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Quantization, Time Delays, and Nonlinear Stabilization

Daniel Liberzon

Abstract—The purpose of this note is to demonstrate that a unified study
of quantization and delay effects in nonlinear control systems is possible by
merging the quantized feedback control methodology recently developed
by the author and the small-gain approach to the analysis of functional dif-
ferential equations with disturbances proposed earlier by Teel. We prove
that under the action of a robustly stabilizing feedback controller in the
presence of quantization and time delays satisfying suitable conditions, so-
lutions of the closed-loop system starting in a given region remain bounded
and eventually enter a smaller region. We present several versions of this re-
sult and show how it enables global asymptotic stabilization via a dynamic
quantization strategy.

Index Terms—Input-to-state stability, nonlinear system, quantized con-
trol, small-gain condition, time delays.

I. INTRODUCTION

To be applicable in realistic situations, control theory must take
into account communication constraints between the plant and the
controller, such as those arising in networked control systems (see,
e.g., [2] and the references therein). Two most common phenomena
relevant in this context are quantization and time delays. It is also
important to be able to handle nonlinear dynamics. To the best of the
author’s knowledge, the present note is a first step towards addressing
these three aspects in a unified and systematic way.

It is well known that a feedback law which globally asymptotically
stabilizes a given system in the absence of quantization will in general
fail to provide global asymptotic stability of the closed-loop system that
arises in the presence of a quantizer with a finite number of values. One
reason for this is saturation: If the quantized signal is outside the range
of the quantizer, then the quantization error is large, and the control law
designed for the ideal case of no quantization may lead to instability.
Another reason is deterioration of performance near the equilibrium:
As the difference between the current and the desired values of the
state becomes small, higher precision is required, and so in the pres-
ence of quantization errors asymptotic convergence is typically lost.
Due to these phenomena, instead of global asymptotic stability it is
more reasonable to expect that solutions starting in a given region re-
main bounded and approach a smaller region. In [15], the author has de-
veloped a quantized feedback control methodology for nonlinear sys-
tems based on results of this type, under a suitable robust stabilization
assumption imposed on the controller (see also [16] for further discus-
sion and many references to prior work on quantized control). As we
will see, this robustness of a stabilizing controller with respect to quan-
tization errors (which is automatic in the linear case) plays a central role
in the nonlinear results.

The effect of a sufficiently small time delay on stability of a linear
system can be studied by standard perturbation techniques based on
Rouché’s theorem (see, e.g., [6] and [8]). When the delay is large but
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known, it can in principle be attenuated by propagating the state for-
ward from the measurement time. However, the case we are interested
in is when the delay is not necessarily small and its value is not avail-
able to the controller. There is, of course, a rich literature on asymptotic
stability of time-delay systems [7], [6], but these results are not very
suitable here because they involve strong assumptions on the system or
on the delay, and asymptotic stability will in any case be destroyed by
quantization. On the other hand, there are very few results on bound-
edness and ultimate boundedness for nonlinear control systems with
(possibly large) delays. Notable exceptions are [27], [29], [30], and
this work is heavily based on [27]. In that paper, Teel uses a small-gain
approach to analyze the behavior of nonlinear feedback loops in the
presence of time delays and external disturbances (see also ([6, Ch. 8]
and [12] for other applications of the small-gain approach to stability
analysis of time-delay systems). Our main observation is that the find-
ings of [27] are compatible with our recent results on quantization; by
identifying external disturbances with quantization errors, we are able
to naturally combine the two lines of work.

For concreteness, we consider the setting where there is a processing
delay in collecting state measurements from the sensors and/or com-
puting the control signal, followed by quantization of the control signal
before it is transmitted to the actuators. Other scenarios can be handled
similarly, as explained at the end of the note. In what follows, we will
repeat some of the developments from [27] in order to make this note
self-contained and also because we will need some estimates not ex-
plicitly written down in [27]. Assuming that an upper bound on the
initial state is available, our main result (Theorem 1 in Section III) es-
tablishes an upper bound and a smaller ultimate bound on resulting
closed-loop trajectories. Section IV contains some interpretations and
modifications of this result, and explains how global asymptotic sta-
bility can be recovered by using the dynamic quantization method of
[3] and [15].

