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STABILIZING RANDOMLY SWITCHED SYSTEMS∗
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Abstract. This article is concerned with stability analysis and stabilization of randomly
switched systems under a class of switching signals. The switching signal is modeled as a jump
stochastic (not necessarily Markovian) process independent of the system state; it selects, at each
instant of time, the active subsystem from a family of systems. Sufficient conditions for stochastic
stability (almost sure, in the mean, and in probability) of the switched system are established when
the subsystems do not possess control inputs, and not every subsystem is required to be stable.
These conditions are employed to design stabilizing feedback controllers when the subsystems are
affine in control. The analysis is carried out with the aid of multiple Lyapunov-like functions, and
the analysis results, together with universal formulae for feedback stabilization of nonlinear systems,
constitute our primary tools for control design.
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1. Introduction. A randomly switched system has two ingredients, namely, a
family of subsystems and a random switching signal. In this article we are interested in
finding conditions for stochastic stability of randomly switched systems. Our approach
consists of identifying key properties of the family of subsystems and the switching
signal, and finding conditions to connect them such that the switched system has
the desired characteristics. We concentrate on stability a.s. (almost surely) and in
expectation. Since each of these implies stability in probability [13, 17, 16], our
results immediately provide sufficient conditions for weak stability in probability of
the systems under consideration; we also demonstrate that the conditions are sufficient
for strong stability in probability.

The basic structure of our main analysis results is as follows. The first step
involves extracting properties which quantitatively express stability characteristics
of the subsystems. This is carried out with the help of multiple Lyapunov functions.
The method of multiple Lyapunov functions was developed originally in the context of
deterministic switched systems and is discussed in detail in, e.g., [19, Chapter 3]. This
method is effective in quantitatively capturing the degree of stability (or instability)
of the subsystems. The second step involves extracting key properties of the switching
signal. These properties are variously captured by the probability mass function of
its rate of switching, the probability distribution of its jump destinations, distribution
of holding times between switching instants, etc. Finally, the characteristics of the
switched system generated by the switching signal from the family of subsystems are
captured by inequalities which connect the above two sets of properties.
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Research on randomly switched systems has concentrated mostly on the case of
Markovian switching signals, where the discrete state evolves according to a continuous-
time Markov chain; see, e.g., [8, 30] and the references cited therein. The central idea
behind arriving at stability conditions revolves around employing the generator of the
Markov process and extracting certain nonnegative supermartingales that converge
to zero in expectation. This method in turn is based on the martingale problem [9,
Chapter 5] corresponding to the Markov process. In its simplest form, if (Xt)t�0 is
the underlying Markov process with generator L (X consists of both the continuous
and the discrete states), then for every measurable and bounded real-valued function

V on the state space, the process (Yt)t�0 defined by Yt := V (Xt) −
∫ t

0
LV (Xs)ds is

a martingale. A pointwise inequality which bounds LV (·) on the state space may be
imposed, and with the help of this one can draw conclusions about stability properties
of the system by analyzing the martingale above; this analysis becomes particularly
simple if V is a nonnegative Lyapunov-like function.

The martingale approach described above can be applied to switched systems
in which the switching signals are general point processes with intensity functions
satisfying certain standard measurability conditions; see, e.g., [3] for further details
on the measurability conditions. These intensity functions appear in the expression
of LV in place of the usual Markov transition intensity matrix, and hereafter the
analysis follows that of the Markovian case. However, for non-Markovian switching
signals, it is not easy to employ this technique; for instance, if the holding times
between consecutive switching instants are independent and identical uniform random
variables, obtaining expressions of these intensity functions is difficult. Although a
generator can be defined on an extended state space for semi-Markovian switching
signals, this is neither straightforward nor readily accessible in the literature. The
methods we propose here apply equally readily to Markovian and semi-Markovian
switching signals, do not depend on martingale analysis, and yield results directly by
employing what we think are less involved and more intuitively appealing techniques.
Existing work on stability of stochastic switched systems includes [23, 29, 27, 4, 2, 8,
10, 15, 14]; see also [5, Chapter 1] for a survey of techniques employed in this area.

Analysis results obtained via our approach, including those reported in our earlier
article [6] where each subsystem was required to be stable, have conceptual analogues
in deterministic switched systems theory. The approach pursued in [6] and in the
current article is derived from the method of multiple Lyapunov functions developed
in the context of deterministic switched systems; see, e.g., [19, Chapter 3] for an
extensive discussion. Stability of individual subsystems and a slow switching con-
dition are the important features of these deterministic results. In this article our
results involving unstable subsystems employ certain probabilistic characteristics of
the switching signal in addition to slow switching; their conceptual analogues in de-
terministic switched systems literature are comparatively less well known, with the
exception of [31].

With our analysis results in hand, we turn to control synthesis and derive explicit
controller formulas which ensure stability of the switched system in closed loop. In
this context, there naturally arise two distinct cases: one in which the controller
has full knowledge of the switching signal at each instant of time, and the other
in which the controller is totally unaware of the switching signal. We examine the
distinctive features of each of these two cases and propose control synthesis strategies
by employing universal formulae [26, 20, 21, 22] for nonlinear feedback stabilization.
The advantages of our approach are evident here, for one does not need to design a
controller from scratch for the switched system if there already exist control-Lyapunov
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functions for each individual subsystem. In the latter case, off-the-shelf controllers
employing universal formulae are easily designed, and a modular organization of the
controller synthesis stage is facilitated.

The article unfolds as follows. Section 2 presents the system model with no inputs
and the stability concepts under consideration. The main analysis results appear in
sections 3, 4, and 5, and their proofs are given in section 6. The controller synthesis
results are presented in section 7, and section 8 presents some examples illustrating
our results. We conclude in section 9 with a brief discussion of possible channels of
further investigation.

Notation. Let R�0 denote the nonnegative half-line [0,∞[, N = {1, 2, . . .}, N0 :=
N ∪ {0}, and let ‖·‖ denote the Euclidean norm.

2. Preliminaries. We define the family of systems

(2.1) ẋ = fi(x), i ∈ P ,

where the state x ∈ R
n, P is a finite index set of N elements: P = {1, . . . ,N}, the

vector fields fi : R
n −→ R

n are locally Lipschitz, and fi(0) = 0, i ∈ P .
Let (Ω,F,P) be a complete probability space. Let σ := (σ(t))t�0 be a càdlàg (i.e.,

right-continuous and possessing limits from the left) stochastic process taking values
in P , with σ(0) completely known. The process σ is by definition measurable [25,
Chapter 1]. Let the discontinuity points of σ be denoted by τi, i ∈ N, and let
τ0 := 0 by convention. The filtration (Ft)t�0 generated by σ is right-continuous [3,
Theorem T26, page 304], and we augment F0 with all P-null sets. As a consequence
of the hypotheses of our results, the sequence (τi)i∈N0 is a.s. divergent; i.e., σ is
nonexplosive. The randomly switched system generated by this switching signal σ
from the family (2.1) is

(2.2) ẋ = fσ(x), (x(0), σ(0)) = (x0, σ0), t � 0.

We assume that there are no jumps in the state x at the points of discontinuity of the
switching signal; we shall henceforth refer to these points as the switching instants.
The above hypotheses on the system (2.2) and σ ensure that standard conditions
for the existence and uniqueness of an absolutely continuous solution in the sense of
Carathéodory [11], over a nontrivial time interval containing 0, are fulfilled for almost
every sample path. Existence and uniqueness of a global solution will follow from the
hypotheses of our results. We let x(·) denote this solution. For x0 = 0, the solution
to (2.2) is identically 0 for every σ; we shall ignore this trivial case in what follows.
Standard arguments (see, e.g., [5, Chapter 1]) show that the solution process x(·)
of (2.2) is an (Ft)t�0-adapted process.

Recall [1] that for λ > 0, an exponential-(λ) random variable ξ has the distribution
function P

(
ξ � s

)
= 1 − e−λs for s � 0, and 0 otherwise; for T > 0, a uniform-(T )

random variable ξ has the distribution function P
(
ξ � s

)
= 0 if s < 0, s/T if s ∈ [0, T ],

and 1 otherwise. A continuous function α : R�0 −→ R�0 is of class-K (we write
α ∈ K) if it vanishes at 0 and is monotone strictly increasing. A continuous function
β : R�0×R�0 −→ R�0 is of class-KL (we write β ∈ KL) if β(r, ·) is monotone strictly
decreasing for each fixed r, and β(·, s) is of class-K for each fixed s; we write β ∈ KL.

We focus on the following two properties of (2.2); see, e.g., [13].
Definition 2.1. The system (2.2) is said to be globally asymptotically stable

almost surely (gas a.s.) if the following two properties are simultaneously verified:
(AS1) P(∀ ε > 0 ∃ δ > 0 such that ‖x0‖ < δ =⇒ supt�0 ‖x(t)‖ < ε) = 1;
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(AS2) P(∀ r, ε′ > 0 ∃T � 0 such that ‖x0‖ < r =⇒ supt�T ‖x(t)‖ < ε′) = 1.

Let us note that this property is well defined because each of the sets appearing
inside the measure P is F-measurable due to continuity of x(·).

