
Available online at www.sciencedirect.com

Automatica 39 (2003) 1543–1554

www.elsevier.com/locate/automatica

Hybrid feedback stabilization of systems with quantized signals�

Daniel Liberzon
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, 1308 W. Main Street, Urbana, IL 61801, USA

Received 6 September 2001; received in revised form 25 February 2003; accepted 23 March 2003

Abstract

This paper is concerned with global asymptotic stabilization of continuous-time systems subject to quantization. A hybrid control
strategy originating in earlier work (Brockett and Liberzon, IEEE Trans. Automat. Control 45 (2000) 1279) relies on the possibility of
making discrete on-line adjustments of quantizer parameters. We explore this method here for general nonlinear systems with general
types of quantizers a:ecting the state of the system, the measured output, or the control input. The analysis involves merging tools from
Lyapunov stability, hybrid systems, and input-to-state stability.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In the classical feedback control setting, the output of
the process is assumed to be passed directly to the con-
troller, which generates the control input and in turn passes
it directly back to the process. In practice, however, this
paradigm often needs to be re-examined because the inter-
face between the controller and the process features some
additional information-processing devices. These consider-
ations arise, for example, in networked control systems; see
the articles in Bushnell (2001) and the references therein.
One important aspect to take into account in such situ-

ations is signal quantization. We think of a quantizer as a
device that converts a real-valued signal into a piecewise
constant one taking on a =nite set of values. Quantization
may a:ect the process output (this happens, for example,
when the output measurements to be used for feedback are
obtained by using a digital camera, stored in the memory
of a digital computer, or transmitted over a digital commu-
nication channel). It may also a:ect the control input (ex-
amples include the standard PWM ampli=er and the manual
transmission on a car).
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We assume that the given system evolves in continuous
time. In the presence of quantization, the state space (or the
input space) of the system is divided into a =nite number of
quantization regions, each corresponding to a =xed value
of the quantizer. At the time of passage from one quanti-
zation region to another, the dynamics of the closed-loop
system change abruptly. Therefore, systems with quantiza-
tion can be naturally viewed as hybrid systems, i.e., systems
described by a coupling between continuous and discrete
dynamics.
There are two well-studied phenomena which account for

changes in the system’s behavior caused by quantization.
The =rst one is saturation: if the signal is outside the range
of the quantizer, then the quantization error is large, and
the control law designed for the ideal case of no quanti-
zation leads to instability. The second one is deterioration
of performance near the equilibrium: as the di:erence be-
tween the current and the desired values of the state becomes
small, higher precision is required, and so in the presence of
quantization errors asymptotic convergence is impossible.
These phenomena manifest themselves in the existence of
two nested invariant regions such that all trajectories of the
quantized system starting in the bigger region approach the
smaller one, while no further convergence guarantees can
be given.
A standard assumption made in the literature is that pa-

rameters of the quantizer are =xed in advance and can-
not be changed by the control designer; see, among many
sources, (Chou, Chen, & Horng, 1996; Delchamps, 1990;
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Raisch, 1995; Feng & Loparo, 1997; Sur & Paden, 1998;
Lunze, Nixdorf, & SchrIoder, 1999). There has been some
research concerned with the question of how the choice of
quantization parameters a:ects the behavior of the system
(Wong & Brockett, 1999; JAstrIom & Bernhardsson, 1999;
Liberzon & Brockett, 2000; Elia & Mitter, 2001; Ishii &
Francis, 2002). In this paper, building on the earlier work
reported in (Brockett & Liberzon, 2000; Liberzon, 2000),
we adopt the approach that it is possible to vary some pa-
rameters of the quantizer in real time, on the basis of col-
lected data. For example, if a quantizer is used to represent
a camera, this corresponds to zooming in and out, i.e., vary-
ing the focal length, while the number of pixels of course
remains =xed. This approach =ts into the framework of con-
trol with limited information: the state of the system is not
completely known, but it is only known which one of a =xed
number of quantization regions contains the current state at
each instant of time. The quantizer can be thought of as a
coder that generates an encoded signal taking values in a
given =nite set. By changing the size and relative position
of the quantization regions—i.e., by modifying the coding
mechanism—we can learn more about the behavior of the
system, without violating the restriction on the type of in-
formation that can be communicated to the controller. This
will help us overcome the two diLculties described above.
The quantization parameters will be updated at discrete

instants of time (these switching events will be determined
by the values of a suitable Lyapunov function). This results
in a hybrid quantized feedback control policy. There are
several reasons for adopting a hybrid control approach rather
than varying the quantization parameters continuously. First,
in speci=c situations there may be some constraints on how
many values these parameters are allowed to take and how
frequently they can be adjusted. Thus a discrete adjustment
policy is more natural and easier to implement than a con-
tinuous one. Secondly, the analysis of hybrid systems ob-
tained in this way appears to be more tractable than that of
systems resulting from continuous parameter tuning. In fact,
we will see that invariant regions de=ned by level sets of a
Lyapunov function provide a simple and e:ective tool for
studying the behavior of the closed-loop system. This also
implies that precise computation of the switching times is
not essential, which makes our hybrid control policies ro-
bust with respect to certain types of time delays (such as
those associated with periodic sampling).
The recent paper (Brockett & Liberzon, 2000) thoroughly

investigates the hybrid control methodology outlined above
in the context of the feedback stabilization problem for lin-
ear control systems with output (or state) quantization. It is
shown there that if a linear system can be stabilized by a lin-
ear feedback law, then it can also be globally asymptotically
stabilized by a hybrid quantized feedback control policy.
The control strategy is usually composed of two stages. The
=rst, “zooming-out” stage consists in increasing the range
of the quantizer until the state of the system can be ade-
quately measured; at this stage, the system is open-loop. The

second, “zooming-in” stage involves applying feedback and
at the same time decreasing the quantization error in such a
way as to drive the state to the origin. The developments of
Brockett and Liberzon (2000) were restricted to quantizers
that give rise to rectilinear quantization regions.
The present work generalizes the contributions of

