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Abstract— We study the recently introduced notion of output-
input stability, which is a robust variant of the minimum-
phase property for general smooth nonlinear control systems.
This paper develops the theory of output-input stability in the
multi-input, multi-output setting. We show that output-input
stability is a combination of two system properties, one related
to detectability and the other to left-invertibility. For systems
affine in controls, we derive a necessary and sufficient condition
for output-input stability, which relies on a global version of the
nonlinear structure algorithm. This condition leads naturally to
a globally asymptotically stabilizing state feedback strategy for
affine output-input stable systems.

I. INTRODUCTION

For systems with inputs, two properties of interest are
asymptotic stability under zero inputs and bounded state
response to bounded inputs. It is well known that for linear
time-invariant systems the first property implies the second
one, but for nonlinear systems this is not the case. The
notion of input-to-state stability (ISS) introduced in [15]
captures both of the above properties. Its definition requires
the state of the system to be bounded by a suitable function
of the input, modulo a decaying term depending on initial
conditions. This guarantees that bounded inputs produce
bounded states and inputs converging (or equal) to zero
produce states converging to zero.

Dual concepts of detectability result if one considers sys-
tems with outputs. For linear systems, one of the equivalent
ways to define detectability is to demand that the state
converge to zero along every trajectory for which the output
is identically zero. The notion of output-to-state stability
(OSS) introduced in [17] is a robust version of the detectabil-
ity property for nonlinear systems and a dual of ISS. Its
definition requires the state of the system to be bounded
by a suitable function of the output plus a decaying term
depending on initial conditions. This ensures that the state is
bounded if the output is bounded and converges to zero if
the output converges to zero.

The present line of work is concerned with the minimum-
phase property of systems with both inputs and outputs. A
linear system is minimum-phase if whenever the output is
identically zero, both the state and the input must converge
to zero; in the frequency domain, this is characterized by
stability of system zeros. Byrnes and Isidori [2] provided
an important and natural extension of the minimum-phase
property to nonlinear systems (affine in controls). According

to their definition, a system is minimum-phase if its zero
dynamics—the internal dynamics of the system under the
action of an input that holds the output constantly at zero—
are asymptotically stable.

The above remarks suggest that to complete the picture,
one should have a robust version of the minimum-phase
property, which should ask the state and the input to be
bounded when the output is bounded and to become small
when the output is small. Such a concept was proposed in the
recent paper [9] under the name of output-input stability. Its
definition requires the state and the input of the system to be
bounded by a suitable function of the output and derivatives
of the output, modulo a decaying term depending on initial
conditions. The resulting property is in general stronger than
the minimum-phase property1 defined in [2]. Output-input
stability can be investigated with the help of the tools that
have been developed over the years to study ISS, OSS, and
related notions. As discussed in [9], the concept of output-
input stability finds applications in feedback stabilization,
adaptive control, and other areas.

The results of [9] provide a fairly complete theory of
output-input stable single-input, single-output (SISO) nonlin-
ear control systems. In this paper we continue to study the
output-input stability property for multi-input, multi-output
(MIMO) systems. Our goal is to investigate a connection
between output-input stability and structural properties of
control systems which have been studied in the context of
system inversion. In particular, we show the relevance of
the nonlinear structure algorithm in establishing output-input
stability. Our main result is that under a global regularity as-
sumption, this algorithm yields an equivalent characterization
of output-input stability for systems affine in controls. As an
application, we demonstrate that every square affine output-
input stable system covered by this result can be globally
asymptotically stabilized by state feedback. After providing
necessary definitions in Section II, establishing preliminary
results in Section III, and reviewing the nonlinear structure
algorithm in Section IV, we present our main result for
affine systems in Section V and then address the feedback
stabilization problem in Section VI. For proofs, see [8].

1Strictly speaking, this statement only makes sense for systems affine in
controls, because otherwise the minimum-phase property is not defined. For
example, the scalar system ẏ = 1 + y2 + u2 is output-input stable (since
|u| ≤ √

ẏ) but not minimum-phase (no input can hold the output at 0).



