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a b s t r a c t

The paper deals with the robust output feedback discrete control of continuous-time multi input multi
output (MIMO) linear plants with arbitrary relative degree under parametric uncertainties and external
bounded disturbances with quantized output signal. The parallel reference model (auxiliary loop) to
the plant is used for extracting information about the uncertainties acting on the plant. The proposed
algorithm guarantees that the output of the plant tracks the reference output with the required accuracy.
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1. Introduction

In recent years much attention has been given to the investi-
gation of constraints on a communication channel included in a
feedback control loop. Signal quantization (via quantizer or en-
coder) is usually considered as a source of independent discrete
random noise which additively acts on the system. In Gray and
Neuhoff (1998) this assumption allows to simplify the investiga-
tion of systems with quantization. However, this assumption may
be too rough if the value of the quantization step is commensurate
with the range of signal variation (Baillieul, 2002).

There are results relating to minimizing errors caused by quan-
tization in the control loop. The paper of Larson (1967) is devoted
to the synthesis of an optimal control system for discrete linear
plants with quantization of the input signal. From Larson (1967)
we have for input signal the one-dimensional density distribution.
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In Fischer (1982) the algorithm for optimal quantization is derived
from the solution of an optimization problem for a closed-loop sys-
tem with a linear–quadratic criterion with Gaussian noise (LQG-
problem). Similar results are presented by Curry, 1969 where the
optimal stabilization problem of a linear stochastic discrete plant
with a quadratic cost function is considered. The papers of Alda-
jani and Sayed (2001), Venayagamoorthy and Zha (2007) and Zier-
hofer (2000) are devoted to design of adaptive quantizers where
the range of signal conversion is changed automatically. In subse-
quent works (for example, Andrievsky, Fradkov, & Peaucelle, 2007,
Gomez-Estern, Canudas de Wit, Rubio, & Fornes, 2007 and Zheng,
Duni, & Rao, 2007) the use of adaptive quantizers in control sys-
tems and estimation systems is considered. The paper of Liber-
zon (2003) is concerned with global asymptotic stabilization of
continuous-time systems subject to quantization. A hybrid con-
trol strategy (Brockett & Liberzon, 2000) relies on the possibility
of making discrete on-line adjustments of quantizer parameters.
Sharon and Liberzon (2012) considered the problem of achieving
input-to-state stability with respect to external disturbances for
control systems with quantized measurements.

The special interest of the present paper is control of a plant
under parametric uncertainties and disturbances. Guo, Zhang,
and Zhao (2011) study the adaptive tracking control for systems
with quantized output observations and one unknown parameter.
The result by Konaka, Suzuki, and Okuma (2002) deals with
a control problem where the continuous plant is controlled
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by an adaptive discrete logic-based controller. The paper by
Zheng and Yang (2012) is concerned with the quantized output
feedback stabilization problem for a class of uncertain systems
with nonsmooth nonlinearities in the actuator device via sliding
mode algorithm. In Hayakawa, Ishii, and Tsumura (2009) a direct
adaptive control framework for nonlinear systems with input
quantizers is developed. Theproblemof feedback quantized output
control for dynamical single input single output (SISO) plants
with any relative degree under parametric uncertainties and
uncontrollable disturbances is studied in Furtat, Fradkov, and
Liberzon (2014).

As far as known to the authors of the present paper, the problem
of control of multi input multi output (MIMO) plants under
parametric uncertainty and external disturbances with quantized
output has not been investigated. However, there are many
fields where this problem is important, for example, control of
networked systems, high-techmanufacturing networks, a complex
crystal grid, chemical industry etc. Therefore, the present paper
generalizes the results of Furtat et al. (2014) by solving this
problem for MIMO plants.

