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Common Lyapunov Functions and Gradient Algorithms

Daniel Liberzon and Roberto Tempo

Abstract—This note is concerned with the problem of finding a quadratic
common Lyapunov function for a large family of stable linear systems. We
present gradient iteration algorithms which give deterministic convergence
for finite system families and probabilistic convergence for infinite families.

Index Terms—Common Lyapunov functions, gradient algorithms, ran-
domized algorithms, switched linear systems.

I. INTRODUCTION

The work reported in this note is motivated primarily by the problem
of stability for switched systems. A switched system is a dynamical
system described by a family of continuous-time subsystems and a
rule that governs the switching between them. Such systems arise as
models of processes regulated by switching control mechanisms and/or
affected by abrupt changes in the dynamics. It is well known and easy
to demonstrate that switching between stable subsystems may lead to
instability. This fact makes stability analysis of switched systems an
important and challenging problem, which has received considerable
attention in the recent literature. We refer the reader to the recent book
[11] for an overview of available results.

It is very desirable for individual subsystems to share a common
Lyapunov function. If a switched system enjoys this property, then
stability is preserved for arbitrary switching sequences.! When the
subsystems being switched are obtained as feedback interconnections
of a given process with different stabilizing controllers, this means
that one does not need to worry about stability and can concentrate
on other issues such as performance. Moreover, rather than simply
knowing that a common Lyapunov function exists, it is important
to compute it, as this yields precise information about the behavior
of the switched system.

A particular case of interest is when the subsystems are linear
time-invariant and a quadratic common Lyapunov function is sought.
Although a number of conditions for the existence of such a Lyapunov
function have been obtained, general results are lacking (particularly
for system families with no special structure); see [11, Ch. 2]. On the
other hand, the problem of finding a quadratic common Lyapunov
function amounts to solving a system of linear matrix inequalities
(LMIs), and efficient methods for solving such inequalities are
available [2]. However, these algorithms offer limited theoretical
insight and become ineffective as the number of subsystems being
switched increases. Moreover, this approach is in general not useful
for an infinite family of subsystems (with the notable exception of
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ITn the case when the given family of subsystems is infinite, this statement
readily extends to a general time-varying system generated by this family.
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the convex hull of a finite family). Gridding techniques which are
generally used for infinite families have the obvious drawbacks that
the number of grid points grows exponentially with dimension and
no guaranteed solution is obtained between grid points (see, e.g.,
[20]). Thus there is a need for developing simple and computationally
tractable algorithms which can be used to find quadratic common
Lyapunov functions for large (and unstructured) families of stable
linear systems.

The approach proposed here is based on the idea of handling matrix
inequality constraints sequentially rather than simultaneously, by
means of an iterative gradient descent algorithm. For finite families
of systems, this provides a useful alternative to solving systems of
LMIs, which is of independent theoretical interest. (For comparison,
we mention the iterative algorithm described in [14] for a special
case of the above problem, namely, finding a common Lyapunov
function for a finite family of commuting linear systems.) In the
case of an infinite family of systems, for which general deterministic
algorithms are not available, this method can be combined with
randomization to yield probabilistic convergence. The main results
of this note state that: i) in the deterministic setting, convergence
to a quadratic common Lyapunov function (if one exists) in a finite
number of steps is guaranteed for a finite family of linear systems;
and ii) in the probabilistic setting, randomization allows us to obtain
convergence with probability one for an infinite family. Probabilistic
methods can also be applied, of course, to finite families; in this
case, they can provide faster convergence than deterministic ones,
at the expense of introducing a risk. (See [20] for more information
on randomized algorithms.)

The use of gradient algorithms for solving matrix inequalities was
proposed in [19] in the context of probabilistic control design for un-
certain linear systems; see also [3], [5], [8], [16], and [21] for related re-
cent developments. The main ideas go back to the early work on solving
algebraic inequalities reported in [1], [13], [18], and [22]. Among the
aforementioned references, [19] is especially relevant to this note, al-
though it addresses a different problem and there are significant dis-
tinctions between the two papers. Specifically, we consider both de-
terministic and probabilistic settings, whereas [19] concentrates on the
latter; the general framework described here allows a number of design
choices, some of which were used in previous work while others were
not; in addition, since we are concerned with systems of Lyapunov in-
equalities, while [19] deals with systems of Riccati inequalities, impor-
tant technical differences arise as we explain below.

