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Abstract:
This paper deals with global asymptotic stabilization of continuous-time systems with quan-
tized signals. A hybrid control strategy originating in earlier work relies on the possibility of
making discrete on-line adjustments of quantizer parameters. We explore this method here for
general nonlinear systems with general types of quantizers affecting the state of the system
or the measured output.
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1. INTRODUCTION

In the classical feedback control setting, the output of
the process is assumed to be passed directly to the
controller, which generates the control input and in
turn passes it directly back to the process. In prac-
tice, however, this paradigm often needs to be re-
examined because the interface between the controller
and the process features some additional information-
processing devices. These considerations arise, for ex-
ample, in networked control systems; see the articles
in (Bushnell, 2001) and the references therein.

One important aspect to take into account in such sit-
uations is signal quantization. We think of a quantizer
as a device that converts a real-valued signal into a
piecewise constant one taking on a finite set of val-
ues. Quantization may affect the process output (this
happens, for example, when the output measurements
to be used for feedback are obtained by using a digital
camera, stored in the memory of a digital computer, or
transmitted over a digital communication channel). It
may also affect the control input (examples include the

1 Supported by NSF grant ECS-0114725.

standard PWM amplifier and the manual transmission
on a car).

We assume that the given system evolves in contin-
uous time. In the presence of quantization, the state
space (or the input space) of the system is divided
into a finite number of quantization regions, each
corresponding to a fixed value of the quantizer. At
the time of passage from one quantization region to
another, the dynamics of the system change abruptly.
Therefore, systems with quantization can be naturally
viewed as hybrid systems, i.e., systems described by a
coupling between continuous and discrete dynamics.

There are two well-studied phenomena which account
for changes in the system’s behavior caused by quan-
tization. The first one is saturation: if the signal is
outside the range of the quantizer, then the quantiza-
tion error is large, and the control law designed for
the ideal case of no quantization leads to instability.
The second one is deterioration of performance near
the equilibrium: as the difference between the current
and the desired values of the state becomes small,
higher precision is required, and so in the presence of
quantization errors asymptotic convergence is impos-
sible. These phenomena manifest themselves in the
existence of two nested invariant regions such that all
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trajectories of the quantized system starting in the big-
ger region approach the smaller one, while no further
convergence guarantees can be given.

A standard assumption made in the literature is that
parameters of the quantizer are fixed in advance and
cannot be changed by the control designer; see, among
many sources, (Delchamps, 1990; Feng and Loparo,
1997; Lunze et al., 1999; Raisch, 1995; Sur and Paden,
1998; Wong and Brockett, 1999). There has been
some research concerned with the question of how the
choice of quantization parameters affects the behavior
of the system (Åström and Bernhardsson, 1999; Elia
and Mitter, 2001; Ishii and Francis, 2002; Liberzon
and Brockett, 2000). In this paper, building on the
earlier work reported in (Brockett and Liberzon, 2000;
Liberzon, 2000), we adopt the approach that it is
possible to vary some parameters of the quantizer on
line, on the basis of collected data. (In the example
where a quantizer is used to represent a camera, this
corresponds to zooming in or out, i.e., varying the
focal length, while the number of pixels of course
remains fixed.) When such manipulations are feasible,
they allow one to change the range of the quantizer and
the quantization error as the system evolves, thereby
helping to overcome the two difficulties described
above.

The quantization parameters will be updated at dis-
crete instants of time (these switching events will be
triggered by the values of a suitable Lyapunov func-
tion). This results in a hybrid quantized feedback con-
trol policy. There are several reasons for adopting a
hybrid control approach rather than varying the quan-
tization parameters continuously. First, in specific sit-
uations there may be some constraints on how many
values these parameters are allowed to take and how
frequently they can be adjusted. Thus a discrete adjust-
ment policy is more natural and easier to implement
than a continuous one. Secondly, the analysis of hy-
brid systems obtained in this way appears to be more
tractable than that of systems resulting from continu-
ous parameter tuning. In fact, we will see that invariant
regions defined by level sets of a Lyapunov function
provide a simple and effective tool for studying the
behavior of the closed-loop system. This also implies
that precise computation of the switching times is not
essential, which makes our hybrid control policies ro-
bust with respect to time delays.