As in Furtat et al. (2014) we use the method of the parallel
reference model (auxiliary loop). The motivation for using this
method is as follows: calculation of the regulator parameters is
easy; the algorithm has low dynamical order; the system has the
same structure for a broad class of plant models. The parallel
referencemodel algorithmwas first proposed by Tsykunov (2007).
The idea of this method consists in implementing an auxiliary
loop with desired parameters parallel to the plant. The difference
between the output of the plant and the output of the auxiliary
loop gives a functionwhich depends on disturbances. This function
uses for design a control law. In Tsykunov (2012) this algorithm
is generalized for discrete control. In this paper we use results
by Furtat et al. (2014) and Tsykunov (2012) for the synthesis of
discrete control of continuous-time linear plants under parametric
uncertainties and external bounded disturbancewith quantization
of an output signal. It is assumed that only input and output of
the plant are accessible for measurement. The proposed algorithm
guarantees that the output of the plant tracks the reference output
with the required accuracy.

In this paper the following notations are used: R and N are the
sets of real and natural numbers respectively, p = d/dt , A = (aij)
is a matrix with elements aij, deg(L(p)) is the degree of the linear
operator L(p), dim x is the dimension of the vector x, det(A) is
the determinant of the square matrix A, λ is a complex variable,
diag {·} is a diagonalmatrix, λmin(·) (λmax(·)) isminimal (maximal)
eigenvalue of a matrix, sup f (t) is the least upper bound of the
function f (t) with respect to t , Iv is v × v identity matrix, AT is
transpose of the matrix A.

2. Problem statement

Consider a plant equation

ẋ(t) = Ax(t) + Bu(t) + Dϑ(t), y(t) = Lx(t),
x(0) = x0,

(1)

where x(t) ∈ Rn is a state vector, y(t) ∈ Rv is an output being
quantized, u(t) ∈ Rv is an input, ϑ(t) ∈ Rl is an uncontrollable
bounded disturbance, A ∈ Rn×n, B ∈ Rn×v , D ∈ Rn×l, L ∈ Rv×n

are matrices with unknown elements, x0 is an unknown initial
condition.

For simplicity, we assume that dim y = dim u.
According to Ioannou and Sun (1996, p. 38), transform Eq. (1) to

the standard input–output form

Q (p)y(t) = R(p)u(t) + f (t), (2)

where Q (p) = W (p)Iv ,W (p) = det(pIn − A), R(p) = W (p)L(pIn −

A)−1B = (Rij(p)), f (t) = W (p)L(pIn − A)−1Dϑ(t), W (p)and
Rij(p), i = 1, 2, . . . , v, j = 1, 2, . . . , v are linear differential
operators with unknown coefficients, deg W (p) = n, deg Rij(p) =

mij, mii ≥ mij for i ≠ j.
We are interested in the situation where only quantized

measurements qi(yi(t)), i = 1, 2, . . . , v of the output are available
(Liberzon, 2003).

Assume that there exists a positive real number δ̄ such that if
|yi(t)| ≤ ȳi then

|qi (yi(t)) − yi(t)| ≤ δ̄, i = 1, 2, . . . , v. (3)

Inequality (3) defines an upper bound on the quantizer error.
Let smooth bounded reference signals ymi(t), i = 1, 2, . . . , v and
a sequence of sampling times tk, k ∈ N be given. The problem is
to design a discrete control law such that the following conditions
hold:

|yi(tk) − ymi(tk)| ≤ δ for i = 1, 2, . . . , v and tk ≥ T , (4)

where tk is a sampling time, tk−1 ≤ t < tk, δ > 0 is a prespecified
required accuracy, T > 0 is a transient time. Moreover, the step
h = tk − tk−1 is constant.

Assumptions. 1. Coefficients of operatorsW (p) and Rij(p) belong
to a known compact set Ξ .

2. Plant (1) is minimum phase, i.e. the trivial solution of equation
R(p)u(t) = 0 is stable.

3. Only signals qi(yi(tk)), ymi(tk) and ui(tk), i = 1, 2, . . . , v are
available for measurement in a control system.

Note that Assumption 1 is needed for choosing controller
parameters such that goal (4) is ensured. This statement will be
described in Section 3 and Appendix in more detail. Assumption 3
imposes the restriction on plantmeasurements, i.e. only quantized
output is available. In Section 4 we will consider an example for
model (2).