The rest of the note is structured as follows. Section II presents
the problem formulation and preliminaries for the case of a finite
family, Section III introduces the gradient iteration algorithms, and
Section IV states and proves the deterministic convergence result.
Section V presents the corresponding developments for infinite
families, establishing a probabilistic counterpart of the previous result.
In Section VI, we discuss several specific design choices. Section VII
contains concluding remarks regarding computer simulations and
questions for future work.

II. PROBLEM FORMULATION AND NOTATION

Suppose that we are given a family of real Hurwitz n X n matrices
Aq,..., Ax,wheren and N are positive integers. We write P > 0 (or
P > 0) to indicate that a matrix P is symmetric nonnegative definite
(respectively, positive definite), and P < 0 (or P < 0) to indicate that
P is symmetric nonpositive definite (respectively, negative definite).
Suppose that there exists a matrix P > 0 which satisfies

PA;+AlP<0, i=1,...,N.
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This means that the quadratic function V () := 47 P« is a common
Lyapunov function for the family of asymptotically stable linear sys-
tems
&= Ar, i=1,...,N. €))
Fix an arbitrary matrix ¢) > 0. Multiplying P by a sufficiently large
positive number, we see that the system of inequalities
P4+ ATP+Q <0, i=1,...,N )
has a solution P > 0. Moreover, if a symmetric matrix I° satisfies (at
least one of) the inequalities (2), then it is well known that we automat-
ically have P > 0; see, e.g., [4, p. 132]. Thus, the problem of finding a
quadratic common Lyapunov function for the family (1) is equivalent
to that of finding a symmetric matrix P which satisfies (2). In what
follows, we will be concerned with the latter problem. We denote the
set of symmetric solutions of the inequalities (2) by £.

The space of real symmetric n X n matrices is a Hilbert space
with the inner product (R,S) := trRS and the Frobenius norm
IRl == (327 -, R?)'/? 1t is important to note that when the set £
is nonempty, it must have a nonempty interior. Indeed, if P € L, then
a standard perturbation argument such as the one given in [9, Ex. 5.1]
can be used to show that £ contains a neighborhood of P for every
~ > 1.1In fact, we have vP + aP € L for every symmetric matrix
AP satisfying the bound

N(aP) < 0= DAnin (@)
2 max omax(A4;)
i=1,...,.N

where Amax and Amin denote the largest and the smallest eigenvalue,
respectively, and omax denotes the largest singular value. It is well
known that A.x(aP) < ||aP|; see, e.g., [6, pp. 296-297]. Since
~ can be arbitrarily large, we see that for every r > 0 there exists a
ball of radius » which is contained in £. This is in contrast with the
case of Riccati inequalities treated in [19], where a sufficiently small
ball inside the solution set £ is assumed to exist but its radius r is not
explicitly known.

In the sequel, we need the notion of projection of a symmetric matrix
R onto the convex cone of nonnegative—definite matrices. This projec-
tion is defined as

TR B
R .—algglzu(]lHR S||.

The matrix R can be computed explicitly as follows (see [18]): If
R = UAUT, where U is orthogonal and A is diagonal with entries
A, ...\, then RT = UATUT, where A7 is diagonal with entries
max{0, A1 },..., max{0, \, }. We denote the matrix R — Rt by R~.

