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Abstract. We present a general approach to analyzing stability of hy-
brid systems, based on input-to-state stability (ISS) and small-gain theo-
rems. We demonstrate that the ISS small-gain analysis framework is very
naturally applicable in the context of hybrid systems. Novel Lyapunov-
based and LaSalle-based small-gain theorems for hybrid systems are pre-
sented. The reader does not need to be familiar with ISS or small-gain
theorems to be able to follow the paper.

1 Introduction

The small-gain theorem is a classical tool for analyzing input-output stability of
feedback systems; see, e.g., [1]. More recently, small-gain tools have been used
extensively to study feedback interconnections of nonlinear state-space systems
in the presence of disturbances; see, e.g., [2]. Hybrid systems can be naturally
viewed as feedback interconnections of simpler subsystems. For example, every
hybrid system can be regarded as a feedback interconnection of its continuous
and discrete dynamics. This makes small-gain theorems a very natural tool to
use for studying internal and external stability of hybrid systems. However, we
are not aware of any systematic application of this idea in the literature.

The purpose of this paper is to bring the small-gain analysis method to the
attention of the hybrid systems community. We review, in a tutorial fashion, the
concept of input-to-state stability (ISS) introduced by Sontag [3] and a nonlinear
small-gain theorem from [2] based on this concept. The ISS small-gain theorem
states that a feedback interconnection of two ISS systems is ISS if an appropriate
composition of their respective ISS gain functions is smaller than the identity
function. Since a proof of this theorem can be based entirely on time-domain
analysis of system signals, the result is valid for general dynamical systems, thus
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providing an “off-the-shelf” method for verifying stability of hybrid systems. We
also discuss Lyapunov-based tools for checking the hypotheses of this theorem.

As an alternative to time-domain proofs, Lyapunov function constructions for
interconnected systems under small-gain conditions were studied for continuous-
time systems in [4] and for discrete-time systems in [5]. It is well known that
having a Lyapunov function provides additional insight into the behavior of
a stable system and is important for tasks such as perturbation analysis and
estimating the region of attraction. In this paper, we present a novel construction
of a Lyapunov function for a class of hybrid systems satisfying the conditions
of the ISS small-gain theorem. We also describe another approach, based on
constructing a “weak” (non-strictly decreasing) Lyapunov function and applying
the LaSalle invariance principle for hybrid systems from [6]. While the basic
idea of the small-gain stability analysis for hybrid systems was announced and
initially examined by the authors in [7], the Lyapunov function constructions
reported here are new and represent the main technical contribution of this work.

In the companion paper [7], we illustrate the power of the proposed method
through a detailed treatment of several specific problems in the context of hybrid
control with communication constraints. As demonstrated there, the small-gain
analysis provides insightful interpretations of existing results, immediately leads
to generalizations, and allows a unified treatment of problems that so far have
been studied separately. Due to the pervasive nature of hybrid systems in appli-
cations, we expect that the main ideas described in this paper will be useful in
many other areas as well.

2 Preliminaries

In what follows, id denotes the identity function and ◦ denotes function com-
position. We write a ∨ b for max{a, b} and a ∧ b for min{a, b}. The class of
continuously differentiable functions is denoted by C1 (the domain will be spec-
ified separately). The gradient operator is denoted by ∇. Given some vectors
x1 ∈ R

n1 and x2 ∈ R
n2 , we often use the simplified notation (x1, x2) for the

“stack” vector (xT
1 , xT

2 )T ∈ R
n1+n2 .

2.1 Hybrid System Model

We begin by describing the model of a hybrid system to which our subsequent
results will apply. This model easily fits into standard modeling frameworks for
hybrid systems (see, e.g., [8, 6, 9]), and the reader can consult these references for
background and further technical details. The description to be provided here is
somewhat informal, but it is sufficient for presenting the results.

We label the hybrid system to be defined below as H. The state variables of H
are divided into continuous variables x ∈ R

n and discrete variables µ ∈ R
k. We

note that µ actually takes values in a discrete subset of R
k along every trajectory

of the hybrid system, but this set need not be fixed a priori and may vary with
initial conditions. The time is continuous: t ∈ [t0, ∞). We also consider external
variables w ∈ R

s, viewed as disturbances.
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The state dynamics describing the evolution of these variables with respect to
time are composed of continuous evolution and discrete events. During continu-
ous evolution (i.e., while no discrete events occur), µ is held constant and x satis-
fies the ordinary differential equation ẋ = f(x, µ, w) with f : R

n ×R
k ×R

s → R
n

locally Lipschitz. We now describe the discrete events. Given an arbitrary time
t, we will denote by x−(t), or simply by x− when the time arguments are omit-
ted, the quantity x(t−) = lims↗t x(s), and similarly for the other state vari-
ables. Consider a guard map G : R

n+k → R
p (where p is a positive integer)

and a reset map R : R
n+k → R

n+k. The discrete events are defined as fol-
lows: whenever G

(
x−, µ−)

≥ 0 (component-wise), we let (x, µ) = R(x−, µ−) =(
Rx(x−, µ−), Rµ(x−, µ−)

)
. By construction, all signals are right-continuous.