We take the delay to be fixed for simplicity; however, everything
can be readily generalized to the case of a time-varying bounded delay,
by simply replacing the value of the delay with its upper bound in all
subsequent arguments. Time-varying bounded delays are useful, in par-
ticular, for modeling sampled-data control systems; see, e.g., [28], [5],
and the references therein. The developments of [28] are especially rel-
evant here because they also directly rely on the approach of [27]. Thus,
the results of this note can be used to study systems with sampled-data
quantized feedback, such as those considered in [11], [21], and [20].

II. NOTATION AND PRELIMINARIES

Consider the system

_x = f(x; u)

where x 2 n is the state, u 2 m is the control, and f : n �
m ! n is a C1 function. The inputs to the system are subject to

quantization. The (input) quantizer is a piecewise constant function
q : m ! Q, where Q is a finite subset of m. Following [15] and
[16], we assume that there exist real numbers M > � > 0 such that
the following condition holds:

juj �M ) jq(u)� uj � �: (1)

This condition gives a bound on the quantization error when the quan-
tizer does not saturate. We will refer to M and � as the range and the
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error bound of the quantizer, respectively. We consider the one-param-
eter family of quantizers

q�(u) := �q
u

�
; � > 0: (2)

Here � can be viewed as a “zoom” variable. This parameter � is in
general adjustable, but we take it to be fixed everywhere except Sec-
tion IV-B. The range of the quantizer q� is M� and the error bound is
��.

Assumed given is some nominal state feedback lawu = k(x), which
is C1 and satisfies k(0) = 0. We take this feedback law to be stabi-
lizing robustly with respect to actuator errors, in the following sense
(see Section IV for a discussion of this assumption and a way to relax
it).

Assumption 1: There exists a C1 function V : n ! such that
for some class K1 functions1 �1; �2; �3; � and for all x 2 n and
v 2 m we have

�1(jxj) � V (x) � �2(jxj) (3)

and

jxj � �(jvj))
@V

@x
f(x; k(x) + v) � ��3(jxj): (4)

We let the state measurements be subject to a fixed delay � > 0.
This delay followed by quantization gives the actual control law in the
form

u(t) = q�(k(x(t� � ))) (5)

and yields the closed-loop system

_x(t) = f(x(t); q�(k(x(t� � )))): (6)

We can equivalently rewrite this as

_x(t) = f(x(t); k(x(t)) + �(t) + e(t)) (7)

where

�(t) := k(x(t� � ))� k(x(t)) (8)

and

e(t) := q�(k(x(t� � )))� k(x(t� � )): (9)

To simplify notation, we will write a_ b for maxfa; bg. Applying (4)
with v = � + e and defining 
 2 K1 by 
(r) := �(2r), we have

jxj � 
(j�j _ jej))
@V

@x
f(x; k(x) + � + e) � ��3(jxj): (10)

The quantity defined in (8) can be expressed as

�(t) = �
t

t��

@k

@x
(x(s))f(x(s); k(x(s� � )) + e(s))ds:

(11)

1Recall that a function � : [0;1) ! [0;1) is said to be of class K if it is
continuous, strictly increasing, and �(0) = 0. If � is also unbounded, then it is
said to be of classK . A function � : [0;1)� [0;1)! [0;1) is said to be
of class KL if �( �; t) is of class K for each fixed t � 0 and �(r; t) decreases
to 0 as t!1 for each fixed r � 0. We will write � 2 K ; � 2 KL, etc.