3. Algorithm of disturbances compensation

According to Furtat et al. (2014), rewrite Rii(p) andW (p) in the
form

Rii(p) = R0
ii(p) + 1Rii(p), W (p) = W 0(p) + 1W (p). (5)

Here R0
ii(λ) andW 0(λ) are Hurwitz polynomials of degreesmii and

n respectively, deg 1Rii(p) ≤ mii, deg 1W (p) < n. The polynomi-
als R0

ii(λ) and W 0(λ) are chosen such that W 0(λ)/R0
ii(λ) = Qmi(λ),

where Qmi(λ) is a Hurwitz polynomial of degree γi = n−mii. Tak-
ing into account (2) and (5), rewrite (2) as follows:

Qmi(p)yi(t) = ui(t) + zi(t), i = 1, 2, . . . , v, (6)

where

R0
ii(p)zi(t) = 1Rii(p)ui(t) − 1Qii(p)yi(t) + R0

ii(p)τi(t)

−

v
j=1, i≠j

Qij(p)yj(t) +

v
j=1, i≠j

Rij(p)uj(t)

+

v
j=1

fj(t),

τi(t) is an exponentially decaying function which depends on
initial conditions of (1). Taking into account (6), the equation for
the tracking error ei(t) = yi(t)−ymi(t) can be rewritten in the form

Qmi(p)ei(t) = ui(t) + ρi(t), (7)

where ρi(t) = zi(t) − Qmi(p)ymi(t). We see that the functions
ρi(t), i = 1, 2, . . . , v contain a parametric uncertainty and ex-
ternal disturbance of plant (1). Therefore, according to Tsykunov
(2007) introduce the control laws

ui(t) = αivi(tk), i = 1, 2, . . . , v, tk−1 ≤ t < tk, (8)
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where αi > 0 are design parameters, vi(tk) are new controls at
time tk.

Consider the auxiliary loop

Qmi(p)ēi(t) = βivi(tk),

pr−1ēi(t) = 0, i = 1, 2, . . . , v, r = 1, . . . , γi,
(9)

where βi > 0 are design parameters, ēi(t) are outputs of auxiliary
loops (9). The auxiliary loop is a parallel reference model with
desired behavior of transients. Therefore, taking into account (7)–
(9), the equation for the error function σi(t) = ei(t) − ēi(t) can be
written in the form

Qmi(p)σi(t) = ϕi(t), i = 1, 2, . . . , v, (10)

where ϕi(t) = (αi − βi)vi(tk) + ρi(t) is a new disturbance func-
tion. The signals σi(t), i = 1, 2, . . . , v contain information about
parametric and external disturbances of plant (1).

To simplify justification of the control system let us suppose
for the moment that output of plant (1) is not quantized and
disturbanceϑ(t) is smooth. Taking into account (10), represent the
value ϕi(tk) as follows:

ϕi(tk) = qTmiξi(tk), i = 1, 2, . . . , v, (11)

where ϕ̄i(tk) = (αi − βi)vi(tk) + ρ̄i(tk),

R0
ii(p)z̄i(tk) = 1Rii(p)ui(tk) − 1Qii(p)qi (yi(t))

−

v
j=1, i≠j

Qij(p)qj

yj(t)


+

v
j=1, i≠j

Rij(p)uj(tk)

+

v
j=1

fj(tk) + R0
ii(p) [τi(tk) − Qmi(p)ymi(tk)] ,

qmi is a vector composed of coefficients of Qmi(p), ξi(tk) =
σi(tk), σ̇i(tk), . . . , σ

(γi)
i (tk)

T
, σ (r)

i (tk) is the rth derivative of the
signal σi(t) taken at time tk.