Brockett and Liberzon (2000) in three di:erent direc-
tions. First, we consider more general types of quantizers,
with quantization regions having arbitrary shapes as in
Lunze et al. (1999). This extension is useful in several situ-
ations. For example, in the context of vision-based feedback
control mentioned earlier, the image plane of the camera
is divided into rectilinear regions, but the shapes of the
quantization regions in the state space which result from
computing inverse images of these rectangles can be rather
complicated. The so-called Voronoi tessellations suggest
that, at least in two dimensions, it may be bene=cial to use
hexagonal quantization regions rather than more familiar
rectangular ones (Du, Faber, & Gunzburger, 1999). We
will demonstrate that the principal =ndings of Brockett and
Liberzon (2000) are still valid in this more general setting.
Another goal of this paper is to address the quantized

feedback stabilization problem for nonlinear systems. It
can be shown via a linearization argument that by using
the approach of Brockett and Liberzon (2000) one can ob-
tain local asymptotic stability for a nonlinear system, pro-
vided that the corresponding linearized system is stabilizable
(Hu, Feng, & Michel, 1999). Here we are concerned with
achieving global stability 1 results. We will show that the
techniques developed inBrockett andLiberzon (2000) can be
extended in a natural way to those nonlinear systems that are
input-to-state stabilizable with respect to measurement dis-
turbances. We thus reveal an interesting interplay between
the problem of quantized feedback stabilization, the theory
of hybrid systems, and topics of current interest in nonlinear
control design. A preliminary investigation of these ques-
tions has been reported in Liberzon (2000), but only for
state quantizers with rectilinear quantization regions.
Finally, in this paper we develop analogous results for

systems with input quantization, both linear and nonlinear.
In view of the examples given earlier, this expands the po-
tential applicability of the hybrid quantized feedback control
techniques. We discover that the analysis of systems with
input quantization can be carried out quite similarly to the
state quantization case. This analysis also yields a basis for
comparing the e:ects of input quantization and state quan-
tization on the performance of the system. As we will see,
for nonlinear systems the case of state quantization presents
a greater challenge from the viewpoint of control design.
As in Brockett and Liberzon (2000), all control laws

are constructed explicitly. All vector =elds and feedback
laws are assumed to be suLciently regular (e.g., smooth).

1 Working with a given nonlinear system directly, one gains an ad-
vantage even if only local asymptotic stability is sought, because the
linearization of a stabilizable nonlinear system may fail to be stabilizable.
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Solutions to all di:erential equations are well de=ned, with
the understanding that they are to be interpreted in the sense
of Filippov (1988) if necessary (control strategies described
in this paper do not rely on chattering and the analysis
of the resulting closed-loop systems does not explicitly
require a concept of generalized solution). With some
abuse of terminology, we call a closed-loop hybrid system
globally asymptotically stable if the origin is a globally
asymptotically stable equilibrium of the continuous dy-
namics. We denote by | · | the standard Euclidean norm in
Rn and by ‖ · ‖ the corresponding induced matrix norm in
Rn×n. A function � : [0;∞) → [0;∞) is said to be of class
K∞ if it is continuous, strictly increasing, and such that
�(0) = 0 and �(r) → ∞ as r → ∞.

2. Quantizer

Let z ∈Rl be the variable being quantized. By a quantizer
we mean a piecewise constant function q :Rl → Q, where
Q is a =nite subset of Rl. This leads to a partition of Rl

into a =nite number of quantization regions of the form
{z ∈Rl: q(z)= i}, i∈Q. These quantization regions are not
assumed to have any particular shapes (see Fig. 1).
When z does not belong to the union of quantization re-

gions of =nite size, the quantizer saturates. More precisely,
we assume that there exist positive real numbers M and 

such that the following two conditions hold:

1. If

|z|6M (1)

then

|q(z)− z|6
: (2)

2. If

|z|¿M

then

|q(z)|¿M − 
:

Condition 1 gives a bound on the quantization error when
the quantizer does not saturate. Condition 2 provides a way
to detect the possibility of saturation. We will refer toM and

 as the range of q and the quantization error, respectively.
We also assume that q(x) = 0 for x in some neighborhood
of the origin, i.e., the origin lies in the interior of the set
{x: q(x)=0}. An example of a quantizer satisfying the above
requirements is provided by the quantizer with rectangular
quantization regions considered in earlier works (Brockett &
Liberzon, 2000; Liberzon, 2000). These conditions are also
satis=ed in the setting of Kofman (2001) where quantization
is combined with hysteresis.
In the control strategies to be developed below, we will

use quantized measurements of the form

q�(z) := �q
(

z
�

)
; (3)

Fig. 1. Quantization regions.

where �¿ 0. The range of this quantizer isM� and the quan-
tization error is R�. We can think of � as the “zoom” vari-
able: increasing � corresponds to zooming out and essen-
tially obtaining a new quantizer with larger range and quan-
tization error, whereas decreasing � corresponds to zooming
in and obtaining a quantizer with a smaller range but also a
smaller quantization error. We will update � at discrete in-
stants of time, so it will be the discrete state of the resulting
hybrid closed-loop system. In the camera model mentioned
in the Introduction, � corresponds to the inverse of the focal
length. It is possible to introduce more general, nonlinear
scaling of the quantized variable, as in � ◦ q ◦ �−1(z) where
� is some invertible function from Rl to Rl and ◦ denotes
composition; however, this does not seem to introduce any
signi=cant advantages in the context of the problems studied
here.