Substituting this into the system (7) and noting the range of the time
arguments in (11), we obtain a system with delay td := 2� . For initial
data x : [�td; 0] !

n which is assumed to be given, this system
has a unique maximal solution2 x( � ). We adopt the following notation
from [27]: jxd(t)j := maxs2[t�t ;t] jx(s)j for t 2 [0;1); kxdkJ :=
supt2J jxd(t)j for a subinterval J of [0;1), and jed(t)j and kedkJ are
defined similarly. In view of (11) and the integral mean value theorem,
for some 
1; 
2 2 K1 we have the bound

j�(t)j � �
1(jxd(t)j) _ �
2(jed(t)j)

(we are using the fact that f(0; k(0)) = 0, which follows from As-
sumption 1). Defining 
� (r) := 
(�
1(r)); 
̂(r) := 
(�
2(r)_ r),
and using (10), we have

jx(t)j � 
� (jxd(t)j)_ 
̂(jed(t)j)) _V (t) � ��3(jxj):

In light of (3), this implies

V (t) � �2 � 
� (jxd(t)j) _ �2 � 
̂(jed(t)j)) _V (t) � ��3(jxj)

hence, by the standard comparison principle (cf. [13, Ch. 4])

V (t) � �(V (t0); t� t0)

_�2 � 
� kxdk[t ;1) _ �2 � 
̂ kedk[t ;1)

where � 2 KL and �(r; 0) = r. Using (3) again, we have

jx(t)j � ~�(jx(t0)j; t� t0)

_ ~
x kxdk[t ;1) _ ~
e kedk[t ;1) (12)

where ~�(r; t) := ��1
1 (�(�2(r); t)); ~
x(r) := ��1

1 � �2 � 
� (r), and
~
e(r) := ��1

1 � �2 � 
̂(r). The full expression for ~
x (which depends
on the delay � ) is

~
x(r) = �
�1
1 � �2 � 
(�
1(r)): (13)

Let us invoke the properties of the quantizer to upper-bound the quan-
tization error e defined in (9). Take � to be some class K1 function
with the property that

�(r) � max
jxj�r

jk(x)j 8r � 0

so that we have

jk(x)j � �(jxj) 8x:

Then (1) and (2) give

jxd(t)j � �
�1(M�) ) je(t)j � ��: (14)

2It is not hard to see that discontinuities of the control (5) do not affect the
existence of Carathéodory solutions; cf. the last paragraph of [7, Sec. 2.6].
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III. MAIN RESULT

Theorem 1: Let Assumption 1 hold. Assume that the initial data
satisfies

jxd(t0)j � E0 (15)

for some known E0 > 0. Choose a (small) " � 0 and assume that for
some � > 0 we have

��11 � �2(E0) _ " _ ~
e(��) < � < ��1(M�) (16)

and

~
x(r) < r 8r 2 (";�]: (17)

Then the solution of the closed-loop system (6) satisfies the bound

kxdk[t ;1) � ��1
1 � �2(E0) _ " _ ~
e(��) (18)

and the ultimate bound

kxdk[t +T;1) � "_ ~
e(��) (19)

for some T > 0.
Proof: As in [27], the main idea behind the proof is a small-gain

argument combining (12) with the bound

jxd(t)j � jxd(t0)j � (1� sgn(t� td � t0))

2
_ kxk[t ;1)

which gives

kxdk[t ;1) � jxd(t0)j _ ~�(jx(t0)j; 0)
_ ~
x kxdk[t ;1) _ ~
e kedk[t ;1) :

We know that ~�(r; 0) = ��1
1 � �2(r) � r. The condition (15) and the

first inequality in (16) imply that there exists some maximal interval
[t0; �t) on which jxd(t)j < �. On this interval, using (14), (16), (17),
and causality, we have the (slightly conservative) bound

kxdk[t ;�t)

� ~�(jxd(t0)j; 0) _ ~
x kxdk[t ;�t) _ ~
e kedk[t ;�t)

� ��1
1 � �2(E0) _ " _ ~
e(��) < �:

Thus, actually �t = 1 and (18) is established.
Next, denote the right-hand side of (18) by E and pick a � > 0 such

that

~�(E; �) � ": (20)

Using (12), we have

kxdk[t +t +�;1) � kxk[t +�;1)

� ~�(E0; �) _ ~
x kxdk[t ;1) _ ~
e(��)

� " _ ~
x(E) _ ~
e(��):

From this, using (12) again but with t0+td+� in place of t0, we obtain

kxdk[t +2(t +�);1) � kxk[t +t +2�;1)

� ~�(jx(t0 + td + �)j; �)
_ ~
x kxdk[t +t +�;1) _ ~
e(��)

� ~�(" _ ~
e(��); �) _ ~�(~
x(E); �)

_ ~
x(" _ ~
e(��)) _ ~
2x(E) _ ~
e(��)

� " _ ~
2x(E) _ ~
e(��)

in view of (16), (17), and (20), and the continuity of ~
x at ". There
exists a positive integer n such that ~
nx (E) � " _ ~
e(��). Repeating
the previous calculation, for T := n(td + �) we have the bound (19)
and the proof is complete.