Assume for a moment that the vector ξi(tk) were available for
measurement, then the controls could be defined by

vi(tk) = −β−1
i qTmiξi(tk), i = 1, 2, . . . , v, tk−1 ≤ t ≤ tk. (12)

It follows from (11) and (12) that

vi(tk) = −β−1
i ϕi(tk), i = 1, 2, . . . , v, tk−1 ≤ t ≤ tk. (13)

Solving the system consisting of Eqs. (13) and ϕi(tk) = (αi −

βi)vi(tk) + ρi(tk) with respect to vi(tk), we get

vi(tk) = −α−1
i ρi(tk), i = 1, 2, . . . , v, tk−1 ≤ t ≤ tk. (14)

Substituting (8) and (14) to (7), we obtain

Qmi(p)ei(t) = ρi(t) − ρi(tk), i = 1, 2, . . . , v.

However, according to the problem statement the derivatives
of the functions σi(t) are not available for measurement and
disturbance ϑ(t) is nonsmooth. Moreover, we need to design the
control system where a quantized output of the plant is available.
To overcome these difficulties, we replace derivatives with the
finite differences. To this end, rewrite (11) in the form

ϕ̃i(tk) = qTmiξ̃i(tk), i = 1, 2, . . . , v, (15)

where ξ̃i(tk) =

σ̃i(tk), σ̃1i(tk), . . . , σ̃γi i(tk)

T , σ̃i(tk) = qi(yi(tk))−
ymi(tk) − ēi(tk). The vector ξ̃i(tk) is obtained from the observers

ξ̃i(tk) = Giξ̃i(tk−1) + biσ̃i(tk), i = 1, 2, . . . , v. (16)
Here Gi =


0 · · · · · · 0

−h−1
. . .

. . .
.
.
.

.

.

.
. . .

. . .
.
.
.

−h−γi · · · −h−1 0

, bi =


1

h−1

.

.

.

h−γi

. Eq. (16) is

written by using the right hand differences

σ̃i(tk) = σ̃i(tk),

σ̃1i(tk) = h−1 (σ̃i(tk) − σ̃i(tk−1)) ,

...

σ̃γ i(tk) = h−1 
σ̃γ−1,i(tk) − σ̃γ−1,i(tk−1)


.

(17)

Taking into account (15) and (16), rewrite controls vi(tk) as

vi(tk) = −β−1
i qTmiξ̃i(tk), i = 1, 2, . . . , v, tk−1 ≤ t < tk. (18)

Unlike (13), the estimates ξ̃i(tk) of the signal ξi(tk) are used in
(18). For implementing the auxiliary loop (9) in discrete form, first,
transform (9) to a state space form

˙̄εi(t) = Amiε̄i(t) + βiBmivi(tk),
ēi(t) = Liε̄i(t), i = 1, 2, . . . , v,

(19)

where ε̄i(t) ∈ Rγi is a state vector, the matrices Ami, Bmi and
Li = [1 0 . . . 0] are obtained according to transformation from
(9) to (19). Transform Eqs. (19) to the discrete form

ε̄i(tk+1) = Āiε̄i(tk) + βiB̄ivi(tk),
ēi(tk) = Liε̄i(tk), i = 1, 2, . . . , v,

(20)

where Āi = eAmih, B̄i =
 t+h
t eAmi(t−s)Bmids.

It is seen that Eqs. (8), (16), (18), (20) do not contain derivatives
of the functions σi(tk)which depend on the quantized output of (1)
and nonsmooth function ϑ(t), because the control system is using
the estimates σ̃i(tk). Therefore, algorithm (8), (16), (18), (20) can
be implemented. Taking into account (8), (11), (13), (15) and (18),
rewrite Eq. (7) in the form

Qmi(p)ei(t) = qTmi


ξi(t) − ξ̃i(tk)


, i = 1, 2, . . . , v. (21)

Rewrite Eq. (21) in a state space form

ε̇i(t) = Amiεi(t) + BmiqTmi


ξi(t) − ξ̃i(tk)


,

ei(t) = Liεi(t), i = 1, 2, . . . , v.
(22)