3. State quantization

To =x ideas, we treat linear systems =rst.

3.1. Linear systems

Consider the linear system

ẋ = Ax + Bu; x∈Rn; u∈Rm: (4)

Suppose that (4) is stabilizable, so that for some matrix
K the eigenvalues of A + BK have negative real parts. By
the standard Lyapunov stability theory, there exist positive
de=nite symmetric matrices P and Q such that

(A+ BK)TP + P(A+ BK) =−Q: (5)

We will let �min(·) and �max(·) denote the smallest and the
largest eigenvalue of a symmetric matrix, respectively. The
inequality

�min(P)|x|26 xTPx6 �max(P)|x|2

will be used repeatedly below. We will assume that B �= 0
and K �= 0; this is no loss of generality because the case of
interest is when A is not a stable matrix.
In this section we are interested in the situation where only

quantized measurements q�(x) of the state x are available.
Since the state feedback law u = Kx is not implementable,
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consider the “certainty equivalence” 2 quantized feedback
control law

u= Kq�(x): (6)

Assume for the moment that � is a =xed positive number.
The closed-loop system is given by

ẋ= Ax + BKq�(x)

= (A+ BK)x + BK�
(
q
(

x
�

)
− x

�

)
: (7)

The behavior of trajectories of system (7) for a =xed � is
characterized by the following result.

Lemma 1. Fix an arbitrary �¿ 0 and assume that M is
large enough compared to 
 so that we have√

�min(P)M ¿
√

�max(P)�x
(1 + �); (8)

where

�x :=
2‖PBK‖
�min(Q)

¿ 0:

Then the ellipsoids

R1(�) := {x: xTPx6 �min(P)M 2�2} (9)

and

R2(�) := {x: xTPx6 �max(P)�2
x


2(1 + �)2�2} (10)

are invariant regions for system (7). Moreover, all so-
lutions of (7) that start in the ellipsoid R1(�) enter the
smaller ellipsoid R2(�) in 9nite time.

Proof. Whenever inequality (1), and consequently (2), hold
with z = x=�, the derivative of xTPx along solutions of (7)
satis=es

d
dt

xTPx = −xTQx + 2xTPBK�
(
q
(

x
�

)
− x

�

)

6−�min(Q)|x|2 + 2|x| ‖PBK‖R�

= −|x|�min(Q)(|x| −�xR�):

This implies the following formula:

�x
(1 + �)�6 |x|6M�

⇒ d
dt

xTPx6− |x|�min(Q)�xR��: (11)

De=ne the balls

B1(�) := {x: |x|6M�}
and

B2(�) := {x: |x|6�x
(1 + �)�}:

2 This standard term (borrowed from adaptive control) refers to the
fact that the controller treats quantized state measurements as if they were
exact state values, even though they are not.

B2

R1

B1

R2

Fig. 2. The regions used in the proofs.

In view of inequality (8), we have

B2(�) ⊂ R2(�) ⊂ R1(�) ⊂ B1(�):

Combined with (11), this immediately implies that the ellip-
soids R1(�) and R2(�) are both invariant. The fact that the
trajectories starting in R1(�) approach R2(�) in =nite time
follows from the bound on the derivative of xTPx given by
(11). Indeed, if a time t0 is given such that x(t0) belongs to
R1(�) and if we let

T :=
�min(P)M 2 − �max(P)�2

x

2(1 + �)2

�2
x
2(1 + �)�min(Q)�

(12)

then x(t0 + T ) is guaranteed to belong to R2(�). Fig. 2
illustrates the proof (and will also be useful later).

As we explained before, a hybrid quantized feedback
control policy involves updating the value of � at discrete
instants of time. An open-loop “zooming-out” stage is
followed by a closed-loop “zooming-in” stage, so that the
resulting control law takes the form

u(t) =

{
0; 06 t ¡ t0;

Kq�(t)(x(t)); t¿ t0:

Using this idea and Lemma 1, it is possible to achieve global
asymptotic stability, as we now show.

Theorem 1. Assume that M is large enough compared to

 so that we have√

�min(P)
�max(P)

M ¿ 2
max
{
1;

‖PBK‖
�min(Q)

}
: (13)

Then there exists a hybrid quantized feedback control pol-
icy that makes system (4) globally asymptotically stable.

Proof. The “zooming-out” stage. Set u equal to 0. Let
�(0) = 1. Then increase � in a piecewise constant fashion,
fast enough to dominate the rate of growth of ‖eAt‖. For
example, one can =x a positive number � and let �(t) = 1
for t ∈ [0; �), �(t) = �e2‖A‖� for t ∈ [�; 2�), �(t) = 2�e2‖A‖2�

for t ∈ [2�; 3�), and so on. Then there will be a time t¿ 0
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such that∣∣∣∣ x(t)�(t)

∣∣∣∣6
√

�min(P)
�max(P)

M − 2


(by (13), the right-hand side of this inequality is positive).
In view of condition 1 imposed in Section 2, this implies∣∣∣∣q
(

x(t)
�(t)

)∣∣∣∣6
√

�min(P)
�max(P)

M − 


which is equivalent to

|q�(x(t))|6
√

�min(P)
�max(P)

M�(t)−R�(t): (14)

We can thus pick a time t0 such that (14) holds with t = t0.
Therefore, in view of conditions 1 and 2 of Section 2, we
have∣∣∣∣ x(t0)�(t0)

∣∣∣∣6
√

�min(P)
�max(P)

M ;

hence, x(t0) belongs to the ellipsoidR1(�(t0)) given by (9).
Note that this event can be detected using only the available
quantized measurements.

