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Abstract

We study the recently introduced notion of output–input stability, which is a robust variant of the minimum-phase property
for general smooth nonlinear control systems. This paper develops the theory of output–input stability in the multi-input,
multi-output setting. We show that output–input stability is a combination of two system properties, one related to detectability
and the other to left-invertibility. For systems a4ne in controls, we derive a necessary and su4cient condition for output
–input stability, which relies on a global version of the nonlinear structure algorithm. This condition leads naturally to a
globally asymptotically stabilizing state feedback strategy for a4ne output–input stable systems.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

For systems with inputs, two properties of interest
are asymptotic stability under zero inputs and bounded
state response to bounded inputs. It is well known
that for linear time-invariant systems the :rst prop-
erty implies the second one, but for nonlinear systems
this is not the case. The notion of input-to-state sta-
bility (ISS) introduced in [15] captures both of the
above properties. Its de:nition requires the state of the
system to be bounded by a suitable function of the
input, modulo a decaying term depending on initial
conditions. This guarantees that bounded inputs pro-
duce bounded states and inputs converging (or equal)
to zero produce states converging to zero.

� This work was supported by NSF ECS-0134115 CAR, NSF
ECS-0114725, and DARPA/AFOSR MURI F49620-02-1-0325
grants.
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Dual concepts of detectability result if one con-
siders systems with outputs. For linear systems, one
of the equivalent ways to de:ne detectability is to
demand that the state converge to zero along every
trajectory for which the output is identically zero. The
notion of output-to-state stability (OSS) introduced
in [17] is a robust version of the detectability property
for nonlinear systems and a dual of ISS. Its de:nition
requires the state of the system to be bounded by a
suitable function of the output plus a decaying term
depending on initial conditions. This ensures that the
state is bounded if the output is bounded and converges
to zero if the output converges to zero.
The present line of work is concerned with the

minimum-phase property of systems with both inputs
and outputs. A linear system is minimum-phase if
whenever the output is identically zero, both the state
and the input must converge to zero; in the frequency
domain, this is characterized by stability of system ze-
ros. Byrnes and Isidori [2] provided an important and
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natural extension of the minimum-phase property to
nonlinear systems (a4ne in controls). According to
their de:nition, a system is minimum-phase if its zero
dynamics—the internal dynamics of the system under
the action of an input that holds the output constantly
at zero—are asymptotically stable.
The above remarks suggest that to complete the

picture, one should have a robust version of the
minimum-phase property, which should ask the state
and the input to be bounded when the output is
bounded and to become small when the output is
small. Such a concept was proposed in the recent pa-
per [8] under the name of output–input stability. Its
de:nition requires the state and the input of the sys-
tem to be bounded by a suitable function of the output
and derivatives of the output, modulo a decaying term
depending on initial conditions. The resulting prop-
erty is in general stronger than the minimum-phase
property 1 de:ned in [2]. Output–input stability can
be investigated with the help of the tools that have
been developed over the years to study ISS, OSS, and
related notions. As discussed in [8], the concept of
output–input stability :nds applications in feedback
stabilization, adaptive control, and other areas.
The results of [8] provide a fairly complete the-

ory of output–input stable single-input, single-output
(SISO) nonlinear control systems. In this paper we
continue to study the output–input stability property
for multi-input, multi-output (MIMO) systems. Our
goal is to investigate a connection between output
–input stability and structural properties of control
systems which have been studied in the context of
system inversion. In particular, we show the rel-
evance of the nonlinear structure algorithm in es-
tablishing output–input stability. Our main result is
that under a global regularity assumption, this algo-
rithm yields an equivalent characterization of output
–input stability for systems a4ne in controls. As
an application, we demonstrate that every square
a4ne output–input stable system covered by this
result can be globally asymptotically stabilized by
state feedback. After providing necessary de:ni-

1 Strictly speaking, this statement only makes sense for systems
a4ne in controls, because otherwise the minimum-phase property
is not de:ned. For example, the scalar system ẏ= 1+ y2 + u2 is
output–input stable (because |u|6√

ẏ) but not minimum-phase
(in fact, no input can hold the output at zero).

tions in Section 2, establishing preliminary results in
Section 3, and reviewing the nonlinear structure
algorithm in Section 4, we prove and discuss our
main result for a4ne systems in Section 5 and then
address the feedback stabilization problem inSection 6.
Brief conclusions are given in Section 7.

2. Background

Consider the system

ẋ = f(x; u);

y = h(x); (1)

where the state x takes values in Rn, the input u takes
values in Rm, the output y takes values in Rp (for
some positive integers n, m, and p), and the functions
f and h are smooth. In this paper we restrict admissi-
ble input (or “control”) signals to be at least continu-
ous. For every initial condition x(0) and every input
u(·), there is a solution x(·) of (1) de:ned on a max-
imal interval [0; Tmax), and the corresponding output
y(·). We write Ck for the space of k times continu-
ously diMerentiable functions u : [0;∞) → Rm, where
k is some nonnegative integer. Whenever the input u
is in Ck , the derivatives ẏ; Ny; : : : ; y(k+1) exist and are
continuous; they are given by

y(i)(t) = Hi(x(t); u(t); : : : ; u(i−1)(t));

i = 1; : : : ; k + 1; t ∈ [0; Tmax]; (2)

where for i=0; 1; : : : the functions Hi :Rn × (Rm)i →
Rp are de:ned recursively via H0 := h and

Hi+1(x; u0; : : : ; ui) :=
@Hi

@x
f(x; u0) +

i−1∑
j=0

@Hi

@uj
uj+1

(here the arguments ofHi are x∈Rn and u0; : : : ; ui−1 ∈
Rm). Given integers 16 i6 j6 l and an Rl-valued
signal z, we will denote by zi:::j the vector given by
components i through j of z, i.e.,

zi:::j :=




zi

...

zj


 :

We will let ‖ · ‖[a;b] denote the supremum norm of a
signal restricted to an interval [a; b], i.e., ‖z‖[a;b] :=
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sup{|z(s)| : a6 s6 b}, where | · | is the standard
Euclidean norm.
According to De:nition 1 of [8], system (1) is called

output–input stable if there exist a positive integer N ,
a class KL function 2 �, and a class K∞ function
� such that for every initial state x(0) and every input
u∈CN−1 the inequality

∣∣∣∣∣
(

x(t)

u(t)

)∣∣∣∣∣6 �(|x(0)|; t) + �




∥∥∥∥∥∥∥∥∥∥∥∥




y

ẏ

...

y(N )




∥∥∥∥∥∥∥∥∥∥∥∥
[0; t]




(3)

holds for all t in the domain of the corresponding
solution. (The assumption that u belongs to CN−1 is
made to guarantee that y(N ) is well de:ned, and can be
weakened if the function HN is independent of uN−1.)

It is perhaps best to interpret output–input stability
as a combination of two separate properties of the
system. The :rst one is expressed by the inequality

|x(t)|6 �(|x(0)|; t) + �




∥∥∥∥∥∥∥∥∥∥∥∥




y

ẏ

...

y(N )




∥∥∥∥∥∥∥∥∥∥∥∥
[0; t]




(4)

and corresponds to detectability (OSS) with re-
spect to the output and its derivatives, uniform
over inputs. Following [8], we will say that the
system (1) is weakly uniformly 0-detectable of
order N if inequality (4) holds, or just weakly
uniformly 0-detectable when an order is not
speci:ed. The results of [7,17] imply that the
system (1) is weakly uniformly 0-detectable of
order N if there exists a continuously diMeren-
tiable, positive de:nite, radially unbounded function
V :Rn → R that satis:es

@V
@x

f(x; u0)6−�(|x|)

2 Recall that a function � : [0;∞) → [0;∞) is said to be of
class K if it is continuous, strictly increasing, and �(0) = 0. If
�∈K is unbounded, then it is said to be of classK∞. A function
� : [0;∞)× [0;∞) → [0;∞) is said to be of class KL if �(·; t)
is of class K for each :xed t¿ 0 and �(s; t) decreases to 0 as
t → ∞ for each :xed s¿ 0.

+�



∣∣∣∣∣∣∣∣∣




H0(x)

...

HN (x; u0; : : : ; uN−1)



∣∣∣∣∣∣∣∣∣




∀x; u0; : : : ; uN−1 (5)

for some functions �; �∈K∞. As explained in [8],
the class of weakly uniformly 0-detectable systems
includes all a4ne systems in global normal form with
ISS inverse dynamics.
The second ingredient of the output–input stability

property is described by the inequality

|u(t)|6 �(|x(0)|; t) + �




∥∥∥∥∥∥∥∥∥∥∥∥




y

ẏ

...

y(N )




∥∥∥∥∥∥∥∥∥∥∥∥
[0; t]




(6)

which says that the input should become small if the
output and its derivatives are small. Loosely speaking,
this suggests that the system has a stable left inverse in
the input–output sense. Unlike uniform detectability,
this property does not seem to admit a Lyapunov-like
characterization. In the SISO case it is closely related
to the existence of a relative degree; see [8, Theorem
1]. In general, however, this second property needs to
be understood better, which is precisely the goal of the
present paper. In the next section we formulate and
study a useful property which, in combination with
(4), yields (6).

3. Input-bounding property

Let us say that the system (1) has the input-bounding
property if there exist a positive integer k∗ and two
class K∞ functions �1 and �2 such that we have

|u0|6 �1(|x|) + �2



∣∣∣∣∣∣∣∣∣




H1(x; u0)

...

Hk∗(x; u0; : : : ; uk∗−1)



∣∣∣∣∣∣∣∣∣




∀x; u0; : : : ; uk∗−1: (7)

De:ned in this way, the input-bounding property
represents a functional relation between the input and
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state variables. The next result recasts this property in
terms of trajectories of the system.

Lemma 1. The system (1) has the input-bounding
property if and only if there exist a positive integer
k∗ and two class K∞ functions �1 and �2 such that
for every initial condition and every input u∈Ck∗−1

the inequality

|u(t)|6 �1(|x(t)|) + �2



∣∣∣∣∣∣∣∣∣




ẏ(t)

...

y(k∗)(t)



∣∣∣∣∣∣∣∣∣


 (8)

holds for all t in the domain of the corresponding
solution.

Proof. In view of (2), it is clear that (7) implies
(8), with the same k∗ and �1; �2. To show the con-
verse, suppose that (7) is violated for some �1; �2

and x; u0; : : : ; uk∗−1. Take x to be the initial condition
and apply an input u satisfying u(i)(0) = ui,
i = 0; : : : ; k∗ − 1. Then it is easy to see that (8) does
not hold for small t.

We point out that the input-bounding property re-
sembles in its appearance the notion of relative degree
as de:ned in [8] but is actually much less restrictive,
especially for MIMO systems. Reasoning as in the
proof of [8, Proposition 3] modulo a slight change in
notation, we obtain the following useful characteriza-
tion of the input-bounding property.

Lemma 2. The system (1) has the input-bounding
property if and only if there exists a positive integer
k∗ such that the following two conditions are both
satis7ed:

1. For each compact set X ⊂ Rn and each positive
number K, there exists a number M such that∣∣∣∣∣∣∣∣∣∣




H1(x; u0)

...

Hk∗(x; u0; : : : ; uk∗−1)




∣∣∣∣∣∣∣∣∣∣
¿K

whenever x∈X and |u0|¿M:

2. We have


H1(0; u0)

...

Hk∗(0; u0; : : : ; uk∗−1)


 
= 0 ∀u0 
= 0:

The next result reveals the connection between out-
put–input stability, weak uniform 0-detectability, and
the input-bounding property.

Proposition 1. The system (1) is output–input stable
if and only if it is weakly uniformly 0-detectable and
has the input-bounding property.

Proof. Let us start with su4ciency. Weak uniform
0-detectability is characterized by the inequality

|x(t)|6 �̂(|x(0)|; t) + �̂




∥∥∥∥∥∥∥∥∥∥∥∥




y

ẏ

...

y(k̂)




∥∥∥∥∥∥∥∥∥∥∥∥
[0; t]




(9)

for some k̂¿ 0, �̂∈KL, and �̂∈K∞. Since (1)
has the input-bounding property, by Lemma 1 the
inequality (8) holds with �1; �2 ∈K∞. Combin-
ing this with (9) and using the simple fact that for
every class K function � and arbitrary numbers
s1; s2¿ 0 one has �(s1 + s2)6 �(2s1) + �(2s2), we
arrive at the inequality (3) with N := max{k̂ ; k∗},
�(s; t) := �1(2�̂(s; t)) + �̂(s; t), and �(s) :=
�1(2�̂(s)) + �2(s) + �̂(s). Thus (1) is output–input
stable, with N =max{k̂ ; k∗}.
To prove necessity, :rst note that output–input

stability clearly implies weak uniform 0-detectability
of order N . We now show that the input-bounding
property holds with k∗ = N . Suppose the con-
trary and invoke Lemma 2. If condition 1 of that
lemma is violated, then we can :nd sequences
{xj}; {u0; j}; : : : ; {uN−1; j} such that u0; j → ∞ as j →
∞ while xj; H1(xj; u0; j); : : : ; HN (xj; u0; j ; : : : ; uN−1; j)
stay bounded. For each positive integer j, consider
a trajectory of (1) which corresponds to the ini-
tial condition x(0) = xj and some input u satisfying
u(i)(0) = ui; j, i = 0; : : : ; N − 1. Increasing j, we see
that the inequality (6) cannot hold for small t in view



D. Liberzon / Systems & Control Letters 53 (2004) 237–248 241

of (2), hence the system is not output–input stable
and we reach a contradiction. On the other hand, if
condition 2 of Lemma 2 is violated, then we can :nd
a constant nonzero input which produces a trajectory
with x(0) = 0 and y(0) = ẏ(0) = · · · = y(N )(0) = 0,
and this again contradicts (6) for small t.

Proposition 1 explains the importance of the input-
bounding property. As we will see next, a natural way
of checking this property for systems a4ne in con-
trols is provided by a global variant of the nonlinear
structure algorithm.

4. Nonlinear structure algorithm

In most of what follows, we restrict our attention to
the case when m6p and the system (1) is a4ne in
controls, i.e., it takes the form

ẋ = f(x) + G(x)u;

y = h(x): (10)

Its dynamics can also be written in more detail as

ẋ = f(x) +
m∑
i=1

gi(x)ui:

We assume that f(0) = 0 and h(0) = 0 (although the
second assumption is only made for convenience and
can be removed). All functions are assumed to have
the smoothness required for all relevant derivatives
to exist. Dimensions of vectors and matrices will be
omitted when clear from the context.
The construction described below is based on

Singh’s algorithm for nonlinear system inversion
[14]; this is a generalization of Hirschorn’s nonlinear
structure algorithm [3], which in turn is an extension
of Silverman’s linear structure algorithm [12,13].
This algorithm can be used to generate a left inverse
system driven by the output y and its derivatives. It
corresponds to the zero dynamics algorithm for an
extended system with respect to the output y − h(x),
and the dynamics of the left inverse reduces to the
zero dynamics of the original system when driven by
y ≡ 0; see [6]. (The diMerential-geometric interpreta-
tion reveals the intrinsic, coordinate-independent na-
ture of the algorithm.) This algorithm is also closely
related to the dynamic extension algorithm used to

solve the dynamic state feedback input–output decou-
pling problem (see [9, Sections 8.2 and 11.3] for de-
tails). We now present its global version 3 suitable for
our purposes (cf. [5, Section 11.5]).
Step 1: We have

ẏ = h̃1(x) + J̃ 1(x)u; (11)

where

h̃1(x) :=
@h
@x

(x)f(x) and J̃ 1(x) :=
@h
@x

(x)G(x):

Assume that the matrix J̃ 1(x) has a constant rank r1
and a :xed set of r1 rows (empty if r1 = 0) that are
linearly independent for all x. Applying a permutation
if necessary, we take these rows to be the :rst r1 rows
of J̃ 1(x). Partitioning all vectors in the formula (11)
accordingly, we write

ẏ 1:::r1 = h1(x) + J1(x)u

and

ẏ r1+1:::p = ĥ1(x) + Ĵ 1(x)u; (12)

where h1(x) and ĥ1(x) are given by the :rst r1 and the
last p − r1 components of the vector h̃1(x), respec-
tively, J1(x) is a matrix of full row rank, and Ĵ 1(x) ≡
F1(x)J1(x) for some (p− r1)× r1 matrix F1(x). Sub-
stituting this last equation into (12), we have

ẏ r1+1:::p = Th1(x; ẏ 1:::r1 ); (13)

where

Th1(x; ẏ 1:::r1 ) := ĥ1(x) + F1(x)(ẏ 1:::r1 − h1(x)):

Step 2: DiMerentiating the formula (13), we obtain

Ny r1+1:::p = h̃2(x; ẏ 1:::r1 ; Ny 1:::r1 ) + J̃ 2(x; ẏ 1:::r1 )u; (14)

where

h̃2(x; ẏ 1:::r1 ; Ny 1:::r1 ) :=
@ Th1
@x

(x; ẏ 1:::r1 )f(x)

+
r1∑
i=1

@ Th1
@ẏ i

(x; ẏ 1:::r1 ) Ny i

and

J̃ 2(x; ẏ 1:::r1 ) :=
@ Th1
@x

(x; ẏ 1:::r1 )G(x):

3 It is straightforward to obtain local counterparts of our results,
which would utilize the more commonly used local constructions
to characterize an appropriately de:ned local variant of output–
input stability.
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Assume that the matrix
(

J1(x)
J̃ 2(x;ẏ 1:::r1 )

)
has a constant

rank r2 and there is a :xed set of r2 − r1 rows (empty
if r2=r1) of J̃ 2(x; ẏ 1:::r1 ) which together with the rows
of J1(x) form a linearly independent set for all x and
ẏ 1:::r1 . Without loss of generality, we assume that these
are the :rst r2 − r1 rows of J̃ 2(x; ẏ 1:::r1 ). Then (14)
gives

Ny r1+1:::r2 = h2(x; ẏ 1:::r1 ; Ny 1:::r1 ) + J2(x; ẏ 1:::r1 )u

and

Ny r2+1:::p = ĥ2(x; ẏ 1:::r1 ; Ny 1:::r1 ) + Ĵ 2(x; ẏ 1:::r1 )u; (15)

where h2(x; ẏ 1:::r1 ; Ny 1:::r1 ) and ĥ2(x; ẏ 1:::r1 ; Ny 1:::r1 ) are
given by the :rst r2 − r1 and the last p − r2 com-
ponents of the vector h̃2(x; ẏ 1:::r1 ; Ny 1:::r1 ), respec-
tively, J2(x; ẏ 1:::r1 ) is a matrix of full row rank,
and Ĵ 2(x; ẏ 1:::r1 ) ≡ F2(x; ẏ 1:::r1 )J2(x; ẏ 1:::r1 ) for some
(p − r2) × (r2 − r1) matrix F2(x; ẏ 1:::r1 ). Using this
last equation, we can rewrite (15) as

Ny r2+1:::p = Th2(x; ẏ 1; :::; r1 ; Ny 1; :::; r2 );

where
Th2(x; ẏ 1; :::; r1 ; Ny 1; :::; r2 )

:= ĥ2(x; ẏ 1:::r1 ; Ny 1:::r1 ) + F2(x; ẏ 1:::r1 )( Ny r1+1:::r2

− h2(x; ẏ 1:::r1 ; Ny 1:::r1 )):

Step k: DiMerentiating the formula

y(k−1)
rk−1+1:::p = Thk−1(x; ẏ 1:::r1 ; : : : ; y

(k−1)
1:::rk−1

)

obtained at step k − 1, we have

y(k)
rk−1+1:::p = h̃k(x; ẏ 1:::r1 ; : : : ; y

(k)
1:::rk−1

)

+ J̃ k(x; ẏ 1:::r1 ; : : : ; y
(k−1)
1:::rk−1

)u; (16)

where

h̃k(x; ẏ 1:::r1 ; : : : ; y
(k)
1:::rk−1

)

:=
@ Thk−1

@x
(x; ẏ 1:::r1 ; : : : ; y

(k−1)
1:::rk−1

)f(x)

+
k−1∑
j=1

rj∑
i=1

@ Thk−1

@y( j)
i

(x; ẏ 1:::r1 ; : : : ; y
(k−1)
1:::rk−1

)y( j+1)
i

and

J̃ k(x; ẏ 1:::r1 ; : : : ; y
(k−1)
1:::rk−1

)

:=
@ Thk−1

@x
(x; ẏ 1:::r1 ; : : : ; y

(k−1)
1:::rk−1

)G(x):

The global regularity assumption that we need to make
at this general step reads as follows.

Assumption 1. The p × m matrix


J1(x)

J2(x; ẏ 1:::r1 )

...

J̃ k(x; ẏ 1:::r1 ; : : : ; y
(k−1)
1:::rk−1

)




has a constant rank rk and there is a :xed set of
rk − rk−1 rows (empty if rk = rk−1) of the matrix
J̃ k(x; ẏ 1:::r1 ; : : : ; y

(k−1)
1:::rk−1

) which together with the rows

of J1(x); : : : ; Jk−1(x; ẏ 1:::r1 ; : : : ; y
(k−2)
1:::rk−2

) form a linearly

independent set for all x, ẏ 1:::r1 ; : : : ; y
(k−1)
1:::rk−1

.

After a possible permutation, we take the desired
rows of J̃ k(x; ẏ 1:::r1 ; : : : ; y

(k−1)
1:::rk−1

) to be the :rst rk−rk−1

rows of this matrix. Then we use (16) to write

y(k)
rk−1+1:::rk = hk(x; ẏ 1:::r1 ; : : : ; y

(k)
1:::rk−1

)

+ Jk(x; ẏ 1:::r1 ; : : : ; y
(k−1)
1:::rk−1

)u (17)

and

y(k)
rk+1:::p = ĥk(x; ẏ 1:::r1 ; : : : ; y

(k)
1:::rk−1

)

+ Ĵ k(x; ẏ 1:::r1 ; : : : ; y
(k−1)
1:::rk−1

)u; (18)

where hk(x; ẏ 1:::r1 ; : : : ; y
(k)
1:::rk−1

) and ĥk(x; ẏ 1:::r1 ; : : : ;

y(k)
1:::rk−1

) are given by the :rst rk −rk−1 and the last p−
rk components of the vector h̃k(x; ẏ 1:::r1 ; : : : ; y

(k)
1:::rk−1

),

respectively, Jk(x; ẏ 1:::r1 ; : : : ; y
(k−1)
1:::rk−1

) is a matrix of
full row rank, and

Ĵ k(x; ẏ 1:::r1 ; : : : ; y
(k−1)
1:::rk−1

)

≡ Fk(x; ẏ 1:::r1 ; : : : ; y
(k−1)
1:::rk−1

)Jk(x; ẏ 1:::r1 ; : : : ; y
(k−1)
1:::rk−1

)

for some (p−rk)×(rk −rk−1) matrix Fk(x; ẏ 1:::r1 ; : : : ;
y(k−1)
1:::rk−1

). In view of the last equation, (18) implies that

y(k)
rk+1:::p = Thk(x; ẏ 1:::r1 ; : : : ; y

(k)
1:::rk );

where

Thk(x; ẏ 1:::r1 ; : : : ; y
(k)
1:::rk )

:= ĥk(x; ẏ 1:::r1 ; : : : ; y
(k)
1:::rk−1

)
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+Fk(x; ẏ 1:::r1 ; : : : ; y
(k−1)
1:::rk−1

)

× (y(k)
rk−1+1:::rk − hk(x; ẏ 1:::r1 ; : : : ; y

(k)
1:::rk−1

)):

By construction, r16 r26 · · · 6m. If for some
k∗ we have rk∗ =m, then the algorithm terminates. If
rn ¡m, then such a k∗ does not exist.

The following example illustrates the application of
the algorithm to a system satisfying Assumption 1 at
each step.

Example 1. Consider the system

ẋ1 = u1;

ẋ2 = x3 + x2u1;

ẋ3 = u2;

ẋ4 = −x4 + x21 ;

y = (x1; x2)T: (19)

The output derivatives are given by(
ẏ 1

ẏ 2

)
=

(
0

x3

)
+

(
1 0

x2 0

)(
u1

u2

)

so r1 = 1. We have

ẏ 2 = x3 + x2u1 = x3 + x2ẏ 1: (20)

DiMerentiating this equation yields

Ny 2 = x3ẏ 1 + x2 Ny 1 + ( x2ẏ 1 1 )

(
u1

u2

)
: (21)

The matrix
(

1
x2ẏ 1

0
1

)
is nonsingular for all x and ẏ 1,

hence r2 =2 and the algorithm terminates with k∗=2.

5. Output–input stability of a&ne systems

5.1. Main result

We are now ready to state and prove a characteri-
zation of output–input stability for a4ne systems.

Theorem 1. Let Assumption 1 hold for each k¿ 0.
Then system (10) is output–input stable if and only if
it is weakly uniformly 0-detectable and the algorithm
of Section 4 gives rk∗ = m for some k∗.

Proof. We :rst prove su4ciency. If there exists a k∗

such that rk∗ =m, then we can explicitly and uniquely
solve for u as a function of x, ẏ 1:::r1 ; : : : ; y

(k∗)
1:::m (this

means that the system (10) is globally left-invertible).
Indeed, collecting the formulas (17) for k =1; : : : ; k∗,
we have




ẏ 1:::r1

Ny r1+1:::r2

...

y(k∗)
rk∗−1+1:::m




=




h1(x)

h2(x; ẏ 1:::r1 ; Ny 1:::r1 )

...

hk∗(x; ẏ 1:::r1 ; : : : ; y
(k∗)
1:::rk∗−1

)




+




J1(x)

J2(x; ẏ 1:::r1 )

...

Jk∗(x; ẏ 1:::r1 ; : : : ; y
(k∗−1)
1:::rk∗−1

)




u; (22)

where the matrix multiplying u on the right-hand side
is square and invertible for all x, ẏ 1:::r1 ; : : : ; y

(k∗−1)
1:::rk∗−1

.
Premultiplying both sides of (22) by the inverse of
this matrix, we obtain an expression of the form

u= P







x

ẏ 1:::r1

...

y(k∗)
1:::m







:

The precise structure of the function P :Rn+r1+···+m →
Rm is determined by the formula (22), but all we need
is the following observation. Since f(0) = 0 by as-
sumption, the origin is an equilibrium of the system
(10) under the zero input. It follows that P(0) = 0.
Therefore, we can :nd a function �∈K∞ such that

∣∣∣∣∣∣∣∣∣∣∣∣
P







x

ẏ 1:::r1

...

y(k∗)
1:::m







∣∣∣∣∣∣∣∣∣∣∣∣
6 �




∣∣∣∣∣∣∣∣∣∣∣∣

x

ẏ 1:::r1

...

y(k∗)
1:::m

∣∣∣∣∣∣∣∣∣∣∣∣



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6 �(2|x|) + �


2

∣∣∣∣∣∣∣∣∣

ẏ 1:::r1

...

y(k∗)
1:::m

∣∣∣∣∣∣∣∣∣




and so inequality (8) holds with �1(r) = �2(r) :=
�(2r). By Lemma 1 the system has the input-bounding
property, which together with weak uniform 0-detecta-
bility guarantees output–input stability in view of the
su4ciency part of Proposition 1.
Necessity follows from the correspondence between

the nonlinear structure algorithm and the zero dynam-
ics algorithm, which is explained, e.g., in [9, Sec-
tions 11.1–11.2] and [4, Section 6.1]. If rk ¡m for all
k6 n, then in some neighborhood of the origin there
exist a vector a(x)∈Rm and an m × l matrix B(x) of
full column rank, where 0¡l6m, such that every
control law of the form u(t) = a(x(t)) + B(x(t))v(t)
holds the output constantly at zero (for a proper choice
of initial conditions). Since v(t) may take arbitrary
values in Rl, there is no upper bound on |u(t)|. This
means that the inequality (6) is violated for small t,
hence the system cannot be output–input stable. The
fact that output–input stability implies weak uniform
0-detectability is an immediate consequence of the
de:nitions.

5.2. Examples and discussion

Example 1 (continued): Consider again the system
(19). We have |u1| = |ẏ 1|, while from the formula
(21) we conclude that

u2 = Ny 2 − x3ẏ 1 − x2 Ny 1 − x2ẏ2
1

hence

|u2|6 | Ny 2| + 1
2 x

2
3 +

1
2 ẏ

2
1 + x22 +

1
2 Ny2

1 +
1
2 ẏ

4
1:

Thus the system has the input-bounding property. It
is also weakly uniformly 0-detectable of order 1, as is
seen from the bound

|x3| = |ẏ 2 − y2ẏ 1|6 |ẏ 2| + 1
2 y

2
2 +

1
2 ẏ

2
1

and the fact that the equation for x4, which describes
the inverse dynamics, is ISS with respect to x1. (In
view of the above calculations, it is straightforward
to check that the Lyapunov-like su4cient condition
for weak uniform 0-detectability, expressed by the
inequality (5), applies with V (x) := xTx.) Therefore,
the system (19) is output–input stable.

Remark 1. The above results can be used to estab-
lish output–input stability of some nona4ne systems.
Note that to have the input-bounding property, we
only need to be able to bound—and not necessarily
solve for—the input in terms of the state and deriva-
tives of the output. As a simple generalization, con-
sider a system of the form

ẋ = f(x) +
m∑
i=1

gi(x)�i(ui);

where the functions �i, i= 1; : : : ; m are bounded from
below by some classK∞ functions. It is easy to show
that if the associated “virtual input” system

ẋ = f(x) +
m∑
i=1

gi(x)vi

is covered by the su4ciency part of Theorem 1 (i.e.,
if it is weakly uniformly 0-detectable and globally
left-invertible), then the original nona4ne system is
output–input stable. Of course, left-invertibility of
the virtual input system is not necessary. One can even
have more inputs than outputs; for example, the scalar
system ẏ=u21 +u42 is clearly output–input stable.

The next example illustrates what can happen when
Assumption 1 is violated.

Example 2. Consider the system

ẋ1 = u1;

ẋ2 = x3 + x2u2;

ẋ3 = u2;

ẋ4 = −x4 + x21 ;

y = (x1; x2)T: (23)

We have(
ẏ 1

ẏ 2

)
=

(
0

x3

)
+

(
1 0

0 x2

)(
u1

u2

)

and the rank of the matrix on the right-hand side drops
from 2 to 1 when x2 =0. It is not di4cult to show that
we can pick a bounded sequence of initial states along
which x2(0) converges to 0, a sequence of values
of u2(0) converging to ∞, and appropriately chosen
sequences of values for u̇ 2(0); Nu 2(0); : : : such that
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the derivatives ẏ 2(0); Ny 2(0); : : : are all kept at zero.
Also, let u1 ≡ 0 so that y1 ≡ 0. This implies that the
inequality (6) is violated for small t, hence the system
(23) is not output–input stable. (The proof of Theorem
1 in [8] contains a general argument along these lines.)

It is instructive to note that both the system (19)
considered in Example 1 and the system (23) con-
sidered in Example 2 are minimum-phase, with zero
dynamics in both cases being given by ẋ4 = −x4. An
important fact not elucidated by the zero dynamics is
that the minimum-phase property of the system (19)
is “robust” (small y, ẏ; : : : force x and u to be small)
while the minimum-phase property of the system (23)
is “fragile” (small y; ẏ; : : : can correspond to arbitrar-
ily large u).
For SISO a4ne systems, Assumption 1 and the ex-

istence of a k∗ such that rk∗ = m reduce to the prop-
erty that the system has a uniform relative degree as
de:ned, e.g., in [4]. In the SISO case, output–input
stability actually implies the existence of a relative
degree for a class of systems which includes systems
a4ne in controls; see [8, Theorem 1]. For MIMO sys-
tems, the existence of a uniform (vector) relative de-
gree in the sense of [4] is a su4cient but not neces-
sary condition for the structure algorithm to terminate
at a k∗ satisfying rk∗ = m, and neither Assumption 1
nor the existence of a uniform relative degree is nec-
essary for output–input stability. Note that the system
considered in Example 1 does not have a uniform rel-
ative degree. The next example demonstrates that the
system may still be output–input stable when Assum-
ption 1 does not hold.

Example 3. The system

ẋ1 = u1;

ẋ2 = x5 + x4u2;

ẋ3 = x4;

ẋ4 = u2;

ẋ5 = u3;

y = (x1; x2; x3)T (24)

is output–input stable, as can be seen from the formu-
las u1= ẏ 1, u2= Ny 3, u3= Ny 2− Ny2

3− ẏ 3
:::
y3, x4= ẏ 3, and

x5 = ẏ 2 − ẏ 3 Ny 3. However, when we try to apply the
nonlinear structure algorithm, we obtain


ẏ 1

ẏ 2

ẏ 3


=




0

x5

x4


+




1 0 0

0 x4 0

0 0 0






u1

u2

u3




and the matrix on the right-hand side does not have a
constant rank. 4

For a4ne systems in global normal form, the weak
uniform 0-detectability property amounts to ISS of
the inverse dynamics with respect to the outputs and
their derivatives. 5 As is well known, ISS admits a
necessary and su4cient Lyapunov-like characteri-
zation [16]. To transform the a4ne system (10) to
global normal form, one must require completeness
of appropriate vector :elds, to ensure that the coordi-
nate transformation map de:ned by the outputs, their
derivatives, and the states of the inverse dynamics
is onto (see [4, Section 9.1] for SISO systems and
[5, Section 11.5] for MIMO systems). Our formu-
lation, which avoids such completeness assump-
tions, is more general and applies to not necessarily
a4ne systems. However, checking weak uniform
0-detectability in the absence of a global normal form
may be more di4cult, because of the need to handle
the states not appearing as states of the reduced in-
verse dynamics. These states are expressed statically
in terms of the outputs, their derivatives, and the states
of the reduced inverse dynamics [6]. In Examples 1
and 3 above, this dependence was rather simple (poly-
nomial), and the desired bound (4) could be obtained.
The following example illustrates a diMerent situation.

Example 4. Consider the scalar system

ẋ = u;

y = arctan x:

4 The system (24) has trivial zero dynamics (x ≡ 0) but x = 0
is not a regular point of the zero dynamics algorithm. This prob-
lem could be corrected if we allowed greater Uexibility in choos-
ing the order of output diMerentiation (e.g., in the present case,
diMerentiate y3 before y2).

5 More precisely, we need ISS with respect to all possible signals
that the outputs and their relevant derivatives can produce; these
two notions are in general not the same (see [1]).
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From the equation ẏ=u=(1+x2) we easily deduce the
input-bounding property as before. On the other hand,
this system is not weakly uniformly 0-detectable. In-
deed, when u ≡ 0, all derivatives of y are zero. Since
|y|6 -=2, it is not possible to obtain a bound of the
form |x(t)|6 �(|x(0)|; t) + �(‖y‖[0; t]) for all corre-
sponding trajectories. This system also does not admit
a global normal form because the map x �→ y is not
onto. Note that the inverse of this map is given by the
solution of the diMerential equation dx=dy = 1 + x2

with initial condition x(0) = 0, which is not globally
de:ned because the vector :eld g̃(x) := 1 + x2 is
not complete.

6. Feedback stabilization

As an application of the above concepts and results,
we now discuss the implication suggested by the
title of this paper. Namely, we show that if the a4ne
system (10) with the same number of inputs and
outputs satis:es the necessary and su4cient condi-
tion for output–input stability provided by Theorem
1, then it can be globally asymptotically stabilized
by state feedback. The main idea is that if a feed-
back law stabilizes the output—more precisely,
if the resulting output is a solution of a globally
asymptotically stable system—then weak uniform
0-detectability implies that the overall closed-loop
system is automatically stabilized. The existence of
an output-stabilizing feedback is, in turn, guaranteed
by left-invertibility. We give an explicit construc-
tion of a static output-stabilizing state feedback
law. (It is known that a dynamic output-stabilizing
state feedback can be obtained after rendering the
system noninteractive; see [9, Section 8.2] or [4,
Section 5.4].) An independent—and more extensive
—study of a static feedback stabilization scheme
essentially equivalent to the one described below
appears in [11].
Consider the system (10) with m=p. Suppose that

when the above nonlinear structure algorithm is ap-
plied, Assumption 1 holds for each k¿ 0 and we have
rk∗ = m for some k∗. Let A10 be an r1 × r1 Hur-
witz matrix. We see from the formula (22) that the
equation

ẏ 1:::r1 = A10y1:::r1 (25)

holds if and only if we have

J1(x)u= D1(x);

where

D1(x) := A10(h(x))1:::r1 − h1(x):

Next, pick two (r2 − r1)× (r2 − r1) matrices A21 and
A20 such that the linear system

Nz = A21ż + A20z; z ∈Rr2−r1 (26)

is exponentially stable. The formulas (22) and (13)
imply that if (25) holds and if we have

J2(x; E2(x))u= D2(x)

with

D2(x) := A21( Th1(x; A10(h(x))1:::r1 )r1+1:::r2

+A20(h(x))r1+1:::r2

−h2(x; A10(h(x))1:::r1 ; A
2
10(h(x))1:::r1 )

and

E2(x) := A10(h(x))1:::r1

then z = yr1+1:::r2 is a solution of (26). Proceeding in
this fashion, we generate functions Di, Ei, i=1; : : : ; k∗

such that the output y of the system (10) is a solution
of an exponentially stable linear system provided that
the equation


J1(x)

...

Jk∗(x; Ek∗(x))


 u=




D1(x)

...

Dk∗(x)




is satis:ed. Since the matrix multiplying u on the
left-hand side is square and invertible for all x, this
equation de:nes the feedback law

u=




J1(x)

...

Jk∗(x; Ek∗(x))




−1


D1(x)

...

Dk∗(x)


 ; (27)

which makes the output of the closed-loop system
decay exponentially to zero together with all its deriva-
tives. More precisely, let d := k∗m− r1 − · · ·− rk∗−1
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and de:ne the vector 1∈Rd by

1 :=




y1:::r1

yr1+1:::r2

ẏ r1+1:::r2

...

yrk∗−1+1:::m

...

y(k∗−1)
rk∗−1+1:::m




:

The above construction provides a map T :Rn → Rd

and a Hurwitz matrix A such that under the feed-
back law (27), 1 satis:es the relation 1 = T (x) and
its evolution is given by the linear diMerential equa-
tion 1̇= A1. To ensure global exponential stability of
the 1-subsystem, we need to assume that the map T is
onto, i.e., that the above linear subsystem evolves on
the entire Rd (there exist examples where this is not
the case and global stabilization is impossible [10]).
Now suppose that the system (10) is weakly uniformly
0-detectable, so that the inequality (9) holds for all u,
in particular, for u given by (27). Then global asymp-
totic stability of the overall closed-loop system fol-
lows by standard arguments for cascade systems (see,
e.g., [8]). We have established the following result.

Theorem 2. Suppose that the system (10) withm=p
is weakly uniformly 0-detectable,Assumption 1 holds
for each k¿ 0, and the algorithm of Section 4 gives
rk∗ = m for some k∗. Then the static state feed-
back law (27) makes the closed-loop system globally
asymptotically stable, provided that the correspond-
ing map T is onto.

Example 1 (revisited): For system (19) we can let,
e.g., u1 =−x1 to obtain ẏ 1 =−x1 =−y1. Substituting
this into Eqs. (20) and (21) gives ẏ 2 = x3 − x2x1 and

Ny 2 = −x3x1 + x2x1 + x2x21 + u2:

The control u2=x3x1−x2x21 −x2−x3 makes y2 satisfy
the equation Ny 2 = −ẏ 2 − y2. The map T : x �→ 1 =
(x1; x2; x3 − x2x1)T is clearly onto, and the system is
globally asymptotically stabilized.

We remark that the system (24) considered in Ex-
ample 3 can be easily stabilized by static state feed-
back, even though it fails to satisfy Assumption 1. In-
deed, :rst stabilize x1 by a linear feedback law u1 =
k11x1, then stabilize x3 and x4 by u2 = k23x3 + k24x4,
and :nally stabilize x2 and x5 by a linearizing feed-
back law u3 = k3(x2; x3; x4; x5).

7. Conclusions

The purpose of this paper was to extend the
theory of output–input stability introduced in [8]
to multi-input, multi-output systems. We showed
that a system is output–input stable if and only if
it is weakly uniformly 0-detectable and satis:es the
input-bounding property de:ned in this paper. For
systems a4ne in controls, we provided a characteri-
zation of the input-bounding property via the global
nonlinear structure algorithm. As an application
of this result, we described a strategy for globally
asymptotically stabilizing a square a4ne output–in-
put stable system by static state feedback. Issues that
were brieUy discussed and deserve further investi-
gation include methods for checking weak uniform
0-detectability as well as connections with invertibil-
ity and global normal forms.
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