Some remarks on the above relations are in order. In many situations, the
continuous state does not jump at the event times: Rx(x, µ) ≡ x. The guard map
often depends on time and/or auxiliary clock variables, which we do not explicitly
model here (they can be incorporated into x). We want inequality rather than
equality in the reset triggering condition because for a discrete event to occur, we
might need several conditions which do not become valid simultaneously (e.g.,
some relation between x and µ holds and a clock has reached a certain value).
Of course, equality conditions are easily described by pairs of inequalities. Note
that we allow the disturbances w to affect the discrete events only indirectly,
through the continuous state x. This assumption will simplify the Lyapunov-
based conditions in Sections 4 and 5; it is typically reasonable in the context of
hybrid control design (see [7, 10]).

Well-posedness (existence and uniqueness of solutions) of the hybrid system
H is an issue; see, e.g., [8]. At the general level of the present discussion, we are
going to assume it. For example, by using clocks, we can ensure that a bounded
number of discrete events occurs in any bounded time interval. Then, to obtain a
solution (in the sense of Carathéodory), we simply flow the continuous dynamics
until either the end of their domain is reached (finite escape) or a discrete event
occurs; in the latter case, we repeat from the new state, and so on. See also [11]
for an interesting alternative definition of solutions of hybrid systems.

2.2 Feedback Interconnection Structure

The starting point for our results is the observation that we can view the hybrid
system H as a feedback interconnection of its continuous and discrete parts, as
shown in Figure 1(a). For simplicity, we ignore the roles of the guard map G and
the continuous state reset map Rx in the diagram.

It is clear that the above decomposition is just one possible way to split
the hybrid system H into a feedback interconnection of two subsystems. There
may be many ways to do it; the best choice will depend on the structure of
the problem and will be one for which the small-gain approach described below
will work. Each subsystem in the decomposition can be continuous, discrete, or
hybrid, and may be affected by the disturbances. This more general situation is
illustrated in Figure 1(b). Here, the state variables and the external signals of
H are split as x = (x1, x2), µ = (µ1, µ2), w = (w1, w2), the first subsystem H1
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x

µ

ẋ = f(x, µ, w)

µ = Rµ(x−, µ−)

w w1

w2
z2

z1H1

H2

Fig. 1. Hybrid system viewed as feedback interconnection: (a) special decomposition,
(b) general decomposition

has states z1 := (x1, µ1) and inputs v1 = (z2, w1), and the second subsystem H2
has states z2 := (x2, µ2) and inputs v2 = (z1, w2).

In the approach discussed here, coming up with a decomposition of the above
kind is the first step in the analysis of a given hybrid system. As we pointed out,
at least one such decomposition always exists. It can also happen that the hybrid
system model is given from the beginning as an interconnection of several hybrid
systems. Thus the structure we consider is very general and not restrictive.

2.3 Stability Definitions

A function α : [0, ∞) → [0, ∞) is said to be of class K (which we write as α ∈ K)
if it is continuous, strictly increasing, and α(0) = 0. If α is also unbounded, then
it is said to be of class K∞ (α ∈ K∞). A function β : [0, ∞)× [0, ∞) → [0, ∞) is
said to be of class KL (β ∈ KL) if β(·, t) is of class K for each fixed t ≥ 0 and
β(r, t) is decreasing to zero as t → ∞ for each fixed r ≥ 0.

We now define the stability notions of interest in this paper. Consider a hybrid
system with state z = (x, µ) and input v (as a special case, it can have only
continuous dynamics or only discrete events). Following [3], we say that this
system is input-to-state stable (ISS) with respect to v if there exist functions
β ∈ KL and γ ∈ K∞ such that for every initial state z(t0) and every input v(·)
the corresponding solution satisfies the inequality

|z(t)| ≤ β(|z(t0)|, t − t0) + γ(‖v‖[t0,t]) (1)

for all t ≥ t0, where ‖v‖[t0,t] := sup{|v(s)| : s ∈ [t0, t]} (except possibly on a
set of measure 0). We will refer to γ as an ISS gain function, or just a gain if
clear from the context. For time-invariant systems, we can take t0 = 0 without
loss of generality. If the inputs are split as v = (v1, v2), then (1) is equivalent
to |z(t)| ≤ β(|z(t0)|, t − t0) + γ1(‖v1‖[t0,t]) + γ2(‖v2‖[t0,t]) for some functions
γ1, γ2 ∈ K∞. In this case, we will call γ1 the ISS gain from v1 to z, and so on.

In the case of no inputs (v ≡ 0), the inequality (1) reduces to |z(t)| ≤
β(|z(t0)|, t) for all t ≥ t0, which corresponds to the standard notion1 of global
asymptotic stability (GAS). In the presence of inputs, ISS captures the property
1 This can also be equivalently restated in the more classical ε–δ style (cf. [12]).
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that bounded inputs and inputs converging to 0 produce states that are also
bounded and converging to 0, respectively. We note that asymptotic stability of
a linear system (continuous or sampled-data) can always be characterized by a
class KL function of the form β(r, t) = cre−λt, c, λ > 0. Moreover, an asymptot-
ically stable linear system is automatically ISS with respect to external inputs,
with a linear ISS gain function γ(r) = cr, c > 0.