III. GRADIENT ALGORITHMS

Let f be a convex functional on the space of symmetric matrices,
which assigns to a matrix R a real number f(R), with the property that
f(R) < 0ifand only if R < 0. We suppose that this functional is dif-
ferentiable (this condition can be relaxed somewhat, as discussed later).
Specific examples of such functionals will be given in Section VI; here
we keep the discussion general. We denote the gradient of f by dr f,
and similar notation will be used for other gradients appearing later.
Recall that by definition

f(R+aR) = f(R)+ (0rf.2R)

where A R denotes a small (symmetric) perturbation in R and = stands
for equality up to first-order terms in A R.
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Given a symmetric matrix P and another matrix A, we let
vo(P,A):= f(PA+ A" P+ Q)

where f is the functional introduced previously and ¢) > 0 is the matrix
from (2). Since f is convex, v is convex in I”. Well-known results imply
that for each integer ¢ between 1 and [V, solutions of the gradient system
P = —9puv(P, A;) converge to the set {P : v(P, 4;) < 0} = {P:
PA; + ATP + Q < 0}. The same is true for the associated discrete
iterations P11 = Py — updpv(Py, 4;), k = 0,1,... if the step-
sizes jti are chosen appropriately. Moreover, by switching between the
above iterations for different values of i, we can make P converge to
the intersection of the corresponding sets, which is precisely the set £
of solutions of (2). This happens because the distance from P to £
with respect to the Frobenius norm is a decreasing function of k.

‘We now make the aforementioned discussion precise by describing
how the gradient iterations are to be carried out to ensure convergence
to L in a finite number of steps. We need to pick a “scheduling func-
tion” h from nonnegative integers to the set {1, ..., N} which has the
following revisitation property: For every integer i between 1 and NV
and for every integer [ > 0 there exists an integer & > [ such that
h(k) = i. One obvious choice is

h(k):=(kmod N)+1=k-N {%J + 1. 3)

An alternative approach based on randomization is also possible and
will be pursued in Section V.
Foreach k = 0,1,.. ., let us define the step-size by the formula

. av(Pry Apry) 4 7l|0p0(Lry Any) || @
o 10Pv(Pry Ancry)||?

where 0 < o < 2 and r > 0 are arbitrary. Consider the iterations

if v( Py, Apry) > 0
otherwise.

Py = {Pk — 0P u(Pr, Apry), )

P,

We take the initial condition Fy to be symmetric. [For example, a solu-
tion of one of the inequalities (2) provides a convenient choice for Iy.]
Then, P is symmetric for each k, since Opv is symmetric in light of
the following lemma and the fact that O f is symmetric.

Lemma 1: The gradient of v is given by

Opv(P, A=A0rf(PA+ A" P+ Q)+ 0rf(PA+ A" P+QA". (6)

Proof: Denoting by AP a small perturbation in P and by =
equality up to first-order terms in A P, we write

WP+aPA)
=f(PA+A"P+Q+aPA+A"AP)
~f(PA+ATP+Q)+(0rf(PA+ATP+Q).aPA+ATAP)
=y(P,A)

+t1'<(AaRf(PA+A’TP+Q)+6Rf(PA+ATP +Q)AT)AP>

from which (6) follows. O

On the other hand, Py is not guaranteed to be positive definite
or at least nonnegative definite, even if I, > 0. To make sure that a
nonnegative definite matrix is generated at every step, we could instead
consider

Doy = {[Pk - /M.»@P'v(l",‘,,Ah(k))]"'7
P,

if’U(P};, Ah(k)) >0
otherwise

O]
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using the projection operation defined in Section II. Since all matrices
in the set £ are positive definite, this modification also has the potential
of improving convergence; see the proof of Theorem 1 in Section IV.

Remark 1: The algorithm (7) exactly parallels that proposed in [19]
for finding nonnegative—definite solutions of systems of Riccati in-
equalities. In contrast with that setting, the Lyapunov inequalities (2)
have the property that if a symmetric matrix P satisfies at least one of
them, then necessarily P, > 0. This means that the projection is not
really needed, and the convergence result presented in the next section
implies that the algorithm (5) generates only nonnegative—definite ma-
trices after sufficiently many steps.

IV. DETERMINISTIC CONVERGENCE FOR FINITE FAMILIES

We now demonstrate that the gradient algorithms presented in
the previous section provide convergence to the desired set £ in a
finite number of steps, unless £ is empty. When for a given k we
have v( Pk, Apry) > 0 in (5) or (7), we say that a correction step is
executed.