Definition 2.2. The system (2.2) is said to be α-globally asymptotically stable
in the mean (α-gas-m) for a function α ∈ K if the following two properties are
simultaneously verified:

(SM1) ∀ ε > 0 ∃ δ̃ > 0 such that ‖x0‖ < δ̃ =⇒ supt�0 E
[
α(‖x(t)‖)] < ε;

(SM2) ∀ r, ε′ > 0 ∃ T̃ � 0 such that ‖x0‖ < r =⇒ supt�˜T E
[
α(‖x(t)‖)] < ε′.

Stability definitions in deterministic systems literature usually involve just the
norm of the state. The presence of the function α in Definition 2.2 allows some
measure of flexibility in the sense that one need not worry about bounds for just
the expectation of the norm of the state, i.e., L1-stability. Frequently, one employs
Lyapunov functions which are polynomial functions of the states, and with the aid of
conditions such as (V1) in Assumption 2.3 below, stronger bounds in terms of the Lp

(p > 1) norms of the state are obtained. For instance, quadratic Lyapunov functions
yield bounds for mean-square or L2-stability, which is stronger than L1-stability.

Our analysis results employ a family of Lyapunov functions, one for each sub-
system. The following assumption collects the properties we shall require from the
members of this family of Lyapunov functions.1 For notational brevity, we let LfV (x)
denote the Lie derivative of a differentiable function V : Rn −→ R along a vector field
f : Rn −→ R

n; i.e., LfV (x) :=
〈∇xV (x), f(x)

〉
.

Assumption 2.3. There exist a family of continuously differentiable real-valued
functions {Vi}i∈P on R

n, functions α1, α2 ∈ K∞, and numbers μ > 1 and λi ∈ R,
i ∈ P, such that ∀x ∈ R

n and i, j ∈ P,

(V1) α1(‖x‖) � Vi(x) � α2(‖x‖);
(V2) LfiVi(x) � −λiVi(x);

(V3) Vi(x) � μVj(x).

Remark 2.4. (V1) is a fairly standard hypothesis, ensuring each Vi is positive
definite and radially unbounded. The condition in (V2) keeps track of the growth
of the ith Lyapunov function Vi along the vector field fi of the ith subsystem; the
parameter λi provides a quantitative estimate of this growth rate. The right-hand
side of the inequality in (V2) being a linear function of Vi is no loss of generality; see,
e.g., [18, Theorem 2.6.10] for details. (V3) certainly restricts the class of functions that
the family {Vi}i∈P can belong to; however, this hypothesis is commonly employed in
the deterministic context [19, Chapter 3]. Quadratic Lyapunov functions universally
utilized in the case of linear subsystems always satisfy this hypothesis.

3. Main results. In this section we present our main results providing suffi-
cient conditions for gas a.s. and α1-gas-m of randomly switched systems under two
different classes of switching signals. The switching signals described here are fairly
general and are quite natural to consider.

We let (Si)i∈N, Si := τi − τi−1, be the sequence of holding times, where (τi)i∈N is
the sequence of discontinuity points of σ. Also, let (σ(τk))

i−1
k=0 be the finite sequence

of jump destinations of the process (σ(t))t�0 until the ith switching instant.

1Strictly speaking we should call them “Lyapunov-like functions” because their gradients do not
necessarily decrease along the corresponding system trajectories. For simplicity we shall adhere to
the term “Lyapunov functions” in what follows.
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Definition 3.1. We say that the switching signal σ
• belongs to class EH if
(EH1) the sequence (Si)i∈N of holding times is a collection of independent and

identically distributed (i.i.d.) random variables, with Si an exponential-
(λ) random variable, λ > 0;

(EH2) ∃ qi ∈ [0, 1], i ∈ P, such that ∀ j ∈ N, P(σ(τj) = i
∣∣(σ(τk))j−1

k=0) = qi;
(EH3) the sequences (Si)i∈N and (σ(τi))i∈N0 are mutually independent;

• belongs to class UH if
(UH1) the sequence (Si)i∈N of holding times is a collection of i.i.d. random

variables, with Si a uniform-(T ) random variable, T > 0;
(UH2) ∃ qi ∈ [0, 1], i ∈ P, such that ∀ j ∈ N, P(σ(τj) = i

∣∣(σ(τk))j−1
k=0) = qi;

(UH3) the sequences (Si)i∈N and (σ(τi))i∈N0 are mutually independent.
The following are our main results; their proofs are provided in section 6.
Theorem 3.2. The system (2.2) is gas a.s. if
(E1) Assumption 2.3 holds;
(E2) the switching signal σ belongs to class EH as defined in Definition 3.1;
(E3) λi + λ > 0 ∀ i ∈ P;

(E4)
∑

i∈P
(

μqi
1+λi/λ

)
< 1.

Corollary 3.3. The system (2.2) is α1-gas-m under the hypotheses of Theo-
rem 3.2.

Theorem 3.4. The system (2.2) is gas a.s. if
(U1) Assumption 2.3 holds;
(U2) the switching signal σ belongs to class UH as defined in Definition 3.1;

(U3)
∑

i∈P(
μqi(1−e−λiT )

λiT
) < 1.

Corollary 3.5. The system (2.2) is α1-gas-m under the hypotheses of Theo-
rem 3.4.

Remark 3.6. Let us first note that switching signals of classes EH and UH are
nonexplosive; i.e., there are finitely many jumps on finite-length intervals of time a.s.
Indeed, it follows immediately from the strong law of large numbers [24, Theorem 7,
page 64] that since (Si)i∈N is i.i.d. and E

[
Si

] ∈ ]0,∞[ for switching signals belonging
to either class EH or UH, a.s. the νth jump instant τν =

∑ν
i=1 Si → ∞ as ν → ∞.

It is also readily seen that switching cannot stop after a finite time, for then Sj = ∞
for some j, and the probability of the event {Sj = ∞ for some j} is 0.

Remark 3.7. Let us examine the statement of Theorem 3.2 in some detail. First,
note that by (E1) not all subsystems are required to be stable; i.e., for some i ∈ P ,
λi can be negative; then (V2) provides a measure of the rate of instability of the
corresponding subsystems. Second, note that condition (E3) is always satisfied if
each λi > 0. However, if λi < 0 for some i ∈ P , then (E3) furnishes a maximum
instability margin of the corresponding subsystems that can still lead to gas a.s.
of (2.2). Intuitively, in the latter case, the process Nσ(t, 0) must switch fast enough
(which corresponds to λ > 0 being large enough,) so that the unstable subsystems
are not active for too long. Potentially, this fast switching may have a destabilizing
effect. Indeed, it may so happen that for a given μ, a fixed probability distribution
{qi}i∈P , and a choice of functions {Vi}i∈P , (E3) and (E4) may be impossible to
satisfy simultaneously, due to a very high degree of instability of even one subsystem
for which the corresponding qi is also large. Then we need to search for a different
family of functions {Vi}i∈P for which the hypotheses hold. Third, (E4) connects the
properties of deterministic subsystem dynamics, furnished by the family of Lyapunov
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functions satisfying Assumption 2.3, with the properties of the stochastic switching
signal. From (E4) it is clear that larger degrees of instability of a subsystem (small
λi) can be compensated for by a smaller probability of the switching signal activating
the corresponding subsystem.

Remark 3.8. Let us make some observations about the statement of Theorem 3.4.
Once again, just as in Theorem 3.2, note that by (U1) not all subsystems are required
to be stable; i.e., for some i ∈ P , λi can be negative. (U3) connects the properties
of deterministic subsystem dynamics, furnished by the family of Lyapunov functions
satisfying Assumption 2.3, with the properties of the stochastic switching signal. Also
from (U3) it is clear that larger degrees of instability (larger λi) of a subsystem can be
compensated for by a smaller probability (smaller qi) of the switching signal activating
the corresponding subsystem. Notice that a switching signal of class UH is semi-
Markov [1, section 20.4]. There is a nontrivial dependence on past history due to the
uniform holding times—at an arbitrary instant of time t we need to know how long
ago the last jump occurred in order to compute the probability distribution of the
next jump instant after t. Since the holding times are i.i.d., the associated counting
process (Nt)t�0 defined as Nt := “number of jumps on ]0, t]” is a renewal process.

Remark 3.9. It may be observed that Theorem 3.2 requires a larger set of hy-
potheses compared to Theorem 3.4; however, this is only natural. Indeed, the switch-
ing signal in the latter case is constrained to switch at least once in T units of time,
whereas no such hard constraint is present on the switching signal in the former case.
We observed in Remark 3.7 that it is necessary for the switching signal to switch fast
enough if there are unstable subsystems in the family (2.1), which necessitated the
condition (E3). This fast switching is automatic if σ is of class UH, provided T is
related to the instability margin of the subsystems in a particular way. The condition
(U3) captures this relationship, for, observe that if λi is negative and large in mag-
nitude for some i ∈ P , the ratio

(
1− e−λiT

)
/(λiT ) is smaller for smaller T , and a

smaller ratio is better for gas a.s. of (2.2). Also for a given T , large and positive λi’s
(i.e., subsystems with high margins of stability) make the aforesaid ratio small.