3 ISS Small-Gain Theorem

Consider the hybrid system H defined in Section 2.1, and suppose that it has been
represented as a feedback interconnection of two subsystems H1 and H2 in the
way described in Section 2.2 and shown in Figure 1(b). The small-gain theorem
stated next reduces the problem of verifying ISS of H to that of verifying ISS
of H1 and H2 and checking a condition that relates their respective ISS gains.
The result we give is a special case of the small-gain theorem from [2]. That
paper treats continuous systems, but since the statement and the proof given
there involve only properties of system signals, the fact that the dynamics are
hybrid in our case does not change the validity of the result. We note that the
small-gain theorem presented in [2] is much more general in that it treats partial
measurements (input-to-output-stability, in conjunction with detectability) and
deals with practical stability notions. Many other versions are also possible, e.g.,
we can replace the sup norm used in (1) by an Lp norm [13].

Theorem 1. Suppose that:
1. H1 is ISS with respect to v1 = (z2, w1), with gain γ1 from z2 to z1, i.e.,

|z1(t)| ≤ β1(|z1(t0)|, t − t0) + γ1(‖z2‖[t0,t]) + γ̄1(‖w1‖[t0,t])

for some β1 ∈ KL, γ1, γ̄1 ∈ K∞.
2. H2 is ISS with respect to v2 = (z1, w2), with gain γ2 from z1 to z2, i.e.,

|z2(t)| ≤ β2(|z2(t0)|, t − t0) + γ2(‖z1‖[t0,t]) + γ̄2(‖w2‖[t0,t])

for some β2 ∈ KL, γ2, γ̄2 ∈ K∞.
3. There exists a function ρ ∈ K∞ such that2

(id + ρ) ◦ γ1 ◦ (id + ρ) ◦ γ2(r) ≤ r ∀ r ≥ 0. (2)

Then H is ISS with respect to the input w = (w1, w2).

Three special cases are worth mentioning explicitly. First, in the case of no ex-
ternal signals (w1 = w2 ≡ 0), we conclude that H is GAS. Second, when the
two ISS gain functions are linear: γi(r) = cir, i = 1, 2, the small-gain condi-
tion (2) reduces to the simple one c1c2 < 1. Third, the theorem covers the case

2 If one replaces β + γ with β ∨ γ in the definition (1) of ISS, then the small-gain
condition (2) can be simplified to γ1 ◦ γ2(r) < r for all r > 0.
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of a cascade connection, where one of the gains is 0 and hence the small-gain
condition (2) is automatically satisfied.

Sometimes one wants to concentrate only on some states of the overall system,
excluding the other states from the feedback interconnection. For example, one
might ignore some auxiliary variables (such as clocks) which have very simple
dynamics and remain bounded for all time. Theorem 1 is still valid if z1 and z2
include only the states of interest for each subsystem.3

Small-gain theorems have been widely used for analysis of continuous-time
as well as discrete-time systems with feedback interconnection structure. The
discussion of Section 2.2 suggests that it is also very natural to use this idea to
analyze (internal or external) stability of hybrid systems. Of course, one needs to
show that the subsystems in a feedback decomposition satisfy suitable ISS prop-
erties, and calculate the ISS gains in order to check the small-gain condition (2).
There exist efficient tools for doing this, as exemplified in the next section.

4 Sufficient Conditions for ISS

Consider the hybrid system H defined in Section 2.1, and suppose that it has been
represented as a special feedback interconnection shown in Figure 1(a). The two
lemmas stated below provide Lyapunov-based conditions which guarantee ISS
of the continuous and discrete dynamics, respectively, and give expressions for
the ISS gains. Thus they can be used for verifying the hypotheses of Theorem 1
in this particular case. The first result is well established [3]; the second one is
a slightly sharpened version of Theorem 4 from the recent paper [15].

Lemma 1. Suppose that there exists a C1 function V1 : R
n → R, class K∞ func-

tions α1,x, α2,x, ρx, σ, and a continuous positive definite function α3,x : [0, ∞) →
[0, ∞) satisfying

α1,x(|x|) ≤ V1(x) ≤ α2,x(|x|) (3)

and

V1(x) ≥ ρx(|µ|) ∨ σ(|w|) ⇒ ∇V1(x)f(x, µ, w) ≤ −α3,x(V1(x)). (4)

Then the x-subsystem is ISS with respect to (µ, w), with gain γx := α−1
1,x ◦ ρx

from µ to x.

The condition (3) simply says that V1 is positive definite and radially unbounded.
We can take α3,x to be of class K∞ with no loss of generality [3]. The condition (4)
can be equivalently rewritten as ∇V1(x)f(x, µ, w) ≤ −α4,x(V1(x)) + χx(|µ|) for
some α4,x, χx ∈ K∞. However, using the latter condition instead of (4) in the
lemma would in general lead to a more conservative ISS gain. We also note that
Lemma 1 can be easily generalized by allowing V1 to depend on t as well as on
x, leaving the bounds in (3) unchanged, and adding the time derivative of V1
in (4); we will work with a Lyapunov function of this kind in Theorem 2 below.
3 This amounts to modifying the hypotheses by replacing ISS with a suitable input-to-

output stability notion (cf. [2, 14]) and requiring that the ISS gain from the “hidden”
states in each subsystem to the states of interest in the other subsystem be 0.
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Lemma 2. Suppose that there exists a C1 function V2 : R
k → R, class K∞ func-

tions α1,µ, α2,µ, ρµ, and a continuous positive definite function α3,µ : [0, ∞) →
[0, ∞) satisfying

