
On quantization and delay effects in nonlinear

control systems

Daniel Liberzon?

Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign,
Urbana, IL 61801, U.S.A.,
liberzon@uiuc.edu

Summary. The purpose of this paper is to demonstrate that a unified study of
quantization and delay effects in nonlinear control systems is possible by merging
the quantized feedback control methodology recently developed by the author and
the small-gain approach to the analysis of functional differential equations with
disturbances proposed earlier by Teel. We prove that under the action of a robustly
stabilizing feedback controller in the presence of quantization and sufficiently small
delays, solutions of the closed-loop system starting in a given region remain bounded
and eventually enter a smaller region. We present several versions of this result and
show how it enables global asymptotic stabilization via a dynamic quantization
strategy.

1 Introduction

To be applicable in realistic situations, control theory must take into account
communication constraints between the plant and the controller, such as those
arising in networked embedded systems. Two most common phenomena rele-
vant in this context are quantization and time delays. It is also important to
be able to handle nonlinear dynamics. To the best of the author’s knowledge,
the present paper is a first step towards addressing these three aspects in a
unified and systematic way.

It is well known that a feedback law which globally asymptotically sta-
bilizes a given system in the absence of quantization will in general fail to
provide global asymptotic stability of the closed-loop system that arises in
the presence of a quantizer with a finite number of values. One reason for this
is saturation: if the quantized signal is outside the range of the quantizer, then
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the quantization error is large, and the control law designed for the ideal case
of no quantization may lead to instability. Another reason is deterioration of
performance near the equilibrium: as the difference between the current and
the desired values of the state becomes small, higher precision is required, and
so in the presence of quantization errors asymptotic convergence is typically
lost. Due to these phenomena, instead of global asymptotic stability it is more
reasonable to expect that solutions starting in a given region remain bounded
and approach a smaller region. In [11] the author has developed a quantized
feedback control methodology for nonlinear systems based on results of this
type, under a suitable robust stabilization assumption imposed on the con-
troller (see also [12] for further discussion and many references to prior work
on quantized control). As we will see, this robustness of a stabilizing con-
troller with respect to quantization errors (which is automatic in the linear
case) plays a central role in the nonlinear results.

The effect of a sufficiently small time delay on stability of a linear system
can be studied by standard perturbation techniques based on Rouché’s theo-
rem (see, e.g., [5, 7]). When the delay is large but known, it can in principle
be attenuated by propagating the state forward from the measurement time.
However, the case we are interested in is when the delay is not necessarily
small and its value is not available to the controller. There is of course a rich
literature on asymptotic stability of time-delayed systems [6, 5], but these
results are not very suitable here because they involve strong assumptions
on the system or on the delay, and asymptotic stability will in any case be
destroyed by quantization. On the other hand, there are very few results on
boundedness and ultimate boundedness for nonlinear control systems with
(possibly large) delays. Notable exceptions are [19, 21, 22], and the present
work is heavily based on [19]. In that paper, Teel uses a small-gain approach
to analyze the behavior of nonlinear feedback loops in the presence of time
delays and external disturbances. Our main observation is that his findings
are compatible with our recent results on quantization; by identifying external
disturbances with quantization errors, we are able to naturally combine the
two lines of work.

For concreteness, we consider the setting where there is a processing de-
lay in collecting state measurements from the sensors and/or computing the
control signal, followed by quantization of the control signal before it is trans-
mitted to the actuators. Other scenarios can be handled similarly, as explained
at the end of the paper. Assuming that an upper bound on the initial state is
available, our main result (Theorem 1 in Section 3) establishes an upper bound
and a smaller ultimate bound on resulting closed-loop trajectories. Section 4
contains some interpretations and modifications of this result, and explains
how global asymptotic stability can be recovered by using the dynamic quan-
tization method of [2, 11].

