis-
tent complete controllability. After that, in subsection 3.1, we prove that persistent
complete controllability and another condition, the exponential energy-growth con-
dition, are sufficient for an LTV system to be controllable in the sense we defined.
Furthermore, in subsection 3.2, we prove that complete controllability is a neces-
sary condition for an LTV system to be controllable with finite data-rate. Finally,
in section 4, we conclude the paper and present some future research directions.
Notations : We denote by Z>0 (Z≥0) the set of the positive (nonnegative) inte-
gers. We denote by R (R>a) the set of real numbers (larger than a ∈ R). Given
n ∈ Z>0, we denote [n] := {1, . . . , n}. Given a set S, we denote by #S its car-
dinality. Let Md be the set of d × d real matrices. We denote the transpose
of an element A ∈ Md by A′. For every x = (x1, · · · , xd) ∈ Rd, we denote by
|x| :=

(∑d
i=1 x

2
i

)1/2 the Euclidean norm. Also, if A is a d × d real matrix we
denote by ∥A∥ := max{|Ax| : |x| = 1, x ∈ Rd} the induced norm. For a matrix
A ∈ Md, we denote by N (A) its null space. We denote by L∞

loc([t0,∞),Rm) the
set of all integrable locally essentially bounded functions from [t0,∞) to Rm where
t0 ∈ R≥0 and m ∈ Z>0, i.e., the set of integrable functions u(·) such that for every
compact set L ⊂ [t0,∞), we have that u(L) ⊂ Rm is bounded. Also, we denote by
L2([a, b],Rm) the set of square-integrable functions on the interval [a, b] ⊂ R with
image on Rm. Let u : A → B and let C ⊂ A, then we denote by u|C : C → B the
restriction of the function u to the subset C of the domain A. Finally, we denote
by B(x, r) ⊂ Rd the open ball of radius r ∈ R>0 and center x ∈ Rd.

2 Preliminaries
In this section, we motivate the study of controllability of linear time-varying sys-
tems with quantized controls and finite data-rate. To do that, we first provide
some necessary definitions. Next, we give an example that shows that the usual
notion of controllability for linear time-varying systems is not enough to ensure
controllability when we consider quantization and finite data-rate. Then, we pro-
vide a definition of controllability that makes sense when we consider the finite
data-rate case. Finally, we motivate the study of our controllability notion through
an example.
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Our primary goal is to study the controllability with quantized controls and
finite data-rate of systems described by equation:

ẋ(t) = A(t)x(t) +B(t)u(t) (1)

where the initial state is given by x(t0) = x0 ∈ K ⊂ Rd with K compact with
nonempty interior, the initial time is given by t0 ∈ R≥0, time is such that t ∈ R≥t0 ,
A(t) is a d× d real matrix, B(t) is a d×m real matrix, and u(t) ∈ Rm. Also, we
assume that the functions A(·) and B(·) are bounded1 and piecewise-continuous on
R≥t0 . Further, we define by Φ(t, τ) for t ∈ R and τ ∈ R the state-transition matrix
associated with the unforced response of system (1). Furthermore, we assume that
u(·) ∈ L∞

loc([t0,∞),Rm).
Now, we must define what we mean by controllability with finite data-rate.

To do that, we need the following Definition 2.1, which is an adaptation from the
definitions given in [4]. Also, we name some sets and properties that were not
named in [4] to improve readability in later discussions.

Definition 2.1. We say that system (1) satisfies the exponential decay condition
with rate µ ∈ R>0, with M ∈ R>0, and ϵ ∈ R>0 if for each x0 ∈ K ⊂ Rd there
exists u(·) ∈ L∞

loc([t0,∞),Rm) such that

|x(t)| ≤
(
M |x0|+ ϵ

)
e−µ(t−t0) (2)

for all t ∈ R≥t0 . For given µ ∈ R>0, M ∈ R>0, ϵ ∈ R>0, and K ⊂ Rd as above,
we call the set R(ϵ,M,K, µ) ⊂ L∞

loc([t0,∞),Rm) a stabilizing control set of system
(1) if for every x0 ∈ K, there exists a control function u(·) ∈ R(ϵ,M,K, µ) such
that (2) holds. Furthermore, we denote by

RT (ϵ,M,K, µ) := {u|[t0,T ](·) ∈ L∞
loc([t0, T ],Rm) : u(·) ∈ R(ϵ,M,K, µ)}

a set of restrictions of stabilizing controls, where T > t0 is arbitrary. Moreover,
we define the data-rate associated with system (1) in the following manner. First,
given a stabilizing control set R(ϵ,M,K, µ), we define the quantity2

b(R(ϵ,M,K, µ)) := lim sup
T→∞

1

T
log(#RT (ϵ,M,K, µ)).

Next, we define the data-rate as3

b(M,µ) := lim
ϵ→0

inf{b(R(ϵ,M,K, µ)) : R(ϵ,M,K, µ)

is a stabilizing control set of (1)}.

Finally, we say that system (1) can be stabilized with finite data-rate with M ∈ R≥0

and µ ∈ R≥0 if b(M,µ) < ∞.
1That means that A(R≥t0) and B(R≥t0) are bounded subsets of Rd and Rm, respectively.
2The corresponding quantity in [4] uses the limit inferior instead of limit superior. Because

of that, if the quantity given in [4] is also infinite, ours is also infinite.
3Note that b(M,µ) also depends on the set of initial conditions K. We drop that dependence

to make the notation simpler.
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Note that the limit ϵ → 0 could be substituted by4 supϵ>0. This latter fact
implies that if we can stabilize system (1) with finite data-rate, then we can achieve
(2) with an arbitrary ϵ ∈ R>0. The reader might wonder if we can remove the ϵ
term from inside equation (2) and still get a reasonable notion of stabilizability
with finite data-rate. The answer is negative, and is proved in Proposition 2.2 of
[4] where the author showed that LTI systems with poles with a nonnegative real
part cannot satisfy (2) with ϵ = 0 and have b(M,µ) < ∞ for any choices of M and
µ.

To continue our discussion, we recall the usual definition of controllability for
LTV systems. See, e.g., Chapter 9 of [9].

Definition 2.2. We say that system (1) is controllable in the usual sense on [t0, T ],
where T ≥ t0, if for every initial condition x(t0) = x0 ∈ Rd there exists a function
u : [t0, T ] → Rm such that x(T ) = 0.

Now, we are ready to define controllability with finite data-rate.

Definition 2.3. We say that system (1) is controllable with finite data-rate if for
every µ ∈ R>0, there exists M ∈ R≥0 such that system (1) is stabilizable with
finite data-rate b(M,µ) < ∞.