II. BACKGROUND AND PRELIMINARY RESULTS

Consider the system

ẋ = f(x, u)

y = h(x)
(1)

where the state x takes values in R
n, the input u takes

values in R
m, the output y takes values in R

p (for some
positive integers n, m, and p), and the functions f and
h are smooth. In this paper we restrict admissible input
(or “control”) signals to be at least continuous. For every
initial condition x(0) and every input u(·), there is a solution
x(·) of (1) defined on a maximal interval [0, Tmax), and the
corresponding output y(·). We write Ck for the space of k
times continuously differentiable functions u : [0,∞) → R

m,
where k is some nonnegative integer. Whenever the input
u is in Ck, the derivatives ẏ, ÿ, . . . , y(k+1) exist and are
continuous; they are given by

y(i)(t) = Hi

(

x(t), u(t), . . . , u(i−1)(t)
)

, i = 1, . . . , k + 1

where for i = 0, 1, . . . the functions Hi : R
n × (Rm)i → R

p

are defined recursively via H0 := h and

Hi+1(x, u0, . . . , ui) :=
∂Hi

∂x
f(x, u0) +

i−1
∑

j=0

∂Hi

∂uj

uj+1

(here the arguments of Hi are x ∈ R
n and u0, . . . , ui−1 ∈

R
m). Given integers 1 ≤ i ≤ j ≤ l and an R

l-valued signal
z, we will denote by zi...j the vector given by components i
through j of z, i.e.,

zi...j := (zi, . . . , zj)
T .

We will let ‖ · ‖[a,b] denote the supremum norm of a signal
restricted to an interval [a, b], i.e., ‖z‖[a,b] := sup{|z(s)| :
a ≤ s ≤ b}, where | · | is the standard Euclidean norm.

According to Definition 1 of [9], the system (1) is called
output-input stable if there exist a positive integer N , a class
KL function2 β, and a class K∞ function γ such that for
every x(0) and every u ∈ CN−1 the inequality
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holds for all t in the domain of the corresponding solution.
(The assumption that u belongs to CN−1 is made to guarantee
that y(N) is well defined, and can be weakened if the function
HN is independent of uN−1.)

2Recall that a function α : [0,∞) → [0,∞) is said to be of class K if
it is continuous, strictly increasing, and α(0) = 0. If α ∈ K is unbounded,
then it is said to be of class K∞. A function β : [0,∞)× [0,∞) → [0,∞)
is said to be of class KL if β(·, t) is of class K for each fixed t ≥ 0 and
β(s, t) decreases to 0 as t → ∞ for each fixed s ≥ 0.

It is perhaps best to interpret output-input stability as a
combination of two separate properties of the system. The
first one is expressed by the inequality

|x(t)| ≤ β(|x(0)|, t) + γ
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and corresponds to detectability (OSS) with respect to the
output and its derivatives, uniform over inputs. Following [9],
we will say that the system (1) is weakly uniformly 0-
detectable of order N if the inequality (3) holds, or just
weakly uniformly 0-detectable when an order is not specified.
The results of [7], [17] imply that the system (1) is weakly
uniformly 0-detectable of order N if there exists a contin-
uously differentiable, positive definite, radially unbounded
function V : R

n → R and class K∞ functions α, χ such that

∂V

∂x
f(x, u0) ≤ −α(|x|)+χ
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for all x, u0, . . . , uN−1. As explained in [9], the class of
weakly uniformly 0-detectable systems includes all affine
systems in global normal form with ISS inverse dynamics.