The recent paper (Brockett and Liberzon, 2000) thor-
oughly investigates the hybrid control methodology
outlined above in the context of the feedback stabi-
lization problem for linear control systems with output
(or state) quantization. It is shown there that if a linear
system can be stabilized by a linear feedback law,
then it can also be globally asymptotically stabilized
by a hybrid quantized feedback control policy. The
control strategy is usually composed of two stages.
The first, “zooming-out” stage consists in increasing
the range of the quantizer until the state of the system

can be adequately measured. The second, “zooming-
in” stage involves applying feedback and at the same
time decreasing the quantization error in such a way
as to drive the state to the origin. The developments
of (Brockett and Liberzon, 2000) were restricted to
quantizers that give rise to rectilinear quantization re-
gions.

The present work generalizes the contributions of the
paper (Brockett and Liberzon, 2000) in two directions.
First, we consider more general types of quantizers,
with quantization regions having arbitrary shapes as
in (Lunze et al., 1999). This extension is important for
applications. For example, in the context of vision-
based feedback control mentioned earlier, the image
plane of the camera is divided into rectilinear regions,
but the shapes of the quantization regions in the state
space which result from computing inverse images of
these rectangles can be rather complicated. We will
demonstrate that the principal findings of (Brockett
and Liberzon, 2000) are still valid in this more general
setting.

The second goal of this paper is to address the quan-
tized feedback stabilization problem for nonlinear sys-
tems. It can be shown via a linearization argument
that by using the approach of (Brockett and Liber-
zon, 2000) one can obtain local asymptotic stabil-
ity for a nonlinear system, provided that the corre-
sponding linearized system is stabilizable; see (Hu
et al., 1999). Here we are concerned with achieving
global stability 2 results. We will show that the tech-
niques developed in (Brockett and Liberzon, 2000)
can be extended in a natural way to those nonlinear
systems that are input-to-state stabilizable with re-
spect to measurement disturbances. We thus reveal an
interesting interplay between the problem of quantized
feedback stabilization, the theory of hybrid systems,
and topics of current interest in nonlinear control de-
sign. A preliminary investigation of these questions
has been reported in (Liberzon, 2000), but only for
state quantizers with rectilinear quantization regions.

2. QUANTIZER

By a quantizer we mean a piecewise constant function
q :
� n ��� , where � is a finite subset of

� n . This
leads to a partition of

� n into a finite number of
quantization regions of the form � z � � n : q � z �	� l 
 ,
l � � . The shapes of these quantization regions are
arbitrary.

When z does not belong to the union of quantization
regions of finite size, the quantizer saturates. More
precisely, we assume that there exist positive real num-

2 Working with a given nonlinear system directly, one gains an
advantage even if only local asymptotic stability is sought, because
the linearization of a stabilizable nonlinear system may fail to be
stabilizable.



bers M and ∆ such that the following two conditions
hold:

(1) If �
z

���
M (1)

then �
z � q � z �

���
∆ � (2)

(2) If �
z

���
M

then �
q � z �

���
M � ∆ �

Condition 1 gives a bound on the quantization error
when the quantizer does not saturate. Condition 2 pro-
vides a way to detect the possibility of saturation. We
will refer to M and ∆ as the range of q and the quanti-
zation error, respectively. To preserve the equilibrium
at the origin, we also assume that q � 0 � � 0. An exam-
ple of a quantizer satisfying the above requirements is
provided by the quantizer with rectangular quantiza-
tion regions considered in earlier work (Brockett and
Liberzon, 2000; Liberzon, 2000).

In the control strategies to be developed below, we will
use quantized measurements of the form

µq � z
µ 	

where µ
�

0. The range of this quantizer is Mµ
and the quantization error is ∆µ . We can think of µ
as the “zoom” variable: increasing µ corresponds to
zooming out and essentially obtaining a new quantizer
with larger range and quantization error, whereas de-
creasing µ corresponds to zooming in and obtaining
a quantizer with a smaller range but also a smaller
quantization error. We will update µ at discrete in-
stants of time, so it will be the discrete state of the
resulting hybrid closed-loop system. In the camera
model mentioned in the Introduction, µ corresponds
to the inverse of the focal length 3 f . It is possible
to introduce more general, nonlinear scaling of the
quantized variable, as in ν 
 q 
 ν � 1 � z � where ν is some
invertible function from

� n to
� n and 
 denotes com-

position; however, this does not seem to introduce any
significant advantages in the context of the problems
studied here.