In what follows, we will repeat some of the developments from [19] in
order to make the paper self-contained and also because we will need some
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estimates not explicitly written down in [19]. We remark that the results
of [19] were also used in [20] for a different purpose, namely, to study the
effects of sampled-data control implementation. We take the delay to be fixed
for simplicity; however, everything readily generalizes to the case of a time-
varying bounded delay (by simply replacing the value of the delay with its
upper bound in all subsequent arguments). This latter type of delay is used
for modeling sampled-data control systems (see, e.g., [4] and the references
therein), thus such an extension could be useful for studying systems with
sampled-data quantized feedback.

2 Notation and preliminaries

Consider the system
ẋ = f(x, u)

where x ∈ R
n is the state, u ∈ R

m is the control, and f : R
n × R

m → R
n

is a C1 function. The inputs to the system are subject to quantization. The
(input) quantizer is a piecewise constant function q : R

m → Q, where Q
is a finite subset of R

m. Following [11, 12], we assume that there exist real
numbers M > ∆ > 0 such that the following condition holds:

|u| ≤ M ⇒ |q(u) − u| ≤ ∆. (1)

This condition gives a bound on the quantization error when the quantizer
does not saturate. We will refer to M and ∆ as the range and the error
bound of the quantizer, respectively. We consider the one-parameter family of
quantizers

qµ(u) := µq
(u

µ

)

, µ > 0. (2)

Here µ can be viewed as a “zoom” variable. This parameter is in general
adjustable, but in this section we take µ to be fixed. The range of the quantizer
qµ is Mµ and the error bound is ∆µ.

Assumed given is some nominal state feedback law u = k(x), which is C1

and satisfies k(0) = 0. We take this feedback law to be stabilizing robustly
with respect to actuator errors, in the following sense (see Section 4 for a
discussion of this assumption and a way to relax it).

Assumption 1 There exists a C1 function V : R
n → R such that for some

class K∞ functions2 α1, α2, α3, ρ and for all x ∈ R
n and v ∈ R

m we have

2 Recall that a function α : [0,∞) → [0,∞) is said to be of class K if it is continuous,
strictly increasing, and α(0) = 0. If α is also unbounded, then it is said to be
of class K∞. A function β : [0,∞) × [0,∞) → [0,∞) is said to be of class KL if
β(·, t) is of class K for each fixed t ≥ 0 and β(r, t) decreases to 0 as t → ∞ for
each fixed r ≥ 0. We will write α ∈ K∞, β ∈ KL, etc.
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α1(|x|) ≤ V (x) ≤ α2(|x|) (3)

and

|x| ≥ ρ(|v|) ⇒
∂V

∂x
f(x, k(x) + v) ≤ −α3(|x|). (4)

We let the state measurements be subject to a fixed delay τ > 0. This
delay followed by quantization give the actual control law in the form

u(t) = qµ(k(x(t − τ))) (5)

and yields the closed-loop system

ẋ(t) = f(x(t), qµ(k(x(t − τ)))). (6)

We can equivalently rewrite this as

ẋ(t) = f
(

x(t), k(x(t)) + θ(t) + e(t)
)

(7)

where
θ(t) := k(x(t − τ)) − k(x(t)) (8)

and
e(t) := qµ(k(x(t − τ))) − k(x(t − τ)). (9)

To simplify notation, we will write a ∨ b for max{a, b}. Applying (4) with
v = θ + e and defining γ ∈ K∞ by γ(r) := ρ(2r), we have

|x| ≥ γ(|θ| ∨ |e|) ⇒
∂V

∂x
f(x, k(x) + θ + e) ≤ −α3(|x|). (10)

The quantity defined in (8) can be expressed as

θ(t) = −

∫ t

t−τ

k′(x(s))f(x(s), k(x(s − τ)) + e(s))ds. (11)

Substituting this into the system (7), we obtain a system with delay td := 2τ .
For initial data x : [−td, 0] → R

n which is assumed to be given, this system has
a unique maximal solution3 x(·). We adopt the following notation from [19]:
|xd(t)| := maxs∈[t−td,t] |x(s)| for t ∈ [0,∞), ‖xd‖J := supt∈J |xd(t)| for a
subinterval J of [0,∞), and |ed(t)| and ‖ed‖J are defined similarly. In view
of (11), for some γ1, γ2 ∈ K∞ we have

|θ(t)| ≤ τγ1(|xd(t)|) ∨ τγ2(|ed(t)|)