Theorem 1: When the algorithm (5) or the algorithm (7) is applied
with the step-size given by (4) and the set £ is nonempty, there exists
an integer k™ such that Py« € L.

Proof: The proof is carried out along the lines of [19]. Consider
a k for which v(Px, Ap(x)) > 0 and so a correction step is executed.
Suppose that the set £ is nonempty. As shown in Section II, it then
contains a ball of radius 7, centered at some matrix P*. We will prove
that

| Pest = P*II* < 1P = P*|I* = #7. ®)

Since the revisitation property of h guarantees that a correction step
occurs at least once in every N steps until P, € £, we can conclude
that no more than N ||| Py — P*||? /2] steps are needed, and the proof
will be complete.

Consider (7). We have

|1 Prss = P*N1* = I[Pr = pdpo( Py Apiy)]™ = P
<Py = pdpo(Pe, Aygy) — P71?

where the last inequality follows from the definition of the projection
and the supporting hyperplane theorem. Thus, we see that it is enough
to show (8) for (5).

To this end, define

r

P=P 4 —
10pv (P, Aner))ll

3P7,J(Pk, Ah(k)) € L.

Then, we use (5) to write

| Poyr = P*II” =||Pc — P* — pixdpv(Pe, Ay
= (1P = P*I|* + uicll0pv(Pe, Angio)II”

—_ 2,[1],~<6P’L?(P;‘7,Ah(k)), P},» - P)
- Quk@pv(Pk,Ah(k))./ P — P*>

We now consider the last two terms. Due to convexity of v in P, we
have

(0pv( Py, An(ry)s P — Py > v(Pry An(iy)

while the definition of P gives

((()p'v(Pk.,Ah(k)),P - Py = r||0pv(Pr, Aniy)|l-
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Therefore
[Per = PII* < 1P = P*II* + i llopo( P, Aney) ||

—24i4, (rv(Pk., Apry) + rll0pv(Pr, Ah(kj))”)-
Substituting the value of ;. defined in (4), we obtain

a-— a)(u (P, Ah(;‘»))) ’

Pi1—P*||’<|| Pe—P"||*~
|| k+1 || _” k || ||0PU(PkaAh(k))”2

T e
(|00 (Pr, Aniiy)||
and so (8) holds as claimed. O
Since the matrix P* used in the previous proof is not known,
the number £* may be difficult to estimate in practice. One can, of
course, let the algorithm run for some number of steps & and then
check whether or not the matrix P satisfies the inequalities (2);
performing such a check is an easy task compared with that of solving
the inequalities directly. We also have a lot of freedom in the choice
of the step-size; more information on how to choose the step-size
efficiently in gradient algorithms of this kind can be found, e.g., in
[10], [18], and [22].

V. PROBABILISTIC CONVERGENCE FOR INFINITE FAMILIES

Let us now consider the more general situation where we are given a
compact set of real Hurwitz matrices A := {A, : p € P}, parameter-
ized by some index set P which is in general infinite. As we explained
in Section I, this problem cannot be solved with available deterministic
algorithms without resorting to approximation techniques such as grid-
ding. Because of compactness, it is still true that the problem of finding
a matrix P > 0 which satisfies the inequalities

PA, 4+ AP <0 VYpeP
is equivalent to the problem of finding a symmetric matrix P which
satisfies the inequalities

PA,+ATP4+ Q<0  WpeP
where () > 0 is arbitrary. As before, we denote the set of such matrices
P by L£. We can show as in Section II that when £ is nonempty, it
contains balls of arbitrarily large radii.

Since the set of matrices is infinite, choosing a matrix at each step
using a function & with the revisitation property as in Section III is no
longer possible. Instead, we use randomization. Namely, for each £ we
randomly pick a matrix in A according to some probability distribution
on A with the following property: Every subset of .4 which is open
relative to A has a nonzero probability measure. We let h(k) be the
index of the matrix chosen in this way (this index may not be unique
if the map p — A, is not injective). Note that A may be composed of
several disjoint subsets such as intervals or isolated points, and we must
assign a positive probability measure to each of them. If A consists
of a finite number of isolated points, then randomization provides a
valid alternative to the approach described in Section III. As is well
known, for infinite families described by convex polyhedra the problem
reduces to the corresponding problem for finite families generated by
the vertices; see, e.g., [12] and the references therein.