3. STATE QUANTIZATION

To fix ideas, we treat linear systems first.

3.1 Linear systems

Consider the linear system

ẋ � Ax � Bu  x � � n  u � � m � (3)

3 We prefer to work with µ � 1 � f rather than with f to avoid
system signals that grow unbounded, although this is merely a
formal distinction.

Suppose that (3) is stabilizable, so that for some
matrix K the eigenvalues of A � BK have negative
real parts. By the standard Lyapunov stability theory,
there exist positive definite symmetric matrices P and
Q such that

� A � BK � T P � P � A � BK � ��� Q � (4)

We will let λmin ��� � and λmax ��� � denote the smallest
and the largest eigenvalue of a symmetric matrix,
respectively. The inequality

λmin � P �
�
x

�
2

�
xT Px

�
λmax � P �

�
x

�
2

will be used repeatedly below. We will assume that
B �� 0 and K �� 0; this is no loss of generality because
the case of interest is when A is not a stability matrix.

In this section we are interested in the situation where
only quantized measurements of the state are avail-
able. Since the state feedback law u � Kx is not imple-
mentable, we apply the “certainty equivalence” quan-
tized feedback control law

u � Kµq � x
µ 	 � (5)

The closed-loop system can be written as

ẋ � � A � BK � x � BKµ � x
µ
� q � x

µ 	�� � (6)

The behavior of trajectories of the system (6) for a
fixed µ is characterized by the following result.

Lemma 1. Fix an arbitrary ε
�

0 and assume that M is
large enough compared to ∆ so that we have�

λmin � P � M
���

λmax � P � Θx∆ � 1 � ε � (7)

where

Θx : � 2 � PBK �
λmin � Q �

�
0 �

Then the ellipsoids�
1 : � � x : xT Px

�
λmin � P � M2µ2 
 (8)

and�
2 : � � x : xT Px

�
λmax � P � Θ2

x∆2 � 1 � ε � 2µ2 
 (9)

are invariant regions for the system (6). Moreover, all
solutions of (6) that start in the ellipsoid

�
1 enter the

smaller ellipsoid

�
2 in finite time.

PROOF. Whenever the inequality (1), and conse-
quently (2), hold with z � x � µ , the derivative of xT Px
along solutions of (6) satisfies

d
dt

xT Px ��� xT Qx � 2xT PBKµ � x
µ
� q � x

µ 	 �� � λmin � Q �
�
x

�
2 � 2

�
x

� � PBK � ∆µ
��� � x � λmin � Q � �

�
x

� � Θx∆µ �
This implies the following formula:

Θx∆ � 1 � ε � µ
���

x

���
Mµ�

(10)
d
dt

xT Px

� � � x � λmin � Q � Θx∆εµ �



Define the balls �
1 : � � x :

�
x

���
Mµ 


and
�

2 : � � x :

�
x

���
Θx∆ � 1 � ε � µ 
 �

In view of the inequality (7), we have�
2 � � 2 � � 1 � � 1 �

Combined with (10), this immediately implies that the
ellipsoids

�
1 and

�
2 are both invariant. The fact that

the trajectories starting in

�
1 approach

�
2 in finite

time follows from the bound on the derivative of xT Px
given by (10). Indeed, if a time t0 is given such that
x � t0 � belongs to

�
1 and if we let

T : � λmin � P � M2 � λmax � P � Θ2
x∆2 � 1 � ε � 2

Θ2
x∆2 � 1 � ε � λmin � Q � ε

(11)

then x � t0 � T � is guaranteed to belong to

�
2. �

As we explained before, a hybrid quantized feedback
control policy involves updating the value of µ at
discrete instants of time. Using this idea and Lemma 1,
it is possible to achieve global asymptotic stability, as
we now show.

Theorem 1. Assume that M is large enough compared
to ∆ so that we have�

λmin � P �
λmax � P � M

�
2∆max � 1  � PBK �

λmin � Q ��� � (12)

Then there exists a hybrid quantized feedback control
policy that makes the system (6) globally asymptoti-
cally stable.

PROOF. The control strategy is divided into two
stages.