(we are using the fact that f(0, k(0)) = 0, which follows from Assumption 1).
Defining γτ (r) := γ(τγ1(r)), γ̂(r) := γ(τγ2(r) ∨ r), and using (10), we have

3 It is not hard to see that discontinuities of the control (5) do not affect the
existence of Carathéodory solutions; cf. the last paragraph of Section 2.6 in [6].
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|x(t)| ≥ γτ (|xd(t)|) ∨ γ̂(|ed(t)|) ⇒ V̇ (t) ≤ −α3(|x|).

In light of (3), this implies

V (t) ≥ α2 ◦ γτ (|xd(t)|) ∨ α2 ◦ γ̂(|ed(t)|) ⇒ V̇ (t) ≤ −α3(|x|)

hence by the standard comparison principle (cf. [9, Chapter 4])

V (t) ≤ β(V (t0), t − t0) ∨ α2 ◦ γτ

(

‖xd‖[t0,∞)

)

∨ α2 ◦ γ̂
(

‖ed‖[t0,∞)

)

where β ∈ KL and β(r, 0) = r. Using (3) again, we have

|x(t)| ≤ β̃(|x(t0)|, t − t0) ∨ γ̃x

(

‖xd‖[t0,∞)

)

∨ γ̃e

(

‖ed‖[t0,∞)

)

(12)

where β̃(r, t) := α−1
1 (β(α2(r), t)), γ̃x(r) := α−1

1 ◦ α2 ◦ γτ (r), and γ̃e(r) :=
α−1

1 ◦ α2 ◦ γ̂(r). The full expression for γ̃x (which depends on the delay τ) is

γ̃x(r) = α−1
1 ◦ α2 ◦ γ(τγ1(r)). (13)

Let us invoke the properties of the quantizer to upper-bound the quanti-
zation error e defined in (9). Take κ to be some class K∞ function with the
property that

κ(r) ≥ max
|x|≤r

|k(x)| ∀ r ≥ 0

so that we have
|k(x)| ≤ κ(|x|) ∀x.

Then (1) and (2) give

|xd(t)| ≤ κ−1(Mµ) ⇒ |e(t)| ≤ ∆µ. (14)

3 Main result

Theorem 1 Let Assumption 1 hold. Assume that the initial data satisfies

|xd(t0)| ≤ E0 (15)

for some known E0 > 0. Choose a (small) ε > 0 and assume that for some
Λ > 0 we have

α−1
1 ◦ α2(E0) ∨ ε ∨ γ̃e(∆µ) < Λ < κ−1(Mµ). (16)

Assume that the delay τ is small enough so that

γ̃x(r) < r ∀ r ∈ (ε, Λ]. (17)

liberzon
Highlight
CORRECTION: In this formula, t_0 should be t_0+\tau. The reason is that the formula (11) on the previous page is valid only when the system already satisfies the differential equation on the whole interval of integration, hence it is only valid starting from t=\tau. If we only have (15) the way it is written here, we have to use knowledge of system dynamics to generate a bound on the interval [t_0, t_0+\tau]. (Thanks to Emilia Fridman for pointing this out.)
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Then the solution of the closed-loop system (6) satisfies the bound

‖xd‖[t0,∞) ≤ α−1
1 ◦ α2(E0) ∨ ε ∨ γ̃e(∆µ) (18)

and the ultimate bound

‖xd‖[t0+T,∞) ≤ ε ∨ γ̃e(∆µ) (19)

for some T > 0.

Proof. As in [19], the main idea behind the proof is a small-gain argument
combining (12) with the bound

|xd(t)| ≤ |xd(t0)| ·
(1 − sgn(t − td − t0))

2
∨ ‖x‖[t0,∞)

which gives

‖xd‖[t0,∞) ≤ |xd(t0)| ∨ β̃(|x(t0)|, 0) ∨ γ̃x

(

‖xd‖[t0,∞)

)

∨ γ̃e

(

‖ed‖[t0,∞)

)

.