The following simple example illustrates the theorem. We also refer
the reader to [9] for an interesting application of our result in the context
of teleoperation.

Example 1: Consider the scalar system _x = x2 � x + u and the
feedback law u = �x2. The closed-loop system in the presence of
actuator errors is _x = �x + v. Assumption 1 can be verified using
V (x) := x2=2. We have �1(r) = �2(r) := r2=2, and a simple
calculation shows that for an arbitrary c > 1 we can take �(r) := cr
and�3(r) := (c�1)r2=c. This implies 
(r) = �(2r) = 2cr. Formula
(11) gives

�(t) =
t

t��

2x(s)(x2(s)� x(s)� x2(s� � ) + e(s))ds

and it is easy to establish the bound

j�(t)j � � (4jxd(t)j3 + 3jxd(t)j2 + jed(t)j2)
� � (8jxd(t)j3 + 6jxd(t)j2)_ 2� jed(t)j2:

Thus, we can let 
1(r) := 8r3 + 6r2 and 
2(r) := 2r2. Next, we
have ~
x(r) = 
(�
1(r)) = 16c�r3 + 12c�r2 and ~
e(r) = 
̂(r) =
4c�r2 _ 2cr. Finally, we can define �(r) := r2. We are now ready to
apply Theorem 1. For simplicity, we let � := 1. We also take " :=
0. Condition (16) becomes E0 _ 4c��2 _ 2c� < � <

p
M . The

small-gain condition (17) is equivalent to � < (16c�2+12c�)�1. The
bound (18) and the ultimate bound (19) take the form kxdk[t ;1) �
E0 _ 4c��2 _ 2c� and kxdk[t +T;1) � 4c��2 _ 2c�, respectively.
One specific scenario covered by this result is as follows. Suppose that
� = 0:05;M = 5, and E0 = 2 are given. Selecting � := 2:1, we can
verify that for every delay � � 0:01 the state remains in the interval
[�2; 2] and asymptotically approaches the interval [�0:1; 0:1].

IV. DISCUSSION

A. Hypotheses of Theorem 1

The only constraint placed on the quantizer in Theorem 1 is the hy-
pothesis (16). It says that the range M of q should be large enough
compared to the error bound �, so that the last term in (16) is larger
than the first one (then a suitable� automatically exists). A very similar
condition is used in [15]. One direction for future work is to extend the
result to “coarse” quantizers not satisfying such hypotheses (cf. [17],
[16, Sec. 5.3.6]).

The small-gain condition (17) is justified by the formula (13), which
ensures that for every pair of numbers � > " > 0 there exists a �� > 0
such that (17) holds for all � 2 (0; ��). The value of �� depends on

liberzon
Highlight
CORRECTION: In this formula, t_0 should be t_0+\tau. The reason is that the formula (11) on the previous page is valid only when the system already satisfies the differential equation on the whole interval of integration, hence it is only valid starting from t=\tau. If we only have (15) the way it is written here, we have to use knowledge of system dynamics to generate a bound on the interval [t_0, t_0+\tau]. (Thanks to Emilia Fridman for pointing this out.)
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the relative growth rate of the functions appearing on the right-hand
side of (13) for small and large arguments. In particular, if both ��1

1
�

�2 � 
 and 
1 have finite derivatives at 0, then for small enough � the
inequality (17) holds with " = 0. In this case, the effect of " (called the
offset in [27]) disappears, and the ultimate bound (19) depends on the
quantizer’s error bound only; this was the case in Example 1. Also note
that in the case of linear systems, ��1

1 � �2 � 
 and 
1 can be taken to
be linear, and for small enough � we have

~
x(r) < r 8r > 0: (21)

We emphasize that in general, the condition (17) does not necessarily
force the delay to be small. As we see from Example 1, if � is small
then � might be quite large. In view of (16), there is a trade-off between
the amount of admissible delay, the quantizer parameters, and the initial
state bound.