Remark 3.10. As mentioned in the introduction, the classical approach to sta-
bility of Markov processes proceeds with the construction of a suitable nonnegative
supermartingale derived from the process. If (σ(t))t�0 is a continuous-time Markov
chain with a constant intensity matrix (γij)i,j∈P , then the process (σ(t), x(t))t�0 is
Markovian, where (x(t))t�0 is the randomly switched system generated by σ. If L
is the generator corresponding to this process, then a standard result says that for a
function V : P × R

n −→ R�0 that is continuously differentiable in the second argu-
ment for every fixed element in P , we have LV (i, x) =

〈
∂V
∂x (i, x), fi(x)

〉
+ γiiV (i, x)+∑

i�=j∈P γijV (j, x), where, by definition, γii = −∑
j �=i γij . To verify stability one

finds a function V : P×R
n −→ R�0 such that V (i, ·) is positive definite for each fixed

i, and the inequality LV (i, x) � 0 holds for (i, x) ∈ P ×R
n. In this case note that the

third term on the right-hand side of the expression of LV is nonnegative away from
zero and the second term is nonpositive away from zero. The sign of the first term is
in general indefinite since in this setting one does not consider a Lyapunov function
for the individual subsystems in view of the fact that the goal of this approach is not
to establish nonpositivity of

〈
∂V
∂x (i, x), fi(x)

〉
per se. If the sign of

〈
∂V
∂x (i, x), fi(x)

〉
is indefinite, the range of values of γii that ensures global nonpositivity of LV (i, x)
depends in general on x. In contrast, although switching signals of class EH are
Markovian, there is no dependence of the various constants λi, λ, qi, etc., on the con-
tinuous state x in our results above. Note also that it is not possible to globally verify
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the condition LV (i, x) � 0 from the hypotheses of Theorem 3.2 alone. For switching
signals in the class UH, it is possible to define a generator à la [12, page 232] on an
extended state space (by adjoining the time elapsed since the last jump to the state
of the switching signal), but this approach goes beyond results commonly available
in the literature and is clearly more demanding than the approach we present in the
current article.

4. A generalization. The results in section 3 fall short of being completely
satisfactory. In particular, the result that the assumption of the jump destinations
process (σ(τi))i∈N is memoryless (assumptions (EH2) and (UH2)) is perhaps the most
restrictive. As we observed in Remark 3.8, switching signals of class UH fall into the
class of semi-Markov processes, in fact trivially so, due to the memoryless nature of the
discrete jump-destination process (σ(τi))i∈N. However, it would be better if we could
handle the Markovian jump-destination case by keeping the other two hypotheses
intact. In this section we do that; namely, we include those switching signals for
which the process (σ(τi))i∈N is a discrete-time Markov chain. Although the results
given in this section are not the most general possible, they are intended to highlight
the directions of possible generalizations that can be made within our framework.

Assumption 4.1. There exist a family of continuously differentiable real-valued
functions {Vi}i∈P on R

n, functions α1, α2 ∈ K∞, and numbers μ > 1 and λi,j ∈ R,
i, j ∈ P, such that ∀x ∈ R

n and i, j ∈ P,
(V1′) (V1) of Assumption 2.3 holds;
(V2′) LfjVi(x) � −λi,jVi(x);
(V3′) (V3) of Assumption 2.3 holds.
Definition 4.2. We say that the switching signal σ belongs to class GH if
(GH1) the sequence (Si)i∈N of holding times is an i.i.d. collection of random

variables, with E
[
Si

]
< ∞;

(GH2) the process (σ(τi))i∈N0 is a discrete-time Markov chain with initial proba-
bility vector 2 δ{σ0} and transition probability matrix P = [pi,j ]P×P ;

(GH3) (Si)i∈N is independent of (σ(τi))i∈N0 .
Switching signals belonging to class GH are semi-Markov [1, section 20.4]. In

the most general case of a semi-Markov process, the sequence (Si)i∈N in (GH1) may
be such that the distribution of Si depends on both σ(τi−1) and σ(τi), i ∈ N. Our
objective here is to illustrate some new techniques; and hence we shall retain the
simpler condition (GH1) at the expense of lesser generality. The condition (GH2)
imposes a discrete-time Markovian structure on the process (σ(τi))i∈N0 , and the con-
dition (GH3), though not the most general, is a standard hypothesis for semi-Markov
processes.

Theorem 4.3. The system (2.2) is gas a.s. if
(G1) Assumption 4.1 holds;
(G2) the switching signal σ belongs to class GH as defined in Definition 4.2;
(G3) ∃ θ ∈ [0, 1[ such that

max
i∈P

∑
j∈P

(
μpi,jE

[
e−λj,iSk

])
� θ.

Remark 4.4. Switching signals of class GH are nonexplosive, and switching cannot
stop in finite time, as can be seen by following the same line of reasoning as in
Remark 3.6.

2Here δ{j} denotes the Dirac measure concentrated on {j}.
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Remark 4.5. Note that Theorem 4.3 is conceptually quite different from the
results of section 3. Indeed, the condition (G3) involves the growth rate of a Lyapunov
function along every subsystem, in contrast to the results in section 3, where we kept
track only of the growth rate of each Lyapunov function along the trajectories of the
corresponding subsystem. This additional factor is due to the Markovian nature of the
jump-destination process (σ(τi))i∈N0 , and quite naturally the transition probabilities
pi,j , i, j ∈ P , appear in (G3). Also, the condition (V2′) requires us to keep track of
the behavior of every Lyapunov function at once; in a way, we quantify how each
subsystem relates to the others through the inequality in (V2′). This is a deviation
from our philosophy of at first decoupling the properties of the switching signal from
the properties of the individual subsystems and then connecting them. The Markovian
nature of the jump-destination process in Theorem 4.3 does not seem to entirely allow
this separation.

5. An excursion into global asymptotic stability in probability. Among
the several notions of stochastic stability in the literature, one particular notion that
encodes uniform behavior of system trajectories is strongly globally asymptotically
stable in probability (s-gas-p). Recall the following from [13].

Definition 5.1. The system (2.2) is s-gas-p if the following two properties are
simultaneously verified:

(i) ∀ η ∈ ]0, 1[, ∀ ε > 0 ∃ δ > 0 such that ‖x0‖ < δ =⇒ P
(
supt�0 ‖x(t)‖ > ε

)
� η;

(ii) ∀ η′ ∈ ]0, 1[, ∀ r, ε′>0 ∃T >0 such that ‖x0‖<r =⇒ P
(
supt�T ‖x(t)‖>ε′

)
�η′.

Let us note that each of the sets inside the measure P in (i) and (ii) above
is F-measurable due to continuity of x(·); the notion is therefore well defined. An
equivalent statement may be made in terms of class-KL functions: the system (2.2)
satisfies the s-gas-p property if for every η ∈ ]0, 1[ there exists a function β ∈ KL such
that P

( ‖x(t)‖ � β(‖x0‖ , t) ∀ t � 0
)
� 1 − η. In the context of randomly switched

systems this property can be derived from gas a.s. with the aid of the local Lipschitz
property of the vector fields. We state this in the following proposition, whose proof
is provided in section 6.3.

Proposition 5.2. If (2.2) is gas a.s., then it is s-gas-p.
In particular, the hypotheses of Theorems 3.2, 3.4, and 4.3 imply that (2.2) is

s-gas-p.

6. Proofs of the analysis results. The proofs of the theorems and corollaries
of sections 3 and 4 are documented in this section. In order to simplify the pre-
sentation, a number of technical lemmas are stated and proved first in section 6.1,
followed by the proofs of the main results in section 6.2. We carry out the proofs
of Theorem 3.4 and Corollary 3.5, both dealing with switching signals of class UH,
in complete detail below. The proofs of Theorem 3.2 and Corollary 3.3 dealing with
switching signals of class EH are similar and are sketched. We retain the notation
and conventions of section 2. Let us recall some basic definitions and results.

Let I be a nonempty index set. A family of real-valued random variables {ξi}i∈I

is said to be uniformly integrable [24, Definition 3, page 23] if

lim
c→∞ sup

i∈I
E
[ |ξi|1{|ξi|>c}

]
= 0.

The following Hadamard–de la Vallée Poussin criterion [24, Theorem 5, page 24] for
checking uniform integrability of a family of random variables will be employed later.

Proposition 6.1 (Hadamard–de la Vallée Poussin). A family of real-valued
integrable random variables {ξi}i∈I is uniformly integrable if and only if there exists
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a convex function φ : R −→ R�0 with φ(0) = 0 and limr→∞ φ(r)/r = ∞ such that
supi∈I E

[
φ(ξi)

]
< ∞.

Recall that a family of random variables (ξt)t�0 converges a.s. if it converges
pointwise outside a P-null set. The following proposition is standard; it can be readily
derived from the Vitali convergence theorem [24, Theorem 4, page 24].

Proposition 6.2. If (ξt)t�0 is a càdlàg (i.e., right-continuous and possessing
limits from the left) random process on the filtered probability space above, (ξt)t�0 is
uniformly integrable, and (ξt)t�0 converges to 0 a.s., then

(
E
[
ξt
])

t�0
converges to 0.