With (k) generated in this way for each k, randomized versions
of the algorithms from Section III can now be defined by the same
formulas (5) and (7). Remark 1 also applies here. If P, ¢ L, then
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v(Py, A) > 0 for some A € A, and by continuity the same is true for
all A in a sufficiently small neighborhood of A in A. Since the proba-
bility measure of this neighborhood is positive, a correction step will be
executed with probability one after a finite number of steps. Proceeding
exactly as in the proof of Theorem 1, we arrive at the following prob-
abilistic counterpart of that theorem.

Theorem 2: When the randomized version of the algorithm (5) or
the algorithm (7) is applied with the step-size given by (4) and the set
£ is nonempty, with probability one there exists an integer k* such that
Py« € L.

This result parallels [19, Th. 1], although the context here is different.
In [19], it is also shown how one can compute a lower bound on the
probability of finding a solution in a given number of steps, provided
that additional a priori information is available. Some related recent
references are briefly discussed in Section VII.

VI. POSSIBLE CHOICES FOR f
We suggest two admissible choices of the functional f. One is given
by
F(B) = || RY|". ©)

This functional has all the properties required in Section III, as shown
in [18]. For completeness, we sketch the argument.

Lemma 2: The functional (9) is convex and differentiable, with gra-
dient given by

Orf(R)=2RT. (10)

Proof: The calculations that follow rely on some standard prop-
erties of the projection and the cone of symmetric nonnegative—definite
matrices; see [18] for details. We write

f(RﬂR):||R+aR—(B+aR)*||2:;Iéfo |R+aR—-S|?

<IIR+aR—R7|I” = |[R" + aR|
=R IPH2R ", aRMH|aR|*~f (RH2R ", aR).

On the other hand

f(R+aR)
=||R+aR—(R+aR) " |’=||RT+R +aR—(R+aR) |’
=||RYIP+(2RT,aR) + 2(R*,R™) + 2(RT,—(R+ aR)™)

+|[R™4+aR—-(R+aR)"|”>> f(R)+ (2R", aR).

This proves that f is differentiable with gradient given by (10), and the
inequality f(R + aR) > f(R) + (Orf(R),aR) implies that f is
convex. 0

Combining (6) and (10), we see that with this choice of f the gradient
of v is given by

dpv(P, A)=2A(PA+ AT P+Q)T+2(PA+ AT P+Q)t 4.

This is the quantity that needs to be calculated at every step when im-
plementing the gradient algorithms described earlier. As explained in
Section 11, this is a routine calculation based on eigenvalue decompo-
sition. An analogous construction was used in [19], where the authors
work with the functional f(R) := ||R™|| for which the gradient ex-
pressions are similar (but convergence properties may be different).
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Another option is to let f( R) be the largest eigenvalue of R

F(R) := Amax(R). (11)
The following result is standard; see, e.g, [6, p. 372].

Lemma 3: The functional (11) is convex and, when .« (R) is a
simple eigenvalue, differentiable with gradient given by

Orf(R) = xx"

where x is a unit eigenvector of R with eigenvalue A (R).

With this choice of f, the gradient of v is given by

dpv(P,A) = Axa” + 22" AT (12)
and the projection is no longer required for implementation of the algo-
rithm (5). A disadvantage of this f is that it is not differentiable when
Amax (R) is not a simple eigenvalue. However, since a generic matrix
has distinct eigenvalues, this problem can always be fixed by slightly
perturbing the matrix P if necessary. We could also work with sub-
gradients rather than gradients, as done in [19].

More generally, we can take f( R) to be the sum of m largest eigen-
values of a symmetric matrix R, where 1 < m < n. This gives a
convex functional, as shown in [17]. When the eigenvalues are simple,
the gradient of v is the sum of the quantities (12) for the corresponding
eigenvectors.