α1,µ(|µ|) ≤ V2(µ) ≤ α2,µ(|µ|) (5)

such that we have

V2(µ) ≥ ρµ(|x|) ⇒ V2(Rµ(x, µ)) − V2(µ) ≤ −α3,µ(V2(µ)) (6)

and
V2(µ) ≤ ρµ(r) and |x| ≤ r ⇒ V2(Rµ(x, µ)) ≤ ρµ(r). (7)

Suppose also that for each t > t0 such that V2(µ(s)) ≥ ρµ(‖x‖[t0,s]) for all
s ∈ [t0, t), the number N(t, t0) of discrete events in the interval [t0, t] satisfies

N(t, t0) ≥ η(t − t0) (8)

where η : [0, ∞) → [0, ∞) is an increasing function. Then the µ-subsystem is
ISS with respect to x, with gain γµ := α−1

1,µ ◦ ρµ.

We can assume that α3,µ ∈ K∞ with no loss of generality [16]. The conditions (6)
and (7) are both satisfied if we have

V2(Rµ(x, µ)) − V2(µ) ≤ −α4,µ(V2(µ)) + χµ(|x|) (9)

for some α4,µ, χµ ∈ K∞. Indeed, letting ρµ(r) := α−1
4,µ(2χµ(r)), we see that (6)

holds with α3,µ := α4,µ/2. Decreasing α4,µ if necessary, assume with no loss of
generality that id − α4,µ ∈ K (cf. [17]). We then have

V2(µ) ≤ α−1
4,µ(2χµ(r)) and |x| ≤ r ⇒

V2(Rµ(x, µ)) ≤ χµ(|x|) + (id − α4,µ)
(
α−1

4,µ(2χµ(r))
)

< α−1
4,µ(2χµ(|x|))

and so (7) holds with the same ρµ. Moreover, (6) implies (9) and consequently (7)
if the map Rµ is continuous at (x, µ) = (0, 0). Still, it is useful to write two
separate conditions (6) and (7) if we want the least conservative expression for
the ISS gain. The former condition coupled with (8) is the main ingredient for
obtaining ISS, while the latter is automatically enforced if, for example, discrete
events can only decrease V2(µ). An example of a function η that can be used
in (8) is η(r) = r

δa
−N0, where δa and N0 are positive numbers (see [15]). In this

case, (8) says that discrete events must happen at least every δa units of time
on the average, modulo a finite number of events that can be “missed”.

Proof of Lemma 2. Let t̄ := min
{
t ≥ t0 : V2(µ(t)) ≤ ρµ(‖x‖[t0,t])

}
≤ ∞ (this

is well defined in view of right-continuity). By virtue of (6), we have V2(µ) −
V2(µ−) ≤ −α3,µ(V2(µ−)) at each event time in the interval [t0, t̄). Therefore,
there exists a function β̄ ∈ KL such that V2(µ(t)) ≤ β̄(V2(µ(t0)), N(t, t0)) for
all t ∈ [t0, t̄); cf. [17]. Invoking (8), we have V2(µ(t)) ≤ β̄

(
V2(µ(t0)), η(t − t0)

)

hence |µ(t)| ≤ α−1
1,µ

(
β̄
(
α2,µ(|µ(t0)|), η(t − t0)

))
=: βµ(|µ(t0)|, t − t0) for all t ∈

[t0, t̄). Next, (7) applied with r := ‖x‖[t0,t] at each event time guarantees that
V2(µ(t)) ≤ ρµ(‖x‖[t0,t]) hence |µ(t)| ≤ α−1

1,µ ◦ρµ(‖x‖[t0,t]) for all t ≥ t̄. Combining
the two bounds for |µ(t)| gives the desired estimate. ��

liberzon
Highlight
It actually has to be of class K_\infty (if not, the function \beta_\mu constructed in the proof may not approach 0 as its second argument approaches infinity).
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5 Lyapunov-Based Small-Gain Theorems

Consider again the hybrid system H defined in Section 2.1 and decomposed as in
Figure 1(a). Here we assume for simplicity that Rx(x, µ) ≡ x (continuous state
does not jump at the event times). Theorem 1, applied to this special feedback
decomposition, provides sufficient conditions for ISS. The proof of this theorem is
based on trajectory analysis. Lemmas 1 and 2 can be used to check the hypothe-
ses of Theorem 1, and involve ISS-Lyapunov functions for the two subsystems.
The question naturally arises whether Theorem 1 can be formulated and proved
entirely in terms of such Lyapunov functions. Such alternative formulations are
available for continuous-time as well as discrete-time small-gain theorems [4, 5],
but this issue has not been pursued for hybrid systems.