Assumption 1 says that the feedback law k provides input-to-state
stability (ISS) with respect to the actuator error v, in the absence of
delays (see [23] and [25]). This requirement is restrictive in general.
However, it is shown in [23] that for globally asymptotically stabiliz-
able systems affine in controls, such a feedback always exists. (For
linear systems and linear stabilizing feedback laws, such robustness
with respect to actuator errors is of course automatic.) One way to pro-
ceed without Assumption 1 is as follows. Suppose that k just globally
asymptotically stabilizes the system in the absence of actuator errors,
so that instead of (4) we only have

@V

@x
f(x; k(x)) � ��3(jxj):

By virtue of [4, Lemma 1] or [24, Lemma 3.2], there exist a class K1
function 
 and a C1 function G : n ! m�m with G(x) invertible
for each x, such that for all x 2 n and ��; �e 2 m we have

jxj � 
(j��j _ j�ej) )
@V

@x
f(x; k(x)

+G(x)�� +G(x)�e) � �
�3(jxj)

2
: (22)

To use this property, let us rewrite the system (7) as

_x(t) = f(x(t); k(x(t)) +G(x(t))��(t) +G(x(t))�e(t))

where

��(t) := G
�1(x(t))�(t)

and

�e(t) := G
�1(x(t))e(t):

In view of (11), for some �
1; �
2; �
3 2 K1, and a > 0 we have

j��(t)j � � �
1(jxd(t)j) _ � �
2(jed(t)j)

and

j�e(t)j � (�
3(jx(t)j)_ a)je(t)j:

Using (22), we have

jx(t)j � 
(� �
1(jxd(t)j) _ � �
2(jed(t)j)

_ �
3(jx(t)j)je(t)j _ aje(t)j)

) _V (t) � �
�3(jxj)

2
:

As before, we obtain from this that

jx(t)j � ��(jx(t0)j; t� t0)

_ �
�1
1 � �2 � 
 � �
1(kxdk[t ;1))

_ � �
2(kedk[t ;1))

_ �
3(kxk[t ;1))kek[t ;1)

_ akek[t ;1) (23)

where �� 2 KL and ��(r; 0) = ��1
1 � �2(r). Define

�
x(r) := �
�1
1 � �2 � 
(� �
1(r)_ �
3(r)��)

and

�
e(r) := �
�1
1 � �2 � 
(� �
2(r)_ ar):

Then, we have a counterpart of Theorem 1, without Assumption 1 and
with �
x; �
e replacing ~
x; ~
e everywhere in the statement. The proof is
exactly the same modulo this change of notation, using (23) instead of
(12). The price to pay is that the function �
x depends on �� as well as
on � , so the modified small-gain condition requires not only the delay
but also the error bound of the quantizer to be sufficiently small. This
can be seen particularly clearly in the special case of no delay (� = 0);
in this case we arrive at a result complementary to [15, Lemma 2] (see
also [19]) in that it applies to every globally asymptotically stabilizing
feedback law but only when the quantizer has a sufficiently small error
bound.3

B. Extensions

In Theorem 1, the effects of quantization manifest themselves in the
need for the known initial bound E0 in (15) and in the strictly positive
term ~
e(��) in the ultimate bound (19). If the ultimate bound is strictly
smaller than the initial bound, and if the quantization “zoom” param-
eter� in (2) can be adjusted online, then both of these shortcomings can
be removed using the method proposed in [3] and [15]. First, the state
measurement at time t0 gives us the value of x(t0�� ). We assume that
no control was applied for t 2 [t0��; t0). If an upper bound �� on the
delay is known and the system is forward complete under zero control,
then we have an upper bound of the form (15). This is because for a for-
ward complete system, the reachable set from a given initial condition
in bounded time is bounded (see, e.g., [1]). An over-approximation of
the reachable set can be used to actually compute such an upper bound
(see [14] and [10] for some results on approximating reachable sets).
Now, we can select a value of � large enough to satisfy (16) and start
applying the control law (5) for t � t0. Let us assume for simplicity
that (21) is satisfied, so that we can take " = 0. Applying Theorem 1,
we have from (19) that

jxd(t0 + T )j � ~
e(��):