We need Egorov’s theorem on almost uniform convergence of a sequence of mea-
surable functions (see, e.g., [24, Theorem 4, page 50] for a proof).

Theorem 6.3 (Egorov). Let (gn)n∈N be a sequence of measurable functions on
(Ω,F,P) and gn → g a.s. Then for every ε > 0 there exists a measurable set Aε with
P
(
Ω�Aε

)
< ε such that

(
gn1Aε

)
n∈N

converges uniformly to g1Aε .

6.1. Auxiliary lemmas.
Lemma 6.4. The system (2.2) has the following property: for every ε > 0 there

exists Lε > 0 such that

(6.1) 1]0,ε[(x(t))

∣∣∣∣ d ‖x(t)‖dt

∣∣∣∣ � Lε ‖x(t)‖ .

In particular, 1]0,ε[(x(t)) ‖x(t)‖ � ‖x0‖ eLεt ∀ t � 0.
Proof. Since {fi}i∈P is a finite family of locally Lipschitz vector fields, there exists

some ε′′ > 0 and Lε′′ > 0 such that

sup
i∈P,

‖x‖∈[0,ε′′[

‖fi(x)‖ � Lε′′ ‖x‖ .

Let ε := ε′ ∧ ε′′. Note that ∀x ∈ R
n
�{0} we have∣∣∣∣∣ d ‖x‖2dt

∣∣∣∣∣ =
∥∥∥∥2xT

dx

dt

∥∥∥∥ � 2 ‖x‖
∥∥∥∥ dx

dt

∥∥∥∥
and ∣∣∣∣∣ d ‖x‖2dt

∣∣∣∣∣ = 2 ‖x‖
∣∣∣∣ d ‖x‖dt

∣∣∣∣ .
These two inequalities lead to | d‖x‖dt | � ∥∥ dx

dt

∥∥. The inequality in (6.1) follows. Simi-
larly,

(6.2)
d ‖x‖
dt

� Lε ‖x‖ ∀x ∈ {
x ∈ R

n
∣∣ ‖x‖ < ε

}
�{0}.

An application of a standard differential inequality [18, Theorem 1.2.1] indicates that
every solution x(·) of (2.2) satisfies

‖x(t)‖ � ‖x0‖ eLεt

so long as ‖x(t)‖ < ε. This proves the claim.
The following Barbalat-type lemma was stated without a complete proof in [6].

It allows us to assert asymptotic convergence of ‖x(·)‖ from the finiteness of a certain
integral of ‖x(·)‖.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABILIZING RANDOMLY SWITCHED SYSTEMS 2017

Lemma 6.5. If α ∈ K and
∫∞
0

α(‖x(t)‖) dt < ∞ a.s., then limt→∞ ‖x(t)‖ = 0
a.s., where x(·) is the solution of (2.2).

Proof.3 Suppose that the claim is false. Then there exists a measurable set D
of positive probability such that for every event in D there exists some ε′ > 0 and a
monotone increasing divergent sequence (si)i∈N in R�0 such that α(‖x(si)‖) > ε′ ∀i.
By the finiteness condition on the integral in the hypothesis, a.s. there exists T (ε) > 0
such that

(6.3)

∫ ∞

T (ε)

α(‖x(t)‖) dt < 1

2

∫ ln 2
Lε

0

α

(
ε

2
e−Lεs

)
ds,

where the right-hand side is a strictly positive quantity since α ∈ K. For every event
on a set of positive probability, we have assumed that (si)i∈N is a monotone increasing
divergent sequence with α(‖x(si)‖) > ε, and therefore there exists i(ε) ∈ N such that
si(ε) > T (ε) with strictly positive probability. By continuity of ‖·‖ and x(·), there
exists an instant t′ > si(ε) such that ‖x(t′)‖ = ε/2, also with positive probability,
since otherwise the integral in the hypothesis diverges. But since x(·) solves (2.2),
Lemma 6.4 holds, and by (6.1) we have ‖x(t)‖ ∈ ]0, ε[ ∀t ∈ ]t′, t′ + ln 2

Lε
[. Therefore

since α is an increasing function,∫ t′+ ln 2
Lε

t′
α(‖x(t)‖) dt �

∫ t′+ ln 2
Lε

t′
α

(
ε

2
e−Lε(t−t′)

)
dt

with positive probability, which is a contradiction in view of (6.3). The assertion
follows.

Lemma 6.6. Under the hypotheses of Theorem 3.4, for each j ∈ N we have

E
[
V 1+κ
σ(τj)

(x(τj))
]
� α1+κ

2 (‖x0‖)ηj(κ),
where

η(κ) :=
∑
j∈P

μ1+κqj
(
1− e−λj(1+κ)T

)
λj(1 + κ)T

, κ > 0.

Proof. Pick i ∈ N0. For t ∈ [τi, τi+1[, from (V2) we have

Vσ(τi+1)(x(t)) � Vσ(τi+1)(x(τi))e
−λσ(τi)

(t−τi),

and by (V3) and the continuity of x(·) and of each Lyapunov function, we have

Vσ(τi+1)(x(t)) � μVσ(τi)(x(τi))e
−λσ(τi)

(t−τi)

pointwise on Ω. Fix j ∈ N. For κ > 0, iterating the above inequality and employing
the independence hypothesis (UH3) and (V1), we have

(6.4)

E
[
V 1+κ
σ(τj)

(x(τj))
]
� α1+κ

2 (‖x0‖)E
⎡⎣(

j−1∏
i=0

μe−λσ(τi)
Si+1

)1+κ
⎤⎦

= α1+κ
2 (‖x0‖)

j−1∏
i=0

μ1+κE
[
e−λσ(τi)

(1+κ)Si+1

]
.

3If the local Lipschitzness of the vector fields {fi}i∈P and the assumption that α is of class K
were relaxed to local boundedness of fi’s around 0 and α being just positive definite, respectively,
the result would remain true and could be established by a minor modification of the proof given
here. The stronger hypotheses we use make the proof simpler and are adequate for our purposes.
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But

E
[
e−λσ(τi)

(1+κ)Si+1

]
= E

[
E
Fτi

[
e−λσ(τi)

(1+κ)Si+1

] ]
= E

[∫ T

0

1

T
e−λσ(τi)

(1+κ)s ds

]

= E

[
1− e−λσ(τi)

(1+κ)T

λσ(τi)(1 + κ)T

]
=

∑
j∈P

qj
(
1− e−λj(1+κ)T

)
λj(1 + κ)T

.(6.5)

Substituting the right-hand side of (6.5) into (6.4) leads to

E
[
V 1+κ
σ(τj)

(x(τj))
]
� α1+κ

2 (‖x0‖)
(∑

i∈P

μ1+κqi
(
1− e−λi(1+κ)T

)
λi(1 + κ)T

)j

,

and considering the definition of η(κ), the assertion follows.

Lemma 6.7. Under the hypotheses of Theorem 3.4 we have
∫∞
0 α1(‖x(t)‖) dt < ∞

Proof. For a fixed t ∈ R�0 we have

E
[
Vσ(t)(x(t))

]
= E

[ ∞∑
i=0

Vσ(t)(x(t))1[τi,τi+1[(t)

]
=

∞∑
i=0

E
[
Vσ(t)(x(t))1[τi,τi+1[(t)

]
,(6.6)

where we have employed the monotone convergence theorem [24, Theorem 1, section
1.3] to get the second equality. An application of (V1) and Tonelli’s theorem [24,
Theorem 11, section 1.3] gives us

E

[∫ ∞

0

α1(‖x(t)‖) dt
]
� E

[∫ ∞

0

Vσ(t)(x(t)) dt

]
=

∫ ∞

0

E
[
Vσ(t)(x(t))

]
dt,(6.7)

and in conjunction with (6.6) we obtain

E

[∫ ∞

0

α1(‖x(t)‖) dt
]
�
∫ ∞

0

∞∑
i=0

E
[
Vσ(t)(x(t))1{t∈[τi,τi+1[}

]
dt.

A second application of the monotone convergence theorem on the right-hand side of
the above leads to

E

[∫ ∞

0

α1(‖x(t)‖) dt
]
�

∞∑
i=0

∫ ∞

0

E
[
Vσ(t)(x(t))1{t∈[τi,τi+1[}

]
dt,

and a further application of Tonelli’s theorem on the right-hand side gives

∞∑
i=0

∫ ∞

0

E
[
Vσ(t)(x(t))1[τi,τi+1[(t)

]
dt =

∞∑
i=0

E

[∫ ∞

0

Vσ(t)(x(t))1[τi,τi+1[(t) dt

]
.(6.8)

Each term in the series on the right-hand side of (6.8) may be estimated as follows:

E

[∫ ∞

0

Vσ(t)(x(t))1{t∈[τi,τi+1[} dt
]
� E

[ ∫ ∞

0

Vσ(τi)(x(τi))e
−λσ(τi)

(t−τi)1{t∈[τi,τi+1[} dt
]
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by (V2), and therefore

E

[∫ ∞

0

Vσ(t)(x(t))1{t∈[τi,τi+1[} dt
]
= E

[ ∫ τi+1

τi

Vσ(τi)(x(τi))e
−λσ(τi)

(t−τi) dt

]
= E

[
Vσ(τi)(x(τi))

(
1− e−λσ(τi)

Si+1

λσ(τi)

)]
= E

[
E
Fτi

[
Vσ(τi)(x(τi))

(
1− e−λσ(τi)

Si+1

λσ(τi)

)]]

= E

[
Vσ(τi)(x(τi))

(
1− E

Fτi
[
e−λσ(τi)

Si+1
]

λσ(τi)

)]

= E

[
Vσ(τi)(x(τi))

λσ(τi)

(
1−

∫ T

0

1

T
e−λσ(τi)

s ds

)]

= E

[
Vσ(τi)(x(τi))

λσ(τi)

(
1− 1− e−λσ(τi)

T

λσ(τi)T

)]
� ME

[
Vσ(τi)(x(τi))

]
,(6.9)

where M := maxi∈P( 1
λi

− 1−e−λiT

λ2
iT

) is a well-defined positive real number because of

the finiteness of P . From (6.8) and (6.9) we get

E

[∫ ∞

0

α1(‖x(t)‖) dt
]
�

∞∑
i=0

E

[∫ ∞

0

Vσ(t)(x(t))1{t∈[τi,τi+1[} dt
]

� Mα2(‖x0‖)
∞∑
i=0

E
[
Vσ(τi)(x(τi))

]
� Mα2(‖x0‖)

∞∑
i=0

ηi(0) < ∞,

where η is as defined in Lemma 6.6, and η(0) ∈ ]0, 1[ by (U3). This establishes the
claim.

Lemma 6.8. Under the hypotheses of Theorem 3.4, the family of random variables{
Vσ(t)(x(t))

}
t�0

is uniformly integrable.

Proof. To establish uniform integrability of the family
{
Vσ(t)(x(t))

}
t�0

we appeal

to the Hadamard–de la Vallée Poussin criterion in Proposition 6.1. Since the function

]− 1,∞[ � r −→
∑
j∈P

μ1+rqj
(
1− e−λj(1+r)T

)
λj(1 + r)T

∈ R

is continuous, by (U3) there exists δ > 0 such that
∑

j∈P
μ1+δqj(1−e−λj(1+δ)T )

λj(1+δ)T < 1.

The function φ(r) := r1+δ clearly is convex on R�0, and limr→∞ φ(r)/r = ∞. Let us

prove that supt�0 E[
(
Vσ(t)(x(t))

)1+δ
] < ∞.

First, let us note that for each i ∈ N0 the function V 1+δ
σ(t) (x(t))1{t∈[τi,τi+1[} is

integrable for arbitrary t ∈ R�0. Indeed,

E
[
V 1+δ
σ(t) (x(t))1{t∈[τi,τi+1[}

]
= E

[
E
Fτi

[
V 1+δ
σ(t) (x(t))1{t∈[τi,τi+1[}

] ]
� E

[
E
Fτi

[
V 1+δ
σ(τi)

(x(τi))e
−λσ(τi)

(1+δ)(t−τi)1{t∈[τi,τi+1[}
] ]

= E
[
V 1+δ
σ(τi)

(x(τi))e
−λσ(τi )

(1+δ)(t−τi)E
Fτi

[
1{t∈[τi,τi+1[}

] ]
,
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and since Si+1 is uniform-T and independent of Fτi , we have

E
Fτi

[
1{t∈[τi,τi+1[}

]
= 1{t∈[τi,∞[}P

Fτi
(
Si+1 > t− τi

)
=

((
1− t− τi

T

)
∨ 0

)
.

Therefore,

E
[
V 1+δ
σ(t) (x(t))1{t∈[τi,τi+1[}

]
� E

[
V 1+δ
σ(τi)

(x(τi))e
−λσ(τi)

(1+δ)(t−τi)

((
1− t− τi

T

)
∨ 0

)
1{t∈[τi,∞[}

]
.(6.10)

By definition of δ, the right-hand side of (6.10) is at most ME[V 1+δ
σ(τi)

(x(τi))], where

M := exp
(
minj∈P λj · (1 + δ)T

)
. Lemma 6.6 with κ = δ shows that

(6.11) E
[
V 1+δ
σ(τi)

(x(τi))
]
� α1+δ

2 (‖x0‖)η(δ)i,

where η(δ) ∈ ]0, 1[ by construction. By (6.10) we know that the random variable
V 1+δ
σ(t) (x(t))1{t∈[τi,τi+1[} is integrable for each i; we can therefore apply the monotone

convergence theorem to arrive at

E
[(
Vσ(t)(x(t))

)1+δ
]
= E

⎡⎣( ∞∑
i=0

Vσ(t)(x(t))1{t∈[τi,τi+1[}

)1+δ
⎤⎦

= E

[ ∞∑
i=0

V 1+δ
σ(t) (x(t))1{t∈[τi,τi+1[}

]

=
∞∑
i=0

E
[
V 1+δ
σ(t) (x(t))1{t∈[τi,τi+1[}

]
.(6.12)

We know from (6.11) that E[V 1+δ
σ(t) (x(t))1{t∈[τi,τi+1[}] � Mα1+δ

2 (‖x0‖)ηi(δ) for each

i ∈ N0. Substitution in (6.12) leads to

(6.13)

sup
t�0

E
[(
Vσ(t)(x(t))

)1+δ
]
= sup

t�0

∞∑
i=0

E
[
V 1+δ
σ(t) (x(t))1{t∈[τi,τi+1[}

]
� sup

t�0
Mα1+δ

2 (‖x0‖)
∞∑
i=0

ηi(δ)

< ∞.

This shows that the family
{
Vσ(t)(x(t))

}
t�0

is uniformly integrable.

Lemma 6.9. Under the hypotheses of Theorem 4.3, for every ν ∈ N we have
E
[
Vσ(τν)(x(τν ))

]
� θνVσ0(x0).

Proof. Fix i ∈ N0. For t ∈ [τi, τi+1[ and j ∈ P , from (V2′) we have

Vj(x(t)) � Vj(x(τi))e
−λjσ(τi )

(t−τi).

In particular, for t ∈ [τi, τi+1[,

Vσ(τi+1)(x(t)) � Vσ(τi+1)(x(τi))e
−λσ(τi+1),σ(τi)

(t−τi),
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and by (V3′) and the continuity of x(·) and of each Lyapunov function, we have

Vσ(τi+1)(x(t)) � μVσ(τi)(x(τi))e
−λσ(τi+1),σ(τi)

(t−τi)

pointwise on Ω. Therefore,

(6.14) E
Fτi

[
Vσ(τi+1)(x(τi+1))

]
� μVσ(τi)(x(τi))E

Fτi

[
e−λσ(τi+1),σ(τi)

Si+1

]
.

(GH3) shows that Si+1 and σ(τi+1) are conditionally independent given Fτi, and
therefore,

E
Fτi

[
e−λσ(τi+1),σ(τi)

Si+1

]
=

∑
j∈P

E
Fτi

[
e−λj,σ(τi)

Si+1
]
pσ(τi),j.

Since σ(τi) is Fτi-measurable,∑
j∈P

E
Fτi

[
e−λj,σ(τi)

Si+1
]
pσ(τi),j � max

k∈P

∑
j∈P

E
[
e−λj,kS1

]
pk,j .

By (G3) there exists a θ ∈ ]0, 1[ such that the quantity on the right-hand side of the
above inequality is at most θ/μ. Therefore, we get

μE
Fτi

[
eλσ(τi+1),σ(τi)

Si+1

]
� θ < 1,

which in view of (6.14) shows that

E
Fτi

[
Vσ(τi+1)(x(τi+1))

]
� θVσ(τi)(x(τi)).

Fixing ν ∈ N, since (τi)i∈N is an increasing sequence of (Ft)t�0-optional times, it
follows from standard properties of conditional expectations4 that

E
[
Vσ(τν)(x(τν ))

]
= E

[
E
Fτ1

[
· · ·EFτν−2

[
E
Fτν−1

[
Vσ(τν )(x(τν))

] ] · · · ] ]
� E

[
E
Fτ1

[
· · ·EFτν−2

[
θVσ(τν−1)(x(τν−1))

] · · · ] ]
� θνVσ0 (x0).

This proves the assertion.
Lemma 6.10. Under the hypotheses of Theorem 4.3 we have

∫∞
0

α1(‖x(t)‖) dt < ∞
a.s.

Proof. Following the proof of Lemma 6.7 we have

E
[
Vσ(t)(x(t))

]
=

∞∑
i=0

E
[
Vσ(t)(x(t))1{t∈[τi,τi+1[}

]
.

From (V1′), the monotone convergence theorem, and two applications of Tonelli’s
theorem (as in the proof of Lemma 6.7), we get

E

[∫ ∞

0

α1(‖x(t)‖) dt
]
�

∫ ∞

0

E
[
Vσ(t)(x(t)) dt

]
=

∞∑
i=0

E

[∫ τi+1

τi

Vσ(t)(x(t)) dt

]
.(6.15)

4The property being utilized is the following: If τ and τ ′ are (Ft)t�0-optional times, and τ � τ ′,
then Fτ is a sub-sigma-algebra of Fτ ′ . See, e.g., [24, Chapter 6] for further details.
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Now by (V2′) we get

E

[∫ τi+1

τi

Vσ(t)(x(t)) dt

]
� E

[
Vσ(τi)(x(τi))E

Fτi

[∫ τi+1

τi

e−λσ(τi),σ(τi)
(t−τi) dt

] ]

= E

[
Vσ(τi)(x(τi))

(
1− E

Fτi
[
e−λσ(τi),σ(τi)

Si+1
]

λσ(τi),σ(τi)

)]
.

Note that the nondegeneracy of the matrix Q yields E
[
e−λi,iS1

]
< ∞ ∀i ∈ P . This,

together with the fact that σ(τi) is Fτi-measurable, guarantees the existence of a
constant M > 0 such that

E

[∫ τi+1

τi

Vσ(t)(x(t)) dt

]
� ME

[
Vσ(τi)(x(τi))

]
.

Substituting in (6.15), we arrive at

E

[∫ ∞

0

α1(‖x(t)‖) dt
]
�

∞∑
i=0

ME
[
Vσ(τi)(x(τi))

]
� Mα2(‖x0‖)

∞∑
i=0

θi < ∞

in view of Lemma 6.9 and (V3′). We immediately get P
( ∫∞

0
α1(‖x(t)‖) dt < ∞)

= 1,
as asserted.

6.2. Proofs of the results in sections 3 and 4. As stated at the beginning
of section 6, the proofs of Theorem 3.4 and Corollary 3.5 are carried out in detail
below, followed by sketches of the proofs of Theorem 3.2 and Corollary 3.3.

Proof of Theorem 3.4. To see the property (AS2) of (2.2) we note that by
Lemma 6.7, P

( ∫∞
0

α1(‖x(t)‖) dt < ∞)
= 1. Lemma 6.5 now shows that ‖x(t)‖ → 0

a.s. as t → ∞ since α1 ∈ K∞. Since x0 was arbitrary, to establish (AS2) it re-
mains only to show that the solutions corresponding to all initial conditions x′

0 with
‖x′

0‖ < ‖x0‖ are also asymptotically convergent. To this end, observe that for every
fixed ω ∈ Ω, ν ∈ N, and t ∈ [τν(ω), τν+1(ω)[, a straightforward computation with the
aid of (V1)–(V3) gives

(6.16) Vσ(t,ω)(x(t, ω)) � α2(‖x0‖)μν
ν−1∏
i=0

e−λσ(τi(ω),ω)Si+1(ω)e−λσ(τν (ω),ω)(t−τν(ω)).

Here x(·, ω) corresponds to the solution of (2.2) initialized at x0. If x′(·, ω) denotes
the solution corresponding to the initial condition x′

0, then from (6.16) we have

Vσ(t,ω)(x
′(t, ω)) < α2(‖x0‖)μν

ν−1∏
i=0

e−λσ(τi(ω),ω)Si+1(ω)e−λσ(τν (ω),ω)(t−τν(ω))

whenever ‖x′
0‖ < ‖x0‖, since the right-hand side of (6.16) depends on the initial

condition only through the function α2, which is monotone increasing. This proves
(AS2).

Now we verify (AS1). Fix ε > 0. We know from the (AS2) property proved above
that a.s. there exists T (1, ε) > 0 such that ‖x0‖ < 1 implies that supt�T (1,ε) ‖x(t)‖ <

ε. Select δ(ε) = min
{
εe−LεT (1,ε), 1

}
. By Lemma 6.4, ‖x0‖ < δ(ε) implies

‖x(t)‖ � ‖x0‖ eLεt < δ(ε)eLεT (1,ε) < ε ∀ t ∈ [0, T (1, ε)].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABILIZING RANDOMLY SWITCHED SYSTEMS 2023

Further, the (AS2) property guarantees that with the above choice of δ and x0, we
have supt�T (1,ε) ‖x(t)‖ < ε for events in a set of full measure. Thus, ‖x0‖ < δ(ε)
implies that supt�0 ‖x(t)‖ < ε a.s. Since ε is arbitrary, the (AS1) property of (2.2)
follows.

We conclude that (2.2) is gas a.s.
Proof of Theorem 3.2 (sketch). First, we observe that under the hypotheses of

Theorem 3.2, for each j ∈ N we have

E
[
V 1+κ
σ(τj)

(x(τj))
]
� α1+κ

2 (‖x0‖)ηj(κ) whenever (1 + κ)λi + λ > 0 ∀i ∈ P ,

where

η(κ) :=
∑
j∈P

μ1+κqj
1 + λj(1 + κ)/λ

, κ > 0.

This can be proved along the lines of Lemma 6.6. In particular, at the step corre-
sponding to (6.5) we employ the (E3) condition (1 + κ)mini∈P λi + λ > 0 as

E
[
e−λσ(τi)

(1+κ)Si+1

]
= E

[
E
Fτi

[
e−λσ(τi)

(1+κ)Si+1

] ]
= E

[
λ

∫ ∞

0

e−
(
λσ(τi)

(1+κ)+λ
)
s ds

]
=

∑
j∈P

qj
1 + (1 + κ)λj/λ

.

Second, we observe that
∫∞
0 α1(‖x(t)‖) dt < ∞ a.s. The proof is similar to that of

Lemma 6.7; the only difference lies in the step corresponding to (6.9), where we
employ the condition (1 + κ)mini∈P λi + λ > 0 to arrive at

E

[∫ ∞

0

Vσ(t)(x(t))1{t∈[τi,τi+1[} dt
]
� E

[
Vσ(τi)(x(τi))

] 1

minj∈P λj + λ
.

The subsequent steps follow those of Lemma 6.7, and we get

E

[∫ ∞

0

α1(‖x(t)‖) dt
]
� α2(‖x0‖)

minj∈P λj + λ

∞∑
i=0

ηj(0) < ∞,

where η is as defined at the beginning of the current proof. With these ingredients, to
see the property (AS2) of (2.2) we note that in view of P

( ∫∞
0 α1(‖x(t)‖) dt < ∞)

= 1,
Lemma 6.5 gives ‖x(t)‖ → 0 a.s. as t → ∞ since α1 ∈ K∞. This proves (AS2) because
the only dependence on the initial condition is through α2(‖x0‖), and x0 is arbitrary
(as argued in the proof of Theorem 3.4 above). The proof of (AS1) is identical to
that in the proof of Theorem 3.4, and we omit the details. It follows that (2.2) is gas
a.s.

Proof of Corollary 3.5. Our first objective is to prove asymptotic convergence of
the net

(
E
[
α1(‖x(t)‖)

])
t�0

to 0. We have proved global asymptotic convergence a.s. of

the process (x(t))t�0 to 0 in Theorem 3.4, and via hypothesis (V1) this shows that the
process

(
Vσ(t)(x(t))

)
t�0

also converges a.s. to 0 since α2 ∈ K∞. From Lemma 6.8 we

know that the family
{
Vσ(t)(x(t))

}
t�0

is uniformly integrable, and by Proposition 6.2

it follows that limt→∞ E
[
Vσ(t)(x(t))

]
= 0. This implies global asymptotic convergence

of E
[
α1(‖x(t)‖)

]
to 0 in light of (V1) and verifies the (SM2) property with α = α1.
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It remains to prove (SM1). Following the notation of the proof of Lemma 6.8, we
note that η(0) ∈ ]0, 1[ by (U3). To establish (SM1) we need only note that with δ = 0
in (6.13) we have

sup
t�0

E
[
Vσ(t)(x(t))

]
� Mα2(‖x0‖) 1

1− η(0)
.

For ε > 0 preassigned, we choose δ̃ < α−1
2

(
ε(1 + η(0))/M

)
to see that

sup
t�0

E
[
α1(‖x(t)‖)

]
< ε whenever ‖x0‖ < δ̃.

The (SM1) property with α = α1 follows, thereby completing the proof.

Proof of Corollary 3.3 (sketch). We follow the proof of Corollary 3.5 above. Since
the proof of (SM1) is identical to that in the aforesaid proof, we give the details for
the proof of (SM2). This involves establishing asymptotic convergence of the net(
E
[
α1(‖x(t)‖)

])
t�0

to 0. Since global asymptotic convergence of the process (x(t))t�0

to 0 has been established in Theorem 3.2, in light of (V1) and Proposition 6.2 it
suffices to show that the family

{
Vσ(t)(x(t))

}
t�0

is uniformly integrable to conclude

that limt→∞ E
[
Vσ(t)(x(t))

]
= 0.

To this end, we need to follow the steps of Lemma 6.8 above to establish uniform
integrability of

{
Vσ(t)(x(t))

}
t�0

. Since the function ]−1,∞[ � r −→ (1+r)λi+λ ∈ R

is continuous for each i ∈ P , and P is a finite set, by (E3) there exists δ′ > 0 such
that (1 + δ′)λi + λ > 0 ∀i ∈ P . Also, since the function

]− 1,∞[ � r −→
∑
j∈P

μ1+rqj
1 + (1 + r)λj/λ

∈ R

is continuous, by (E4) there exists δ′′ > 0 such that
∑

j∈P
μ1+δ′′ qj

1+(1+δ′′)λj/λ
< 1. Let δ :=

δ′∧ δ′′. The function φ(r) := r1+δ clearly is convex on R�0, and limr→∞ φ(r)/r = ∞.

If we prove that supt�0 E[
(
Vσ(t)(x(t))

)1+δ
] < ∞, then the Hadamard–de la Vallée

Poussin criterion in Proposition 6.1 may be applied to conclude uniform integrability
of

{
Vσ(t)(x(t))

}
t�0

.

Calculations show that the inequality corresponding to (6.10) can be written as

E
[
V 1+δ
σ(t) (x(t))1{t∈[τi,τi+1[}

]
� E

[
V 1+δ
σ(τi)

(x(τi))e
−(λσ(τi)

(1+δ)+λ)(t−τi)1{t∈[τi,∞[}
]
,

and the inequality corresponding to (6.11) can be written as

E
[
V 1+δ
σ(τi)

(x(τi))
]
� α1+δ

2 (‖x0‖)η(δ)i,

where

η(κ) :=
∑
j∈P

μ1+κqj
1 + λj(1 + κ)/λ

.
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The step corresponding to (6.12) is identical, and the step corresponding to (6.13) is

sup
t�0

E
[(
Vσ(t)(x(t))

)1+δ
]
= sup

t�0

∞∑
i=0

E
[
V 1+δ
σ(t) (x(t))1{t∈[τi,τi+1[}

]
� sup

t�0
α1+δ
2 (‖x0‖)

∞∑
i=0

ηi(δ)

< ∞.

This concludes the proof.
Proof of Theorem 4.3. The proof mimics that of Theorem 3.4 above; the only

change required here is to replace the occurrence of Lemma 6.7 by Lemma 6.10.

6.3. Proof of Proposition 5.2. Let us verify property (ii) of Definition 5.1
assuming that (2.2) is gas a.s. Fix η, r, ε′ > 0 and x0 ∈ R

n with ‖x0‖ < r. Since
{fi}i∈P is a finite set of locally Lipschitz vector fields, there exists Lε′ > 0 such
that supi∈P,‖x‖<ε′ ‖fi(x)‖ � Lε′ ‖x‖. Let c := ln 2

Lε′
, and define the sequence of time

instants (sj)j∈N0 such that s0 := 0 and sj − sj−1 = c for every j ∈ N. By the
(AS2) property of (2.2) we have P

(
limt→∞ ‖x(t)‖ = 0

)
= 1, which also implies that

P
(
limi→∞ ‖x(si)‖ = 0

)
= 1. By Egorov’s theorem, Theorem 6.3, there exists a mea-

surable set Aη such that P
(
Ω�Aη

)
< η, and

(
x(si)1Aη

)
i∈N

uniformly converges to
0. The uniform convergence condition by definition implies that there exists i0 ∈ N

such that supi�i0

(‖x(si)‖ 1Aη

)
< ε′

2 . By construction of the sequence (si)i∈N we must
have ‖x(t)‖ 1Aη < ε′ ∀t � si0 in view of continuity of x(·). To see this, fix a time
t′ > si0 . The construction of the sequence (si)i∈N shows that there exists a j(t′) ∈ N

such that t′ ∈ [sj(t′)−1, sj(t′)[. The local Lipschitz condition on the set of vector fields
{fi}i∈P implies that

‖x(t′)‖ 1Aη � sup
s∈[sj(t′)−1,sj(t′)[

‖x(s)‖ 1Aη <
ε′

2
eLε′(s−sj(t′)) <

ε′

2
eLε′c = ε′,

where the last equality is true by definition of c. Since t′ was arbitrary, the asser-
tion follows. Since x0 was arbitrary, to establish property (ii) of Definition 5.1 it
remains only to show that the solutions restricted to Aη corresponding to all initial
conditions x′

0 with ‖x′
0‖ < ‖x0‖ are also asymptotically convergent. To this end,

observe that for every fixed ω ∈ Ω, and therefore for every fixed ω ∈ Aη, ν ∈ N, and
t ∈ [τν(ω), τν+1(ω)[, a straightforward computation with the aid of (V1)–(V3) gives

(6.17) Vσ(t,ω)(x(t, ω)) � α2(‖x0‖)μν
ν−1∏
i=0

e−λσ(τi(ω),ω)Si+1(ω)e−λσ(τν (ω),ω)(t−τν(ω)).

Here x(·, ω) corresponds to the solution of (2.2) initialized at x0. If x′(·, ω) denotes
the solution corresponding to the initial condition x′

0, then from (6.17) we have

Vσ(t,ω)(x
′(t, ω)) < α2(‖x0‖)μν

ν−1∏
i=0

e−λσ(τi(ω),ω)Si+1(ω)e−λσ(τν (ω),ω)(t−τν(ω))

whenever ‖x′
0‖ < ‖x0‖, since the right-hand side of (6.17) depends on the initial

condition only through the function α2, which is monotone increasing. This proves (ii).
To establish (i), let us fix η ∈ ]0, 1[ and ε>0. By (ii) there exists a T >0 corresponding
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to η′ = η, r = 1, and ε′ = η such that ‖x0‖ < 1 implies that supt�T ‖x(t)‖ 1Aη <
ε. The local Lipschitz condition on the set of vector fields {fi}i∈N guarantees the
existence of a positive δ′ > 0 such that supt∈[0,T ] ‖x(t)‖ < ε whenever ‖x0‖ < δ.
Picking δ = 1 ∧ δ′ we see that ‖x0‖ < δ implies that supt�0 ‖x(t)‖ 1Aη < ε. The
implication is now completely established.

7. Control synthesis. Our goal in this section is to synthesize feedback control
functions for stabilization (in a suitable stochastic sense) of randomly switched sys-
tems with control inputs. For brevity, we shall restrict ourselves to controllers which
render the closed-loop switched system gas a.s. for a switching signal of class EH.
The results automatically give the α1-gas-m property also in addition to gas a.s., in
view of the close relationship between the sufficient conditions for gas a.s. and gas-m

in our analysis results of section 3.
There are two distinct and obvious controller architectures: one in which the

control function depends on the switching signal σ, and the other in which the control
function does not depend on σ. In the first case, which is presented in section 7.1,
we combine universal formulae for feedback stabilization of nonlinear systems with
our analysis results to design controllers which ensure that the closed-loop switched
system is gas a.s. In the second case, which is presented in section 7.2, we search for
a controller which stabilizes some subsystems while not destabilizing the others too
much, and with the aid of our analysis results, ensure that the closed-loop switched
system is gas a.s.

7.1. Mode-dependent controllers. Consider the affine-in-control switched sys-
tem

(7.1) ẋ = fσ(x) +

m∑
j=1

gσ,j(x)uj , (x(0), σ(0)) = (x0, σ0), t � 0,

where x ∈ R
n is the state, ui, i = 1, . . . ,m, are the (scalar) control inputs, and

fi and gi,j are twice continuously differentiable vector fields on R
n, with fi(0) =

0, gi,j(0) = 0 for each i ∈ P , j ∈ {1, . . . ,m}. Let U be the set from which the
control u := [u1, . . . , um]T takes its values. With a feedback control function kσ(x) =
[kσ,1(x), . . . , kσ,m(x)]

T
, the closed-loop system stands as

(7.2) ẋ = fσ(x) +

m∑
j=1

gσ,j(x)kσ,j(x), (x(0), σ(0)) = (x0, σ0), t � 0.

We now describe the controller design methodology. A universal formula for
stabilization of control-affine nonlinear systems was first constructed in [26] for the
control taking values in U = R

m. The articles [20, 21, 22] provide universal formulae
for bounded controls, positive controls, and controls restricted to Minkowski balls,
respectively. In view of the analysis results of section 3 and the universal formulae
provided in the aforementioned articles, it is possible to synthesize controllers kσ
for (7.1) such that the closed-loop system (7.2) is gas a.s. In general, we obtain
one synthesis scheme for each type of U . The following theorem provides a typical
illustration of such a result for the case U = R

m; a complete recipe for obtaining such
results in other cases is provided in Remark 7.2.

Theorem 7.1. Consider the system (7.1), with U = R
m. Suppose that σ is of

class EH and that there exists a family {Vi}i∈P of twice continuously differentiable
real-valued functions on R

n such that
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(C1) (V1) of Assumption 2.3 holds;
(C2) (V3) of Assumption 2.3 holds;
(C3) ∃ {λi}i∈P ⊆ R such that ∀x ∈ R

n
�{0}, ∀ i ∈ P,

inf
u∈U

⎧⎨⎩LfiVi(x)+λiVi(x)+

m∑
j=1

ujLgi,jVi(x)

⎫⎬⎭ < 0;

(C4) ∀ ε > 0 ∃ δ > 0 such that if x(�= 0) satisfies ‖x‖ < δ, then ∃u ∈ R
m, ‖u‖ < ε,

such that ∀ i ∈ P,5

LfiVi +
m∑
j=1

uj · Lgi,jVi � −λiVi;

(C5) (E3)–(E4) of Theorem 3.2 hold.
Then the feedback control function

kσ(x) = [kσ,1(x), . . . , kσ,m(x)]T,

where

ki,j(x) := −Lgi,jVi(x) ϕ
(
W i(x), W̃i(x)

)
,(7.3a)

W i(x) := LfiVi(x) + λiVi(x),(7.3b)

W̃i(x) :=

m∑
j=1

(
Lgi,jVi(x)

)2
,(7.3c)

and

ϕ(a, b) :=

⎧⎨⎩a+
√
a2 + b2

b
if b �= 0,

0 otherwise,
(7.3d)

renders (7.2) gas a.s.
Proof. The proof relies heavily on the construction of the universal formula in [26].