For the formulation of our main result introduce the following
notations: ε =


εT
1 , εT

2 , . . . , ε
T
v

T
, ξ =


ξ T
1 , ξ T

2 , . . . , ξ T
v

T , ξ̃ =
ξ̃ T
1 , ξ̃ T

2 , . . . , ξ̃ T
v

T
, Bm = diag


BiqTm,i


, i = 1, 2, . . . , v, P =

PT > 0 are solutions of Lyapunov equation AT
mP + PAm = −Q ,

Q = Q T > 0, χ = λmin(R)λ−1
max(P), R = Q − 2µ−1PBmBT

mP , µ > 0,

θ = sup
ξ(t) − ξ̃ (tk)

2.
Theorem. Let Assumptions 1–3 hold. Then there exist coefficients
αi > 0, βi > 0 and small enough value h0 > 0 such that for any step
h ≤ h0 objective (4) in control system (8), (16), (18), (20) is achieved
for any parameters of plant (1) from the set Ξ , where in (4) the
accuracy δ is calculated as follows:

δ =


λ−1
min(P)


e−χTεT (0)Pε(0) +


1 − e−χT


χ−1µθ


. (23)

Moreover, the following upper bound holds:

|qi(yi(tk)) − ymi(tk)| < δ + δ̄. (24)

Theorem will be proved in the Appendix.
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It follows from (23) that the value δ continuously depends onαi,
βi, δ̄, h, θ and Ξ . Moreover, the value θ depends on |ξ(t)|,

ξ̃ (kh)


and, according to (11) and (15), on coefficients ofW (p), Rij(p) in (2)
which belong to the compact set Ξ . Therefore, the values δ and θ
are bounded since the set Ξ is compact.

4. Example

Consider a plant model in the form
p3 + q1p2 + q2p + q3


y1(t) +


p2 + q4p + q5


y2(t)

= (r1p + r2) u1(t) + r3u2(t) + f1(t),
p2 + q6p + q7


y2(t) + (q8p + q9) y1(t)

= r4u1(t) + r5u2(t) + f2(t).

(25)

The set Ξ is determined by the following inequalities: −3 ≤

qj ≤ 3, j = 1, . . . , 7, −2 ≤ q8 ≤ 2, −2 ≤ q9 ≤ 2, 2 ≤ r1 ≤ 3,
−5 ≤ r2 ≤ 10, 2 ≤ r3 ≤ 3, 1 ≤ r4 ≤ 2, 1 ≤ r5 ≤ 2, |f1(t)| ≤ 30,
|f2(t)| ≤ 30. The analysis of the set Ξ shows that plant (25) is
minimum phase, i.e. Assumption 2 holds.

In practice model (25) can describe a distillation column
(Skogestad, Morari, & Doyle, 1988), where y1 is a top composition,
y2 is a bottom composition, u1 is a reflux, u2 is a boil up.
Parametric uncertainties and external disturbances depend on
physical and chemical parameters of a distillation process and
a feed composition (a mixture of a light and heavy component
into a distillate product). For digital sensor the measurements
are quantized. Therefore, the problem is to design the discrete
algorithm under parametric uncertainties, external disturbance
and quantized measurements.

The reference signal ymi(t) is chosen as follows:

ym1(t) = 0.2 + 0.7 sin 1.7t, ym2(t) = 0.1 + 0.7 cos 1.1t.

Choose the equations of auxiliary loop (9) in the form
p2 + 5p + 6


ēi(t) = βiv(tk),

ēi(0) = ˙̄ei(0) = 0, i = 1, 2.
(26)

Eqs. (26) with step h = 0.01 have the form

ε̄i(tk+1) =


1 0.01

−0.06 0.1


ε̄i(tk) +


−5 · 10−5

0.01


βivi(tk),

ēi(tk) = [1 0] ε̄i(tk), ε̄i(0) = [0 0]T , i = 1, 2.
(27)

Introduce the observer Eqs. (16) as follows:

ξ̃i(tk) =

 0 0 0
−102 0 0
−104

−102 0

 ξ̃i(tk−1) +

 1
102

104

 σi(tk),

ξ̃i(0) = [0 0 0]T , i = 1, 2.