It is important to remark that the previous definition is new and it differs from
the definition of stabilization with finite data-rate, originally given in [4], in the
sense that µ ∈ R>0 is arbitrary. Now, the reader might wonder why we need a new
definition of controllability when quantization is present. To answer that, consider
the following example.

Example 1. Let ẋ(t) = u(t) where t ∈ R, x0 ∈ K ⊂ R with K compact with a
nonempty interior, and u(t) ∈ Ct with Ct ⊂ R being a set of finite cardinality
that may vary with t. We can easily solve this equation to get that x(T ) =

x0 +
∫ T

t0
u(τ)dτ . Note that, if u(t) ∈ Rm, this system is controllable in the usual

sense on the interval [t0, T ]. If we impose that the data-rate is finite, we have that
the set of possible controls u[t0,T ](·) in any interval of time t ∈ [t0, T ] has a finite
cardinality. Therefore, the integral

∫ T

t0
u(τ)dτ attains at most finitely many values,

but x0 belongs to the set K, which has infinitely many points. Hence, it is not
possible to make x(T ) = 0 for an arbitrary initial condition in K. However, we
prove in section 3 that this system is controllable with finite data-rate.

The previous example showed that we cannot have x(T ) = 0 for an arbitrary
initial condition in K, which proves that the usual controllability notion is unfit for
the case where we have quantized controls. Thus, we relax that condition by saying
that the norm of the state must converge to zero with an arbitrary exponential
rate of decay. The idea behind this definition came from the fact that we can
solve the pole placement problem for a linear time-invariant system if, and only
if, it is controllable. Moreover, we can only make the norm of the state of an LTI
system decay arbitrarily fast to zero if the system is controllable. Therefore, since
definition 2.3 captures that property, we believe that it is a natural candidate for
extending the concept of controllability to LTV systems with finite data-rate.

4See [4] for a discussion.
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Before we continue our discussion, we recall the definition of controllability
Gramian.

Definition 2.4. (Chapter 6 of [3]) Consider the system given by equation (1).
We define the controllability Gramian from t0 to t of system (1) as W (t, t0) :=∫ t

t0
Φ(t, τ)B(τ)B′(τ)Φ′(t, τ)dτ.

At this point, we note that the system of Example 1 is controllable in the usual
sense and we will see in section 3.1 that it is controllable with finite data-rate.
Indeed, Theorem 3.1 ensures that this is true for LTI systems. Hence, a natural
question is if the usual controllability condition for LTV systems based on the
invertibility of the controllability Gramian is also enough to ensure that system
(1) is controllable with finite data-rate. The next Example 2 shows that that is
not the case.

Example 2. Consider system (1) with A(t) = Id and B(t) = (1, 0) for 0 < t < 1,
and A(t) = Id and B(t) = (0, 1) for t ≥ 1. Also, let the initial time be t0 = 0. It is
easy to see that W (2, 0) is invertible, which implies that system (1) is controllable
in the usual sense. Nonetheless, we show in section 3 that it is not controllable
with finite data-rate.

This example motivates us to provide necessary and sufficient conditions for
system (1) to be controllable with finite data-rate. We do that in the next section.

3 Controllability with Finite Data-Rate
In this section, we present the main contribution of the paper. We give and prove a
sufficient and a necessary condition for LTV systems to be controllable with finite
data-rate. But first, we introduce needed definitions and state some technical
lemmas.

The following definition 3.1 describes a controllability condition that is related
to the concept of controllability of LTV systems with finite data-rate defined in the
previous section. That connection will become clear in the statements of Theorems
3.1 and 3.2.

Definition 3.1. We say that system (1) is completely controllable if there exists an
increasing sequence (sn)n∈Z≥0

with s0 = t0 and sn → ∞ such that W (sn+1, sn) is in-
vertible for every n ∈ Z≥0. If the sequence (sn)n∈Z≥0

also satisfies5 lim supn→∞
sn+1

sn
<

∞, then we say that system (1) is persistently completely controllable.

Remark 3.1. A few remarks are in order. First, the notion of complete controlla-
bility was first stated in [6] in a different manner than in definition 3.1; we provide
a proof that both statements are equivalent in the Appendix. Note, however, that
the Definition of persistent complete controllability is new. Second, we notice that
there exist necessary conditions and sufficient conditions for the complete control-
lability of LTV systems. For example, [10] gives several conditions6 for complete

5This is equivalent to the statement: there exists M ∈ R>0 such that sn+1

sn
≤ M for all

n ∈ Z≥0.
6Note that complete controllability is different from complete controllability on an interval.
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controllability in the differentiable case7. Third, note that sn+1− sn does not need
to be bounded in neither statement from Definition 3.1.

Now, we state some technical results. One can find the proofs of all of the
lemmas in the Appendix. First, we need the following technical Lemma 3.1 which
will be useful in the proof of Theorem 3.1.

Lemma 3.1. Let system (1) be persistently completely controllable. Then, there
exists a sequence (sn)n∈Z≥0

such that W (sn+1, sn) is invertible for every n ∈ Z≥0,
that lim supn→∞

sn+1

sn
< ∞, and that lim supn→∞

n
sn

< ∞.

Next, let λt := sup{1
s
log(∥Φ(s, t0)∥) : t ≥ s ≥ t0}, ξ := sup{∥A(t)∥ : t ≥ t0},

and λ̄ := lim supt→∞ λt. Further, consider Lemma 3.2, which collects some known
facts about the state transition matrix. See, e.g., Chapter 4 of [9].

Lemma 3.2. Consider equation (1) and let ξ < ∞. Then, e−ξ(t−t0) ≤ |Φ(t, t0)v| ≤
eξ(t−t0) for all t ≥ t0 and all v ∈ Rd with |v| = 1. In particular, it is also true that
∥Φ(t, t0)∥ ≤ eξ(t−t0).

Note that because ξ < ∞, we have that λ̄ and λt are finite by Lemma 3.2.
The next definition gives a bound for ∥W−1(sn, sn+1)∥ as n goes to infinity, as fact
that will be useful in the proof of Theorem 3.1. Furthermore, we need one more
Lemma and an additional technical definition.

Lemma 3.3. For every sequence (sn)n∈Z≥0
with sn ↗ ∞, the Gramian W (sn+1, sn)

associated with system (1) satisfies ∥W (sn+1, sn)∥ ≤ sup{∥B(t)∥2 : t ≥ t0} e2ξ(sn+1−sn)−1
2ξ

.

The previous Lemma 3.3 states the fact that the Gramian can only grow ex-
ponentially fast with n if A(·) and B(·) are bounded.