Here we present a preliminary result in this direction. We denote by tk,
k = 1, 2, . . . the discrete event times, which we assume to be distinct (with
no significant changes, we could allow finitely many discrete events to occur
simultaneously). It is also convenient to introduce a special clock variable τ ,
which counts the time since the most recent discrete event and is reset to 0
at the event times: τ(t) := t − tk for t ∈ [tk, tk+1). It must be noted that the
Lyapunov function V constructed in Theorem 2 below depends, besides x and
µ, on this variable τ . Therefore, it can really be viewed as a Lyapunov function
only if the sequence {tk} is independent of the initial state. Otherwise, the proof
of ISS using this function is actually a trajectory-based argument (but it still
represents an interesting alternative to a purely time-domain one).

Theorem 2. Suppose that there exist positive definite, radially unbounded C1

functions V1 : R
n → R and V2 : R

k → R, class K∞ functions χ1, χ2, σ, and
positive constants b1, b2, c, d, T such that we have

V1(x) ≥ χ1(V2(µ)) ∨ σ(|w|) ⇒ ∇V1(x)f(x, µ, w) ≤ −cV1(x), (10)

V2(µ) ≥ χ2(V1(x)) ⇒ V2(Rµ(x, µ)) ≤ e−dV2(µ), (11)

V2(µ) ≤ eb2χ2(eb1V1(x)) ⇒ V2(Rµ(x, µ)) ≤ χ2(V1(x)), (12)

the small-gain condition

eb1χ1(eb2χ2(r)) < r ∀ r > 0 (13)

holds, and the discrete events satisfy

tk+1 − tk ≤ T ∀ k ≥ 0. (14)

Then there exist a locally Lipschitz function V : [0, T ]× R
n × R

k → R, class K∞
functions α1, α2, σ̄, a continuous positive definite function α3 : [0, ∞) → [0, ∞),
and a continuous function α4 : [0, T ] × [0, ∞) → [0, ∞) satisfying α4(τ, r) > 0
when τr �= 0, such that for all τ ∈ [0, T ] and all (x, µ) ∈ R

n × R
k the bound

α1(|(x, µ)|) ≤ V (τ, x, µ) ≤ α2(|(x, µ)|) (15)

holds and we have
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V (τ, x, µ) ≥ σ̄(|w|) ⇒

V̇ (τ, x, µ) :=
∂V

∂τ
(τ, x, µ) +

∂V

∂x
(τ, x, µ)f(x, µ, w) ≤ −α3(|(x, µ)|) (16)

for the continuous dynamics4 and

V (0, x, Rµ(x, µ)) − V (τ, x, µ) ≤ −α4(τ, |(x, µ)|) (17)

for the discrete events. Consequently, H is ISS with respect to w.

In spirit, the hypotheses of Theorem 2 match the hypotheses of Theorem 1
and Lemmas 1 and 2, although there are some differences. We note that the
condition (14) can be written as N(t, s) ≥ t−s

T for all t > s ≥ t0, i.e., it is a
strengthened version of (8). For simplicity, we assumed in (10) and (11) that V1
and V2 decay at exponential rates. In the special case when the gain functions
χ1 and χ2 are also linear, b1 and b2 in (12) and (13) can be set to 0. Note also
that (10) only needs to hold for those states where we have continuous evolution,
i.e., where G(x, µ) < 0, while (11) and (12) only need to hold for those states
where discrete events occur, i.e., where G(x, µ) ≥ 0.

Proof of Theorem 2. We have that V1 stays constant during the discrete events
while V2 stays constant along the continuous dynamics. First, we want to con-
struct modified functions V 1 and V 2 which strictly decrease during the discrete
events and the continuous dynamics, respectively, while also enjoying decreasing
properties similar to (10)–(12). Pick a number L1 ∈

(
0, c ∧ (b1/T )

)
and define

V 1(τ, x) := eL1τV1(x). (18)

Using (14), we have

V1(x) ≤ V 1(τ(t), x) ≤ eL1T V1(x) ∀ t, x. (19)

Similarly, pick a number L2 ∈
(
0, (d ∧ b2)/T

)
and define

V 2(τ, µ) := e−L2τV2(µ) (20)

to obtain
e−L2T V2(µ) ≤ V 2(τ(t), µ) ≤ V2(µ) ∀ t, µ. (21)

Define χ̄1(r) := eL1T χ1(eL2T r) and σ̄(r) := eL1T σ(r). Combining (10), (18),
(19), and (21), we have for the continuous dynamics

V 1(τ, x) ≥ χ̄1(V 2(τ, µ)) ∨ σ̄(|w|) ⇒
∂V 1

∂τ
(τ, x) +

∂V 1

∂x
(τ, x)f(x, µ, w) ≤ −(c − L1)V 1(τ, x) (22)

and for the discrete events
4 We will define V as a maximum of two C1 functions, hence the gradient ∂V /∂x is in

general not defined at the points where these two functions are equal. However, the
derivative of V (x(·)) with respect to time exists everywhere and is continuous almost
everywhere along each trajectory. This is sufficient for establishing ISS; cf. [4].
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V 1(0, x) = e−L1τV 1(τ, x). (23)

Similarly, the evolution of V 2 satisfies

∂V 2

∂τ
(τ, µ) = −L2V 2(τ, µ), (24)

V 2(τ, µ) ≥ χ2(V 1(τ, x)) ⇒ V 2(0, Rµ(x, µ)) ≤ e−(d−L2T )V 2(τ, µ), (25)