The “zooming-in” stage. Choose an �¿ 0 such that in-
equality (8) is satis=ed; this is possible because of (13). We
know that x(t0) belongs to R1(�(t0)). We now apply the
control law (6). Let �(t) = �(t0) for t ∈ [t0; t0 + T ), where
T is given by formula (12). Then x(t0 + T ) belongs to the
ellipsoid R2(�(t0)) given by (10). For t ∈ [t0 + T; t0 + 2T ),
let

�(t) = ��(t0)

where

� :=

√
�max(P)�x
(1 + �)√

�min(P)M
:

We have �¡ 1 by (8), hence �(t0+T )¡�(t0). It is easy to
check that R2(�(t0)) =R1(�(t0 + T )). This means that we
can continue the analysis for t¿ t0 + T as before. Namely,
x(t0 + 2T ) belongs to the ellipsoid R2(�(t0 + T )) de=ned
by (10). For t ∈ [t0 + 2T; t0 + 3T ), let �(t) = ��(t0 + T ).
Repeating this procedure, we obtain the desired control pol-
icy. Indeed, we have �(t) → 0 as t → ∞, and the above
analysis implies that x(t) → 0 as t → ∞. To show stability
of the equilibrium x = 0 of the continuous dynamics in the
sense of Lyapunov, take an arbitrary �¿ 0. Find a positive
integer k such that the ellipsoid R1(�k) is contained in the
ball of radius � around the origin. Pick a !¿ 0 such that so-
lutions of ẋ = Ax with |x(0)|6 ! stay in the intersection of
this �-ball with the region {x: q(x)=q(x=�)=q(x=�k−1)=0}
for all t ∈ [0; kT ] (recall that q(x)=0 on some neighborhood
of the origin). Then these solutions satisfy |x(t)|6 � for all
t¿ 0.

We see from the proof of Theorem 1 that the state of the
closed-loop system belongs, at equally spaced instants of

time, to ellipsoids whose sizes decrease according to consec-
utive integer powers of �. Therefore, x(t) converges to zero
exponentially for t¿ t0; see Brockett and Liberzon (2000)
for details.
The fact that the scaling of � is performed at t = t0 +

T; t0 + 2T; : : : is not crucial: since the ellipsoids considered
in the proof are invariant regions for the closed-loop system,
we could instead take another sequence of switching times
t1; t2; : : : satisfying ti − ti−1¿T , i¿ 1. However, doing this
in an arbitrary fashion would sacri=ce the exponential rate
of decay. The constant T is usually referred to as the dwell
time.
At the “zooming-in” stage described in the proof of Theo-

rem 1, the switching strategy is time-based, in the sense that
the values of the discrete state � are changed at precomputed
times at which the continuous state x is known to belong to
a certain region. An alternative approach would be to em-
ploy event-based switching, i.e., use the quantized measure-
ments to determine when x enters the desired region; this is
done in Liberzon (2000). An event-based switching strategy
relies more on feedback measurements and less on o:-line
computations than a time-based one; it is therefore likely
to be more robust with respect to modeling errors, although
the expressions for the switching times are somewhat more
straightforward in the case of time-based switching.
In the preceding, � takes on a countable set of values

which is not assumed to be =xed in advance. In some situ-
ations � may be restricted to take values in a given count-
able set S. It is not diLcult to see that the proposed method,
suitably modi=ed, still works in this case, provided that the
set S has the following properties:

1. S contains a sequence �11; �21; : : : that increases to ∞.
2. Each �i1 from this sequence belongs to a sequence

�i1; �i2; : : : in S that decreases to 0 and is such that we
have �6 �i; j+1=�ij for each j.

If the set of possible values for � is =nite rather than count-
able, we can only obtain practical stability and not global
asymptotic stability; cf. Brockett and Liberzon (2000) and
Liberzon (2000).

3.2. Nonlinear systems

Consider the system

ẋ = f(x; u); x∈Rn; u∈Rm: (15)

We take all vector =elds and control laws to be suLciently
regular (e.g., smooth). It is natural to assume that there exists
a state feedback law u = k(x) that makes the closed-loop
system globally asymptotically stable. Actually, we need
to assume that k satis=es the following stronger condition
(which will be examined in more detail later): there exists a
smooth function V :Rn → R such that for some class K∞
functions �1; �2; �3; & and for all x; e∈Rn we have

�1(|x|)6V (x)6 �2(|x|) (16)
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and

|x|¿ &(|e|) ⇒ ∇V (x)f(x; k(x + e))6− �3(|x|): (17)

According to the results of Sontag (1989) and Sontag and
Wang (1995), this is equivalent to saying that the perturbed
closed-loop system

ẋ = f(x; k(x + e)) (18)

is input-to-state stable (ISS) with respect to the measure-
ment disturbance input e.
Since only quantized measurements of the state are

available, we again consider the “certainty equivalence”
quantized feedback control law, which in this case is given
by

u= k(q�(x)); (19)

where q� is de=ned by (3). For a =xed �, the closed-loop
system is

ẋ = f(x; k(q�(x))) (20)

and this takes the form (18) with

e = q�(x)− x: (21)

The behavior of trajectories of (20) for a =xed value of � is
characterized by the following lemma.

Lemma 2. Assume that we have

�1(M�)¿�2 ◦ &(R�): (22)

Then the sets

R1(�) := {x: V (x)6 �1(M�)} (23)

and

R2(�) := {x: V (x)6 �2 ◦ &(R�)} (24)

are invariant regions for system (20). Moreover, all
solutions of (20) that start in the set R1(�) enter the
smaller set R2(�) in 9nite time.