The second ingredient of the output-input stability property
is described by the inequality

|u(t)| ≤ β(|x(0)|, t) + γ
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ẏ
...

y(N)











∥

∥

∥

∥

∥

∥

∥

∥

∥

[0,t]













(5)

which says that the input should become small if the output
and its derivatives are small. Loosely speaking, this suggests
that the system has a stable left inverse in the input-output
sense. Unlike uniform detectability, this property does not
seem to admit a Lyapunov-like characterization. In the SISO
case it is closely related to the existence of a relative degree;
see [9, Theorem 1]. In general, however, this second property
needs to be understood better, which is precisely the goal of
the present paper. In the next section we formulate and study
a useful property which, in combination with (3), yields (5).

III. INPUT-BOUNDING PROPERTY

Let us say that the system (1) has the input-bounding
property if there exist a positive integer k∗ and two class
K∞ functions ρ1 and ρ2 such that we have

|u0| ≤ ρ1(|x|) + ρ2
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for all x, u0, . . . , uk∗
−1. Defined in this way, the input-

bounding property represents a functional relation between



the input and state variables, but one can recast this property
in terms of trajectories of the system. We point out that
the input-bounding property resembles in its appearance the
notion of relative degree as defined in [9] but is actually much
less restrictive, especially for MIMO systems. The next result
reveals the connection between output-input stability, weak
uniform 0-detectability, and the input-bounding property.

Proposition 1 The system (1) is output-input stable if and
only if it is weakly uniformly 0-detectable and has the input-
bounding property.

Proposition 1 explains the importance of the input-
bounding property. As we show next, a natural way of check-
ing this property for systems affine in controls is provided
by a global variant of the nonlinear structure algorithm.

IV. NONLINEAR STRUCTURE ALGORITHM

From now on, we restrict attention to the case when m ≤ p
and the system (1) is affine in controls, i.e., takes the form

ẋ = f(x) + G(x)u

y = h(x)
(7)

Its dynamics can also be written in more detail as

ẋ = f(x) +

m
∑

i=1

gi(x)ui.

We assume that f(0) = 0 and h(0) = 0 (although the
second assumption is only made for convenience and can be
removed). All functions are assumed to have the smoothness
required for all relevant derivatives to exist. Dimensions and
arguments of vectors and matrices will be omitted when clear
from the context.

The construction described below is based on Singh’s
algorithm for nonlinear system inversion [14]; this is a gen-
eralization of Hirschorn’s nonlinear structure algorithm [3],
which in turn is an extension of Silverman’s linear structure
algorithm [12], [13]. This algorithm can be used to generate
a left inverse system driven by the output y and its deriva-
tives. It corresponds to the zero dynamics algorithm for an
extended system with respect to the output y−h(x), and the
dynamics of the left inverse reduces to the zero dynamics
of the original system when driven by y ≡ 0; see [6].
(The differential-geometric interpretation reveals the intrin-
sic, coordinate-independent nature of the algorithm.) This
algorithm is also closely related to the dynamic extension
algorithm used to solve the dynamic state feedback input-
output decoupling problem (see [10, Sections 8.2 and 11.3]
for details). We now present its global version3 suitable for
our purposes (cf. [5, Section 11.5]).

3It is straightforward to obtain local counterparts of our results, which
would utilize the more commonly used local constructions to characterize
an appropriately defined local variant of output-input stability.

STEP 1. We have

ẏ = h̃1(x) + J̃1(x)u (8)

where h̃1(x) :=
∂h

∂x
(x)f(x) and J̃1(x) :=

∂h

∂x
(x)G(x).

Assume that the matrix J̃1(x) has a constant rank r1 and
a fixed set of r1 rows (empty if r1 = 0) that are linearly
independent for all x. Applying a permutation if necessary,
we take these rows to be the first r1 rows of J̃1(x). Parti-
tioning all vectors in the formula (8) accordingly, we write
ẏ1...r1

= h1(x) + J1(x)u and

ẏr1+1...p = ĥ1(x) + Ĵ1(x)u (9)

where h1(x) and ĥ1(x) are given by the first r1 and the last
p−r1 components of the vector h̃1(x), respectively, J1(x) is
a matrix of full row rank, and Ĵ1(x) ≡ F1(x)J1(x) for some
(p − r1) × r1 matrix F1(x). Substituting this last equation
into (9), we have

ẏr1+1...p = h̄1(x, ẏ1...r1
) (10)

where h̄1(x, ẏ1...r1
) := ĥ1(x) +

(

ẏ1...r1
− h1(x)

)

F1(x).
STEP 2. Differentiating the formula (10), we obtain

ÿr1+1...p = h̃2(x, ẏ1...r1
, ÿ1...r1

) + J̃2(x, ẏ1...r1
)u (11)

where

h̃2 :=
∂h̄1

∂x
(x, ẏ1...r1

)f(x) +

r1
∑

i=1

∂h̄1

∂ẏi

(x, ẏ1...r1
)ÿi

and J̃2(x, ẏ1...r1
) :=

∂h̄1

∂x
(x, ẏ1...r1

)G(x). Assume that the

matrix
(

J1(x)

J̃2(x, ẏ1...r1
)

)

has a constant rank r2 and there

is a fixed set of r2 − r1 rows (empty if r2 = r1) of
J̃2(x, ẏ1...r1

) which together with the rows of J1(x) form
a linearly independent set for all x and ẏ1...r1

. Without loss
of generality, we assume that these are the first r2 − r1 rows
of J̃2(x, ẏ1...r1

). Then (11) gives

ÿr1+1...r2
= h2(x, ẏ1...r1

, ÿ1...r1
) + J2(x, ẏ1...r1

)u

and

ÿr2+1...p = ĥ2(x, ẏ1...r1
, ÿ1...r1

) + Ĵ2(x, ẏ1...r1
)u (12)

where h2(x, ẏ1...r1
, ÿ1...r1

) and ĥ2(x, ẏ1...r1
, ÿ1...r1

) are given
by the first r2−r1 and the last p−r2 components of the vector
h̃2(x, ẏ1...r1

, ÿ1...r1
), respectively, J2(x, ẏ1...r1

) is a matrix of
full row rank, and Ĵ2(x, ẏ1...r1

) ≡ F2(x, ẏ1...r1
)J2(x, ẏ1...r1

)
for some (p − r2) × (r2 − r1) matrix F2(x, ẏ1...r1

). Using
this last equation, we can rewrite (12) as

ÿr2+1...p = h̄2(x, ẏ1,...,r1
, ÿ1,...,r2

)

where h̄2 := ĥ2 +
(

ÿr1+1...r2
− h2

)

F2.
STEP k. Differentiating the formula

y
(k−1)
rk−1+1...p = h̄k−1

(

x, ẏ1...r1
, . . . , y

(k−1)
1...rk−1

)



obtained at step k − 1, we have

y
(k)
rk−1+1...p = h̃k

(

x, ẏ1...r1
, . . . , y

(k)
1...rk−1

)

+ J̃k

(

x, ẏ1...r1
, . . . , y

(k−1)
1...rk−1

)

u
(13)

where

h̃k :=
∂h̄k−1

∂x
f(x) +

k−1
∑

j=1

rj
∑

i=1

∂h̄k−1

∂y
(j)
i

y
(j+1)
i

and

J̃k :=
∂h̄k−1

∂x

(

x, ẏ1...r1
, . . . , y

(k−1)
1...rk−1

)

G(x).

The global regularity assumption that we need to make at
this general step reads as follows.
ASSUMPTION 1. The p × m matrix
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has a constant rank rk and there is a fixed set of
rk − rk−1 rows (empty if rk = rk−1) of the matrix
J̃k(x, ẏ1...r1

, . . . , y
(k−1)
1...rk−1

) which together with the rows of
J1(x), . . . , Jk−1(x, ẏ1...r1

, . . . , y
(k−2)
1...rk−2

) form a linearly
independent set for all x, ẏ1...r1

, . . . , y
(k−1)
1...rk−1

.
After a possible permutation, we take the desired rows of

J̃k(x, ẏ1...r1
, . . . , y

(k−1)
1...rk−1

) to be the first rk − rk−1 rows of
this matrix. Then we use (13) to write

y
(k)
rk−1+1...rk

= hk + Jku (14)

and
y
(k)
rk+1...p = ĥk + Ĵku (15)

where hk and ĥk are given by the first rk−rk−1 and the last
p− rk components of the vector h̃k(x, ẏ1...r1

, . . . , y
(k)
1...rk−1

),
respectively, Jk(x, ẏ1...r1

, . . . , y
(k−1)
1...rk−1

) is a matrix of full
row rank, and Ĵk ≡ FkJk for some (p − rk) × (rk −

rk−1) matrix Fk(x, ẏ1...r1
, . . . , y

(k−1)
1...rk−1

). In view of the last
equation, (15) implies that

y
(k)
rk+1...p = h̄k

(

x, ẏ1...r1
, . . . , y

(k)
1...rk

)

where h̄k := ĥk +
(

y
(k)
rk−1+1...rk

− hk

)

Fk.

By construction, r1 ≤ r2 ≤ · · · ≤ m. If for some k∗ we
have rk∗ = m, then the algorithm terminates. If rn < m,
then such a k∗ does not exist.

The following example illustrates the application of the
algorithm to a system satisfying Assumption 1 at each step.

EXAMPLE 1. Consider the system

ẋ1 = u1

ẋ2 = x3 + x2u1

ẋ3 = u2

ẋ4 = −x4 + x2
1

y = (x1, x2)
T

(16)

The output derivatives are given by
(

ẏ1

ẏ2

)

=

(

0
x3

)

+

(

1 0
x2 0

)(

u1

u2

)

so r1 = 1. We have

ẏ2 = x3 + x2u1 = x3 + x2ẏ1. (17)

Differentiating this equation yields

ÿ2 = x3ẏ1 + x2ÿ1 +
(

x2ẏ1 1
)

(

u1

u2

)

. (18)

The matrix
(

1 0
x2ẏ1 1

)

is nonsingular for all x and ẏ1, hence

r2 = 2 and the algorithm terminates with k∗ = 2.

V. OUTPUT-INPUT STABILITY OF AFFINE SYSTEMS

Theorem 1 Let Assumption 1 hold for each k ≥ 0. Then the
system (7) is output-input stable if and only if it is weakly
uniformly 0-detectable and the algorithm of Section IV gives
rk∗ = m for some k∗.

EXAMPLE 1 (continued). Consider again the system (16). We
have |u1| = |ẏ1|, while from the formula (18) we obtain

u2 = ÿ2 − x3ẏ1 − x2ÿ1 − x2ẏ
2
1

hence

|u2| ≤ |ÿ2| +
1

2
x2

3 +
1

2
ẏ2
1 + x2

2 +
1

2
ÿ2
1 +

1

2
ẏ4
1 .

Thus the system has the input-bounding property. It is also
weakly uniformly 0-detectable of order 1, as is seen from

|x3| = |ẏ2 − y2ẏ1| ≤ |ẏ2| +
1

2
y2
2 +

1

2
ẏ2
1

and the fact that the equation for x4, which describes the
inverse dynamics, is ISS with respect to x1. (In view of
the above calculations, it is straightforward to check that
the Lyapunov-like sufficient condition for weak uniform 0-
detectability, expressed by the inequality (4), applies with
V (x) := xT x.) Therefore, (16) is output-input stable.

Remark 1 The above results can be used to establish output-
input stability of some nonaffine systems. Note that to have
the input-bounding property, we only need to be able to
bound—and not necessarily solve for—the input in terms



of the state and derivatives of the output. As a simple
generalization, consider a system of the form

ẋ = f(x) +

m
∑

i=1

gi(x)γi(ui)

where the functions γi, i = 1, . . . ,m are bounded from below
by some class K∞ functions. It is easy to show that if the
associated “virtual input” system

ẋ = f(x) +
m

∑

i=1

gi(x)vi

is covered by the sufficiency part of Theorem 1 (i.e., if it is
weakly uniformly 0-detectable and globally left-invertible),
then the original nonaffine system is output-input stable. Of
course, left-invertibility of the virtual input system is not
necessary. One can even have more inputs than outputs; for
example, the scalar system ẏ = u2

1 + u4
2 is clearly output-

input stable.

The next example illustrates what can happen when As-
sumption 1 is violated.
EXAMPLE 2. Consider the system

ẋ1 = u1

ẋ2 = x3 + x2u2

ẋ3 = u2

ẋ4 = −x4 + x2
1

y = (x1, x2)
T

(19)

We have
(

ẏ1

ẏ2

)

=

(

0
x3

)

+

(

1 0
0 x2

)(

u1

u2

)

and the rank of the matrix on the right-hand side drops from
2 to 1 when x2 = 0. It is not difficult to show that we can
pick a bounded sequence of initial states along which x2(0)
converges to 0, a sequence of values of u2(0) converging to
∞, and appropriately chosen sequences of values for u̇2(0),
ü2(0), . . . such that the derivatives ẏ2(0), ÿ2(0), . . . are all
kept at zero. Also, let u1 ≡ 0 so that y1 ≡ 0. This implies
that the inequality (5) is violated for small t, hence (19) is not
output-input stable. (The proof of [9, Theorem 1] contains a
general argument along these lines.)

It is instructive to note that both the system (16) considered
in Example 1 and the system (19) considered in Example 2
are minimum-phase, with zero dynamics in both cases being
given by ẋ4 = −x4. An important fact not elucidated by
zero dynamics is that the minimum-phase property of (16)
is “robust” (small y, ẏ, . . . force x and u to be small) while
the minimum-phase property of (19) is “fragile” (small y, ẏ,
. . . can correspond to arbitrarily large u).

For SISO affine systems, Assumption 1 and the existence
of a k∗ such that rk∗ = m reduce to the property that the
system has a uniform relative degree as defined, e.g., in [4].

In the SISO case, output-input stability actually implies the
existence of a relative degree for a class of systems which
includes systems affine in controls; see [9, Theorem 1]. For
MIMO systems, the existence of a uniform (vector) relative
degree in the sense of [4] is a sufficient but not necessary
condition for the structure algorithm to terminate at a k∗

satisfying rk∗ = m, and neither Assumption 1 nor the
existence of a uniform relative degree is necessary for output-
input stability. Note that the system considered in Example 1
does not have a uniform relative degree. The next example
demonstrates that the system may still be output-input stable
when Assumption 1 does not hold.
EXAMPLE 3. The system

ẋ1 = u1

ẋ2 = x5 + x4u2

ẋ3 = x4

ẋ4 = u2

ẋ5 = u3

y = (x1, x2, x3)
T

(20)

is output-input stable, as can be seen from the formulas u1 =
ẏ1, u2 = ÿ3, u3 = ÿ2 − ÿ2

3 − ẏ3
...
y 3, x4 = ẏ3, and x5 =

ẏ2 − ẏ3ÿ3. However, when we try to apply the nonlinear
structure algorithm, we obtain





ẏ1

ẏ2

ẏ3



 =





0
x5

x4



 +





1 0 0
0 x4 0
0 0 0









u1

u2

u3





and the matrix does not have a constant rank4.
For affine systems in global normal form, the weak uni-

form 0-detectability property amounts to ISS of the inverse
dynamics with respect to the outputs and their derivatives5.
As is well known, ISS admits a necessary and sufficient
Lyapunov-like characterization [16]. To transform the affine
system (7) to global normal form, one must require com-
pleteness of appropriate vector fields, to ensure that the
coordinate transformation map defined by the outputs, their
derivatives, and the states of the inverse dynamics is onto
(see [4, Section 9.1] for SISO systems and [5, Section 11.5]
for MIMO systems). Our formulation, which avoids such
completeness assumptions, is more general and applies to not
necessarily affine systems. However, checking weak uniform
0-detectability in the absence of a global normal form is
more difficult, because of the need to handle the states not
appearing as states of the reduced inverse dynamics. These
states are expressed statically in terms of the outputs, their