We know that β̃(r, 0) = α−1
1 ◦ α2(r) ≥ r. The condition (15) and the first

inequality in (16) imply that there exists some maximal interval [t0, t̄) on
which |xd(t)| < Λ. On this interval, using (14), (16), (17), and causality, we
have the (slightly conservative) bound

‖xd‖[t0,t̄) ≤ β̃(|xd(t0)|, 0) ∨ γ̃x

(

‖xd‖[t0,t̄)

)

∨ γ̃e

(

‖ed‖[t0,t̄)

)

≤ α−1
1 ◦ α2(E0) ∨ ε ∨ γ̃e(∆µ) < Λ

Thus actually t̄ = ∞ and (18) is established. Next, denote the right-hand side
of (18) by E and pick a ρ > 0 such that

β̃(E, ρ) ≤ ε. (20)

Using (12), we have

‖xd‖[t0+td+ρ,∞) ≤ ‖x‖[t0+ρ,∞) ≤ β̃(E0, ρ) ∨ γ̃x

(

‖xd‖[t0,∞)

)

∨ γ̃e(∆µ)

≤ ε ∨ γ̃x(E) ∨ γ̃e(∆µ)

From this, using (12) again but with t0 + td + ρ in place of t0, we obtain

‖xd‖[t0+2(td+ρ),∞) ≤ ‖x‖[t0+td+2ρ,∞)

≤ β̃(|x(t0 + td + ρ)|, ρ) ∨ γ̃x

(

‖xd‖[t0+td+ρ,∞)

)

∨ γ̃e(∆µ)

≤ β̃(ε ∨ γ̃e(∆µ), ρ) ∨ β̃(γ̃x(E), ρ) ∨ γ̃x(ε ∨ γ̃e(∆µ)) ∨ γ̃2
x(E) ∨ γ̃e(∆µ)

≤ ε ∨ γ̃2
x(E) ∨ γ̃e(∆µ)

in view of (16), (17), (20), and continuity of γ̃x at ε. There exists a positive
integer n such that γ̃n

x (E) ≤ ε ∨ γ̃e(∆µ). Repeating the above calculation, for
T := n(td + ρ) we have the bound (19) and the proof is complete. ut
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4 Discussion

Hypotheses of Theorem 1

The only constraint placed on the quantizer in Theorem 1 is the hypothe-
sis (16). It says that the range M of q should be large enough compared to the
error bound ∆, so that the last term in (16) is larger than the first one (then
a suitable Λ automatically exists). A very similar condition is used in [11].
One direction for future work is to extend the result to “coarse” quantizers
not satisfying such hypotheses (cf. [13], [12, Section 5.3.6]).

The small-gain condition (17) is justified by the formula (13), which en-
sures that for every pair of numbers Λ > ε > 0 there exists a τ ∗ > 0 such that
for all τ ∈ (0, τ∗) we have

γ̃x(r) < r ∀ r ∈ (ε, Λ].

The value of τ∗ depends on the relative growth rate of the functions appearing
on the right-hand size of (13) for small and large arguments. In particular, if
both α−1

1 ◦ α2 ◦ γ and γ1 have finite derivatives at 0, then for small enough
τ the inequality (17) holds with ε = 0. In this case, the effect of ε (called
the offset in [19]) disappears, and the ultimate bound (19) depends on the
quantizer’s error bound only. Also note that in the case of linear systems,
α−1

1 ◦α2 ◦ γ and γ1 can be taken to be linear, and for small enough τ we have

γ̃x(r) < r ∀ r > 0. (21)

Assumption 1 says that the feedback law k provides input-to-state stability
(ISS) with respect to the actuator error v, in the absence of delays (see [15,
17]). This requirement is restrictive in general. However, it is shown in [15]
that for globally asymptotically stabilizable systems affine in controls, such
a feedback always exists. (For linear systems and linear stabilizing feedback
laws, such robustness with respect to actuator errors is of course automatic.)
One way to proceed without Assumption 1 is as follows. Suppose that k just
globally asymptotically stabilizes the system in the absence of actuator errors,
so that instead of (4) we only have

∂V

∂x
f(x, k(x)) ≤ −α3(|x|).

By virtue of [3, Lemma 1] or [16, Lemma 3.2], there exist a class K∞ function
γ and a C1 function G : R

n → GL(m, R), i.e., G(x) is an invertible m × m
matrix for each x, such that for all x ∈ R

n and θ̄, ē ∈ R
m we have

|x| ≥ γ(|θ̄| ∨ |ē|) ⇒
∂V

∂x
f(x, k(x) + G(x)θ̄ + G(x)ē) ≤ −

α3(|x|)

2
. (22)
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To use this property, let us rewrite the system (7) as

ẋ(t) = f
(

x(t), k(x(t)) + G(x(t))θ̄(t) + G(x(t))ē(t)
)

where
θ̄(t) := G−1(x(t))θ(t)

and
ē(t) := G−1(x(t))e(t).

In view of (11), for some γ̄1, γ̄2, γ̄3 ∈ K∞ and a > 0 we have

|θ̄(t)| ≤ τ γ̄1(|xd(t)|) ∨ τ γ̄2(|ed(t)|)

and
|ē(t)| ≤ (γ̄3(|x(t)|) ∨ a)|e(t)|.

Using (22), we have

|x(t)| ≥ γ
(

τ γ̄1(|xd(t)|) ∨ τ γ̄2(|ed(t)|)

∨ γ̄3(|x(t)|)|e(t)| ∨ a|e(t)|
)

⇒ V̇ (t) ≤ −
α3(|x|)

2
.

As before, we obtain from this that

|x(t)| ≤ β̄(|x(t0)|, t − t0) ∨ α−1
1 ◦ α2 ◦ γ

(

τ γ̄1(‖xd‖[t0,∞))

∨ τ γ̄2(‖ed‖[t0,∞)) ∨ γ̄3(‖x‖[t0,∞))‖e‖[t0,∞) ∨ a‖e‖[t0,∞)

)

(23)

where β̄ ∈ KL and β̄(r, 0) = α−1
1 ◦ α2(r). Define

γ̄x(r) := α−1
1 ◦ α2 ◦ γ

(

τ γ̄1(r) ∨ γ̄3(r)∆µ
)

and
γ̄e(r) := α−1

1 ◦ α2 ◦ γ(τ γ̄2(r) ∨ ar).

Then we have a counterpart of Theorem 1, without Assumption 1 and with
γ̄x, γ̄e replacing γ̃x, γ̃e everywhere in the statement. The proof is exactly the
same modulo this change of notation, using (23) instead of (12). The price to
pay is that the function γ̄x depends on ∆µ as well as on τ , so the modified
small-gain condition requires not only the delay but also the error bound of
the quantizer to be sufficiently small. This can be seen particularly clearly in
the special case of no delay (τ = 0); in this case we arrive at a result comple-
mentary to [11, Lemma 2] in that it applies to every globally asymptotically
stabilizing feedback law but only when the quantizer has a sufficiently small
error bound.4

4 The argument we just gave actually establishes that global asymptotic stability
under the zero input guarantees ISS with a given offset on a given bounded region
(“semiglobal practical ISS”) for sufficiently small inputs. (A related result proved
in [18] is that global asymptotic stability under the zero input implies ISS for
sufficiently small states and inputs.) This observation confirms the essential role
that ISS plays in our developments.
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Extensions

In Theorem 1, the effects of quantization manifest themselves in the need for
the known initial bound E0 in (15) and in the strictly positive term γ̃e(∆µ)
in the ultimate bound (19). If the ultimate bound is strictly smaller than
the initial bound, and if the quantization “zoom” parameter µ in (2) can be
adjusted on-line, then both of these shortcomings can be removed using the
method proposed in [2, 11]. First, the state measurement at time t0 gives us the
value of x(t0−τ). We assume that no control was applied for t ∈ [t0−τ, t0). If
an upper bound τ∗ on the delay is known and the system is forward complete
under zero control, then we have an upper bound of the form (15). This is
because for a forward complete system, the reachable set from a given initial
condition in bounded time is bounded (see, e.g., [1]). An over-approximation
of the reachable set can be used to actually compute such an upper bound
(see [10, 8] for some results on approximating reachable sets). Now we can
select a value of µ large enough to satisfy (16) and start applying the control
law (5) for t ≥ t0. Let us assume for simplicity that (21) is satisfied, so that
we can take ε = 0. Applying Theorem 1, we have from (19) that

|xd(t0 + T )| ≤ γ̃e(∆µ).

Next, at time t0 + T we want to select a smaller value of µ for which (16)
holds with E0 replaced by this new bound (which depends on the previous
value of µ). For this to be possible, we need to assume that

α−1
1 ◦ α2 ◦ γ̃e(∆µ) < κ−1(Mµ) ∀µ > 0.

Repeating this “zooming-in” procedure, we recover global asymptotic stabil-
ity.

We mention an interesting small-gain interpretation of the above strategy,
which was given in [14]. The closed-loop system can be viewed as a hybrid
system with continuous state x and discrete state µ. After the “zooming-out”
stage is completed, it can be shown that the x-subsystem is ISS with respect to
µ with gain smaller than γ̂(∆·), while the µ-subsystem is ISS with respect to x
with gain γ̃−1

e /∆ = γ̂−1◦α−1
2 ◦α1/∆. The composite gain is less than identity,

and asymptotic stability follows from the nonlinear small-gain theorem. One
important advantage of the small-gain viewpoint (which was also used to
establish Theorem 1) is that it enables an immediate incorporation of external
disturbances, under suitable assumptions. We refer the reader to [14] and [19]
for further details.

We combined quantization and delays as in (5) just for concreteness; other
scenarios can be handled similarly. Assume, for example, that the control takes
the form

u(t) = k(qµ(x(t − τ)))
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i.e., both the quantization and the delay5 affect the state before the control
is computed. The resulting closed-loop system can be written as

ẋ(t) = f
(

x(t), k
(

x(t) + θ(t) + e(t)
))

where
θ(t) := x(t − τ) − x(t)

and
e(t) := qµ(x(t − τ)) − x(t − τ).

Assumption 1 needs to be modified by replacing (4) with

|x| ≥ ρ(|v|) ⇒
∂V

∂x
f(x, k(x + v)) ≤ −α3(|x|).

This is the requirement of ISS with respect to measurement errors, which is
restrictive even for systems affine in controls (see the discussion and references
in [11]). For γ(r) := ρ(2r) we have

|x| ≥ γ(|θ| ∨ |e|) ⇒
∂V

∂x
f(x, k(x + θ + e)) ≤ −α3(|x|)

and we can proceed as before. The ISS assumption can again be relaxed at
the expense of introducing a constraint on the error bound of the quantizer
(see also footnote 4 above). A bound of the form (15) for some time greater
than the initial time can be obtained by “zooming out” similarly to how it is
done in [11], provided that an upper bound τ∗ on the delay is known and the
system is forward complete under zero control. Global asymptotic stability
can then be achieved by “zooming in” as before. It is also not difficult to
extend the results to the case when quantization affects both the state and
the input (cf. [11, Remark 1]).

5 Conclusions

The goal of this paper was to show how the effects of quantization and time
delays in nonlinear control systems can be treated in a unified manner by
using Lyapunov functions and small-gain arguments. We proved that under
the action of an input-to-state stabilizing feedback law in the presence of both
quantization and small delays, solutions of the closed-loop system starting in
a given region remain bounded and eventually enter a smaller region. Based
on this result, global asymptotic stabilization can be achieved by employing
a dynamic quantization scheme. These findings demonstrate that the quan-
tized control algorithms proposed in our earlier work are inherently robust to

5 Their order is not important in this case as long as the quantizer is fixed and
does not saturate.
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time delays, which increases their potential usefulness for applications such as
networked embedded systems.
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13. D. Liberzon and J. P. Hespanha. Stabilization of nonlinear systems with limited

information feedback. IEEE Trans. Automat. Control, 50:910–915, 2005.
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