Proof. Whenever inequality (1), and consequently (2), hold
with z= x=�, the quantization error e given by (21) satis=es

|e|=
∣∣∣∣�q
(

x
�

)
− �

x
�

∣∣∣∣6R�:

Combined with (17), this implies the following formula:

&(R�)6 |x|6M� ⇒ V̇ 6− �3(|x|); (25)

where V̇ denotes the derivative of V along solutions of (20).
De=ne the balls

B1(�) := {x: |x|6M�}
and

B2(�) := {x: |x|6 &(R�)}:
As before, in view of (16) and (22) we have

B2(�) ⊂ R2(�) ⊂ R1(�) ⊂ B1(�):

Combined with (25), this implies that the ellipsoids R1(�)
and R2(�) are both invariant. The fact that the trajectories
starting inR1(�) approachR2(�) in =nite time follows from
the bound on the derivative of V deduced from (25). Indeed,
if a time t0 is given such that x(t0) belongs to R1(�) and if
we let

T� :=
�1(M�)− �2 ◦ &(R�)

�3 ◦ &(R�)
(26)

then x(t0 + T�) is guaranteed to belong to R2(�).

The unforced system

ẋ = f(x; 0) (27)

is called forward complete if for every initial state x(0) the
solution of (27), which we denote by ((x(0); t), is de=ned
for all t¿ 0. Our goal now is to show that this assumption,
combined with the input-to-state stabilizability assumption
stated earlier and a certain additional technical condition,
allow one to extend the result expressed by Theorem 1 to
the nonlinear system (15).

Theorem 2. Assume that system (27) is forward complete
and that we have

�−1
2 ◦ �1(M�)¿max{&(R�); )(�) + 2R�} ∀�¿ 0

(28)

for some class K∞ function ). Then there exists a hybrid
quantized feedback control policy that makes system (15)
globally asymptotically stable.

Proof. As in the linear case, the control strategy is com-
posed of two stages.

The “zooming-out” stage. Set the control equal to 0. Let
�(0) = 1. Increase � in a piecewise constant fashion, fast
enough to dominate the rate of growth of |x(t)|. For exam-
ple, =x a positive number � and let �(t) = 1 for t ∈ [0; �),
�(t) = )−1(2max|x(0)|; t6� |((x(0); t)|) for t ∈ [�; 2�), �(t) =
)−1(2max|x(0)|; t62� |((x(0); t)|) for t ∈ [2�; 3�), and so on.
Then there will be a time t¿ 0 such that

|x(t)|6 )(�(t))¡�−1
2 ◦ �1(M�(t))− 2R�(t)

where the second inequality follows from (28). This implies∣∣∣∣ x(t)�(t)

∣∣∣∣¡ 1
�(t)

�−1
2 ◦ �1(M�(t))− 2
:

By virtue of condition 1 of Section 2 we have∣∣∣∣q
(

x(t)
�(t)

)∣∣∣∣6 1
�(t)

�−1
2 ◦ �1(M�(t))− 


which is equivalent to

|q�(x(t))|6 �−1
2 ◦ �1(M�(t))−R�(t): (29)
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Picking a time t0 at which (29) holds and using conditions
1 and 2 of Section 2, we obtain∣∣∣∣ x(t0)�(t0)

∣∣∣∣6 1
�(t0)

�−1
2 ◦ �1(M�(t0))

hence x(t0) belongs to the set R1(�(t0)) given by (23).
This event can be detected solely on the basis of quantized
measurements.

The “zooming-in” stage. We have established that x(t0)
belongs toR1(�(t0)). We will now use the control law (19).
Let �(t) = �(t0) for t ∈ [t0; t0 + T�(t0)), where T�(t0) is given
by formula (26). Then x(t0 + T�(t0)) will belong to the set
R2(�(t0)) given by (24). Calculate T!(�(t0)) using (26) again,
where the function ! is de=ned as

!(r) :=
1
M

�−1
1 ◦ �2 ◦ &(Rr); r¿ 0:

For t ∈ [t0 + T�(t0); t0 + T�(t0) + T!(�(t0))), let

�(t) = !(�(t0)):

We have !(r)¡r for all r ¿ 0 by (28), thus
�(t0 + T�(t0))¡�(t0). One easily checks that R2(�(t0)) =
R1(�(t0 + T�(t0))). This means that we can continue the
analysis and conclude that x(t0 + T�(t0) + T!(�(t0))) belongs
to R2(�(t0 + T�(t0))). We then repeat the procedure, letting
�=!(�(t0 +T�(t0))) for the next time interval whose length
is calculated from (26). Lyapunov stability of the equilib-
rium x = 0 of the continuous dynamics follows from the
adjustment policy for � as in the linear case. Moreover, we
have �(t) → 0 as t → ∞, and the above analysis implies
that x(t) → 0 as t → ∞.

As in Section 3.1, we could pick a di:erent se-
quence of switching times t1; t2; : : : as long as they satisfy
ti − ti−1¿T�(ti−1), i¿ 1. Similarly to the linear case, we
could also implement event-based switching instead of
using a dwell time; see Liberzon (2000).

Example. Consider the following system, which is a
simpli=ed version of the system treated in the example
in Jiang, Mareels, and Hill (1999, p. 811):

ẋ = x3 + xu; x; u∈R:
In Jiang et al. (1999) it is shown how to construct a feedback
law k such that the closed-loop system

ẋ = x3 + xk(x + e)

is ISS with respect to e. It follows from the analysis of
Jiang et al. (1999) that inequalities (16) and (17) hold with
V (x)= x2=2, �1(r)= �2(r)= r2=2, �3(r)= r2, and &(r)= cr
for an arbitrary c¿ 1. We have (�−1

2 ◦ �1)(r) = r, so (28)
is valid for every M ¿
max{c; 2}.