V 2(τ, µ) ≤ χ2(V 1(τ, x)) ⇒ V 2(0, Rµ(x, µ)) ≤ χ2(V 1(τ, x)). (26)

The condition (13) implies χ̄1 ◦ χ2(r) < r for all r > 0, which is equivalent to
χ2(r) < χ̄−1

1 (r) for all r > 0. As in [4], pick a C1, class K∞ function ρ with

ρ′(r) > 0 ∀ r > 0 (27)

such that
χ2(r) < ρ(r) < χ̄−1

1 (r) ∀ r > 0. (28)

We are now ready to define a (time-varying) candidate ISS-Lyapunov function
for the closed-loop system H as

V (τ, x, µ) :=

{
ρ(V 1(τ, x)) if ρ(V 1(τ, x)) ≥ V 2(τ, µ)
V 2(τ, µ) if ρ(V 1(τ, x)) < V 2(τ, µ)

(29)

We claim that it satisfies (15)–(17). To prove this, pick arbitrary τ ∈ [0, T ] and
(x, µ) �= (0, 0). Let us first consider the case when V (τ, x, µ) ≥ σ̄(|w|). We further
distinguish between the following two cases.

Case 1: ρ(V 1(τ, x)) ≥ V 2(τ, µ), so that V (τ, x, µ) = ρ(V 1(τ, x)). If ρ(V 1(τ, x)) >
V 2(τ, µ), then we have, using (22), (27), (28), and positive definiteness of V1 and
V2, that x �= 0 and

V̇ (τ, x, µ) = ρ′(V 1(τ, x))
(

∂V 1

∂τ
(τ, x) +

∂V 1

∂x
(τ, x)f(x, µ, w)

)

≤ −ρ′(V 1(τ, x))(c − L1)V 1(τ, x) < 0

If ρ(V 1(τ, x)) = V 2(τ, µ), then by positive definiteness of V1 and V2 both x and
µ are nonzero and, invoking also (24), we have

V̇ (τ, x, µ) = ρ′(V 1(τ, x))
(

∂V 1

∂τ
(τ, x) +

∂V 1

∂x
(τ, x)f(x, µ, w)

)
∨ ∂V 2

∂τ
(τ, µ)

≤ −ρ′(V 1(τ, x))(c − L1)V 1(τ, x) ∨ −L2V 2(τ, µ) < 0

Turning to the discrete events, we have three possible cases. If ρ(V 1(0, x)) ≥
V 2(0, Rµ(x, µ)), then from (23) we have V (0, x, Rµ(x, µ)) = ρ(V 1(0, x))
= ρ(e−L1τV 1(τ, x)) ≤ ρ(V 1(τ, x)) = V (τ, x, µ), and the inequality is strict if
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τ > 0. If ρ(V 1(0, x)) < V 2(0, Rµ(x, µ)) and V 2(τ, µ) ≥ χ2(V 1(τ, x)), then (25)
gives V (0, x, Rµ(x, µ))=V 2(0, x, Rµ(x, µ)) < V 2(τ, µ) ≤ ρ(V 1(τ, x))=V (τ, x, µ).
Finally, if ρ(V 1(0, x)) < V 2(0, Rµ(x, µ)) and V 2(τ, µ) ≤ χ2(V 1(τ, x)), then
using (26) we obtain V (0, x, Rµ(x, µ)) = V 2(0, x, Rµ(x, µ)) ≤ χ2(V 1(τ, x)) <
ρ(V 1(τ, x)) = V (τ, x, µ).

Case 2: ρ(V 1(τ, x)) < V 2(τ, µ), so that V (τ, x, µ) = V 2(τ, µ). Using (24) and pos-
itive definiteness of V2, we have µ �= 0 and V̇ (τ, x, µ) = ∂V 2

∂τ (τ, µ) = −L2V 2(τ, µ)
< 0. As for the discrete events, (25) and (28) imply that V 2(0, Rµ(x, µ)) <
V 2(τ, µ). If V 2(0, Rµ(x, µ)) > ρ(V 1(0, x)), then we have V (0, x, Rµ(x, µ))
= V 2(0, Rµ(x, µ)) < V 2(τ, µ) = V (τ, x, µ). On the other hand, if V 2(0, Rµ(x, µ))
≤ ρ(V 1(0, x)), then by virtue of (23) we have V (0, x, Rµ(x, µ)) = ρ(V 1(0, x)) ≤
ρ(V 1(τ, x)) < V 2(τ, µ) = V (τ, x, µ).

Since V1 and V2 are positive definite and radially unbounded, there exist
functions α1,x, α2,x, α1,µ, α2,µ ∈ K∞ such that (3) and (5) hold. Using (19),
(21), and (29), we obtain

ρ(α1,x(|x|)) ∨ e−L2T α1,µ(|µ|) ≤ V (τ, x, µ) ≤ ρ
(
eL1T α2,x(|x|)

)
∨ α2,µ(|µ|).