The “zooming-out” stage. Set u equal to 0. Let µ � 0 � �
1. Then increase µ in a piecewise constant fashion,
fast enough to dominate the rate of growth of � eAt � .
For example, one can fix a positive number τ and let
µ � t �	� 1 for t ��� 0  τ � , µ � t �	� τe2 	 A 	 τ for t ��� τ  2τ � ,
µ � t � � 2τe2 	 A 	 2τ for t �
� 2τ  3τ � , and so on. Then there
will be a time t � 0 such that���� x � t �µ � t �

���� � � λmin � P �
λmax � P � M � 2∆

(by (12), the right-hand side of this inequality is posi-
tive). In view of condition 1 imposed in Section 2, this
implies ���� q � x � t �

µ � t ��� ���� � � λmin � P �
λmax � P � M � ∆ � (13)

We can thus pick a time t0 such that (13) holds with
t � t0. Therefore, in view of conditions 1 and 2 of
Section 2, we have���� x � t0 �µ � t0 �

���� � � λmin � P �
λmax � P � M

hence x � t0 � belongs to the ellipsoid

�
1 given by (8)

with µ � µ � t0 � . Note that this event can be detected
using only the available quantized measurements.

The “zooming-in” stage. Choose an ε
�

0 such that
the inequality (7) is satisfied; this is possible because
of (12). We know that x � t0 � belongs to

�
1 with µ �

µ � t0 � . We now apply the control law (5). Let µ � t � �
µ � t0 � for t �� t0  t0 � T � , where T is given by the
formula (11). Then x � t0 � T � belongs to the ellipsoid�

2 given by (9) with µ � µ � t0 � . For t ��� t0 � T  t0 �
2T � , let

µ � t � � Ωµ � t0 �
where

Ω : �

�
λmax � P � Θx∆ � 1 � ε ��

λmin � P � M
�

We have Ω � 1 by (7), hence µ � t0 � T ��� µ � t0 � . The
ellipsoid

�
2 with the old value µ � µ � t0 � is the same

as the ellipsoid

�
1 with the new value µ � µ � t0 �

T � . This means that we can continue the analysis for
t � t0 � T as before. Namely, x � t0 � 2T � belongs to the
ellipsoid

�
2 defined by (9) with µ � µ � t0 � T � . For

t ��� t0 � 2T  t0 � 3T � , let µ � t � � Ωµ � t0 � T � . Repeating
this procedure, we obtain the desired control policy.
Indeed, it is not hard to show that the equilibrium x � 0
of the continuous dynamics is stable in the sense of
Lyapunov. Moreover, we have µ � t � � 0 as t � ∞, and
the above analysis implies that x � t � � 0 as t � ∞. �
3.2 Nonlinear systems

Consider the system

ẋ � f � x  u �  x � � n  u � � m � (14)

It is natural to assume that there exists a state feed-
back law u � k � x � that makes the closed-loop system
globally asymptotically stable. Actually, we need to
assume that k satisfies the following stronger condi-
tion: there exists a smooth function V :

� n � � such
that for some class � ∞ functions α1  α2  α3  ρ and for
all x  e � � n we have

α1 �
�
x

�
�
�

V � x �
�

α2 �
�
x

�
� (15)

and�
x

� � ρ �
�
e

�
��� ∇V � x � f � x  k � x � e � �

� � α3 �
�
x

�
� �
(16)

According to the results of (Sontag, 1989; Sontag
and Wang, 1995), this is equivalent to saying that the
perturbed closed-loop system

ẋ � f � x  k � x � e � � (17)

is input-to-state stable (ISS) with respect to the mea-
surement disturbance input e.

Since only quantized measurements of the state are
available, we again consider the “certainty equiva-
lence” quantized feedback control law, which in this
case is given by

u � k � µq � x
µ 	 	 � (18)



The closed-loop system is

ẋ � f � x  k � µq � x
µ 	 	 � (19)

and this takes the form (17) with

e � µq � x
µ 	 � x � (20)

The behavior of trajectories of (19) for a fixed value
of µ is characterized by the following lemma.

Lemma 2. Assume that we have

α1 � Mµ �
�

α2 
 ρ � ∆µ � � (21)

Then the sets�
1 : � � x : V � x �

�
α1 � Mµ � 
 (22)

and �
2 : � � x : V � x �

�
α2 
 ρ � ∆µ � 
 (23)

are invariant regions for the system (19). Moreover,
all solutions of (19) that start in the set

�
1 enter the

smaller set

�
2 in finite time.