In general, the requirement that the original system
(15) be input-to-state stabilizable with the respect to the

measurement error is quite restrictive for nonlinear systems.
It is shown in Sontag (1989) that if an aLne system of the
form

ẋ = f(x) + G(x)u

is asymptotically stabilizable by a feedback law u = k0(x),
then one can always =nd a feedback law u=k(x) that makes
the system

ẋ = f(x) + G(x)(k(x) + e)

ISS with respect to an actuator disturbance e. However,
there might not exist a feedback law that makes the system

ẋ = f(x) + G(x)k(x + e)

ISS with respect to a measurement disturbance e, as was
shown by way of counterexamples in Freeman (1995) and
later in Fah (1999). Thus the problem of =nding control
laws that achieve ISS with respect to measurement distur-
bances is a nontrivial one, even for systems aLne in controls
(of course, for linear systems the distinction between the
three notions mentioned above disappears). This problem
has recently attracted considerable attention in the literature
(Fah, 1999; Freeman & KokotoviVc, 1993; Jiang et al., 1999)
and continues to be a subject of research e:orts.
The technical assumption (28) also appears to be restric-

tive and hard to check. It depends on the relative growth
of the functions �1, �2, and &. If the function �−1

1 ◦ �2 ◦
-, where -(r) := max{&(Rr); )(r) + 2Rr}, is globally
Lipschitz, then (28) is satis=ed for every M greater than the
Lipschitz constant. However, there is a weaker and more
easily veri=able assumption which enables one to prove
asymptotic stability in the case when a bound on the mag-
nitude of the initial state is known (semiglobal asymptotic
stability). To see how this works, take a positive number E0

such that |x(0)|6E0. Suppose that

(�−1
1 ◦ �2 ◦ &)′(0)¡∞: (30)

Then it is an elementary exercise to verify that for M suL-
ciently large we have

�−1
2 ◦ �1(M�)¿&(R�) ∀�∈ (0; 1]

and also

�−1
2 ◦ �1(M)¿E0:

Thus x(0) belongs to the set R1(1) de=ned by (23), the
“zooming-out” stage is not necessary, and the “zooming-in”
stage can be carried out as in the proof of Theorem 2, starting
at t0=0 and �(0)=1. Forward completeness of the unforced
system (27) is not required here.
If (30) does not hold, it is still possible to ensure that

all solutions starting in a given compact set approach an ar-
bitrary prespeci=ed neighborhood of the origin (semiglobal
practical stability). This is not diLcult to show if the feed-
back law k is robust with respect to small measurement er-
rors. All continuous stabilizing feedback laws possess such
robustness, and discontinuous control laws for a large class
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of systems can also be shown to have this robustness prop-
erty (Sontag, 1999). Therefore, in this context the assump-
tion of ISS with respect to measurement disturbance inputs
can be dropped altogether. For a detailed discussion of this
topic, see Liberzon (2000).

In view of Sontag and Wang (1996, Lemma I.2), ev-
ery asymptotically stabilizing feedback law is automatically
input-to-state stabilizing with respect to the measurement
error e locally, i.e., for suLciently small values of x and e.
This leads at once to local versions of the above results.

4. Input quantization

In this section we obtain results analogous to those given
in Section 3 for systems whose input, rather than state, is
quantized.

4.1. Linear systems

Consider the linear system (4). Suppose again that there
exists a matrix K such that the eigenvalues of A+BK have
negative real parts, so that for some positive de=nite sym-
metric matrices P and Q Eq. (5) holds.
The state feedback law u= Kx is not implementable be-

cause only quantized measurements q�(u) of the input u are
available, where q� is de=ned by (3). We therefore consider
the “certainty equivalence” quantized feedback control law

u= q�(Kx): (31)

This yields the closed-loop system

ẋ= Ax + B�q�(x) = (A+ BK)x

+B�
(
q
(
Kx
�

)
− Kx

�

)
: (32)

The behavior of trajectories of (32) for a =xed value of � is
characterized as follows.

Lemma 3. Fix an arbitrary �¿ 0 and assume that M is
large enough compared to 
 so that we have√

�min(P)M ¿
√

�max(P)�u‖K‖
(1 + �);

where

�u :=
2‖PB‖
�min(Q)

:

Then the ellipsoids

R1(�) := {x: xTPx6 �min(P)M 2�2=‖K‖2} (33)

and

R2(�) := {x: xTPx6 �max(P)�2
u


2(1 + �)2�2}
are invariant regions for system (32). Moreover, all so-
lutions of (32) that start in the ellipsoid R1(�) enter the
smaller ellipsoid R2(�) in 9nite time.

The proof is very similar to that of Lemma 1, and is
omitted. An upper bound on the time to enter R2(�) is

T :=
�min(P)M 2 − �max(P)�2

u‖K‖2
2(1 + �)2

�2
u‖K‖2
2(1 + �)�min(Q)�

: (34)

A hybrid quantized feedback control policy which combines
the control law (31) with a switching strategy for � is now
obtained similarly to the state quantization case studied in
the previous section.

Theorem 3. Assume that M is large enough compared to

 so that we have√

�min(P)
�max(P)

M ¿ 2

‖PB‖‖K‖
�min(Q)

: (35)

Then there exists a hybrid quantized feedback control pol-
icy that makes system (4) globally asymptotically stable.

Proof. At the “zooming-out” stage, set u equal to 0 and
increase � in a piecewise constant fashion as in the proof of
Theorem 1. Then there will be a time t0¿ 0 such that

|x(t0)|6
√

�min(P)
�max(P)

M�(t0)
‖K‖

which implies that x(t0) belongs to the ellipsoid R1(�(t0))
given by (33). The “zooming-in” stage exactly parallels the
one in the proof of Theorem 1, using formula (34).