It is now a routine exercise to construct functions α1, α2 ∈ K∞ for which (15)
holds. Next, observe that the condition V (τ, x, µ) ≥ σ̄(|w|) was used, via (22),
only to prove the decrease of V along the continuous dynamics but not during
the discrete events. Thus (16) and (17) are established (constructing α3 and α4
is again a simple exercise). Finally, ISS of H with respect to w follows from (15)–
(17) via standard arguments (cf. [3, 15]). ��

Remark 1. ISS of H would still hold if instead of (17) we had the weaker
condition V (0, x, Rµ(x, µ)) ≤ V (τ, x, µ), with (16) unchanged. To construct a
function V with these properties, we could set L1 = 0 in the above proof, i.e.,
work with the original function V1 in place of V 1; accordingly, we could set b1 = 0,
and also the linearity of the right-hand side of (10) in V1 would not be important.
On the other hand, the stronger condition (17) makes the Lyapunov function
V more useful for quantifying the effect of the discrete events. In particular,
if we impose a dwell-time constraint tk+1 − tk ≥ ε > 0 for all k ≥ 0, then a
uniform decrease condition of the form V −V − ≤ −ᾱ4(V −), with ᾱ4 continuous
positive definite, holds for all discrete events, yielding the stronger property of
ISS with respect to a “hybrid time domain” in which the continuous time t and
the discrete event index k play essentially equivalent roles (see [11]). ��

As an alternative to constructing a Lyapunov function strictly decreasing along
solutions, we can work with a weak Lyapunov function non-strictly decreas-
ing along solutions and apply a LaSalle invariance principle for hybrid systems,
such as the one proved in [6] (see also [18] for recent generalizations and im-
provements). As can be seen from the proof of the result given next, such an
approach is perhaps simpler and more natural in the situation at hand, and the
relevant hypotheses more closely match those of Theorem 1 and Lemmas 1 and 2.
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However, the result has inherent limitations characteristic of LaSalle theorems;
in particular, it is restricted to disturbance-free, time-invariant dynamics.

Consider the same hybrid system H as in Theorem 2, but assume that there
are no disturbances, i.e., the continuous dynamics are described by ẋ = f(x, µ).
We assume as before that the resulting discrete event times are distinct (the
extension to the case when a finite number of discrete events can occur simulta-
neously is straightforward). We also assume that the behavior of H is continuous
with respect to initial conditions, in the sense defined and characterized in [6].

Theorem 3. Suppose that there exist positive definite, radially unbounded C1

functions V1 : R
n → R and V2 : R

k → R, class K∞ functions χ1, χ2, and
continuous positive definite functions α1, α2 : [0, ∞) → [0, ∞) such that we have

V1(x) ≥ χ1(V2(µ)) ⇒ ∇V1(x)f(x, µ) ≤ −α1(V1(x)), (30)

V2(µ) ≥ χ2(V1(x)) ⇒ V2(Rµ(x, µ)) − V2(µ) ≤ −α2(V2(µ)), (31)

V2(µ) ≤ χ2(V1(x)) ⇒ V2(Rµ(x, µ)) ≤ χ2(V1(x)), (32)

the small-gain condition

χ1 ◦ χ2(r) < r ∀ r > 0 (33)

holds, and for each t > t0 such that V2(µ(s)) ≥ χ2(V1(x(s))) for all s ∈ [t0, t),
the number N(t, t0) of discrete events in the interval [t0, t] satisfies (8) for some
increasing function η : [0, ∞) → [0, ∞). Then there exists a positive definite,
radially unbounded, locally Lipschitz function V : R

n × R
k → R such that for all

(x, µ) ∈ R
n × R

k we have

V̇ (x, µ) :=
∂V

∂x
(x, µ)f(x, µ) ≤ 0 (34)

for the continuous dynamics,5

V (x, Rµ(x, µ)) ≤ V (x, µ) (35)

for the discrete events, and there is no forward invariant set except for the origin
inside the set S1 ∪ S2, where S1 := {(x, µ) : V̇ (x, µ) = 0, G(x, µ) < 0} and
S2 := {(x, µ) : V (x, Rµ(x, µ)) = V (x, µ), G(x, µ) ≥ 0}. Consequently, H is GAS.

As in Theorem 2, the condition (30) only needs to hold for those states where
we have continuous evolution, i.e., where G(x, µ) < 0, while (31) and (32) only
need to hold for those states where discrete events occur, i.e., where G(x, µ) ≥ 0.

Proof of Theorem 3. The condition (33) is equivalent to χ2(r) < χ−1
1 (r) for all

r > 0. As in [6], pick a C1, class K∞ function ρ satisfying (27) and

χ2(r) < ρ(r) < χ−1
1 (r) ∀ r > 0. (36)

5 See footnote 4.
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Define a candidate weak Lyapunov function for H as

V (x, µ) :=

{
ρ(V1(x)) if ρ(V1(x)) ≥ V2(µ)
V2(µ) if ρ(V1(x)) < V2(µ)

This function is positive definite and radially unbounded by construction. We
now prove that it satisfies (34) and (35). We consider two cases, similarly to the
proof of Theorem 2.

Case 1: ρ(V1(x)) ≥ V2(µ), so that V (x, µ) = ρ(V1(x)). If ρ(V1(x)) > V2(µ), then
we have, using (27), (30), (36), and positive definiteness of V1 and V2, that x �= 0
and

V̇ (x, µ) = ρ′(V1(x))
∂V1

∂x
(x)f(x, µ) ≤ −ρ′(V1(x))α1(V1(x)) < 0.

