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ABSTRACT
This paper presents a unified framework for observability
and observer design for a class of hybrid systems. A neces-
sary and sufficient condition is presented for observability,
globally in time, when the system evolves under predeter-
mined mode transitions. A relatively weaker characteriza-
tion is given for determinability, the property that concerns
with unique recovery of the state at some time rather than at
all times. These conditions are then utilized in the construc-
tion of a hybrid observer that is feasible for implementation
in practice. The observer, without using the derivatives of
the output, generates the state estimate that converges to
the actual state under persistent switching.
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1. INTRODUCTION
This paper studies observability conditions and observer

construction for a class of hybrid systems where the con-
tinuous dynamics are modeled as linear differential equa-
tions; the state trajectories exhibit jumps during their evo-
lution; and discrete dynamics are represented by an exoge-
nous switching signal. Often called switched systems, they
are described mathematically as:

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t), t 6= {tq}, (1a)

x(tq) = E
σ(t−

i
)
x(t−i ) + F

σ(t−q )
vq , (1b)

y(t) = Cσ(t)x(t) +Dσ(t)u(t), (1c)
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where x ∈ R
n is the state, y(t) ∈ R

dy is the output, vq ∈ R
dv

and u(t) ∈ R
du are the inputs, and u(·) is a measurable func-

tion. The dimension of the external signals denoted by du,
dv, and dy for the inputs and the output, respectively, may
vary for each mode, but we just treat them constant for con-
venience. The switching signal σ : R 7→ N is a piecewise con-
stant and right-continuous function that changes its value at
switching times {tq}, q ∈ N. It is assumed that there are a
finite number of switching times in any finite time interval,
thus we rule out the Zeno phenomenon in our problem for-
mulation. The switching mode σ(t) and the switching times
{tq} may be governed by a supervisory logic controller, or
determined internally depending on the system state, or con-
sidered as an external input. In any case, it is assumed in
this paper that the signal σ(·) (and thus, the active mode
and the switching time {tq} as well) is known. For estima-
tion of the switching signal σ(t), one may be referred to,
e.g., [4, 7,14,15].

In the past decade, the structural properties of hybrid
systems have been investigated by many researchers and ob-
servability along with observer construction has been one of
them. In hybrid systems, the observability can be studied
from various perspectives. If we allow for the use of the dif-
ferential operator in the observer, then it may be desirable
to determine the continuous state of the system instanta-
neously from the measured output. This in turn requires
each subsystem to be observable, however, the problem be-
comes nontrivial when the switching signal is treated as a
discrete state and simultaneous recovery of the discrete and
continuous state is required for observability. Some results
on this problem are published in [2,6,14].

On the other hand, if the mode transitions are represented
by a known switching signal then, even though the individ-
ual subsystems are not observable, it is still possible to re-
cover the initial state x(t0) when the output is observed over
an interval [t0, T ) that involves multiple switching instants.
This phenomenon is of particular interest for switched sys-
tems as the notion of instantaneous observability and ob-
servability over an interval1 coincide for linear time invari-
ant systems. This variant of the observability in switched
systems has been studied most notably by [3, 12, 17]. The
authors in [8, 9] have studied the observability problem for
the systems that allow jumps in the states but they do not
consider the change in the dynamics that is introduced by
switching to different matrices associated with the active
mode. The observer design has also received some attention

1See Definition 1 for precise meaning.



in the literature [1,4,10], where authors have assumed that
each mode in the system is in fact observable admitting a
state observer, and have treated the switching as a source of
perturbation effect. This approach immediately incurs the
need of a common Lyapunov function for the switched error
dynamics, or a fixed amount of dwell-time between switch-
ing instants, because it is intrinsically a stability problem of
the error dynamics.

The approach adopted in this paper is similar to [3, 17]
in the sense that we consider observability over an interval.
The authors in [3] have presented a coordinate dependent
sufficient condition that leads to observer construction; the
work of [17] primarily addresses the question whether there
exists a switching signal which makes it possible to recover
x(t0) from the knowledge of the output. Whereas, in this
paper, similar to our recent work in [13], the switching signal
is considered to be known and fixed, so that the trajectory
of the system satisfies a set of time varying linear differ-
ential equations. Then for that particular trajectory, we
answer the question whether it is possible to recover x(t0)
from the knowledge of the measured output. We present a
necessary and sufficient condition for observability over an
interval that can be verified without any coordinate trans-
formation. Since this condition depends upon the switching
times and requires computation of the state transition ma-
trices, we also provide easily verifiable conditions that are
either necessary or sufficient for the main condition. Also,
with a similar tool set, the notion of determinability, which is
more in the spirit of recovering the current state based on the
knowledge of inputs and outputs in the past, is developed.
Moreover, a hybrid observer for system (1) is designed based
on the proposed necessary and sufficient condition which was
not the case in [17]. Since the observers are useful for vari-
ous engineering applications, their utility mainly lies in their
online operation method. This thought is essentially rooted
in the idea for observer construction adopted in this paper:
the idea of combining the partial information available from
each mode and collecting them at one instance of time to
get the estimate of the state. We show that under mild as-
sumptions, such an estimate converges to the actual state
of the plant. We remark that the main contribution of this
paper is to present a unified framework of observability and
observer design for the most general class of linear switched
systems that has not been discussed in the literature, to the
best of authors’ knowledge.

More emphasis will be given to the case when the indi-
vidual modes of the system (1) are not observable (in the
classical sense of linear time-invariant systems theory) since
it is obvious that the system becomes immediately observ-
able when the system is switched to the observable mode.
In order to facilitate our understanding, let us begin with
an example.

Example 1. Consider a switched system characterized
by

A1 =

[

0 0
0 0

]

, A2 =

[

0 1
−1 0

]

C1 =
[

1 0
]

, C2 =
[

0 0
]

with Ei = I , Fi = 0, Bi = 0, and Di = 0 for i ∈ {1, 2}.
It is noted that the pair (Ai, Ci) is not observable for ei-
ther mode i = 1, 2. However, if the switching signal σ(t)
changes its value in the order of 1 → 2 → 1 at times t1
and t2, then we can recover the state. In fact, it turns out

that at least two switchings are necessary and the switching
sequence should contain the subsequence of modes {1, 2, 1}.
For instance, if the switching happens as 1 → 2 → 1, the
output y at time t−1 (just before the first switching) and
t2 (just after the second switching) are: y(t−1 ) = x1(t0),
and y(t2) = [1, 0]eA2τx(t0) = cos τ · x1(t0) + sin τ · x2(t0),
where x(t0) = [x1(t0), x2(t0)]

⊤ is the initial condition and
τ = t2 − t1. Then, it is obvious that x(t0) can be recov-
ered from two measurements y(t−1 ) and y(t2) if τ 6= kπ with
k ∈ N. On the other hand, any switching signal whose dura-
tion for the mode 2 is an integer multiple of π is a ‘singular’
input (meaning the input that destroys observability).

Notation: For a square matrix A and a subspace V, we de-
note by 〈A|V〉 the smallest A-invariant subspace containing
V, and by 〈V|A〉 the largest A-invariant subspace contained
in V. (See Property 7 in the Appendix for their computa-
tion.) For a possibly non-invertible matrix A, the subspace
A−1V := {x : Ax ∈ V} and A−⊤V := (A⊤)−1V, where
A⊤ is the transpose of A. Similarly, it is understood that
A−1

2 A−1
1 V = A−1

2 (A−1
1 V). Note that A−1 kerC = ker(CA)

for a matrix C. For convenience, we denote the products of
matrices Ai as

∏k

i=j Ai := AjAj+1 · · ·Ak when j < k, and
∏k

i=j Ai := AjAj−1 · · ·Ak when j > k.

2. GEOMETRIC CONDITIONS FOR
OBSERVABILITY

To make precise the notions of observability and deter-
minability considered in this paper, let us introduce the for-
mal definitions.

Definition 1. Let (σi, ui, vi, yi), for i = 1, 2, be any set
of signals over an interval2 [t0, T

+), and let xi denote the re-
sulting state trajectory that solves (1). We say that the sys-
tem (1) is [t0, T

+)-observable if the equality (σ1, u1, v1, y1) =
(σ2, u2, v2, y2) implies that x1(t0) = x2(t0). Similarly, the
system (1) is said to be [t0, T

+)-determinable if the equality
(σ1, u1, v1, y1) = (σ2, u2, v2, y2) implies that x1(T ) = x2(T ).

Since the initial state x(t0) and the inputs (u, v) uniquely
determine x(t) on [t0, T

+) through equation (1), observabil-
ity is achieved if and only if the state trajectory x(t), for
each t ∈ [t0, T

+), is uniquely determined by the inputs and
the output. Obviously, observability implies determinabil-
ity by forward integration of (1), but the converse is not
true due to the possibility of non-invertible matrices Eσ. In
case there are no jumps in the state trajectory, or the jump
maps are invertible, then observability and determinability
are equivalent. The notion of determinability has also been
called reconstructability in [12].

Proposition 1. For a fixed switching signal σ, the sys-
tem (1) is [t0, T

+)-observable (or, determinable) if, and only
if, zero inputs and zero output on the interval [t0, T

+) imply
that x(t0) = 0 (or, x(T ) = 0).
2The notation [t0, T

+) is used to denote the interval [t0, T +
ε), where ε > 0 is arbitrarily small. In fact, because of
the right continuity of the switching signal, the output y(T )
belongs to the next mode when T is the switching instant.
Then, the point-wise measurement y(T ) is insufficient to
contain the information for the new mode, and thus, it is
imperative to consider the output signal over the interval
[t0, T + ε) with ε > 0. This definition implicitly implies that
the observability property does not change for sufficiently
small ε (which is true, and becomes clear shortly).



Proof. Since the zero solution with the zero inputs yields
the zero output, the necessity follows from the fact that x(t0)
(or, x(T )) is uniquely determined from the inputs and the
outputs. For the sufficiency, suppose that the system (1) is
not [t0, T

+)-observable (or determinable); that is, there exist
two different states x1(t0) and x2(t0) (or, x

1(T ) and x2(T ))
that yield the same output y under the same inputs (u, v).
Let x̃(t) := x1(t)−x2(t), where xi(t), i = 1, 2, is the solution
of (1) with the initial condition xi(t0). Then, by linearity, it
follows that ˙̃x = Aσx̃, x̃(tq) = Eσx̃(t

−
q ), and Cσx̃ = Cσx

1 −
Cσx

2 = y − y = 0, but x̃(t0) = x1(t0) − x2(t0) 6= 0 (or,
x̃(T ) = x1(T ) − x2(T ) 6= 0). Hence, zero inputs and zero
output do not imply x(t0) = 0 (or, x(T ) = 0), and the
sufficiency holds.

Because of Propostion 1, we are motivated to introduce
the following homogeneous switched ODE, which has been
obtained by setting the inputs (u, v) equal to zero in (1).

ẋ(t) = Aσ(t)x(t), y(t) = Cσ(t)x(t), t ∈ [tq−1, tq) (2a)

x(tq) = Eσ(t)x(t
−
q ). (2b)

If this homogenous system is observable (or, determinable),
then y ≡ 0 implies that x(t0) = 0 (or, x(T ) = 0) and in
terms of description of system (1), it means that zero inputs
and zero output give x(t0) = 0 (or, x(T ) = 0); hence, (1) is
observable/determinable because of Proposition 1. On the
other hand, if the system (1) is observable/determinable,
then it is still observable/determinable with zero inputs,
which is described as system (2). Thus, the observabil-
ity/determinability of systems (1) and (2) are equivalent.

Before going further, let us rename the switching sequence
for convenience. For system (1), when the switching signal
σ(t) takes the mode sequence {q1, q2, q3, · · · }, we rename
them as increasing integers {1, 2, 3, · · · }, which is ever in-
creasing even though the same mode is revisited; for conve-
nience, this sequence is indexed by q and not σ(t). Moreover,
it is often the case that the mode of the system changes with-
out the state jump (1b), or the state jumps without switch-
ing to another mode. In the former case, we can simply take
Eq = I , and in the latter case, we increase the mode index
by one and take Aq = Aq+1 and so on. In this way vari-
ous situations fit into the description of (1) with increasing
mode sequence. The switching time tq is the instant when
transition from mode q to mode q + 1 takes place.

2.1 Necessary and Sufficient Conditions for
Observability

In this section, we present a characterization of the unob-
servable subspace for the system (2) with a fixed switching
signal. Towards this end, let Nm

q (m ≥ q) denote the set
of states at t = tq−1 for system (2) that generate identically
zero output over [tq−1, t

+
m−1). Then, it is easily seen that

Nm
q is actually a subspace due to linearity of (2), and we

call Nm
q the unobservable subspace for [tq−1, t

+
m−1). It is ob-

served that the system (2) is an LTI system between two con-
secutive switching times, so that its unobservable subspace
on the interval [tq−1, tq) is simply given by the largest Aq-
invariant subspace contained in kerCq , i.e., 〈kerCq |Aq〉 =
kerGq where Gq := col(Cq, CqAq, · · · , CqA

n−1
q ). So it is

clear that N q
q = kerGq . Now, when the measured output is

available over the interval [tq−1, t
+
m−1) that includes switch-

ings at tq, tq+1, . . . , tm−1, more information about the state

is obtained in general so that Nm
q gets smaller as the differ-

ence m− q gets larger, and we claim that the subspace Nm
q ,

in that case, is given by

Nm
q = kerGq ∩

(

m
⋂

i=q+1

i−1
∏

j=q

e−AjτjE−1
j kerGi

)

(3a)

= kerGq ∩

(

m
⋂

i=q+1

ker

(

Gi

q
∏

l=i−1

Ele
Alτl

))

(3b)

where τj = tj − tj−1. The following theorem presents a
necessary and sufficient condition for observability of the
system (1) while proving the claim in the process.

Theorem 1. For the system (2) with a switching sig-
nal σ

[t0,t
+

m−1
)
, the unobservable subspace for [t0, t

+
m−1)

at t0 is given by Nm
1 of (3). Therefore, the system (1)

is [t0, t
+
m−1)-observable if, and only if,

Nm
1 = {0}. (4)

In case the interval under consideration is not finite and
the switching is persistent, observability of system (1) is
determined by whether there exists an m ∈ N such that (4)
holds.

Remark 1. From (3), it is not difficult to arrive at the
following recursive formula for Nm

1 :

Nm
m = kerGm,

Nm
q = kerGq ∩ e−AqτqE−1

q Nm
q+1, 1 ≤ q ≤ m− 1.

(5)

Proof of Theorem 1. Sufficiency. Using the result of
Proposition 1, it suffices to show that the identically zero
output of (2) can only be produced by x(t0) = 0. As-
sume that y ≡ 0 on [t0, t

+
m−1). Then, it is immediate that

x(tm−1) ∈ Nm
m = kerGm. We next apply the inductive ar-

gument to show that x(tq−1) ∈ Nm
q for 1 ≤ q ≤ m − 1.

Suppose that x(tq) ∈ Nm
q+1, then x(tq−1) ∈ e−AqτqE−1

q Nm
q+1

since x(t) is the solution of (2). Zero output on the interval
[tq−1, tq) implies that x(tq−1) ∈ kerGq . Therefore,

x(tq−1) ∈ kerGq ∩ e−AqτqE−1
q Nm

q+1.

From (5), it follows that x(tq−1) ∈ Nm
q . In particular,

x(t0) ∈ Nm
1 = {0}, so x(t) ≡ 0, t ∈ [t0, t

+
m−1).

Necessity. Assuming that Nm
1 6= {0}, we show that a non-

zero initial state x(t0) ∈ Nm
1 yields the solution x(·) of (2)

such that y ≡ 0, which implies unobservability. First, we
show the following implication;

x(tq−1) ∈ Nm
q ⇒ x(tq) ∈ Nm

q+1, q < m. (6)

Indeed, assuming that x(tq−1) ∈ Nm
q with q < m, it follows

that, x(tq) = Eqe
Aqτqx(tq−1), which further gives,

x(tq) ∈ Eqe
AqτqNm

q

= Eqe
Aqτq

(

kerGq ∩ e−AqτqE−1
q Nm

q+1

)

⊆ Eq kerGq ∩EqE
−1
q Nm

q+1

= Eq kerGq ∩Nm
q+1 ∩R(Eq) ⊆ Nm

q+1

by using (5) and Properties 2, 3, and 11 in the Appendix.
Therefore, for 0 ≤ q ≤ m − 1, x(tq) ∈ Nm

q+1 ⊆ kerGq+1,



and the solution x(t) = eAq+1(t−tq)x(tq) for t ∈ [tq , tq+1)
satisfies that y(t) = Cq+1x(t) = 0 for t ∈ [tq, tq+1) due to
Aq+1-invariance of kerGq+1.

In order to test the observability of the system (2), one can
compute Nm

1 by (3) (the formula (3b) may be preferable be-
cause the computation of pre-image due to E−1

j is avoided).
The observability condition given in Theorem 1 is dependent
upon a particular switching signal under consideration, and
it is entirely possible that the system is observable for certain
switching signals and unobservable for others (cf. Example
1). For a predetermined family of subsystems, if there is
a switching signal for which (4) holds, we call it a ‘regu-
lar’ switching signal, whereas the term ‘singular’ switching
signal denotes one for which (4) does not hold. Also, in
practice, the computation of matrix exponent is heavy (es-
pecially for large dimensional systems) and one may resort
to the following sufficient, or necessary conditions, which are
independent of switching times and only take mode sequence
into consideration. Hence, once the sufficient condition in
Corollary 1 holds (respectively, the necessary condition in
Corollary 2 is violated), then the system is observable (resp.
unobservable) for any switching signal that has the same
switching sequence regardless of the switching times.

Corollary 1. Let N
m

1 be an over-approximation of Nm
1

that is defined as follows:

N
m

m := kerGm,

N
m

q :=
〈

Aq| kerGq ∩E−1
q N

m

q+1

〉

, 1 ≤ q ≤ m− 1.

The system (1) is [t0, t
+
m−1)-observable if N

m

1 = {0}.

Proof. Proof is completed by showing that Nm
q ⊆ N

m

q

for 1 ≤ q ≤ m. First, note that Nm
m = N

m

m. Assuming that
Nm

q+1 ⊆ N
m

q+1 for 1 ≤ q ≤ m− 1, we now claim that Nm
q ⊆

N
m

q . Indeed, by Properties 3, 9, and 11 in the Appendix,
and the recursion equation (5), we obtain

Nm
q = kerGq ∩ e−AqτqE−1

q Nm
q+1

= e−Aqτq
(

kerGq ∩E−1
q Nm

q+1

)

⊆
〈

Aq| kerGq ∩ E−1
q Nm

q+1

〉

⊆
〈

Aq| kerGq ∩ E−1
q N

m

q+1

〉

= N
m

q , 1 ≤ q ≤ m− 1.

Therefore, the condition N
m

1 = {0} implies (4).

Corollary 2. Let Nm
1 be an under-approximation of

Nm
1 that is defined as follows:

Nm
m := kerGm,

Nm
q :=

〈

kerGq ∩E−1
q Nm

q+1|Aq

〉

, 1 ≤ q ≤ m− 1.

The system (1) is [t0, t
+
m−1)-observable only if Nm

1 = {0}.

Proof. Proof proceeds similar to Corollary 1. WithNm
m =

Nm
m, we assume that Nm

q+1 ⊇ Nm
q+1 for 1 ≤ q ≤ m− 1, and

claim that Nm
q ⊇ Nm

q . Again by Properties 3, 9, and 11 in
the Appendix, and employing equation (5), we obtain

Nm
q = e−Aqτq

(

kerGq ∩ E−1
q Nm

q+1

)

⊇
〈

kerGq ∩E−1
q Nm

q+1|Aq

〉

⊇
〈

kerGq ∩E−1
q Nm

q+1|Aq

〉

= Nm
q , 1 ≤ q ≤ m− 1.

The condition Nm
1 = {0} is implied by (4).

Remark 2. By taking orthogonal complements of Nm
q ,

N
m

q and Nm
q , respectively, we get dual conditions, using

Properties 5, 6, 8, and 10 in the Appendix, as follows. The
system (1) is [t0, t

+
m−1)-observable if and only if Pm

1 = R
n

where

Pm
1 := (Nm

1 )⊥ = R(G⊤
1 ) +

m
∑

i=2

i−1
∏

j=1

eA
⊤

j τjE⊤
j R(G⊤

j ).

Based on the above definition, one can state Corollary 1
and Corollary 2 in alternate forms. System (1) is [t0, t

+
m−1)-

observable if Pm
1 = R

n, where Pm
1 is computed as:

Pm
m = (N

m

m)⊥ = R(G⊤
m)

Pm
q = (N

m

q )⊥ =
〈

R(G⊤
q ) + E⊤

q Pm
q+1|A

⊤
q

〉

, 1 ≤ q ≤ m− 1.

Also, the system (1) is [t0, t
+
m−1)-observable only if P

m

1 =

R
n, where P

m

1 is defined sequentially as:

P
m

m = (Nm
m)⊥ = R(G⊤

m)

P
m

q = (Nm
q )⊥ =

〈

A⊤
q |R(G⊤

q ) + E⊤
q P

m

q+1

〉

, 1 ≤ q ≤ m− 1.

2.2 Necessary and Sufficient Conditions for
Determinability

In order to study determinability of the system (1) and
arrive at a result parallel to Theorem 1, our first goal is to
develop an object similar to Nm

q . So, for system (2) with a
given switching signal, let Qm

q be the set of states that can
be reached at time t = tm−1 while producing the zero output
on the interval [tq−1, t

+
m−1). We call Qm

q the undeterminable

subspace for [tq−1, t
+
m−1). Then, it can be shown, similarly

to the proof of Theorem 1, that Qm
q is computed as:

Qm
q = kerGm ∩Em−1 ker(Gm−1) ∩

(

m−2
⋂

i=q

i+1
∏

l=m−1

Ele
AlτlEi kerGi

)

,
(7)

with Qq
q = kerGq . In the above equation, the subspace

(Πi+1
l=m−1Ele

AlτlEi kerGi) indicates the set of states at time
t = tm−1 obtained by propagating the unobservable state of
the mode i, that is active during the interval [ti−1, ti), under
the dynamics of system (2). Intersection of these subspaces
with kerGm shows that Qm

q is the set of states that cannot
be determined from the zero output at time t = tm−1. Then,
the determinability can be characterized as in the following
theorem (which is given without proof).

Theorem 2. For the system (2) and a given switch-
ing signal σ

[t0,t
+

m−1
)
, the undeterminable subspace for

[t0, t
+
m−1) at tm−1 is given by Qm

1 of (7). Therefore, the

system (1) is [t0, t
+
m−1)-determinable if and only if

Qm
1 = {0}. (8)

The condition (8) is equivalent to (4) when all Eq matrices,
q = 1, . . . , m− 1, are invertible because of the relation

Qm
1 =

1
∏

l=m−1

Ele
AlτlNm

1 .



On the other hand, if any of the jump maps Eq is a zero
matrix, then (8) holds regardless of (4) (which makes sense
because we can immediately determine that x(tm−1) = 0 in
this case).

A recursive expression for Qm
1 is again possible as

Q1
1 = kerG1

Qq
1 = kerGq ∩ Eq−1e

Aq−1τq−1Qq−1
1 , 2 ≤ q ≤ m.

An important observation is that the sequence {Qq
1}

m
q=1 is

moving forward in time and the next element of the sequence
is obtained when the system switches to another mode. This
is a major difference in computation of {Qq

1} when compar-
ing it with {Nm

q }, as the computation of the latter requires
the knowledge of mode sequence and switching times from
the future. This makes the computation of Qq

1 more feasible
for online implementation.

Corollary 3. The system (1) is [t0, t
+
m−1)-determinable

if Q
m

1 = {0}, where Q
m

1 is computed by

Q
m

1 := kerG1

Q
q

1 := Eq−1

〈

Aq−1|Q
q−1
1

〉

∩ kerGq, 2 ≤ q ≤ m.

Corollary 4. The system (1) is [t0, t
+
m−1)-determinable

only if Qm

1
= {0}, where Qm

1
is computed by

Q1

1
:= kerG1

Qq

1
:= Eq−1

〈

Qq−1

1
|Aq−1

〉

∩ kerGq , 2 ≤ q ≤ m.

The above corollaries are proved by showing thatQq

1
⊆ Qq

1 ⊆

Q
q

1. It is noted again that the computation of sequential
subspaces in Corollary 3 and Corollary 4 proceeds forward
in time.

Remark 3. An alternative dual characterization of de-
terminability is possible by inspecting whether the complete
state information is available while going forward in time.
This is achieved in terms of the subspace Mm

q , obtained
by taking the orthogonal complement of Qm

q . Using Proper-
ties 5, 6, 8, and 10 in the Appendix, the following expression
follows from (7):

Mm
q := (Qm

q )⊥ =

m−2
∑

i=q

i+1
∏

l=m−1

E−⊤
l e−A⊤

l τlE−⊤
i R(G⊤

i )

+ E−⊤
m−1R(G⊤

m−1) +R(G⊤
m).

(9)

In other words, Mm
q is the set of states at time instant

t = tm−1 that can be identified, modulo the unobservable
subspace at tm−1, from the information of y(·) over the in-
terval [tq−1, t

+
m−1). Therefore, the dual statement for deter-

minability is that the system (1) is [t0, t
+
m−1)-determinable

if and only if

Mm
1 = R

n. (10)

It is noted that a recursive expression for Mm
1 is given by

M1
1 = R(G⊤

1 )

Mq
1 = E−⊤

q−1e
−A⊤

q−1τq−1Mq−1
1 +R(G⊤

q ), 2 ≤ q ≤ m,

and the dual statements of Corollaries 3 and 4, that are inde-
pendent of switching times, are given as follows: system (1)

is [t0, t
+
m−1)-determinable if Mm

1 = R
n, where

M1
1 := (Q

m

1 )⊥ = R(G⊤
1 ),

Mq
1 := (Q

q

1)
⊥ = E−⊤

q−1

〈

Mq−1
1 |A⊤

q−1

〉

+R(G⊤
q ), 2 ≤ q ≤ m.

Similarly, system (1) is [t0, t
+
m−1)-determinable only ifM

m

1 =

R
n, where M

m

1 is computed as follows:

M
1
1 := (Qm

1
)⊥ = R(G⊤

1 ),

M
q

1 := (Qq

1
)⊥ = E−⊤

q−1

〈

A⊤
q−1|M

q−1
1

〉

+R(G⊤
q ), 2 ≤ q ≤ m.

3. OBSERVER DESIGN
In engineering practice, an observer is designed to pro-

vide an estimate of the actual state value at current time.
In this regard, determinability (weaker than observability
according to Definition 1) is a suitable notion. Based on the
conditions obtained for determinability in the previous sec-
tion, an asymptotic observer is designed for the system (1)
in this section. By asymptotic observer, we mean that the
estimate x̂(t) converges to the plant state x(t) as t → ∞,
and in order to achieve this convergence, we introduce the
following assumptions.

Assumption 1. 1. The switching is persistent in the
sense that there exists a D > 0 such that a switch
occurs at least once in every time interval of length D;
that is,

tq − tq−1 < D, ∀ q ∈ N. (11)

2. The system is persistently determinable in the sense
that there exists an N ∈ N such that

dimMq
q−N = n, ∀ q ≥ N + 1. (12)

(The integer N is interpreted as the minimal number
of switches required to gain determinability.)

3. ‖Aq‖ is uniformly bounded for all q ∈ N (which is
always the case when Aq belongs to a finite set).

We disregard the time consumed for computation by as-
suming that the data processor is fairly fast compared to the
plant process. The computation time, however, needs to be
considered in real-time application if the plant itself is fast.

The observer we propose is a hybrid dynamical system of
the form

˙̂x(t) = Aqx̂(t) +Bqu(t), t 6= tq, (13a)

x̂(tq) = Eq(x̂(t
−
q )− ξq(t

−
q )) + Fqvq , (13b)

ξq(t
−
q ) =

{

Lq(y[tq−N−1,tq), u[tq−N−1,tq), v[q−N,q−1]), q > N,
0, 1 ≤ q ≤ N,

(13c)

with an arbitrary initial condition x̂(t0) ∈ R
n. It is seen

that the observer consists of a system copy and an estimate
update law by some operator Lq. So the goal is to design the
operator Lq such that x̂(t) → x(t). It will turn out that the
operator Lq includes dynamic observers for partial states at
each mode, and some inversion algorithm logic. The design
parameters of the operator Lq are formulated in Theorem 3;
but before stating that result, we give construction of the op-
erator Lq and in the process, set up the machinery required
to develop the statement of Theorem 3.



With x̃ := x̂− x, the error dynamics are described by,

˙̃x(t) = Aqx̃(t), t 6= tq, (14a)

x̃(tq) = Eq(x̃(t
−
q )− ξq(t

−
q )). (14b)

The output error can now be defined as ỹ(t) := Cqx̂(t) +
Dqu(t)− y(t) = Cqx̃(t).

Based on the description of error dynamics, we design
partial observers for each mode q using the idea similar to
Kalman observability decomposition [5]. Choose a matrix
Zq such that its columns are an orthonormal basis ofR(G⊤

q ),

so that R(Zq) = R(G⊤
q ). Further, choose a matrix W q such

that its columns are an orthonormal basis of kerGq. From
the construction, there are matrices Sq ∈ R

rq×rq and Rq ∈
R

dy×rq , where rq = rankGq , such that Zq⊤Aq = SqZ
q⊤ and

Cq = RqZ
q⊤, and that the pair (Sq, Rq) is observable. Let

zq := Zq⊤x̃ and wq := W q⊤x̃, so that zq (resp. wq) denotes
the observable (resp. unobservable) states of mode q. Thus,
for the interval [tq−1, tq), we obtain,

żq = Zq⊤Aqx̃ = Sqz
q, ỹ = Cqx̃ = Rqz

q, (15a)

zq(tq−1) = Zq⊤x̃(tq−1). (15b)

Since zq is observable over the interval [tq−1, tq), a standard
Luenberger observer, whose role is to estimate zq(t−q ) at the
end of the interval, is designed as:

˙̂zq = Sq ẑ
q + Lq(ỹ −Rq ẑ

q), t ∈ [tq−1, tq), (16a)

ẑq(tq−1) = 0, (16b)

where Lq is a matrix such that (Sq−LqRq) is Hurwitz. Note
that we have fixed the initial condition of the estimator to
be zero for each interval.

Next, with j > i, define the state-flow matrix

Ψj
i (τ{i+1,j}) := eAjτjEj−1e

Aj−1τj−1Ej−2 · · · e
Ai+1τi+1Ei,

(17)
and for convenience Ψq

q := I . We now define a matrix
Θq

i (τ{i+1,q}) whose columns form the basis of the subspace

R(Ψq
i (τ{i+1,q})W

i)⊥; that is,

R(Θq
i (τ{i+1,q})) = R(Ψq

i (τ{i+1,q})W
i)⊥, i = q−N, · · · , q.

where we denote the vector [τi+1, · · · , τj ] simply by τ{i+1,j}

which, for succinct presentation and by appropriate use of
superscripts and subscripts, is often dropped when used as
an argument. As a convention, we take Θq

i to be a null
matrix whenever R(Ψq

i (τ{i+1,q})W
i)⊥ = {0}.

Using the determinability of the system, that is, Assump-
tion 1.2, it will be shown later in the proof of Theorem 3
(equation (27)) that the matrix

Θq := [Θq
q

... · · ·
... Θq

q−N ] (18)

has rank n. Equivalently, Θ⊤
q has n independent columns

and is left-invertible, so that (Θ⊤
q )

† = (ΘqΘ
⊤
q )

−1Θq, where †
denotes the left-pseudo-inverse. Introduce the notation

ξ−{q−N,q−1} := col(ξq−N (t−q−N), . . . , ξq−1(t
−
q−1)),

and let Ωq(z
q(t−q ), z

q−1(t−q−1), . . . , z
q−N (t−q−N), ξ−{q−N,q−1})

denote the matrix








Θq⊤

q Ψq
qZ

qzq(t−q )
...

Θq⊤

q−N

(

Ψq
q−NZq−Nzq−N (t−q−N )−

∑q−1
l=q−N Ψq

l ξl(t
−
l )
)









.

We then define ξq(t
−
q ) in (13c) as:

ξq(t
−
q ) := (Θ⊤

q )
†Ωq(ẑ

q(t−q ), . . . , ẑ
q−N (t−q−N), ξ−{q−N,q−1})

=: Ξq(ẑ
q(t−q ), ẑ

q−1(t−q−1), . . . , ẑ
q−N(t−q−N ), ξ−{q−N,q−1}).

(19)

Finally, as the last piece of notation, we define the matrices
Mq

j , j = q −N, · · · , q, as follows:

[Mq
q ,M

q
q−1, · · · ,M

q
q−N ] := Eq









Θq⊤

q

...

Θq⊤

q−N









†

×

blockdiag
(

Θq⊤

q Ψq
q ,Θ

q⊤

q−1Ψ
q
q−1, · · · ,Θ

q⊤

q−NΨq
q−N

)

. (20)

Each Mq
j , j = q − N, · · · , q, is an n by n matrix whose

argument is τ{q−N+1,q}, while the argument of both Θq
j and

Ψq
j is τ{j+1,q} for j = q − N, · · · , q − 1 (note that Ψq

q = I
and that Θq

q is a constant matrix).
Based on these definitions, the statement of the following

theorem shows that, with suitably chosen values of Lj , the
computation of ẑq(t−q ) from (16) and ξq(t

−
q ) from (19) leads

to converging state estimates using (13).

Theorem 3. For system (1), consider the hybrid ob-
server in (13) with the operator Lq computed through
observer (16) and the map Ξ in (19). Suppose
that Assumption 1 holds. At each switching in-
stant t = tq, q > N , introduce the positive con-
stants λq

j := ‖Mq
j (τ{q−N+1,q})‖, and αj , γj such that

‖Zje(Sj−LjRj)τjZj⊤‖ ≤ αje
−γjτj . If the gains Lj are

chosen so that,

λq
jαje

−γjτj ≤ c <
1

N + 1
, (21)

for each j = q −N, · · · , q, and a constant c, then

lim
t→∞

|x̂(t)− x(t)| = 0. (22)

Based on the construction of the operator Lq (q > N), and
the result in Theorem 3, the implementation of our observer
can be summarized as follows:

• At each time instant t = tq,

– compute the constants λq
j , j = q−N, · · · , q, using

the knowledge of τ{q−N+1,q}, Aj , Ej , and Θq,

– compute the observer gain Lj , using the matrices
Sj , Rj , and Zj such that (21) holds,

– run the individual observer (16) for j-th mode
with the stored data y and u to obtain ẑj(t−j ),
j = q −N, · · · , q.

• Find ξq(t
−
q ) by (19), use it in (13), and repeat.

Proof of Theorem 3. Using (14), it follows from As-
sumptions 1.1 and 1.3 that the estimation error x̃(t) for the
interval [tq , t

−
q+1) is bounded by

|x̃(t)| = |eAq+1(t−tq)x̃(tq)| ≤ eL(t−tq)|x̃(tq)|



with a constant L such that ‖Aq‖ ≤ L, and thus,

|x̃(t)| ≤ eLD|x̃(tq)|.

Therefore, if |x̃(tq)| → 0 as q → ∞, then we achieve that

lim
t→∞

|x̃(t)| = 0. (23)

Remainder of the proof shows that |x̃(tq)| → 0 as q → ∞
under the conditions stated in the theorem statement.

Note that, x̃(t−q ) can be written as,

x̃(t−q ) =

[

Zq⊤

W q⊤

]−1 [
zq(t−q )
wq(t−q )

]

= Zqzq(t−q )+W qwq(t−q ). (24)

The matrix Ψj
i (τ{i+1,j}), defined in (17), transports x̃(t−i )

to x̃(t−j ) along (14) by

x̃(t−j ) = Ψj
i (τ{i+1,j})x̃(t

−
i )−

j−1
∑

l=i

Ψj
l (τ{l+1,j})ξl(t

−
l ). (25)

We now have the following series of equivalent expressions
for x̃(t−q ):

x̃(t−q ) = Zqzq(t−q ) +W qwq(t−q )

= Ψq
q−1Z

q−1zq−1(t−q−1) + Ψq
q−1W

q−1wq−1(t−q−1)

−Ψq
q−1ξq−1(t

−
q−1)

= Ψq
q−2Z

q−2zq−2(t−q−2) + Ψq
q−2W

q−2wq−2(t−q−2)

−Ψq
q−2ξq−2(t

−
q−2)−Ψq

q−1ξq−1(t
−
q−1)

...

= Ψq
q−NZq−N zq−N (t−q−N)

+ Ψq
q−NW q−Nwq−N (t−q−N)−

q−1
∑

l=q−N

Ψq
l ξl(t

−
l ).

(26)

To appreciate the implication of this equivalence, we first
note that for each q − N ≤ i ≤ q, the term Ψq

iZ
izi(t−i )

transports the observable information of the i-th mode from
the interval [ti−1, ti) to the time instant t−q . This observ-

able information is corrupted by the unknown term wi(t−i ),
but since the information is being accumulated at t−q from
modes i = q − N, · · · , q, the idea is to combine the par-
tial information from each mode to recover x̃(t−q ). This is
where we use the notion of determinability. By Properties
1, 5, and 6 in the Appendix, and the fact that R(W i)⊥ =

(kerGi)
⊥ = R(G⊤

i ) and e−A⊤

q τqR(G⊤
q ) = R(G⊤

q ), it follows
under Assumption 1.2 that

R(W q)⊥ +R(Ψq
q−1W

q−1)⊥ + · · ·+R(Ψq
q−NW q−N)⊥

= e−A⊤

q τq
(

R(G⊤
q ) + E−⊤

q−1R(G⊤
q−1)+

q−2
∑

i=q−N

Πi+1
l=q−1E

−⊤
l e−A⊤

l τlE−⊤
i R(G⊤

i )
)

= e−A⊤

q τqMq
q−N = R

n.

(27)

Thus, the matrix Θq defined in (18) has rank n, so that for
each equality in (26), that is i = q −N, · · · , q, we have the

relation

Θq⊤
i x̃(t−q ) = Θq⊤

i

(

Ψq
iZ

izi(t−i )−

q−1
∑

l=i

Ψq
l ξl(t

−
l )

)

.

Employing left-invertibility of Θ⊤
q to get,

x̃(t−q ) = (Θ⊤
q )

†Ωq(z
q(t−q ), . . . , z

q−N (t−q−N), ξ−{q−N,q−1})

= Ξq(z
q(t−q ), . . . , z

q−N (t−q−N ), ξ−{q−N,q−1}). (28)

It is seen from (28) that, if we can estimate zi(t−i ), i =
q −N, . . . , q, without error, then by (28) the plant state
x(t−q ) is exactly recovered because x(t−q ) = x̂(t−q ) − x̃(t−q ),
and both entities on the right side of the equation are known.
However, since this is not the case, we set ξq(t

−
q ) to be an

estimate of x̃(t−q ) as described in (19).

Due to the linearity of Ωq in zi’s and ξi’s, it is noted that,

x̃(tq) = Eq(x̃(t
−
q )− ξq(t

−
q )) (29a)

= Eq

(

Ξq(z
q(t−q ), . . . , z

q−N (t−q−N ), ξ−{q−N,q−1})

− Ξq(ẑ
q(t−q ), . . . , ẑ

q−N (t−q−N), ξ−{q−N,q−1})
)

(29b)

= −Eq(Θ
⊤
q )

†Ωq(z̃
q(t−q ), . . . , z̃

q−N (t−q−N), 0) (29c)

where z̃ := ẑ − z. It follows from (15) and (16) that

z̃i(ti−1) = ẑi(ti−1)− zi(ti−1) = 0− Zi⊤x̃(ti−1).

and that

z̃i(t−i ) = e(Si−LiRi)τi z̃i(ti−1) = −e(Si−LiRi)τiZi⊤x̃(ti−1)

Plugging this expression in (29), and using the definition of
Mq

j , j = q −N, . . . , q, from (20), we get

x̃(tq) =

q
∑

j=q−N

Mq
j (τ{q−N+1,q})Z

je(Sj−LjRj)τjZj⊤x̃(tj−1).

In order to bound the norm of x̃(tq), consider the constants
αj , γj , λ

q
j > 0 defined in the theorem statement to get,

|x̃(tq)| ≤

q
∑

j=q−N

λq
jαje

−γjτj |x̃(tj−1)|. (30)

The statement of the following lemma, proof of which ap-
pears in the appendix, aids us in the completion of the proof.

Lemma 1. A sequence {ai} satisfying

|ai| ≤ c(|ai−1|+ |ai−2|+ · · ·+ |ai−N−1|), i > N,

with 0 ≤ c < 1/(N + 1) converges to zero: lim
i→∞

ai = 0.

Applying Lemma 1 to (30), we see that |x̃(tq)| → 0 as
q → ∞, whence the desired result follows.

Note that the computation of the gains requires the knowl-
edge of switching times in order to generate converging es-
timates. Thus, post-processing of the switching signal is
involved in computing the gains. Also, in the design of ob-
server, we ignored the time required for computation at time
instant tq. In fact, the outcome ξq(t

−
q ) becomes available not

at tq but at tq +Tcomp for some Tcomp > 0. It is conjectured
that the error caused by this time-delayed update in (13)



can be suppressed by taking smaller value of c in (21) while
the update is actually performed at tq + Tcomp using an-
other state-flow matrix. Detailed analysis on improving the
quality of the observer is an ongoing work.

Example 2. We demonstrate the working of our observer
for the switched system considered in Example 1. As men-
tioned earlier, the system is observable with mode sequence
1 → 2 → 1, and hence determinable. We assume that
each mode is activated for τ seconds, so that the persistent
switching signal exciting the system is:

σ(t) =

{

1 if t ∈ [2kτ, (2k + 1)τ ),

2 if t ∈ [(2k + 1)τ, (2k + 2)τ ),
(31)

where k = 0, 1, 2, · · · , and the underlying assumption is that
τ 6= κπ, for any κ ∈ N. With this switching signal, the
determinability conditions are guaranteed to hold over any
time interval that involves three switches, so we pick N = 3.
For brevity, we call [2kτ, (2k + 1)τ ), the odd interval, and
[(2k + 1)τ, (2k + 2)τ ), the even interval. With an arbitrary
initial condition x̂(0), the observer to be implemented is:

˙̂x(t) = A1x̂(t)

ŷ(t) = C1x̂(t)

}

, t ∈ [2kτ, (2k + 1)τ ), (32a)

˙̂x(t) = A2x̂(t)

ŷ(t) = C2x̂(t)

}

, t ∈ [(2k + 1)τ, (2k + 2)τ ), (32b)

x̂(qτ ) = x̂(qτ−)− ξq(qτ
−), q > 3. (32c)

In order to determine the value of ξq(qτ
−), we start off with

the estimators for observable modes of each subsystem, de-
noted by zq in (15). Note that mode 1 has one-dimensional
observable subspace whereas for mode 2, the unobservable
subspace is R2. Since mode 1 is active on every odd interval
and mode 2 on every even interval, zq for every odd q rep-
resents the partial information obtained from mode 1, and
zq for every even q is a null vector as no information is ex-
tracted from mode 2. So the one-dimensional z-observer in
(16) is only implemented on odd intervals and for every odd
q, the differential equation for ẑq can be derived as follows:

Gq =

[

1 0
0 0

]

,R(G⊤
q ) = span

{[

1
0

]}

,W q =

[

0
1

]

, Zq =

[

1
0

]

,

so that one may choose Sq = 0, and Rq = 1, which yields

˙̂zq = −lq ẑ
q + lqỹ, t ∈ [(q − 1)τ, qτ ), q: odd,

with the initial condition ẑq((q − 1)τ ) = 0, and ỹ as the
difference between the measured output and the estimated
output of (32). The gain lq will be chosen later by (35).

The next step is to use the value of ẑq(qτ−) to compute
ξq(qτ

−), q ≥ 4. We use the notation ξq to denote ξq(qτ
−),

and let ξq1 be the first component of the vector ξq. For
initialization, we pick ξ1 = ξ2 = ξ3 = col(0, 0). The matrices
appearing in the computation of ξq are given as follows: for

every odd q > 3:

Ψq
q−3 =

[

cos τ sin τ
− sin τ cos τ

]

⇒
(

Ψq
q−3R

2)⊥ = {0},

Ψq
q−2 =

[

cos τ sin τ
− sin τ cos τ

]

;

(

Ψq
q−2

[

0
1

])⊥

=

{(

cos τ
− sin τ

)}

,

Ψq
q−1 = I2×2 ⇒

(

Ψq
q−1R

2
)⊥

= {0},

Ψq
q = I2×2 ⇒

(

Ψq
q

[

0
1

])⊥

=

{(

1
0

)}

,

where the braces {·} denote the linear combination of the
elements it contains. These subspaces directly lead to the
expressions for Θq

j , j = q − 3, . . . , q, so that

Θq =

[

1 cos τ
0 − sin τ

]

, q = 5, 7, . . . ,

and hence the error correction term can be computed recur-
sively for every odd q > 3 by the formula:

ξq = Θ−⊤
q

[

zq(t−q )
zq−2(t−q−2)− ξq−2

1 − [cos τ − sin τ ]ξq−1

]

.

Also, it can be verified that the matrix Mq
j = 0 for j =

q − 1, q − 3 and, for j = q, q − 2 we get

Mq
q =

[

1 0
cos τ
sin τ

0

]

, Mq
q−2 =

[

0 0
− 1

sin τ
0

]

. (33)

Next, for every even q > 3, we can repeat the same calcula-
tions to get:

Ψq
q−3 =

[

cos 2τ sin 2τ
− sin 2τ cos 2τ

]

,

(

Ψq
q−3

[

0
1

])⊥

=

{(

cos 2τ
− sin 2τ

)}

,

Ψq
q−2 =

[

cos τ sin τ
− sin τ cos τ

]

⇒
(

Ψq
q−2R

2)⊥ = {0},

Ψq
q−1 =

[

cos τ sin τ
− sin τ cos τ

]

⇒

(

Ψq
q−1

[

0
1

])⊥

=

{(

cos τ
− sin τ

)}

,

Ψq
q = I2×2

(

Ψq
qR

2)⊥ = {0}.

Once again, using the the expressions for Θq
j , j = q−3, . . . , q,

based on these subspace, one gets,

Θq =

[

cos τ cos 2τ
− sin τ − sin 2τ

]

, q = 4, 6, 8, · · · ,

so that

ξq = Θ−⊤
q

[

zq−1(t−q−1)− ξq−1
1

zq−3(t−q−3)− ξq−3
1 − [cos τ − sin τ ](ξq−2 + ξq−1)

]

.

Again, it can be verified that the matrix Mq
j = 0 for j =

q, q − 2 and, for j = q − 1, q − 3 we get

Mq
q =

[

sin 2τ
sin τ

0
cos 2τ
sin τ

0

]

, Mq
q−2 =

[

−1 0
− cos τ

sin τ
0

]

. (34)

Finally, we derive the bound on gains lq that gives con-
verging estimates. Note that the matrix Mq

j , for each q > 3
and each j = q, · · · , q−3, has the following induced 2-norm,

λq
j = ‖Mq

j ‖ =

{

0 if j is even
1

| sin τ |
if j is odd

.

Also, ‖Zqe(Sq−lqRq)τqZq⊤‖ = e−lqτ for every odd q, and null
for q even. Thus, (21) is trivially satisfied when j is even,
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Figure 2: Converging state estimates.

and for odd values of j, the inequality

1

| sin τ |
e−lqτ <

1

4

holds if, and only if,

lq >
1

τ
ln

4

|sin τ |
. (35)

Once again it can be seen that, if τ is an integer multiple
of π, or even when τ approaches this point of singularity,
then the gain required for convergence gets arbitrarily large.
This also explains why the knowledge of switching signal is
required in general to compute the observer gains.

The results of the simulation for τ = 1 and lq = 2 with
q odd, are shown in Fig. 1 and Fig. 2. Because of the error
correction term, it can be seen that there is jump disconti-
nuity in estimation error at switching times, and the error
remains constant between the switching times. This is be-
cause the subsystem 2 rotates any given initial condition in
a circle of constant radius, thus not letting the error grow. If
instead there were an unstable system then the error would
grow in between the switching times but the error correction
term would guarantee that the sequence formed by taking
the value of the estimation error at switching times is indeed
a decreasing sequence.

4. CONCLUSION
This paper presented conditions for observability and de-

terminability of switched linear systems with state jumps.

Based on these conditions, an observer is constructed that
combines the partial information obtained from each mode
at some time instant to get an estimate of the state vector.
Under the assumption of persistent switching, the error anal-
ysis shows that the estimate converges to the actual state.
It is noted that the transportation of the partial informa-
tion in (26), even under the added unknown information, is
achievable for linear systems, and may not be possible for
nonlinear systems, e.g., in [11].

Several directions for future work are being pursued. For
observability conditions, denseness of regular switching sig-
nals is being studied. This, in turn, leads to the question
whether there exists necessary and sufficient conditions if
we seek observability uniformly over all switching signals.
Furthermore, the quality of observer can be investigated
at various stages. The consideration of computation time
may lead to a delayed update and hence an additional er-
ror term which is required to be suppressed in computing
the estimate. Also, in order to avoid post-processing of the
switching signal to compute the observer gains, we believe
that it would be possible to pre-compute the observer gains
with conditions depending on mode-sequence independently
of switching times. Moreover, the construction of observers
without the assumptions of maximal switching time or dwell-
time switching is an interesting question that requires fur-
ther investigation.
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Appendix: Proof of Lemma 1
Let c = α/(N + 1) with 0 ≤ α < 1. Then it is obvious that

|ai| ≤ α max
i−N−1≤k≤i−1

|ak|, i > N. (36)

The above inequality implies that

|ai+1| ≤
α

N + 1

i
∑

k=i−N

|ak| ≤ α max
i−N≤k≤i

|ak|

≤ αmax

{

|ai−N−1|, max
i−N≤k≤i−1

|ak|, |ai|

}

≤ α max
i−N−1≤k≤i−1

|ak|.

By induction, this leads to

max
i≤j≤i+N

|aj | ≤ α max
i−N−1≤k≤i−1

|ak|.

that is, the maximum value of the sequence {ai} over the
length of window N+1 is strictly decreasing and converging
to zero, which proves the desired result.

Appendix: Some Useful Facts
Let V1, V2, and V be any linear subspaces, A be a (not nec-
essarily invertible) n × n matrix, and B, C be matrices of
suitable dimension. For a matrix B, R(B) denotes the col-
umn space (range space) of B. The pre-image of V through
A is given by A−1V = {x : Ax ∈ V}. The following proper-
ties can be found in the literature such as [16], or developed
with little effort.

1. AR(B) = R(AB) and A−1 kerB = ker(BA).



2. A−1AV = V + kerA, and AA−1V = V ∩R(A).

3. A−1(V1 ∩ V2) = A−1V1 ∩ A−1V2, and A(V1 ∩ V2) ⊆
AV1 ∩ AV2 (with equality if and only if (V1 + V2) ∩
kerA = V1 ∩ kerA + V2 ∩ kerA, which holds, in par-
ticular, for any invertible A).

4. AV1 + AV2 = A(V1 + V2), and A−1V1 + A−1V2 ⊆
A−1(V1 + V2) (with equality if and only if (V1 + V2)∩
R(A) = V1 ∩ R(A) + V2 ∩ R(A), which holds, in par-
ticular, for any invertible A).

5. (kerA)⊥ = R(A⊤).

6. (A⊤V)⊥ = A−1V⊥ and (A−1V)⊥ = A⊤V⊥.

7. 〈A|V〉 = V + AV + A2V + · · · + An−1V and 〈V|A〉 =

V ∩A−1V ∩ A−2V ∩ · · · ∩ A−(n−1)V.
8. 〈V1 ∩ V2|A〉 = 〈V1|A〉∩〈V2|A〉 and 〈A|V1 ∩ V2〉 ⊂ 〈A|V1〉∩

〈A|V2〉.

9. eAtV ⊆ 〈A|V〉 and 〈V|A〉 ⊆ eAtV for any t.

10. 〈A|V〉⊥ =
〈

V⊥|A⊤
〉

.

Now, with G := col(C,CA, . . . , CAn−1),

11. eAt kerG = kerG and eA
⊤tR(G⊤) = R(G⊤) for all t.

12. 〈kerG|A〉 = kerG and
〈

A⊤|R(G⊤)
〉

= R(G⊤).
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