It is interesting to observe that in view of the inequality

‖PBK‖6 ‖PB‖‖K‖
condition (35) is in general more restrictive than the cor-
responding condition for the case of state quantization (see
Theorem 1). On the other hand, the “zooming-in” stage for
input quantization is more straightforward and does not re-
quire any additional assumptions. The remarks made after
the proof of Theorem 1 concerning the exponential rate of
convergence, robustness to time delays, and the alternative
method of event-based switching carry over to the present
case without any changes.

4.2. Nonlinear systems

Consider the nonlinear system (15). Assume that there
exists a feedback law u = k(x) that makes the closed-loop
system globally asymptotically stable and, moreover, en-
sures that for some class K∞ functions �1; �2; �3; & there
exists a smooth function V :Rn → R satisfying inequalities
(16) and

|x|¿ &(|e|) ⇒ ∇V (x)f(x; k(x) + e)6− �3(|x|)
for all x; e∈Rn. According to the results of Sontag (1989)
and Sontag and Wang (1995), this is equivalent to saying
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that the perturbed closed-loop system

ẋ = f(x; k(x) + e) (36)

is ISS with respect to the actuator disturbance input e. Take
/ to be some class K∞ function with the property that

/(r)¿max
|x|6r

|k(x)| ∀r¿ 0:

Then we have

|k(x)|6 /(|x|) ∀x:
The closed-loop system with the “certainty equivalence”

quantized feedback control law

u= q�(k(x)) (37)

becomes

ẋ = f(x; q�(k(x))) (38)

and this takes the form (36) with

e = q�(k(x))− x: (39)

The behavior of trajectories of (38) for a =xed � is charac-
terized by the following result.

Lemma 4. Assume that we have

�1 ◦ /−1(M�)¿�2 ◦ &(R�):

Then the sets

R1(�) := {x: V (x)6 �1 ◦ /−1(M�)} (40)

and

R2(�) := {x: V (x)6 �2 ◦ &(R�)} (41)

are invariant regions for system (38). Moreover, all solu-
tions of (38) that start in the set R1(�) enter the smaller
set R2(�) in 9nite time.

The proof parallels that of Lemma 2. An upper bound on
the time to enter R2(�) is

T� :=
�1 ◦ /−1(M�)− �2 ◦ &(R�)

�3 ◦ &(R�)
: (42)

As in Section 3.2, we will denote by ((x(0); t) the solutions
of the unforced system (27).

Theorem 4. Assume that system (27) is forward complete
and that we have

�−1
2 ◦ �1 ◦ /−1(M�)¿&(R�) ∀�¿ 0: (43)

Then there exists a hybrid quantized feedback control pol-
icy that makes system (15) globally asymptotically stable.

Proof. The “zooming-out” stage. Set the control to 0, and
let �(0)=1. Then increase � in a piecewise constant fashion,
fast enough to dominate the rate of growth of |x(t)|. For ex-
ample, =x a positive number � and let �(t)=1 for t ∈ [0; �),
�(t) = &−1(2max|x(0)|; t6� |((x(0); t)|)=
 for t ∈ [�; 2�),

�(t)=&−1(2max|x(0)|; t62� |((x(0); t|)=
 for t ∈ [2�; 3�), and
so on. Then there will be a time t0¿ 0 such that

|x(t0)|6 &(R�(t0))¡�−1
2 ◦ �1 ◦ /−1(M�(t0))

hence x(t0) belongs to the set R1(�(t0)) given by (40).
The “zooming-in” stage. For t¿ t0 apply the control law

(37). Let �(t) = �(t0) for t ∈ [t0; t0 + T�(t0)), where T�(t0) is
given by formula (42). Then x(t0 + T�(t0)) belongs to the
set R2(�(t0)) given by (41). Use (42) again to compute
T!(�(t0)), where ! is the function de=ned by

!(r) :=
1
M

/ ◦ �−1
1 ◦ �2 ◦ &(Rr); r¿ 0:

For t ∈ [t0 + T�(t0); t0 + T�(t0) + T!(�(t0))), let

�(t) = !(�(t0)):

We have �(t0 + T�(t0))¡�(t0) by (43), and R2(�(t0)) =
R1(�(t0 +T�(t0))). The proof can now be completed exactly
as the proof of Theorem 2.

As we explained in Section 3.2, the requirement of ISS
with respect to actuator errors is not as severe as that of ISS
with respect to measurement errors. This means that for non-
linear systems the stabilization problem in the presence of
input quantization is less challenging from the point of view
of control design than the corresponding problem for state
quantization. When condition (43) is not satis=ed, weaker
results can be obtained as described in Section 3.2.

Remark 1. It is relatively straightforward to extend the re-
sults obtained so far to systems with quantization a:ecting
both the state and the input. For example, consider the linear
system (4) with the control law

u= qu
�(Kqx

�(x));

where qx is a state quantizer with range Mx and error 
x and
qu is an input quantizer with range Mu and error 
u. We are
taking � in both quantizers to be the same for simplicity,
i.e., we are assuming that the two quantizers are changed
synchronously. The closed-loop system can be written as

ẋ = (A+ BK)x + BK�em + B�ea;

where

em := q
(

x
�

)
− x

�
;

ea := q
(
Kq
(

x
�

))
− Kq

(
x
�

)
:

It is easy to check that we have |em|6
x and |ea|6
u

provided that

|x|6min
{
Mx�;Mu�;

(
Mu

‖K‖ − 
u

)
�
}

:

The analysis can then be carried out along the same lines
as before. For nonlinear systems, we need to impose the
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assumption of input-to-state stabilizability with respect to
both measurement and actuator errors.