VII. CONCLUDING REMARKS

We presented gradient iteration algorithms for finding a quadratic
common Lyapunov function for a family of asymptotically stable linear
systems. We derived a deterministic convergence result for finite fami-
lies, and then used randomization to obtain a probabilistic counterpart
for infinite families. The algorithms were described on a general level
with some freedom left in the design choices, several possibilities for
which were also discussed.

We used MATLAB to implement the algorithms (5) and (7) with f
given by (9) or (11) for interval families? of 4 x 4 and 5 x 5 upper-
triangular Hurwitz matrices, for which quadratic common Lyapunov
functions are known to exist (see, e.g., [11, Prop. 2.9]). We first ap-
plied the method of Section III, noting that it suffices to work with the
vertices and using deterministic iterations based on (3). Programming
each algorithm was a straightforward task, and their performance was
comparable. In the 4 X 4 case, we observed consistent convergence for
randomly generated initial matrices % in less than 10000 iterations
(which took just a few seconds). In the 5 X 5 case, we observed con-
sistent convergence in less than 10 000 000 iterations (this took several
hours); a matrix satisfying more than 90% of the inequalities, on the
other hand, was usually found after about 100000 iterations (i.e., in
a matter of minutes). In both cases, the number of actual correction
steps was two orders of magnitude lower than the total number of it-
erations. We then repeated the experiments with the vertices generated
randomly at each step, and observed that the number of correction steps
needed for complete convergence was typically reached after a notice-
ably smaller number of iterations.

Tradeoffs among different choices of the specific gradient algorithm
and the step-size remain to be understood. It is important to note that
no analytical characterizations of the existence of a common Lyapunov
function are available for generic system matrices of dimension higher
than 2 x 2, and that interval families of 5 x 5 triangular matrices give
rise to systems of 2'® LMIs, solving which simultaneously is a difficult

2In an interval family of matrices, the value of each element varies over an
interval.
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task (particularly without using relaxation techniques). For example,
the program quadstab from MATLAB’s LMI Toolbox was not able
to produce an answer for the 5 X 5 case (its performance in the 4 x 4
case was comparable to that of the gradient algorithms). We attribute
this difference in performance to the fact that our method handles the
inequalities one by one rather than simultaneously and so, while a lot
of iterations may be required, each iteration only needs a very modest
amount of computation.

A comparative study of computational aspects of the algorithms pre-
sented in this note, existing methods for solving LMIs, and other tech-
niques such as the gradient algorithms for solving systems of Lyapunov
inequalities described in [7] is an interesting topic which is beyond the
scope of this note. Of course, such a comparison would only apply to
situations where the given family of matrices is finite or a convex hull
of a finite family (as in the above example). As for randomized algo-
rithms for infinite families of the kind proposed here, the issue of their
computational complexity and numerical efficiency has received a lot
of attention in the recent literature. See, e.g, [16] for some preliminary
results on computational complexity of gradient-based algorithms for
finding probabilistic solutions, as well as numerical experiments re-
garding the number of required iterations. Further related work is re-
ported in [15]; in that paper, explicit upper bounds on the number of
steps of the ellipsoidal method are given, but the same bound also holds
for gradient-based methods.

The method described here can be used to find a quadratic common
Lyapunov function when one exists. In other words, strictly feasible
problems are studied. This note does not offer insight into the existence
question, which needs further investigation. By combining the afore-
mentioned algorithms with a suitable recursive partitioning procedure,
one can compute common Lyapunov functions for subsets of the given
family of systems when the overall common Lyapunov function may
not exist or is not found in a prescribed number of steps. Stability of
the switched system is then guaranteed under appropriate constraints
on the switching rate between different subsets; cf. [11, Ch. 3]. Prob-
lems for future work also include choosing an optimal schedule for the
iterations with respect to some performance criterion (for example, the
speed of convergence), incorporating additional constraints on the Lya-
punov function to be found (such as the average or worst-case decay
rate), and treating optimization rather than feasibility problems.

ACKNOWLEDGMENT

The authors would like to thank B. R. Barmish, G. Dullerud, Y. Fu-
jisaki, C. Hadjicostis, and B. Polyak for helpful discussions. This re-
search was performed in part while R. Tempo was visiting the Coordi-
nated Science Laboratory at the University of Illinois as a CSL Visiting
Research Professor; the support of this program is gratefully acknowl-
edged.