Definition 3.2. Let (sn)n∈Z≥0
be an increasing sequence such that lim supn→∞ sn =

∞. Then, we say that system (1) satisfies the exponential energy-growth condition
if there exists θ ∈ R≥0 and N ∈ R>0 such that ∥W−1(sn+1, sn)∥ ≤ Neθsn+1 .

The intuition behind this definition is related to the minimum energy control
on intervals of the form [sn, sn+1]. Note that the minimum-energy control, in the
L2([sn, sn+1],Rm) sense, that drives a state x(sn) at time sn to the origin at time
sn+1 is given by x′(sn)W

−1(sn, sn+1)x(sn). See, e.g., Theorem 1 in Chapter 22
from [1]. Thus, only if a system satisfies the exponential energy-growth condition,
the energy needed to drive a given state to zero cannot grow faster than an expo-
nential as n grows to infinity. Now, we are ready to prove necessary and sufficient
conditions for system (1) to be controllable with finite data-rate.

3.1 Sufficient Condition

In this subsection, we prove Theorem 3.1, which gives a sufficient condition for
system (1) to be controllable with finite data-rate.

Theorem 3.1. System (1) is controllable with finite data-rate if it is persistently
completely controllable and satisfies the exponential energy-growth condition.

7When matrices A(t) and B(t) are differentiable functions of time.
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Remark 3.2. Note that, for a controllable LTI system, if we choose sn+1 − sn = T ,
the inverse of the Gramian exists and is constant. Thus, the exponential energy-
growth condition is satisfied. Using the same argument, we see that such a system
is persistently completely controllable. Thus, Theorem 3.1 shows that controllable
LTI systems are controllable with finite data-rate.

Proof. Let {e1, · · · , ed} ⊂ Rd be the canonical basis of Rd. Pick an arbitrary
ϵ̃ ∈ R>0 and an arbitrary µ ∈ R>0. Also, let (sn)n∈Z≥0

be a sequence that satis-
fies the conditions given in Definition 3.1 for system (1) to be persistently com-
pletely controllable. By Lemma 3.1, without loss of generality, we assume that
lim supn→∞

n
sn

= Q < ∞. Further, denote by α := 4ξ+θ+µ for simplicity. Finally,

let C = eα(s1−t0), ϵ =
√
d(2C+1)N sup{∥B(t)∥2:t≥t0}

2ξ
ϵ̃, and M =

√
dCN sup{∥B(t)∥2:t≥t0}

ξ
.

Our proof can be divided into four parts: first, we construct a set of controls
U (ϵ,M,K, µ), where each control corresponds to an initial condition in K. Second,
we prove by induction that for every initial condition x ∈ K, there exists a control
in U (ϵ,M,K, µ) such that |x(sn)| ≤ C

(
|x(t0)| + ϵ̃)e−α(sn+1−t0) for all n ∈ Z≥0.

Third, we prove for any n ∈ Z≥0 and any t ∈ [sn, sn+1) we have a bound |x(t)| ≤(
M |x(t0)|+ϵ

)
e−µ(t−t0), i.e., we show that U (ϵ,M,K, µ) is a stabilizing control set.

Finally, we show that the data-rate b(M,µ) is finite for every possible µ ∈ R>0

and our choice of M ∈ R>0 by proving an upper bound for b(U (ϵ,M,K, µ)) =
lim supT→∞

1
T
log(#UT (ϵ,M,K, µ)) that is constant for every ϵ ∈ R>0.

Part 1: Consider the following recursive definitions:
For n ≥ 0 and for each x ∈ K, we define.

• For n = 0, define the constant function

κ0
i (x) := min{⟨x, ei⟩ : x ∈ K}

and
κ0
i (x) := max{⟨x, ei⟩ : x ∈ K}

for every i ∈ [d]. For n ≥ 1, define the piecewise-constant functions

κn
i (x) := κn−1

i (x) + Γn−1
i (qn−1

i (x)− 1)

and
κn
i (x) := κn−1

i (x) + Γn−1
i qn−1

i (x)

for every i ∈ [d];

• Define the constant Γn
i := ϵ̃

d
e−(λsn+1+α)sn+1 and the positive integer Cn

i :={
1, . . . ,

⌈
κn
i (x)−κn

i (x)

Γn
i

⌉}
for each i ∈

{
1, . . . , d

}
and each n ∈ Z>0. Note that,

by the defining equations of κn
i (x) and κn

i (x), κn
i (x) − κn

i (x) = Γn−1
i . Thus,

κn
i (x)−κn

i (x)

Γn
i

= e(λ
sn+1+α)sn+1−(λsn+α)sn for every i ∈ [d], every x ∈ K, and every

n ∈ Z≥0.

• Define the quantized value of the i−th projection of the initial state into the
vector space span{ei} at time sn by

qni (x) := {l ∈ Cn
i : κn

i (x) + Γn
i (l − 1) ≤ ⟨x, ei⟩ < κn

i (x) + Γn
i l}

for each i ∈ [d];
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• Define the quantized value of the i−th projection of the initial state into the
vector space span{ei} at time sn by

β̂n
i (x) := κn

i (x) + Γn
i (q

n
i (x)− 1/2)

for each i ∈ [d];

• Define the i-th projection of the initial state into the vector space span{ei}
at time sn by

βn
i (x) := ⟨x, ei⟩;

• With the notation
∑b

i=1 ci = 0 for any b ∈ Z such that b < 1. Then, define
the quantity8

x̂(sn) :=
d∑

i=1

β̂n
i (x)Φ(sn, s0)ei+

n−1∑
k=0

∫ sk+1

sk

Φ(sn, s)B(s)u(q0(x), · · · , qk(x), s)ds;

• Define the control law in the interval [sn, sn+1) corresponding to the initial
state x by

u(q0(x), · · · , qn(x), t) := −B′(t)Φ′(sn+1, t)W
−1(sn+1, sn)Φ(sn+1, sn)x̂(sn)

for t ∈ [sn, sn+1) where qn(x) := (qn1 (x), · · · , qnd (x)). Further define v(x, t) :=
u(q0(x), · · · , qn−1(x), t), where n is the smallest integer such that t < sn.
Finally, define by U (ϵ,M,K, µ) the set of all such v(x, ·). Also, denote by
UT (ϵ,M,K, µ) the set of restrictions of controls in U (ϵ,M,K, µ) from time
t0 to T . More explicitly UT (ϵ,M,K, µ) := {v|[t0,T )(x, ·) ∈ L∞

loc([t0,∞),Rm) :
v(x, ·) ∈ U (ϵ,M,K, µ)}.