5. Observer-based dynamic output feedback

We now extend some of the above results to linear sys-
tems with output feedback. The developments that follow
are essentially based on the ideas from Brockett and Liber-
zon (2000, Section 5). Other approaches are also possible;
see Delchamps (1989) and Sur and Paden (1998).
Consider the linear system

ẋ = Ax + Bu;

y = Cx; (44)

where x∈Rn, u∈Rm, and y∈Rp. Suppose that (A; B) is
a stabilizable pair and (C; A) is an observable pair. This
implies that there exist a feedback matrix K and an output
injection matrix L such that the eigenvalues of A+ BK and
A + LC have negative real parts. The eigenvalues of the
matrix

WA :=

(
A+ BK −BK

0 A+ LC

)

then also have negative real parts, and so there exist positive
de=nite symmetric 2n× 2n matrices WP and WQ such that

WAT WP + WP WA=− WQ:

In this section we are interested in the situation where only
quantized measurements q�(y) of the output y are available,
where q� is de=ned by (3). We therefore consider the fol-
lowing dynamic output feedback law, which is based on the
standard Luenberger observer but uses q�(y) instead of y:

˙̂x = (A+ LC)x̂ + Bu− Lq�(y);

u= Kx̂;

where x̂∈Rn. The closed-loop system takes the form

ẋ = Ax + BKx̂;

˙̂x = (A+ LC)x̂ + BKx̂ − Lq�(y):

In the coordinates given by

Wx :=

(
x

x − x̂

)
∈R2n;

we can rewrite this system more compactly as

Ẇx = WA Wx + L

(
0

q�(y)− y

)
: (45)

For a =xed value of �, the behavior of trajectories of system
(45) is characterized by the following result.

Lemma 5. Fix an arbitrary �¿ 0 and assume that M is
large enough compared to 
 so that we have√

�min( WP)M ¿
√

�max( WP)�y‖C‖
(1 + �);

where

�y :=
2‖ WPL‖
�min( WQ)

:

Then the ellipsoids

R1(�) := { Wx: WxT WP Wx6 �min( WP)M 2�2=‖C‖2} (46)

and

R2(�) := { Wx: WxT WP Wx6 �max( WP)�2
y


2(1 + �)2�2}

are invariant regions for system (45). Moreover, all so-
lutions of (45) that start in the ellipsoid R1(�) enter the
smaller ellipsoid R2(�) in 9nite time.

The proof is similar to the proof of Lemma 1. An upper
bound on the time to enter R2(�) is

T :=
�min( WP)M 2 − �max( WP)�2

y‖C‖2
2(1 + �)2

�2
y‖C‖2
2(1 + �)�min( WQ)�

: (47)

A hybrid quantized feedback control policy of the next theo-
rem combines the above dynamic output feedback law with
the idea of updating the value of � at discrete instants of
time as before.

Theorem 5. Assume that M is large enough compared to

 so that we have√

�min( WP)
�max( WP)

M ¿max
{
3
; 2


‖ WPL‖‖C‖
�min( WQ)

}
: (48)

Then there exists a hybrid quantized feedback control pol-
icy that makes system (44) globally asymptotically stable.

Proof. The “zooming-out” stage. Set u equal to 0. Increase
� in a piecewise constant fashion as before, starting from
�(0) = 1, fast enough to dominate the rate of growth of
‖eAt‖. Then there will be a time t¿ 0 such that∣∣∣∣y(t)�(t)

∣∣∣∣6M − 3


(by (48), the right-hand side of this inequality is positive).
In view of condition 1 imposed in Section 2, this implies∣∣∣∣q
(
y(t)
�(t)

)∣∣∣∣6M − 2


which is equivalent to

|q�(y(t))|6M�(t)− 2R�(t): (49)
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We can thus pick a time t0 such that (49) holds with t=t0. Fix
an arbitrary !¿ 0 and let �¿ 0 be such that ‖eAt‖¡ 1 + !
for all t ∈ [0; �]. De=ne

x̂(t0) := W−1
∫ t0+�′

t0
eA

T (t−t0)CT�(t0)q
(

y(t)
�(t0)

)
dt; (50)

where W denotes the (full-rank) observability Gramian∫ �′

0 eA
T tCTCeAt dt and �′ is the largest number in the interval

(0; �] such that

|q�(y(t))|6M�(t0)−R�(t0) ∀t ∈ [t0; t0 + �′]:

In view of this and the equality∫ t0+�′

t0
eA

T (t−t0)CTy(t) dt =Wx(t0);

we have

|x(t0)− x̂(t0)|6 ‖W−1‖�(1 + !)‖C‖R�(t0)

(recall that ‖CT‖ = ‖C‖). De=ning x̂(t0 + �′) := eA�
′
x̂(t0),

we obtain

|x(t0 + �′)− x̂(t0 + �′)|6 ‖W−1‖�(1 + !)2‖C‖R�(t0)

and hence

| Wx(t0 + �′)|6 |x(t0 + �′)|+ |x(t0 + �′)− x̂(t0 + �′)|
6 |x̂(t0 + �′)|+ 2|x(t0 + �′)− x̂(t0 + �′)|
6 |x̂(t0 + �′)|+ 2‖W−1‖�(1 + !)2‖C‖R�(t0)

Now, choose �(t0 + �′) large enough to satisfy√
�min( WP)
�max( WP)

M�(t0 + �′)
‖C‖

¿ |x̂(t0 + �′)|+ 2‖W−1‖�(1 + !)2‖C‖R�(t0):

Then Wx(t0 +�′) belongs to the ellipsoidR1(�(t0 +�′)) given
by (46).
The “zooming-in” stage proceeds along the same lines as

in the state quantization case, using the formula (47).

The “zooming-out” stage in the above proof is somewhat
more complicated than in the state quantization case. Note,
however, that the integral in (50) is easy to compute (in
closed form) because the function being integrated is the
product of a matrix exponential and a piecewise constant
function.
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