Next, at time t0 + T we want to select a smaller value of � for which
(16) holds with E0 replaced by this new bound (which depends on the
previous value of �). For this to be possible, we need to assume that

�
�1
1 � �2 � ~
e(��) < �

�1(M�) 8� > 0:

3The argument we just gave actually establishes that global asymptotic sta-
bility under the zero input guarantees ISS with a given offset on a given bounded
region (“semiglobal practical ISS”) for sufficiently small inputs. (A related re-
sult proved in [26] is that global asymptotic stability under the zero input implies
ISS for sufficiently small states and inputs.) This observation confirms the es-
sential role that ISS plays in our developments.
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Repeating this “zooming-in” procedure, we recover global asymptotic
stability.

We mention an interesting small-gain interpretation of this strategy,
which was given in [18]. The closed-loop system can be viewed as
a hybrid system with continuous state x and discrete state �. After
the “zooming-out” stage is completed, it can be shown that the x-sub-
system is ISS with respect to � with an ISS gain function smaller than

̂(� �), while the �-subsystem is ISS with respect to x with ISS gain
function ~
�1e ( � )=� = 
̂�1 � ��1

2
� �1( � )=�. The composite gain is

less than identity, and asymptotic stability follows from the nonlinear
small-gain theorem. One important advantage of the small-gain view-
point (which was also used to establish Theorem 1) is that it enables
an immediate incorporation of external disturbances, under suitable as-
sumptions. We refer the reader to [18] and [27] for further details.

We combined quantization and delays as in (5) just for concreteness;
other scenarios can be handled similarly. Assume, for example, that the
control takes the form

u(t) = k(q�(x(t� � )))

i.e., both the quantization and the delay4 affect the state before the con-
trol is computed. The resulting closed-loop system can be written as

_x(t) = f(x(t); k(x(t) + �(t) + e(t)))

where

�(t) := x(t� � )� x(t)

and

e(t) := q�(x(t� � ))� x(t� � ):

Assumption 1 needs to be modified by replacing (4) with

jxj � �(jvj) )
@V

@x
f(x; k(x+ v)) � ��3(jxj):

This is the requirement of ISS with respect to measurement errors,
which is restrictive even for systems affine in controls (see the discus-
sion and references in [15], as well as [22]). For 
(r) := �(2r) we
have

jxj � 
(j�j _ jej) )
@V

@x
f(x; k(x+ � + e)) � ��3(jxj)

and we can proceed as before. The ISS assumption can again be relaxed
at the expense of introducing a constraint on the error bound of the
quantizer (see also footnote 3). A bound of the form (15) for some time
greater than the initial time can be obtained by “zooming out” similarly
to how it is done in [15], provided that an upper bound �� on the delay is
known and the system is forward complete under zero control. Global
asymptotic stability can then be achieved by “zooming in” as before. It
is also not difficult to extend the results to the case when quantization
affects both the state and the input (cf. [15, Rem. 1]).

V. CONCLUSION

The goal of this note was to show how the effects of quantization
and time delays in nonlinear control systems can be treated in a uni-
fied manner by using Lyapunov functions and small-gain arguments.
We proved that under the action of an input-to-state stabilizing feed-
back law in the presence of both quantization and delays subject to
suitable conditions, solutions of the closed-loop system starting in a
given region remain bounded and eventually enter a smaller region.
Based on this result, global asymptotic stabilization can be achieved

4Their order is not important in this case as long as the quantizer is fixed and
does not saturate.

by employing a dynamic quantization scheme. These findings demon-
strate, in particular, that the quantized control algorithms proposed in
our earlier work are inherently robust to time delays, which increases
their potential usefulness for applications such as networked control
systems.
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Continuous-Time Hammerstein System Identification
From Sampled Data

Włodzimierz Greblicki

Abstract—A continuous-time Hammerstein system driven by a random
signal is identified from observations sampled in time. The sampling may
be uniform or not. The a-priori information about the system is nonpara-
metric, functional forms of both the nonlinear characteristic and the im-
pulse response are completely unknown. Three kernel algorithms, one of-
fline and two semirecursive are presented. Their convergence to the true
characteristic of the nonlinear subsystem is shown. The distance between
consecutive sampling times must not decrease too fast for the algorithms to
converge.

Index Terms—Hammerstein system, nonparametric estimation, non-
parametric identification, system identification.

I. INTRODUCTION

In a Hammerstein system, a memoryless nonlinear subsystem is fol-
lowed by a linear dynamic one. The identification of the nonlinear
subsystem has been the subject of a significant number of works; see
[1]–[3]. This note belongs to those in which the a-priori information
about the system is nonparametric. Classes of all possible nonlinear
characteristics and equations of the dynamic subsystem are so wide
that they cannot be represented in any parametric form. Moreover, the
system is driven by a random signal and the output is disturbed by a
random noise.

Kernel nonparametric algorithms were applied in [4]–[8] to recover
the nonlinearity in discrete-time systems. Recently, kernel algorithms
have been applied to recover the nonlinear characteristics in contin-
uous-time systems, [9], [10]. The novelty of the note is that we infer
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Fig. 1. Hammerstein system.

from sampled input–output signals, i.e., not from functions of time but
from number sequences being a result of sampling. The distance be-
tween consecutive sampling instants may change in time, sampling can
be uniform or not. We show that our kernel algorithms, one offline and
two semirecursive, converge to the unknown characteristic and give
convergence rates. We also examine the relation between various ways
of sampling and convergence and demonstrate which methods of sam-
pling are good and which are not. The time interval the sampling is
performed on must increase to infinity sufficiently quickly.

II. STATEMENT OF THE PROBLEM

The identified continuous-time Hammerstein system is shown
in Fig. 1. The input signal fU(t); t 2 (�1;1)g is a stationary
white random process with autocovariance function �2U�(t), where
�(t) is the Dirac impulse and �2U < 1. The random variable U(t)
has a probability density f . The first subsystem has a characteristic
m which means that V (t) = m(U(t)). We assume that m is a
Borel measurable function such that EV 2(t) < 1. This is, e.g.,
the case for jm(u)j � c1 + c2juj with any c1; c2 > 0. Thus,
fV (t); t 2 (�1;1)g is a stationary white random process with
autocovariance function �2V �(t), where �2V < 1.

The unknown impulse response k(t) of the dynamic subsystem sat-
isfies the following inequality:

jk(t)j � �e��t (1)

with some unknown positive � and �, which is always the case for
a stable dynamic subsystem described by a state equation. Clearly,
W (t) =

t

�1

k(t � � )V (�)d� . Due to the fact that �2V < 1 and
(1), fW (t); t 2 (�1;1)g is a stationary correlated random process
such that �2W < 1. Additive stationary random noise fZ(t); t 2
(�1;1)g has zero mean, finite variance and is independent of input
signal. Therefore, Y (t) = W (t) + Z(t), where Y (t) is output of the
whole system.

We estimate the nonlinear characteristic m from sampled ob-
servations, i.e., from pairs (U(t1); Y (t1 + �)); (U(t2); Y (t2 +
�)); (U(t3); Y (t3 + �)); . . . with � � 0 and 0 � t1 < t2 < � � �. The
inner signal of the system is not measured. In the note, � is fixed and
known.

It will be convenient to denote �n = mini=1;2;...;n�1 jti+1 � tij.
Observe that �n is monotonous and converges to either a positive
number or zero as n ! 1. We will say that the sampling is uniform
if tn+1 � tn = �, some � > 0, for all n = 1; 2; . . .. If an=bn has a
nonzero limit as n ! 1, we write an � bn.

For the sake of simplicity, U denotes a random variable distributed
like U(t).

III. ALGORITHMS

The basis for our identification algorithms is the fact that EfY (t+
�)jU (t) = ug = k(�)m(u) +

1

0
k(�)d�Em(U), see [9]. To make
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