(28)

Let αi = 1 and βi = 1, i = 1, 2. According to (8) and (18),
rewrite the control as

ui(t) = vi(tk), vi(tk) = − [6 5 1] ξ̃i(tk), i = 1, 2. (29)

Let quantization interval be equal to 0.1. In Fig. 1 the transients
of the tracking errors ei(t), i = 1, 2 are presented by the following
parameters in (25): qi = 3, j = 1, . . . , 5, q6 = −3, q7 = 3,
q8 = q9 = 2, r1 = 2, r2 = 8, r3 = 3, r4 = 2, r5 = 2, f1(t) =

3+27 sin t , f2(t) = 10+20 cos 1.2t , y1(0) = ẏ1(0) = ÿ1(0) = 0.9,
y2(0) = ẏ2(0) = 0.7.

Let quantization interval be equal to 0.01. In Fig. 2 the
simulation results of the tracking errors ei(t), i = 1, 2 are given
by the same parameters in (25).

It follows from Fig. 1 that parametric uncertainties and external
disturbances are compensated by control system (27)–(29) with
the required accuracy δ = 0.3 achieved after 0.02 s. It follows
Fig. 1. The transients of the tracking errors e1 (solid line) and e2 (dash dot line) for
quantization interval 0.1.

Fig. 2. The transients of the tracking errors e1 (solid line) and e2 (dash dot line) for
quantization interval 0.01.

from Fig. 2 that the required accuracy δ = 0.1 is achieved after
0.15 s. Simulation results show that the error ei(t) can be reduced
by decreasing the value αi, h, δ̄ and increasing the value βi.

5. Conclusions

In this paper, we have treated the problem of robust output
feedback discrete control of continuous-time linear MIMO plants
under parametric uncertainties and external bounded disturbance
with quantized output signal. The parallel reference model
(auxiliary loop) which allows obtaining a function containing
parametric uncertainties and external disturbances acting on the
plant was considered. We proposed an algorithm that provides
tracking by the plant output of the reference output with the
required accuracy. Relationships between the tracking accuracy
and the quantization error, uncertainties of the plant, and
parameters of the regulator were derived.

The algorithm is proposed for the case when dimensions of the
output vector are equal the input vector of the plant. Consideration
of the case of different dimensions may be addressed in the future
work.

Appendix

Proof of theorem. Rewrite first equation of (22) as follows:

ε̇(t) = Amε(t) + Bm


ξ(t) − ξ̃ (kh)


. (30)

To analyze system (30) the following lemma is needed.

Lemma. Consider a hybrid system described by the differential and
difference equation

ẋ(t) = f (x(t), u(t), µ, t) ,

u(t) = u(tk) + hϕ (x(tk), µ, tk) , tk−1 ≤ t < tk,
(31)

where x ∈ Rs, f (x, u, µ, t) is Lipschitz continuous function in x, u,
µ uniformly in t, piecewise continuous on t; ϕ(x, µ, t) is Lipschitz
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continuous function in x, µ uniformly in t, piecewise continuous on t;
h = tk − tk−1 and µ > 0 are small parameters.

Consider the continuous time system for (31) in the form

˙̄x(t) = f̄ (x̄(t), ū(t), t) , ˙̄u(t) = ϕ̄ (x̄(t), t) , (32)

where x̄ ∈ Rs, f̄ (x̄, ū, t) = f (x̄, ū, 0, t), ϕ̄ (x̄, t) = ϕ (x̄, 0, t).
Let system (32) have a bounded closed set of attraction Ω =

{x̄, ū : F(x̄, ū) ≤ C}, where F(x̄, ū) is a smooth, positive definite
function in Rs. In addition let there exist some number C1 > 0 such
that the following condition holds:

sup


∂F(x̄, ū)

∂ x̄

T

· f̄ (x̄, ū, t) : F(x̄, ū) = C


≤ −C1. (33)

Then for any ε > 0 there exist numbers µ̄ > 0 and h̄ > 0 such
for µ < µ̄ and h < h̄ the condition limt→∞ dist ({x(t), u(t)} ,
Ω) < ε holds.
Lemma is a straightforward extension of Theorems 3.7, 3.13 in

Derevitsky and Fradkov (1981).
Let us check conditions of lemma for system (30). Consider (30)

for small parameters h and δ̄. Let δ̄ = 0 and h → 0. From (17) it
follows that σij(tk) → σ

(j)
i (tk), j = 0, 1, . . . , γi for h → 0. Hence

ξ̃i(tk) → ξi(t). Therefore, we have the system in the form

˙̄ε(t) = Amε̄(t). (34)

Choose smooth, positive definite function as Lyapunov function
in the form

F(ε̄) = ε̄T (t)P ε̄(t). (35)

Obviously, condition (33) holds for (34). Since ymi(t) are smooth
bounded functions then pjymi(t), j = 1, . . . , γi are bonded.
Function |u(t)| is bounded from (1) and Assumption 2. Thus, the
functions zi(t), ρi(t) and ϕi(t) are bounded. According to lemma
there exist coefficients h0 and δ̄0 such that for h ≤ h0 and δ̄ ≤ δ̄0
all functions are bounded in the closed-loop system.

We note that values of the numbers h0 and δ̄0 depend on
|ξ(t)| and

ξ̃ (kh)
 which, according to (11) and (15), depend on

coefficients of W (p) and Rij(p) in (2). In fact, it can be shown that
the numbers h0 and δ̄0 depend continuously on control system
parameters and elements of the compact set Ξ .

However, asymptotic stability of system solution (30) does not
follow from asymptotic stability of the solution of system (34).
Therefore, consider (30) for h = h0 and δ̄ = δ̄0. According to (35),
choose Lyapunov function F(ε). Taking the derivative of F(ε) along
the trajectories of (30), we obtain

Ḟ(ε) = −εT (t)Qε(t) + 2εT (t)PBm


ξ(t) − ξ̃ (kh0)


. (36)

Consider the following upper bound for the second term on the
right-hand side of (36) as follows:

2εTPBm


ξ − ξ̃


≤ 2µ−1εTPBmBT

mPε + µθ. (37)

From (11) and (15) it follows that value θ depends on
parameters h and δ̄. Moreover, as shown earlier, decreasing the
values h and δ̄ the value of θ is being reduced. Taking into account
bounds (39) rewrite (36) as follows:

Ḟ ≤ −εT (t)Rε(t) + µθ. (38)

Rewrite (38) in the form

Ḟ(t) ≤ −χF(t) + µθ. (39)

Solving inequality (39) with respect to F(t), we obtain

F(t) ≤ e−χ tF(0) + χ−1 
1 − e−χ t µθ. (40)
It follows from (40) that F ≤ χ−1µθ as t → ∞. Taking into
account (35) and (40), we have

|ei(t)| ≤ |ε(t)| ≤


λ−1
min(P)


e−χ tF(0) + (1 − e−χ t) χ−1µθ


. (41)

Rewrite (41) for the sampling time tk, tk−1 ≤ t < tk in the form

|ei(tk)| ≤


λ−1
min(P)


e−χ tkF(0) + (1 − e−χ tk) χ−1µθ


. (42)

Taking into account (4) and (42) for time tk = T we have
relation (23). Let us consider the following upper bound:

|qi(yi(tk)) − ymi(tk)|
≤ |yi(tk) − ymi(tk)| + |qi(yi(tk)) − yi(tk)| . (43)

It follows from (3) and (43) that relation (24) holds. Obviously,
the value θ of the right hand side of (23) depends on the values αi,
βi and h. Therefore, the value δ in (4) can be reduced by decreasing
the value αi, h and increasing the value βi. Theorem is proved.
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