The next result is a nonlinear counterpart of Theo-
rem 1.

Theorem 2. Assume that the system ẋ � f � x  0 � is
forward complete and that for all µ

�
0 we have

α � 1
2 
 α1 � Mµ �

�
max � ρ � ∆µ �  χ � µ � � 2∆µ 
 (24)

where χ is some class � ∞ function. Then there exists
a hybrid quantized feedback control policy that makes
the system (19) globally asymptotically stable.

EXAMPLE. Consider the following system, which is a
simplified version of the system treated in the example
on page 811 in (Jiang et al., 1999):

ẋ � x3 � xu  x  u � � �
In (Jiang et al., 1999) it is shown how to construct a
feedback law k such that the closed-loop system

ẋ � x3 � xk � x � e �
is ISS with respect to e. It follows from the analysis
of (Jiang et al., 1999) that the inequalities (15) and
(16) hold with V � x � � x2 � 2, α1 � r � � α2 � r � � r2 � 2,
α3 � r �	� r2, and ρ � r �	� cr for an arbitrary c

�
1. We

have � α � 1
2 
 α1 � � r � � r, so (24) is valid for every

M

�
∆max � c  2 
 . �

4. OUTPUT QUANTIZATION

We now extend some of the above results to linear sys-
tems with output feedback. The developments that fol-
low are essentially based on the ideas from (Brockett
and Liberzon, 2000, Section 5). Other approaches
are also possible; see (Delchamps, 1989; Sur and
Paden, 1998).

Consider the linear system

ẋ � Ax � Bu

y � Cx

where x � � n , u � � m , and y � � p . Suppose that � A  B �
is a stabilizable pair and � C  A � is an observable pair.
This implies that there exist a feedback matrix K and
an output injection matrix L such that the eigenvalues
of A � BK and A � LC have negative real parts. The
eigenvalues of the matrix

Ā : � � A � BK � BK
0 A � LC �

then also have negative real parts, and so there exist
positive definite symmetric 2n � 2n matrices P̄ and Q̄
such that

ĀT P̄ � P̄Ā ��� Q̄ �
In this section we are interested in the situation where
only quantized measurements of the output y are avail-
able. We therefore consider the following dynamic
output feedback law, which is based on the standard
Luenberger observer but uses µq

� y
µ � instead of y:

˙̂x � � A � LC � x̂ � Bu � Lµq � y
µ 	

u � Kx̂
(25)

where x̂ � � n . The closed-loop system takes the form

ẋ � Ax � BKx̂

˙̂x � � A � LC � x̂ � BKx̂ � Lµq � y
µ 	

In the coordinates given by

x̄ : � � x
x � x̂ � � � 2n

we can rewrite this system more compactly as

˙̄x � Āx̄ � Lµ

�
0

y
µ
� q � y

µ 	�� � (26)

For a fixed value of µ , the behavior of this system is
characterized by the following result.

Lemma 3. Fix an arbitrary ε
�

0 and assume that M is
large enough compared to ∆ so that we have�

λmin � P̄ � M
� �

λmax � P̄ � Θy � C � ∆ � 1 � ε � (27)

where

Θy : � 2 � P̄L �
λmin � Q̄ �

�
Then the ellipsoids�

1 : � � x̄ : x̄T P̄x̄

�
λmin � P̄ � M2µ2 � � C � 2 
 (28)

and�
2 : � � x̄ : x̄T P̄x̄

�
λmax � P̄ � Θ2

y∆2 � 1 � ε � 2µ2 
 (29)

are invariant regions for the system (26). Moreover, all
solutions of (26) that start in the ellipsoid

�
1 enter the

smaller ellipsoid

�
2 in finite time.



Combining the dynamic output feedback law (25) with
the idea of updating the value of µ at discrete instants
of time as before, we arrive at the following result.

Theorem 3. Assume that M is large enough compared
to ∆ so that we have�

λmin � P̄ �
λmax � P̄ � M

�
max � 3∆  2∆

� P̄L � � C �
λmin � Q̄ � � � (30)

Then there exists a hybrid quantized feedback control
policy that makes the system (26) globally asymptoti-
cally stable.
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