- Part 2:
Step 0: Trivially, we have that |x(t0)| ≤ |x(t0)|+ ϵ̃ = C(|x(t0)|+ ϵ̃)e−α(s1−t0) and
we proved the base case, i.e., |x(sn)| ≤ C(|x(t0)|+ ϵ̃)e−α(sn+1−t0) for C ∈ R>1 and
for n = 0.
Step n + 1: Recall that for each x ∈ K and for t ∈ [sn, sn+1) the control law we
defined in the first part is given by

u(q0(x), · · · , qn(x), t) = −B′(t)Φ′(sn+1, t)W
−1(sn+1, sn)Φ(sn+1, sn)x̂(sn)

where

x̂(sn) =
d∑

i=1

β̂
sn+1

i (x)Φ(sn, s0)ei+
n−1∑
k=0

∫ sk+1

sk

Φ(sn, s)B(s)u(q0(x), · · · , qk−1(x), s)ds.

Now, writing down the variation of parameters formula at time sn+1 we get that

x(sn+1) = Φ(sn+1, sn)x(sn)−
∫ sn+1

sn

Φ(sn+1, τ)B(τ)B′(τ)Φ′(sn+1, τ)dτ×

×W−1(sn+1, sn)Φ(sn+1, sn)x̂(sn)

8This can be seen as an state estimate at time sn.
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from which we conclude that

x(sn+1) = Φ(sn+1, sn)
(
x(sn)− x̂(sn)

)
=

d∑
i=1

(βn
i (x)− β̂n

i (x))Φ(sn+1, s0)ei.

Then, by taking the norm on both sides and applying the triangle inequality, we
conclude that

|x(sn+1)| ≤
d∑

i=1

|βn
i (x)− β̂n

i (x)||Φ(sn+1, s0)ei|.

Now, by the definition of λt,9 we get that |Φ(sn+1, s0)ei| ≤ eλ
sn+1sn+1 for all i ∈ [d].

Further, by recalling the expression of Γn
i and by the definitions of β̂n

i , βn
i and

qni (x), we conclude that |βn
i (x)− β̂n

i (x)| ≤ ϵ̃
d
e−(λsn+1+α)sn+1 . Hence, we get that

|x(sn+1)| ≤
d∑

i=1

ϵ̃

d
e−αsn+1 = ϵ̃e−αsn+1 .

Therefore, |x(sn+1)| ≤ ϵ̃e−αsn+1 ≤ C
(
|x(t0)|+ ϵ̃

)
e−α(sn+1−t0) and we proved the case

for step n+ 1.
- Part 3:
Now, pick any n ∈ Z≥0 and any t ∈ [sn, sn+1). Note that the variation of parame-
ters formula gives us that

x(t) =Φ(t, sn)x(sn)−∫ t

sn

Φ(t, s)B(s)B′(s)Φ(sn+1, s)dsW
−1(sn+1, sn)Φ(sn+1, sn)x̂(sn).

Notice that∫ t

sn

Φ(t, s)B(s)B′(s)Φ′(sn+1, s)ds =

Φ(t, sn+1)

∫ t

sn

Φ′(sn+1, s)B(s)B′(s)Φ(sn+1, s)ds.

Next, let

Ω(t, sn+1, sn) :=

∫ t

sn

Φ(sn+1, s)B(s)B′(s)Φ(sn+1, s)ds

and let
Θ(t, sn+1, sn) :=

∫ sn+1

t

Φ(sn+1, s)B(s)B′(s)Φ(sn+1, s)ds.

Further, note that10 Ω(t, sn+1, sn) ≽ 0, Θ(t, sn+1, sn) ≽ 0, and W (sn+1, sn) ≻ 0.
Also, the definitions imply that W (sn+1, sn) = Ω(t, sn+1, sn)+Θ(t, sn+1, sn) for any
t ∈ [sn, sn+1). The two latter facts imply that ∥Ω(t, sn+1, sn)∥ ≤

√
d∥W (sn+1, sn)∥

and ∥Θ(t, sn+1, sn)∥ ≤
√
d∥W (sn+1, sn)∥.

9Recall that λsn+1 = sup{ 1
t log(∥Φ(t, t0)∥) : sn+1 ≥ t ≥ t0}.

10Since Φ(sn+1, s)B(s)B′(s)Φ′(sn+1, s) ≽ 0 for all s ∈ [sn, sn+1).
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Recall the semigroup property for the transition matrix, i.e.,
Φ(t, z) = Φ(t, r)Φ(r, z) for any z ≥ t0, t ≥ t0 and any z ≥ t0. So, we get

x(t) = Φ(t, sn)x(sn)−
Φ(t, sn+1)Ω(t, sn+1, sn)W

−1(sn+1, sn)Φ(sn+1, sn)x̂(sn) =

Φ(t, sn)
(
x(sn)− Φ(sn, sn+1)Ω(t, sn+1, sn)W

−1(sn+1, sn)Φ(sn+1, sn)x̂(s)
)
.

By rewritting x̂(sn) = x̂(sn)− x(sn) + x(sn) and using the fact that
Φ(t, r)Φ(r, t) = Id for every t ≥ t0 and every r ≥ t0, we get

x(t) = Φ(t, sn)
(
Φ(sn, sn+1)(I − Ω(t, sn+1, sn)W

−1(sn+1, sn))Φ(sn+1, sn)x(s)

− Φ(sn, sn+1)Ω(t, sn+1, sn)W
−1(sn+1, sn)Φ(sn+1, sn)(x̂(sn)− x(sn))

)
=

Φ(t, sn+1)Θ(t, sn+1, sn)W
−1(sn+1, sn)Φ(sn+1, sn)x(s)

− Φ(t, sn+1)Ω(t, sn+1, sn)W
−1(sn+1, sn)Φ(sn+1, sn)(x̂(sn)− x(sn)).

Taking the norm on both sides and using the triangle inequality yields

|x(t)| ≤ ∥Φ(t, sn+1)∥∥Θ(t, sn+1, sn)∥∥W−1(sn+1, sn)∥×
× ∥Φ(sn+1, sn)∥|x(s)|+ ∥Φ(sn, sn+1)∥∥Ω(t, sn+1, sn)∥×
× ∥W−1(sn+1, sn)∥∥Φ(sn+1, sn)∥|x̂(sn)− x(sn)|.

We invoke Lemma 3.3 and notice that it implies that

∥W (sn+1, sn)∥ ≤ sup{∥B(t)∥2 : t ≥ t0}
2ξ

e2ξsn+1 .