4The system (20) has trivial zero dynamics (x ≡ 0) but x = 0 is not
a regular point of the zero dynamics algorithm. This problem could be
corrected if we allowed greater flexibility in choosing the order of output
differentiation (e.g., in the present case, differentiate y3 before y2).

5More precisely, we need ISS with respect to all possible signals that the
outputs and their relevant derivatives can produce; these two notions are in
general not the same (see [1]).



derivatives, and the states of the reduced inverse dynam-
ics [6]. In Examples 1 and 3 above, this dependence was
rather simple (polynomial), and the desired bound (3) could
be obtained. The following example illustrates a different
situation.
EXAMPLE 4. Consider the scalar system ẋ = u, y =
arctan x. From the equation ẏ = u/(1+x2) we easily deduce
the input-bounding property as before. On the other hand,
this system is not weakly uniformly 0-detectable. Indeed,
when u ≡ 0, all derivatives of y are zero. Since |y| ≤ π/2,
it is not possible to obtain a bound of the form |x(t)| ≤
β(|x(0)|, t) + γ(‖y‖[0,t]) for all corresponding trajectories.
This system also does not admit a global normal form
because the map x 7→ y is not onto. Note that the inverse of
this map is given by the solution of the differential equation
dx/dy = 1 + x2 with initial condition x(0) = 0, which is
not globally defined because the vector field g̃(x) := 1 + x2

is not complete.

VI. FEEDBACK STABILIZATION

As an application of the above concepts and results, we
now discuss the relationship suggested in the title of this
paper. Namely, we show that if the affine system (7) with
the same number of inputs and outputs satisfies the necessary
and sufficient condition for output-input stability provided by
Theorem 1, then it can be globally asymptotically stabilized
by state feedback. The main idea is that if a feedback law
stabilizes the output—more precisely, if the resulting output
is a solution of a globally asymptotically stable system—
then weak uniform 0-detectability implies that the overall
closed-loop system is automatically stabilized. The existence
of an output-stabilizing feedback is, in turn, guaranteed by
left-invertibility. An explicit construction of a static output-
stabilizing state feedback law can be given. (It is known
that a dynamic output-stabilizing state feedback can be
obtained after rendering the system noninteractive; see [10,
Section 8.2] or [4, Section 5.4].) An independent—and more
extensive—study of an essentially equivalent static feedback
stabilization scheme appears in [11].

Theorem 2 Suppose that the system (7) with m = p is
weakly uniformly 0-detectable, Assumption 1 holds for each
k ≥ 0, and the algorithm of Section IV gives rk∗ = m for
some k∗. Then there exists a static state feedback law which
makes the closed-loop system globally asymptotically stable.

EXAMPLE 1 (revisited). For the system (16) we can let, e.g.,
u1 = −x1 to obtain ẏ1 = −x1 = −y1. Substituting this into
the equations (17) and (18) gives ẏ2 = x3 − x2x1 and

ÿ2 = −x3x1 + x2x1 + x2x
2
1 + u2.

The control u2 = x3x1 − x2x
2
1 − x2 − x3 makes y2 satisfy

the equation ÿ2 = −ẏ2 − y2, and the output is stabilized.

We remark that the system (20) considered in Example 3
can be easily stabilized by static state feedback, even though
it fails to satisfy Assumption 1. Indeed, first stabilize x1 by
a linear feedback law u1 = k11x1, then stabilize x3 and x4

by u2 = k23x3 + k24x4, and finally stabilize x2 and x5 by a
linearizing feedback law u3 = k3(x2, x3, x4, x5).
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