If ρ(V1(x)) = V2(µ) then, since V2 stays constant along the continuous dynamics,
we have V̇ (x, µ) ≤ −ρ′(V1(x))α1(V1(x)) ∨ 0 ≤ 0. We know that the discrete
events do not change the value of ρ(V1(x)). If V2(µ) ≥ χ2(V1(x)), then using (31)
we have V2(x, Rµ(x, µ)) ≤ V2(µ) ≤ ρ(V1(x)). If V2(µ) ≤ χ2(V1(x)), then with the
help of (32) we obtain V2(x, Rµ(x, µ)) ≤ χ2(V1(x)) ≤ ρ(V1(x)). In either case we
have V2(Rµ(x, µ)) ≤ ρ(V1(x)), hence V (x, Rµ(x, µ)) = ρ(V1(x)) = V (x, µ).

Case 2: ρ(V1(x)) < V2(µ), so that V (x, µ) = V2(µ). For the continuous dy-
namics, we have V̇ (x, µ) = 0. As for the discrete events, (31) and (36) imply
that V2(Rµ(x, µ)) < V2(µ). If V2(Rµ(x, µ)) > ρ(V1(x)), then V (x, Rµ(x, µ)) =
V2(Rµ(x, µ)) < V2(µ) = V (x, µ). If V2(Rµ(x, µ)) ≤ ρ(V1(x)), then we have
V (x, Rµ(x, µ)) = ρ(V1(x)) < V2(µ) = V (x, µ).

The properties (34) and (35) are therefore established. Next, we turn to the
claim about the absence of a nonzero invariant set inside S1 ∪ S2. The previ-
ous analysis implies that we have S1 ⊆ S̃1 and S2 ⊆ S̃2, where S̃1 := {(x, µ) :
ρ(V1(x)) ≤ V2(µ), G(x, µ) < 0} and S̃2 := {(x, µ) : ρ(V1(x)) ≥ V2(µ), G(x, µ) ≥
0}. Hence it is enough to prove the claim for S̃1 ∪ S̃2. By (36) and the hy-
potheses placed on the discrete events, no subset of either S̃1 or S̃2 can be
invariant. Indeed, while the state is in S̃1, (8) holds and so a discrete event
must eventually occur, which means that the state must leave S̃1. On the other
hand, since consecutive discrete events are assumed to be separated by posi-
tive intervals of continuous evolution, S̃2 is not invariant. It remains to show
that discrete events cannot take the state from S̃2 \ {(0, 0)} to S̃1. Consider an
arbitrary (x, µ) ∈ S̃2 \ {(0, 0)}. If V2(µ) ≥ χ2(V1(x)), then from (31) we have
V2(x, Rµ(x, µ)) < V2(µ) ≤ ρ(V1(x)). If V2(µ) ≤ χ2(V1(x)), then from (32) we
have V2(x, Rµ(x, µ)) ≤ χ2(V1(x)) < ρ(V1(x)). We conclude that (x, Rµ(x, µ))
cannot be in S̃1, which establishes the claim.

Stability in the sense of Lyapunov and boundedness of all solutions follow
from (34), (35), and the fact that V is positive definite and radially unbounded.
Since H is non-blocking and deterministic by construction, the invariance prin-
ciple for hybrid systems from [6] applies. To conclude GAS, we need to rule out
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the existence of an invariant set other than the origin inside the set on which V
does not strictly decrease. But this latter set is S1 ∪ S2, and we are done. ��
We see that although the function V in Theorem 3 is a weak Lyapunov func-
tion, it has the right properties for applying the LaSalle invariance principle
and concluding GAS. However, for other purposes (such as, for example, ana-
lyzing stability under perturbations of the right-hand side) it is still desirable to
have a strictly decreasing Lyapunov function. One may try to construct such a
Lyapunov function by modifying V (e.g., see results of this kind for continuous
systems under appropriate “detectability” conditions in [19] and “observability”
conditions in [20]).

6 Conclusions and Future Work

The main purpose of this paper was to bring the small-gain analysis method
to the attention of the hybrid systems community. We argued that general hy-
brid systems can be viewed as feedback interconnections of simpler subsystems,
and thus the small-gain analysis framework is very naturally applicable to them.
While the small gain theorem based on time-domain analysis provides an “off-
the-shelf” tool for studying stability of hybrid systems, Lyapunov function con-
structions are also of interest and were addressed in this paper. For a class of
hybrid systems satisfying the conditions of the small-gain theorem, we described
a construction of a Lyapunov function and another construction of a weak Lya-
punov function, each of which can be used to establish stability.

Further research is needed for improving Lyapunov function constructions of
Section 5, which are currently not quite satisfactory. First, Theorem 2 falls short
of recovering the result of Theorem 1. Second, both Theorem 2 and Theorem 3
are restricted to the special feedback interconnection shown in Figure 1(a). An-
other direction for future work is to systematically exploit the proposed method in
application-motivated contexts. As demonstrated in the companion paper [7] (see
also [13] and the subsequent work [21]), quantized control and networked control
systems represent very promising application areas, but we expect the small-gain
analysis to be useful for hybrid systems arising in many other areas as well.
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