Then, we combine that with the fact that

max{∥Ω(t, sn+1, sn)∥, ∥Θ(t, sn+1, sn)∥} ≤
√
d∥W (sn, sn+1)∥,

to conclude that

max{∥Ω(t, sn+1, sn)∥,∥Θ(t, sn+1, sn)∥} ≤
√
dN sup{∥B(t)∥2 : t ≥ t0}

2ξ
e(2ξ+θ)(sn+1).

By the exponential energy-growth condition, we know that there exist θ ∈ R≥0

and N ∈ R>0 such that ∥W−1(sn1 , sn)∥ ≤ Neθsn+1 . So, we have that

|x(t)| ≤
√
dN sup{∥B(t)∥2 : t ≥ t0}

2ξ
e(2ξ+θ)(sn+1)∥Φ(sn+1, sn)∥×

×
(
∥Φ(t, sn+1)∥|x(s)|+ ∥Φ(sn, sn+1)∥|x̂(sn)− x(sn)|

)
.

By Lemma 3.2, for any t ∈ [sn, sn+1), we get ∥Φ(t, sn)∥ ≤ eξ(t−t0), which implies
that

|x(t)| ≤
√
dN sup{∥B(t)∥2 : t ≥ t0}

2ξ
e(4ξ+θ)sn+1

(
|x(sn)|+ |x̂(sn)|

)
≤

√
dN sup{∥B(t)∥2 : t ≥ t0}

2ξ
e(4ξ+θ)(sn+1−t0)

(
|x(sn)|+ |x̂(sn)|

)
,
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where the last inequality follows from the fact that t0 ≥ 0. Note that |x(sn) −
x̂(sn)| ≤

∑d
i=1 ∥Φ(sn, s0)ei∥|βn

i (x) − β̂n
i (x)| ≤ ϵ̃e−α(sn+1−t0) by the defining equa-

tions of βn
i , β̂n

i , and x̂(sn) presented in part 1 of the proof, from which we conclude
that

|x̂(sn)| ≤ ϵ̃e−αsn+1 + |x(sn)|.

So, we can write

|x(t)| ≤
√
dN sup{∥B(t)∥2 : t ≥ t0}

2ξ
e(4ξ+θ)(sn+1−t0)

(
2|x(sn)|+ ϵ̃e−α(sn+1−t0)

)
.

Thus, by the conclusion of the proof of part 2, we get

|x(t)| ≤
√
dN sup{∥B(t)∥2 : t ≥ t0}

2ξ
e(4ξ+θ)(sn+1−t0)

(
2C(|x(t0)|+ ϵ̃) + ϵ̃

)
e−α(sn+1−t0) ≤

√
dN sup{∥B(t)∥2 : t ≥ t0}

2ξ

(
2C|x(t0)|+ (2C + 1)ϵ̃

)
e−µ(sn+1−t0).

Since α = (4ξ + θ + µ). Finally, recall that ϵ =
√
d(2C+1)N sup{∥B(t)∥2:t≥t0}

2ξ
ϵ̃ and

M =
√
dCN sup{∥B(t)∥2:t≥t0}

ξ
. Hence, we conclude that

|x(t)| ≤ (M |x(t0)|+ ϵ)e−µ(sn+1−t0) ≤ (M |x(t0)|+ ϵ)e−µ(t−t0)

for all t ≥ t0. Therefore, we proved that UT (ϵ,M,K, µ) is a stabilizing control set,
concluding the proof of part 3.
- Part 4 : Note that there is a bijection between the elements of

∏n
j=0

∏d
i=1 C

j
i

and those of UT (ϵ,M,K, µ) by the definition of v(x, t). So, #UT (ϵ,M,K, µ) =∏n
j=0

∏d
i=1 #Cj

i . Also, by the same equations, we have that #UT (ϵ,M,K, µ) is
constant for T ∈ [sn, sn+1) for each n ∈ Z≥0. Thus,

1

T
log
(
#UT (ϵ,M,K, µ)

)
≤ 1

sn
log
(
#UT (ϵ,M,K, µ)

)
for T ∈ [sn, sn+1). Also, note that

#Cn
i =

⌈
e(λ

sn+1+α)sn+1−(λsn+α)sn
⌉

for every i ∈ [d] and n ∈ Z≥1. Therefore,

log

(
n∏

j=1

d∏
i=1

Cj
i

)
≤ d
(
(λsn+1 + α)sn+1 − (λs1 + α)s1 + n

)
,

where the inequality comes from the facts that log(⌈ey⌉) ≤ y + 1 for y ∈ R≥1 and
from the property of telescoping series. Combining our previous results, we arrive

at 1
T
log(#UT (ϵ,M,K, µ)) ≤ d

sn

(
(λsn+1 +α)sn+1− (λs1 +α)s1+n

)
+

∑d
i=1 log(#C0

i )
sn

.
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Taking the limit superior on the left hand side with T going to infinity im-
plies that we are taking the limit superior on the right hand sided with n go-
ing to infinity because n = inf{l ∈ Z≥0 : sl ≤ T and sl+1 > T}. Hence,
we get lim supT→∞

1
T
log(#UT (ϵ,M,K, µ)) ≤ lim supn→∞

d(λsn+1+α)sn+1

sn
+ n

sn
≤

d(λ̄ + α)R + Q. The first inequality follows from the fact that
∑d

i=1 log(#C0
i )

and (λs1 + α)s1 are finite. The last inequality follows because lim supn→∞
n
sn

= Q
and because given two sequences of positive numbers (an)n∈Z≥0

and (bn)Z≥0
, then

lim supn→∞ anbn ≤ lim supn→∞ an lim supn→∞ bn and we have that

lim sup
n→∞

λsn+1 = λ̄

and lim supn→∞
sn+1

sn
= R by persistent complete controllability. Since our bound

does not depend on ϵ, we have that the previous inequality gives an upper bound
for b(M,µ). In this way, we proved that

b(M,µ) < lim
ϵ→0

b(U (ϵ,M,K, µ)) < d(λ̄+ α)R +Q < ∞

for every µ ∈ R>0 and our chosen M . Thus, we conclude the proof of the theorem.
As mentioned in Remark 3.2, controllable LTI systems are controllable with

finite data-rate. Thus, the system from Example 1 is controllable with finite data-
rate as mentioned earlier. In the next subsection, we finally show why Example 2
cannot by controllable with finite data-rate.

3.2 Necessary Condition

In this subsection, we show a necessary condition for system (1) to be controllable
with finite data-rate.

Theorem 3.2. System (1) is controllable with finite data-rate only if it is completely
controllable.

Remark 3.3. It is important to notice the gap between the hypothesis of the nec-
essary condition and the sufficient condition, i.e., the exponential energy-growth
rate and the persistency of complete controllability. The former condition is only
used in the part 3 of the proof of Theorem 3.1 to bound the growth of the state
between times sn and sn+1 for n ∈ Z≥0. Informally, this condition ensures that the
state does not grow too much on the interval [sn, sn+1). At the moment, it is not
clear if this condition is necessary or if it is a consequence of our choice of stabi-
lizing control set U (ϵ,M,K, µ) in the proof of Theorem 3.1. Note, however, that
the exponential energy-growth rate is a reasonable assumption since requiring the
boundedness of the control energy, a stronger assumption, is normally desirable in
practice. The latter fact, if the sequence (sn)n∈Z≥0

that appears in Definition 3.1
satisfies lim supn→∞

sn+1

sn
< ∞, appears in the last part of the proof of Theorem

3.1 to bound the data-rate. Nonetheless, at the moment, it is not clear if we can
remove it from the statement of Theorem 3.1.

Proof. We prove this theorem by contradiction. Assume that there exists s ≥ t0
such that for all t ≥ s we have that the Gramian of system (1) W (t, s) is not
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invertible11, but system (1) can be stabilized with finite data-rate for arbitrary
α ∈ R≥0 and arbitrary ϵ ∈ R>0. Thus, there exists w(t) ∈ Rd for every t ≥ t0 such
that w(t) ∈ N (W (t, s)) for all t ≥ s and that |w(t)| = 1 for all t ≥ s.
First, note that w′(t)

∫ t

s
Φ(t, τ)B(τ)u(τ)dτ = 0 for all u(·) ∈ L∞

loc([t0,∞),Rm).
To see that, recall that since w(t) ∈ N (W (t, s)) for all t ≥ s, we have that
w′(t)W (t, s)w(t) = 0. That implies that

w′(t)

∫ t

s

Φ(t, τ)B(τ)B′(τ)Φ(t, τ)dτw(t) =

∫ t

s

|w′(t)Φ(t, τ)B(τ)|2dτ = 0,

which implies that w′(t)Φ(t, τ)B(τ) = 0 for almost all τ ∈ [s, t]. By its turn, this
implies the claim w′(t)

∫ t

s
Φ(t, τ)B(τ)u(τ)dτ = 0. Second, we pick α > ξ and pick

some arbitrary ϵ ∈ R>0. Since the data rate is finite, we know that there exists a
stabilizing control set R(ϵ,M,K, α) such that the cardinality of a set of restrictions
of stabilizing controls Ns = #Rs(ϵ,M,K, α) is finite. Thus, if we choose Ns + 1
distinct initial conditions x(t0) we have that at least two of them have the same
associated control restriction u|[t0,s](t) for all t ∈ [t0, s]. Now, let x̄ ∈ K be some
interior point to K. Pick an open ball B(x̄, r) that is contained in the interior of K.
Thus, for each i ∈ [d], we can pick Ns + 1 colinear points that lie on a line that is
parallel to ei. More precisely, define yj,i = x̄+ r

(
j−1
Ns+1

− 1
2

)
ei for every j ∈ [Ns+1]

and every i ∈ [d]. Note that all of such points belong to B(x̄, r). Denote by
uj,i(t) ∈ Rm the control function from the stabilizing control-set corresponding to
the initial condition yj,i at time t ≥ t0 for each i ∈ [d] and j ∈ [Ns+1], and denote
by xj,i(t) the corresponding state trajectory at time t ≥ t0 for each i ∈ [d] and
j ∈ [Ns + 1]. Then, we can use the variation of constants formula to get

xj,i(t) = Φ(t, t0)yj,i +

∫ t

t0

Φ(t, τ)B(τ)uj,i(τ)dτ

for all t ≥ t0. Now, by the pigeonhole principle, for each i ∈ [d], there exists at least
two distinct indices j∗i ∈ [Ns+1] and k∗

i ∈ [Ns+1] such that the restriction of their
corresponding controls (uj,i)[t0,s](t) is the same for t ∈ [t0, s]. Let zi = yj∗i ,i−yk∗i ,i =

ei
r(j∗i −k∗i )

Ns+1
for each i ∈ [d] and notice that {z1, · · · , zd} form an orthogonal basis12

for Rd. Further note that |zi| ≥ r
Ns+1

since j∗i − k∗
i is a nonzero integer. Also, let

ϕi(t) := xj∗i ,i
(t) − xk∗i ,i

(t) for every i ∈ [d] and all t ≥ t0. Therefore, again by the
variation of parameters formula, we get that ϕi(t) = Φ(t, t0)zi for t ∈ [t0, s] and
for i ∈ [d] and

ϕi(t) = Φ(t, t0)zi +

∫ t

t0

Φ(t, τ)B(τ)(uj∗i ,i
(τ)− uk∗i ,i

(τ))dτ

for t ≥ s and for i ∈ [d]. Now, for each i ∈ [d] multiply ϕi(t) on the left
by w′(t) and note that w′(t)ϕi(t) = w′(t)Φ(t, t0)zi for all t ≥ t0 by the fact
that w′(t)

∫ t

s
Φ(t, τ)B(τ)u(τ)dτ = 0 for all t ≥ s and all integrable u(·). Next,

11By the remark following Definition 3.1, we know that this implies that system (1) is not
completely controllable.

12We have that zi is parallel to ei for each i ∈ [d].
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for every fixed time t ≥ t0, define coefficients ai(t) ∈ R for all i ∈ [d] such
that

∑d
i=1 |ai(t)| = 1 and Φ(t, t0)z(t) ∈ span{w(t)}, where z(t) :=

∑d
i=1 ai(t)zi.

First, note that such coefficients always exist since {z1, · · · , zd} forms a basis
for Rd and Φ(t, t0) is invertible for every t ≥ t0. Hence, we can define ai(t) as
c⟨Φ−1(t, t0)w(t), zi⟩/|zi|2 for c = 1

|
∑d

i ⟨Φ−1(t,t0)w(t),zi⟩/|zi|2|
. This follows from the

fact that
∑d

i=1 |ai(t)| = |c||
∑d

i ⟨Φ−1(t, t0)w(t), zi⟩/|zi|2| = 1 and that z(t) =

c
∑d

i=1⟨Φ−1(t, t0)w(t),
zi
|zi|⟩

zi
|zi| = c

∑d
i=1⟨Φ−1(t, t0)w(t), ei⟩ei = cΦ−1(t, t0)w(t). Fur-

ther, note that |z(t)| =
∑d

i=1 |ai(t)||zi| ≥
r

Ns+1
, where the equality follows from

the fact that {z1, . . . , zd} is an orthogonal basis and the inequality follows since∑d
i=1 |ai(t)| = 1 and the fact that |zi| ≥ r

Ns+1
for each i ∈ [d]. Let ϕ(t) :=∑d

i=1 ai(t)ϕi(t) for every t ≥ t0. Thus, for every t ≥ t0 we have w′(t)ϕ(t) =
w′(t)Φ(t, t0)z(t) for every t ≥ t0. Taking the norm on both sides and using
the Cauchy-Schwarz inequality, we see that |w′(t)ϕ(t)| = |Φ(t, t0)z(t)| because
|w′(t)Φ(t, t0)z(t)| = |Φ(t, t0)z(t)| since Φ(t, t0)z(t) ∈ span{w(t)} and |w(t)| = 1.
Now, recall that, by definition of controllability with finite data-rate, for every
α ≥ 0 and every initial condition x(t0), we have that

|x(t)| ≤
(
M |x(t0)|+ ϵ

)
e−α(t−t0)

for some M ∈ R>0, some ϵ > 0, and all t ≥ t0. In particular, this must hold for
our choice of α > ξ and our arbitrary choice of ϵ. This implies that

|ϕ(t)| = |
d∑

i=1

ai(t)ϕi(t)| ≤
d∑

i=1

ai(t)(|xj∗i ,i
(t)|+ |xk∗i ,i

(t)|) ≤ 2
(
MR0 + ϵ

)
e−α(t−t0)

where the first inequality comes from the triangle inequality. The second inequality
follows from the facts that

∑d
i=1 |ai(t)| = 1, by construction, that

max{|xj∗i ,i
(t)|, |xk∗i ,i

(t)|} ≤
(
M |x(t0)|+ ϵ

)
e−α(t−t0),

by controllability with finite data-rate, and that |x(t0)| ≤ R0. Now, by the Cauchy-
Schwarz inequality, we have that |Φ(t, t0)z(t)| = |w′(t)ϕ(t)| ≤ |ϕ(t)| since |w(t)| =
1. Hence, we arrive at 2

(
MR0 + ϵ

)
e−α(t−t0) ≥ |Φ(t, t0)z(t)|. Finally, note that

|Φ(t, t0)z(t)| ≥
r

Ns + 1
e−ξ(t−t0).

To see this latter fact note that |Φ(t, t0)v| ≥ e−ξ(t−t0) for all v ∈ Rd with |v| = 1

by the lower bound in Lemma 3.2. That implies that |Φ(t, t0) z(t)
|z(t)| | ≥ e−ξ(t−t0).

Thus, |Φ(t, t0)z(t)| ≥ e−ξ(t−t0)|z(t)| ≥ r
Ns+1

e−ξ(t−t0), where the last equality comes
from the construction of z(t). Since this must hold for each t ≥ t0 and we picked
α > ξ, we arrived at a contradiction. Therefore, system (1) must be completely
controllable.

Now, we can see why Example 2 cannot be controllable with finite data-rate.
Note that every increasing sequence (sn) with limn→∞ sn = ∞ will have an n0 ∈
Z≥0 such that for all n ≥ n0, we have that sn > 1. So, for all n ≥ n0, we have
that W (sn+1, sn) is not invertible. Thus, this proves that such a system is not
controllable with finite data-rate.
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4 Conclusion
In this paper, we discussed the problem of controlling LTV systems using quantized
controls and finite data-rate. We motivated the study of this concept by showing
that the usual controllability notion is not suitable for systems under finite data-
rate constraints, such as systems that use digital controllers. Then, we presented a
definition for controllability with finite data-rate for LTV systems that is consistent
with properties of controllable LTV systems when no data-rate constraints are
present. Next, we introduced a controllability notion, namely persistent complete
controllability, which is related to the concept of controllability with finite data-
rate that we defined. Finally, we presented a necessary condition and a sufficient
condition relating the controllability notion to controllability with finite data-rate.

In future work, we want to study the concept of controllability with finite
data-rate for switched linear systems. Also, we will propose a related notion of
stabilizability with finite data-rate which is consistent with the controllability no-
tion of this paper and with the usual concept used in the literature of systems
without data-rate constraints.

5 Appendix
Proof. [Proof of equivalence between the two definitions of complete controllability]
The definition of complete controllability in [6] can be understood as follows: For
every13 t ∈ R≥t0 , there exists t̄ ≥ t, such that W (t̄, t) is positive definite. First,
we prove that this definition implies the complete controllability definition given
in Definition 3.1. We prove this fact by induction. For our base step, pick s0 = t0.
By the defintion of complete controllability from [6], we know that there exists
s1 > s0 such that W (s1, s0) is positive definite, which implies that it is invertible.
Now we consider the step n ∈ Z≥1. Note that there exists sn+1 > sn such that
W (sn+1, sn) is positive definite. Hence, we proved that there exists an increasing
sequence (sn)n∈Z≥0

such that W (sn1 , sn) is invertible for each n ∈ Z≥0. Therefore,
we proved the first part of the claim.
Now, we assume Definition 3.1 and we show that this implies the definition given
in [6]. For any t ∈ R≥t0 , there exists n ∈ Z≥0 such that t ≤ sn. Consider
W (sn+1, t). Note that W (sn+1, t) = W (sn+1, sn)+Φ(sn+1, sn)W (sn, t)Φ

′(sn+1, sn).
By hypothesis, we know that W (sn+1, sn) is positive definite14 and we know that
Φ(sn+1, sn)W (sn, t)Φ

′(sn+1, sn) is positive semi-definite. Therefore, W (sn+1, t) is
positive definite and we proved the claim.

Proof. [Proof of Lemma 3.1] Let (sn)n∈Z≥0
be such that W (sn+1, sn) is invertible for

every n ∈ Z≥0 and that lim supn→∞
sn+1

sn
= R. Recursively define s̄0 := s0 and s̄n :=

min{s ∈ (sn)n∈Z≥0
: s ≥ s̄n−1+1} for every n ∈ Z≥1. First, notice that W (s̄n+1, s̄n)

is invertible for every n ∈ Z≥0 because there exists at least two distinct elements
from (sn)n∈Z≥0

in the interval [s̄n, s̄n+1]. Next, note that, for every n ≥ 1, we have

13Here we are imposing that the initial time is t0 ∈ R, which was not required in [6].
14This is equivalent to invertibility of the Gramian.
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that s̄n ≥ 1 because s0 ≥ 0 and the fact that s̄n ≥ s̄1 ≥ 1. Now, for every n ∈ Z≥0

we have that s̄n ∈ (sn)n∈Z≥0
. Thus, there exists mn ∈ Z≥0 such that s̄n = smn .

Write smn+1

smn
. By the definition of s̄n+1, we have that smn+1−1 < smn + 1. Hence,

smn+1−1

smn
< smn+1

smn
≤ 2, where the last inequality comes from the fact that smn ≥ 1.

With this, we conclude that lim supn→∞
s̄n+1

s̄n
= lim supn→∞

smn+1

smn

smn+1−1

smn+1−1
≤

lim supn→∞ 2
smn+1

smn+1−1
= 2R. Further, note that s̄i+1 − s̄i ≥ 1 for every i ∈ Z≥0.

Thus, s̄n−s̄0 =
∑n

i=0 s̄i+1−s̄i ≥ n, where the first equality comes from the equality
for telescoping sums. Hence, s̄n+1−s̄0

s̄n
≥ n

s̄n
. Taking the limit superior when n goes

to infinity, we get that 2R ≥ lim supn→∞
s̄n+1−s̄0

s̄n
≥ lim supn→∞

n
s̄n

.
Therefore, we proved that given a sequence (sn)n∈Z≥0

we can build a subsequence
(s̄n)n∈Z≥0

such that W (s̄n+1, s̄n) is invertible for every n ∈ Z≥0, that lim supn→∞
s̄n+1

s̄n
<

∞, and that lim supn→∞
n
s̄n

< ∞.

Proof. [Proof of Lemma 3.3] Note that, for every v ̸= 0 in Rd, we have that

v′Φ(sn+1, s)B(s)B′(s)Φ(sn+1, s)v = |v′Φ(sn+1, s)B(s)|2

≤ ∥Φ(sn+1, s)∥2∥B(s)∥2|v|2.

Also, because ∥Φ(sn+1, s)∥ ≤ eξ(sn+1−s) for every s ∈ [sn, sn+1) by Lemma 3.2, we
get

Φ(sn+1, s)B(s)B′(s)Φ(sn+1, s) ≼ sup{∥B(t)∥2 : t ≥ t0}e2ξ(sn+1−s)Id.

Now, integrating both sides from sn to sn+1, we conclude that

W (sn+1, sn) ≼ sup{∥B(t)∥2 : t ≥ t0}
e2ξ(sn+1−sn) − 1

2ξ
Id.

Finally, taking the norm and noticing that e−2ξsn < 1, we get

∥W (sn+1, sn)∥ ≤ sup{∥B(t)∥2 : t ≥ t0}
e2ξ(sn+1−sn) − 1

2ξ
.

and we conclude the proof.

Proof of Lemma 3.2. Recall that X(t) = Φ(t, t0) is the solution to the matrix
differential equation

dX(t)

dt
= A(t)X(t)

with X(t0) = Id and that X(·) is given by the Peano-Baker series15. More explic-
itly, consider the recursively defined matrices Mk(t, t0) for t ≥ t0 and all k ∈ Z≥0

by
M0(t, t0) := Id

15See, e.g. Chapter 4 of [9] or Chapter 3 of [1].
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and

Mk(t, t0) := Id +

∫ t

t0

A(τ)Mk−1(τ, t0)dτ

for k ∈ Z>0. Now, pick an arbitrary t1 > t0. It is a well-known fact that Mk(·, t0)
converges uniformly16 to X(·) = Φ(·, t0) on the interval [t0, t1].
Our goal now is to prove that ∥Φ(t, t0)∥ ≤ eξ(t−t0) for all t ∈ [t1, t0]. We do
that by proving that ∥Mk(t, t0)∥ ≤

∑k
i=0 ξ

i (t−t0)i

i!
holds for every k ∈ Z≥0 using

induction. The base case ∥M0(t, t0)∥ ≤ 1 is trivially true17. Now, assume that
∥Mk−1(t, t0)∥ ≤

∑k−1
i=0 ξ

i (t−t0)i

i!
is true. Then,

∥Mk(t, t0)∥ ≤ 1 +

∫ t

t0

ξ∥Mk−1(τ, t0)dτ∥ ≤ 1 +
k−1∑
i=0

ξi+1 (t− t0)
i+1

(i+ 1)!
=

k∑
j=0

ξj
(t− t0)

j

j!

where j = i+ 1 and the inequality holds for all t ∈ [t0, t1]. Thus,

∥Φ(t, t0)∥ = ∥ lim
N→∞

MN(t, t0)∥ = lim
N→∞

∥MN(t, t0)∥ ≤ eξ(t−t0).

for all t ∈ [t0, t1]. Since t1 > t0 was arbitrary, ∥Φ(t, t0)∥ ≤ eξ(t−t0) holds for every
t ≥ t0. Moreover, by definition of norm, we have that ∥Φ(t, t0)∥ ≥ |Φ(t, t0)v| for
any v ∈ Rd with |v| = 1. Thus, we get |Φ(t, t0)v| ≤ eξ(t−t0) for all t ≥ t0 and all
|v| = 1, which proves the upper bound.
For the lower bound, let Z(t) = Φ′(t0, t). It is a well-known that18

dZ(t)

dt
= −A′(t)Z(t)

with Z(t0) = Id. Thus, we can apply an analogous reasoning to get that ∥Φ′(t0, t)∥ ≤
eξ(t−t0) since ξ = sup{∥ − A′(t)∥ : t ≥ t0} as well. Finally, pick any v ∈ Rd with
|v| = 1 and note that

1 = |v′v| = |v′Idv| = |v′Φ(t0, t)Φ(t, t0)v| ≤ |v′Φ(t0, t)||Φ(t, t0)v|.

Now, divide by19 |v′Φ(t0, t)| to get

|Φ(t, t0)v| ≥ |v′Φ(t0, t)|−1.

Next, note that

|Φ(t, t0)v| ≥ min{|Φ(t, t0)v| : |v| = 1} ≥ min{|v′Φ(t0, t)|−1 : |v| = 1}

=
(
max{|v′Φ(t0, t)| : |v| = 1}

)−1

= ∥Φ(t0, t)∥−1,

where the last equality follows from the definition of norm of a matrix. Finally,
recall that ∥Φ′(t0, t)∥ = ∥Φ(t0, t)∥. So, we have, for any v ∈ Rd and |v| = 1, that

16See, e.g., Theorem 1 of Chapter 3 of [1].
17We are using the convention that, for t = t0, (t− t0)

0 = limt→t0(t− t0)
0 = 1.

18See, e.g., Chapter 4 of [9].
19Φ(·, ·) is always invertible, so |v′Φ(t0, t)| cannot be zero.
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|Φ(t, t0)v| ≥ ∥Φ(t0, t)∥−1 ≥ e−ξ(t−t0).

Therefore, we concluded the proof.
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