Fix t ∈ R�0. If x �= 0, applying the definition of ϕ, we get

Lfσ(t)
Vσ(t)(x) +

m∑
i=1

kσ(t),i(x)Lgσ(t),i
Vσ(t)(x)

= Lfσ(t)
Vσ(t)(x)− W̃σ(t)(x)·ϕ

(
W σ(t)(x),

(
W̃σ(t)(x)

)2)
= −λσ(t)Vσ(t)(x) −

√(
Lfσ(t)

Vσ(t)(x) + λσ(t)Vσ(t)(x)
)2

+
(
W̃σ(t)(x)

)2

< −λσ(t)Vσ(t)(x).

Since t is arbitrary, we conclude that the above inequality holds ∀t ∈ R�0. Note that
by (C3), if x ∈ ⋂m

j=1 ker
(
Lgi,jVi

)
for any i ∈ P , we automatically have Lfσ(t)

Vσ(t)(x)+
λσ(t)Vσ(t)(x) < 0. The above arguments, in conjunction with (C1) and (C2), enable

5This is known as the small-control property [26].
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us to conclude that the family {Vi}i∈P satisfies Assumption 2.3 for the closed-loop
system (7.2). (E1) and (E2) hold by hypotheses. The assertion now follows from
Theorem 3.2.

Remark 7.2. Theorem 7.1 can be modified to suit a different control set U and a
different type of σ using the following simple recipe. First, recall from the discussion
preceding Theorem 7.1 that U may be any one among R

m, the nonnegative orthant
of Rm, the unit ball (with respect to the Euclidean norm) of Rm, and a Minkowski
ball in R

m. Now suppose that a U is given to us, and let σ belong to class UH. Then
(R1) (C1) and (C2) remain unchanged;
(R2) the given U replaces the U = R

m in Theorem 7.1;
(R3) (U3) replaces (E3)–(E4) in (C5);
(R4) the universal formula corresponding to the given U replaces the one given

in (7.3).

7.2. Mode-independent controllers. Consider the affine-in-control switched
system (7.1). Let k(x) = [k1(x), . . . , km(x)]

T
be a feedback control function, with

which the closed-loop system stands as

(7.4) ẋ = fσ(x) +
m∑
j=1

gσ,j(x)kj(x), (x(0), σ(0)) = (x0, σ0), t � 0.

Proposition 7.3. Consider the system (7.1) with U = R
m. Suppose that σ

belongs to class EH and that there exists a family {Vi}i∈P of twice continuously dif-
ferentiable real-valued functions on R

n such that
(i) (V1) and (V3) of Assumption 2.3 hold;
(ii) there exists a control function k : Rn −→ U such that Lfi+gik

Vi(x) � −λiVi(x)
for every i ∈ P, x ∈ R

n, for some {λi}i∈P ⊆ R;
(iii) (E3)–(E4) of Theorem 3.2 holds.

Then k renders (7.1) gas a.s. in closed loop.
Note that this result does not need a feedback controller k that simultaneously

stabilizes the family (2.1), which in general is difficult to get; it proposes controllers
which may leave some subsystems unstable but nonetheless achieve gas a.s. of the
closed-loop switched system.

Proof of Proposition 7.3. The assertion follows immediately by first observing
that the closed-loop system is (7.4), and then applying Theorem 3.2 to (7.4). Indeed,
note that hypothesis (ii) holds for (7.4) by our assumption on σ, (iii) implies that
(EH3)–(EH4) hold, and (i)–(ii) ensure that (E1) holds.

An identical result can be given for switching signals of class UH; we state it
without proof below.

Proposition 7.4. Consider the system (7.1) with U = R
m. Suppose that σ

belongs to class UH and that there exists a family {Vi}i∈P of twice continuously dif-
ferentiable real-valued functions on R

n such that
(i) (V1) and (V3) of Assumption 2.3 hold;
(ii) there exists a control function k : R

n −→ U , such that Lfi+gik
Vi(x) �

−λiVi(x) for every i ∈ P, x ∈ R
n, for some {λi}i∈P ⊆ R;

(iii) (U3) of Theorem 3.4 holds.
Then k renders (7.1) gas a.s. in closed loop.

8. Examples. We consider two examples illustrating our analysis and synthesis
results. First, let us consider a simple example with a relaxed switching rate.
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Example 8.1. Let us consider a switching signal σ of class EH taking values in
the index set P = {1, 2}, with q1 = 0.6, q2 = 0.4, and λ = 10, and the following two
vector fields:

f1(x) =

[ −3x1 + x2

(x1 + x2) sin(x1)− 3x2

]
,

f2(x) =

[
x1/2− x2

x1 + x2/2

]
.

We would like to know whether the switched system generated by σ from the two
vector fields above is gas a.s. To this end, we verify the hypotheses of Theorem 3.2.
Let us consider candidate Lyapunov-like functions V1(x) = x2

1/2+x2
2 = V2(x), so that

μ = 1. Simple computations lead to

Lf1V1(x) = −3x2
1 − 4x2

2 + (1 + 2 sin(x1))x1x2

� −3x2
1/2− 5x2

2/2 � −5V1(x)/2

and

Lf2V2(x) = x2
1/2 + x2

2 + x1x2 � 2V2(x),

which yield that λ1 = 5/2 and λ2 = −2. It follows immediately that (E3)–(E4) of
Theorem 3.2 hold, and that the switched system is gas a.s.

Observe that given the structure of f2, it is tempting to employ V2(x) = (x2
1 +

x2
2)/2 as a candidate Lyapunov-like function; but then the constant μ becomes 2,

and it becomes impossible to satisfy (E4) with the given values of q1 and q2. This
observation applies in the general situation as well; it is often beneficial to take as
small a value of the constant μ as possible unless the probabilities qi differ greatly.

We provide an example illustrating our controller synthesis methodology.
Example 8.2. Let P = {1, 2} and consider the family of planar control systems

ẋ =

[
x1 − x3

1

−x2

]
+

[
1

1/3

]
u, ẋ =

[
x2

−x1/2 + x2

]
+

[
1
0

]
u.

Let σ be a switching signal satisfying (U2) of Theorem 3.4 with T = 0.5 and q1 = 0.8
and q2 = 0.25, and let us assume that we do not have information about σ at any
instant of time t. Let us further suppose that the only state available for feedback is
x1, and our objective is to find a control function k(x) = kx1, where k is a constant,
such that the closed-loop switched system is gas a.s.

We observe that the first subsystem has multiple equilibrium points for zero in-
put, but by choosing an appropriate k it is possible to render the origin the unique
equilibrium point of the closed-loop subsystem. Note also that the first system is
zero-input unstable at the origin, and no matter what k is, the second subsystem is
always unstable. (The latter fact follows immediately from the fact that if we choose
a Lyapunov-like function V (x) = 0.5

(
x2
1 + x2

2

)
, then Lf2+g2k

V (x) = kx2
1 + x2

2, from
which we see that the conditions of Chetaev’s theorem [28, Chapter 5, Theorem 99]
are fulfilled for every k ∈ R; this implies instability of the origin.) Therefore, without
a control input the switched system is unstable at the origin.

Let us choose V1(x) = V2(x) = 0.5x2
1+x2

2, which gives us μ = 1. We immediately
see that

Lf1+g1k
V1(x) � −V1(x),

Lf2+g2k
V2(x) � 2V2(x),
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which means λ1 = 1 and λ2 = −2. We see that hypotheses (i)–(ii) of Proposition 7.4
are satisfied. It is also easy to see that

q1
(
1− e−T

)
T

+
q2
(
1− e2T

)
−2T

< 1 =
1

μ
,

which implies that hypothesis (iii) of Proposition 7.4 holds. We conclude that with
k = −3 the switched control system under consideration is gas a.s. by Proposi-
tion 7.4.

9. Conclusion and further work. We have established sufficient conditions for
global asymptotic stability a.s., in the mean, and in probability of randomly switched
systems and established a methodology for almost sure global asymptotic stabilization
and global asymptotic stabilization in the mean of randomly switched systems with
control inputs. The switching signals were assumed to be semi-Markovian.

An interesting research direction is to extend the above results to systems with
disturbance inputs. The analysis becomes more involved, and for synthesis tools
universal formulae for input to state stability (iss) disturbance attenuation in non-
linear control literature are needed. Some preliminary results have been reported
in [7] and [5]. In the particular case of Markovian switching signals, one can prove
stochastic analogues of iss [5, Chapter 3].
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