REFERENCES

[1] S. Agmon, “The relaxation method for linear inequalities,” Canad. J.
Math., vol. 6, pp. 382-392, 1954.

[2] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory. Philadelphia, PA: SIAM,
1994, vol. 15, SIAM Studies in Applied Mathematics.

[3] G. Calafiore and B. T. Polyak, “Stochastic algorithms for exact and ap-
proximate feasibility of robust LMIs,” IEEE Trans. Automat. Contr., vol.
46, pp. 1755-1759, Sept. 2001.

[4] C.-T.Chen, Linear System Theory and Design,3rded. New York: Ox-
ford Univ. Press, 1999.

[5] Y. Fujisaki, F. Dabbene, and R. Tempo, “Probabilistic design of LPV
control systems,” Automatica, vol. 39, pp. 1323-1337, 2003.

[6] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 1985.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 6, JUNE 2004

(71

(81

[9]
[10]
(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

V. A. Kamenetskiy and Y. S. Pyatnitskiy, “An iterative method of Lya-
punov function construction for differential inclusions,” Syst. Control
Lett., vol. 8, pp. 445451, 1987.

S. Kanev, B. De Schutter, and M. Verhaegen, “An ellipsoid algorithm
for probabilistic robust controller design,” Syst. Control Lett., vol. 49,
pp. 365-375, 2003.

H. K. Khalil, Nonlinear Systems, 2nd ed. Upper Saddle River, NJ:
Prentice-Hall, 1996.

H. J. Kushner and G. G. Yin, Stochastic Approximation Algorithms and
Applications. New York: Springer-Verlag, 1997.

D. Liberzon, Switching in Systems and Control.
Birkhiuser, 2003.

A. P. Molchanov and Y. S. Pyatnitskiy, “Criteria of absolute stability
of differential and difference inclusions encountered in control theory,”
Syst. Control Lett., vol. 13, pp. 59-64, 1989.

T. S. Motzkin and I. J. Schoenberg, “The relaxation method for linear
inequalities,” Canad. J. Math., vol. 6, pp. 393-404, 1954.

K. S. Narendra and J. Balakrishnan, “A common Lyapunov function for
stable LTI systems with commuting A-matrices,” IEEE Trans. Automat.
Contr., vol. 39, pp. 2469-2471, Dec. 1994.

Y. Oishi, “Probabilistic design of a robust state-feedback controller
based on parameter-dependent Lyapunov functions,” in Proc. 42nd
IEEE Conf. Decision Control, 2003, pp. 1920-1925.

Y. Oishi and H. Kimura, “Computational complexity of randomized al-
gorithms for solving parameter-dependent linear matrix inequalities,”
Automatica, vol. 39, pp. 2149-2156, 2003.

M. L. Overton and R. S. Womersley, “Optimality conditions and duality
theory for minimizing sums of the largest eigenvalues of symmetric ma-
trices,” Math. Program., vol. 62, pp. 321-357, 1993.

B. T. Polyak, “Gradient methods for solving equations and inequalities,”
USSR Comp. Math. Math. Phys., vol. 4, pp. 17-32, 1964.

B. T. Polyak and R. Tempo, ‘“Probabilistic robust design with linear
quadratic regulators,” Syst. Control Lett., vol. 43, pp. 343-353, 2001.
R. Tempo, G. Calafiore, and F. Dabbene, Randomized Algorithms for
Analysis and Control of Uncertain Systems. London, U.K.: Springer-
Verlag, 2004.

V. A. Ugrinovskii, “Randomized algorithms for robust stability and con-
trol of stochastic hybrid systems with uncertain switching policies,” in
Proc. 40th IEEE Conf. Decision Control, 2001, pp. 5026-5031.

V. A. Yakubovich, “Recurrent finitely convergent algorithms for solving
systems of inequalities,” Soviet Math. Dokl., vol. 7, pp. 300-304, 1966.

Boston, MA:




