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Abstract

In this paper we prove that a switched nonlinear system has several useful input-to-state stable (ISS)-type properties under average dwell-
time switching signals if each constituent dynamical system is ISS. This extends available results for switched linear systems. We apply our
result to stabilization of uncertain nonlinear systems via switching supervisory control, and show that the plant states can be kept bounded
in the presence of bounded disturbances when the candidate controllers provide ISS properties with respect to the estimation errors. Detailed

illustrative examples are included.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Switched systems arise in situations where there are several
dynamical subsystems and a switching signal specifying the
active subsystem at each instant of time. In general, a switched
system does not inherit properties of the individual subsys-
tems; a well-known example is that switching among globally
exponentially stable subsystems could lead to instability (see,
e.g., Liberzon, 2003). Morse has shown that for dwell-time
switching signals, a switched linear system is exponentially
stable if the individual subsystems are exponentially stable
(Morse, 1996). This result was later extended to average dwell-
time switching signals and to switched linear systems with in-
puts and switched nonlinear systems without inputs (Hespanha
& Morse, 1999b). For switched nonlinear systems with in-
puts and dwell-time switching signals, a switched system is
input-to-state stable (ISS) if the individual subsystems are ISS
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(Xie, Wen, & Li, 2001); see also (Liberzon, 1999, Section 5).
If the individual subsystems are integral input-to-state stable
@iISS), the switched system remains iISS with state-dependent
dwell-time switching signals (De Persis, De Santis, & Morse,
2003).

This paper extends the results in Hespanha and Morse
(1999b) to switched nonlinear systems with inputs. When the
individual subsystems of a switched system are ISS and their
ISS—-Lyapunov functions satisfy a suitable condition (which
was also used in Hespanha & Morse, 1999b), we show that for
switching signals with sufficiently large average dwell-time,
the switched system has ISS, exponentially weighted-1SS, and
exponentially weighted-ilSS properties. Similar to the linear
case in Hespanha and Morse (1999b), these exponentially
weighted properties provide quantitative descriptions of exter-
nal stability. Unlike the ISS result in Xie et al. (2001) which
relies on dwell-time switching, our result only requires average
dwell-time switching, which is a less stringent requirement.
Compared to state-dependent dwell-time switching employed
in De Persis et al. (2003) which requires the knowledge of
the state, average dwell-time switching can be achieved using
simple hysteresis-based switching logics (Hespanha, Liberzon,
& Morse, 2000; Hespanha & Morse, 1999b).

We apply our results on switched systems to the problem
of stabilizing uncertain nonlinear systems in the presence of
disturbances via switching supervisory control (Hespanha,
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Liberzon, & Morse, 2003a,b; Morse, 1996, 1997). In switching
supervisory control, a supervisor orchestrates switching among
a parameterized family of candidate controllers by appropri-
ately filtering the estimation errors coming out of the multi-
estimator. This control scheme with the scale-independent
hysteresis switching logic has been applied successfully to
linear systems in the presence of modeling uncertainty and
disturbances (Hespanha et al., 2001), and a recent research di-
rection is to extend the result to nonlinear plants. For nonlinear
plants with the same switching logic, it has been shown that if
there are no disturbances, then switching stops in finite time
and the states converge to zero (Hespanha, Liberzon, & Morse,
2002; Hespanha & Morse, 1999a). However, in the presence
of disturbances, switching is not guaranteed to stop and the
states can diverge. We show that using switching supervisory
control with the scale-independent hysteresis switching logic,
the states of an uncertain nonlinear plant can be kept bounded
for arbitrary initial conditions and bounded disturbances when
the controllers provide the ISS property with respect to the
estimation errors.

2. Preliminaries

Consider a family of systems

x=fpx,v), pe?, (1)

where the state x € R”, the input v € Re, and £ is an index
set. For each p € 2, f), is locally Lipschitz and f},(0,0) =0.
A switched system generated by the family of systems (1) and
a switching signal o is

X = fo(x,v), @)

where o : [0, 0c0) — 2 is a piecewise constant function, con-
tinuous from the right, specifying at every time the index of the
active system. The input v € 77, the set of measurable func-
tions v : [0,00) — R’. Assume that there are no jumps in
the state at the switching instants, and that a finite number of
switches occur on every bounded time interval. Denote by x ()
the trajectory of the system (2) at time ¢ >0, starting at xo at
t=0.

The switched system (2) is ISS (Sontag & Wang, 1995) if
Ife AL and o,y € H o, such that! Vv € 77 xg € R" we
have

a(lx (D < B(Uxol, ) + 7 (Ivlo,n) »

where |- | the Euclidean norm, and || - || s is the supremum norm
of a signal over an interval .# C [0, 00).

Vi >0, 3)

Definition 2.1. The switched system (2) is e/t -weighted input-
to-state stable (e*' -weighted ISS) for some 4> 0if Iy, 0,7 €
A 0, such that Vv € 7, xg € R" we have

oy (Ix()) <oalxol) + sup {™y(ju(s)D), V=0 (4

s€[0,1)

1 See, e.g., Khalil (2002, p. 144) for the definitions of class # % and
A~ functions.

The switched system (2) is e -weighted integral input-to-state
stable (e}"’-weighted iISS) for some A>0if oy, 0p,7 € H oo,
such that Yv € 77, xg € R" we have

5 t 5
6”061(IX(t)|)<062(IXOI)+/0 e“p(lv(mhde, Ve=0.  (5)

The e -weighted ISS and e -weighted iISS properties gen-
eralize ISS and iISS properties® in the spirit of exponentially
weighted induced norms considered in Hespanha and Morse
(1999b). While the ISS property characterizes stability in gen-
eral, the e*-weighted ISS and e*-weighted iISS properties
characterize stability with a “stability margin” A (similar to sta-
bility margin of linear systems), which is useful in quantitative
analysis (e.g., in supervisory control as we will see later).

3. Input-to-state properties of switched systems
Recall that a switching signal ¢ has an average dwell-time
7, if there are numbers N,, 17, > 0 such that
T —t

NO'(Tat)gNO_'_ )

Ta

VT >t >0, (6)

where N4 (T, t) is the number of switches in the interval [z, T')
(Hespanha & Morse, 1999b) (see, e.g., Liberzon, 2003, p. 58 for
more discussions). The following theorem is an extension of the
results in Hespanha and Morse (1999b) to switched nonlinear
systems with inputs.

Theorem 3.1. Consider the switched system (2). Suppose that
there exist continuously differentiable functions V, : R" —
[0,00), p € 2, class KX « functions a1, 2,7, and numbers
Ao >0, u>1 such that V¢ € R",n € R¢, and Vp,q € 2, we
have

(1) < V(&) <@ (1€)), @)
oV

a—g’fp@, M < = 4o V(&) 4+ (0D, (8)
V(&) < Vg (). 9)

Let 0 be a switching signal having average dwell-time t,.

(1) If Ty >In p/ Ao, then the switched system (2) is ISS.
(i) If to>1n p/(Ao — ) for some L € (0, L), then the
switched system (2) is e’lt-weighted ISS.
(i) If
7,2 In /—L//(lo - )7\ (10)

for some ). € (0, 1,), then the switched system (2) is et
weighted ilSS.

Proof. For notational brevity, define GZ D) = f ab e y(Jv(s)])
ds. Let T > 0 be an arbitrary time. Denote by 11, ..., Tn,(T,0)
the switching times on the interval (0, T) (by convention,

2 See Sontag (1998) for the original definition of iISS.
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70 := 0, Tn,(1,0)+1 := T). Consider the piecewise continuously
differentiable function

W (s) := e Vg (x(s)). an

On each interval [7;, 7;+1), the switching signal is constant.
From (11) and (8), W(s)ge’1°s7(|v(s)|), Vs € [ti, tit+1). Inte-
grating both sides of the foregoing inequality from 7; to 7;_
and using (9) we arrive at

W (tip1) SuW (i, ) S p(W(w) + G (Jo)). (12)
Iterating (12) from i =0 to i = Ny (T, 0), we get

Nq(T,0)
wa )< T twoy + Y pteET v | a3)
k=0

From (10), for every 6 € [0,4, — A — Inu/t,], we have
T4 > Inp/(Ao — A — 0), and by virtue of (6), we get
No(T,$)<No+ (o —A—0)(T —s)/Inu, Vsel0,T].
Since Ng(T,0) —k — 1 < Ng(T, Tk41), it follows that

'uN,,(T,O)—k < #1+Noe(2o—/l—5)(T—rk+1) (14)

forall k =0, ..., Ng(T,0). Since A + 6 < Ao, we have

T (ho) ST AT G (4 5). (15)
From (13)—(15), we then arrive at
Z (|x (1)) <ce™ T @ (1x0]) + G§ (4 + ), (16)
¢ = plthNe, 17)

by virtue of (11), (7) and since x is continuous. Letting 6 =0
in (16), we obtain (5) with oy := oy, o := ctp, 7 := ¢}. From
the definition of GZ (1), we have

sup {e"F(|v (1)) (18)
1€[0,T)

. c S5 ).
Gyt )< —ehHoiT
for every A € [0, /. + &) where ¢ := ¢/(A + 6 — /). From (18)
and (16), we obtain

@1 (|x(T)]) <ee™ T, (1xg))

fere™™ sup (v}, YT 0. (19)
1€[0,T)

Picking some & € (0, A, — A — Inpi/7,), and letting 2 = 2 in
(19), we have property (4) with oy := o1, 02 := c@ip, and y :=
c17. If we let J.=0,0=0in (19), we have property (3) with
o =3y, f(r,s) := ce P (r), and y := ¢7/2 by the fact that
sup.cro.7y 70D <T (Ilvllo.7)). O

An immediate consequence of Theorem 3.1 is that for a
switched system satisfying (7)—(9), if the input v is bounded,

then the state x is bounded for average dwell-time switching
signals with average dwell-time 1, satisfying (10).> If the input
goes to zero, the average dwell-time switching implies global
asymptotic stability of the switched system.

Remark 1. If each individual subsystem in the family (1) is
ISS, then for every p € 2 there exist functions %y, %2, p, ?p €
A 0, numbers Ao, p >0, and ISS—Lyapunov functions V,,, sat-
isfying o1, (1)) < V(&) <02, p(I<]) and (0V),/00) fp(H) < —
2o,pVp(©) +7,(n) VE € R, 5 € R¢; see Praly and Wang
(1996), and Sontag and Wang (1995). If the set £ is finite or
if the set 2 is compact and suitable continuity assumptions on
{71, %2, p }peg, and {io,p}pe@ with respect to p hold, then
(7) and (8) follow. The set of possible ISS-Lyapunov functions
is restricted by (9). This inequality does not hold, for exam-
ple, if V), is quadratic for one value of p and quartic for an-
other. If u =1, (9) implies that V =V, p € 2, is a common
ISS—Lyapunov function for the family of systems (1), and the
switched system is ISS for arbitrary switching (also called uni-
formly input-to-state stable Mancilla-Aguilar & Garcia, 2000).

4. Application to switching supervisory control of
nonlinear systems

We quickly review here the switching supervisory control
framework; for details, see, e.g., Liberzon (2003, Chapter 6)
and references therein. Suppose that a plant P belongs to a
family of plants parameterized by a parameter p € 2, for some
known index set 2 of m elements, and denote by p* € # the
true value of the unknown parameter:

X= f(x,u, p*,d), y=h(x,p"),

where x, y, u,d are the state, output, input and disturbance,
respectively. These parameterized plants are common in the
context of adaptive control; see, e.g., Hespanha et al. (2003b)
for more discussions and some practical systems. A family of
candidate controllers

qe?, (20)

)'CC:gq(xC,%u), qu”q(xﬂis)’%

are designed such that the gth controller stabilizes the plant
with index g (see, e.g., Freidovich & Khalil, 2005) for an ex-
ample of using a particular type of controllers—sliding-mode
controllers). Controller selection is carried out by a high-level
supervisor, which comprises three subsystems:

(1) The first subsystem is a multi-estimator:

Xp=Fxg y,u), yp=hp(xp), peP ey

Let ey =y, —y, p € 2 be the estimation errors. The
multi-estimator has the following property.

3 1t has come to the authors’ attention that the ISS property of switched
nonlinear systems under average dwell-time switching (but not the e*-
weighted ISS and e -weighted iISS properties) has been independently re-
ported without proof in Feng and Zhang (2005).
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Assumption 4.1. The disturbance d is bounded by d. There
exists a constant cp > 0 (co depends on d and may depend on
the initial states x(0) and xg(0)) such that |ep (£)| <co Vi =0.

There is a family of injected systems, where the injected
system indexed by g € £ comprises the multi-estimator and
the corresponding controller:

. |:gq(x<Ds ys rq(-x61 )’))
XCE =

F(xE, v, rg (xc, 1) } = Jalree &)

by virtue of y =h,(xg) —e; Vg € 2, where xcf = [xg xE]T
is the state of the injected system; xcg € R"; ¢, € RE. The
switched injected system is generated by the above family of

injected systems and some switching signal ¢ defined in (iii)
below.*

(ii)) The second subsystem is the monitoring signal generator
generating the monitoring signals yi,,, p € #:

sz_/lzp +?(|ep|)v Zp(O)ZOa
:up(t)=8+z[7(t)7 (22)
for some ¢> 0, 4 € (0, 1,), where 4., 7 are in (8).

(iii) The third subsystem is a switching logic. We use the scale-
independent hysteresis switching logic:

arg min p, (1) if 3g € 2 such that
qe?

o(t) = (14 )y, (1) < o (), (23)

a(t™) else,

where i > 0 is a design parameter such that

In(1 + h) In u
>

m o — 24

Note that the above hysteresis switching logic is scale-
independent—the switching signal ¢ is unaltered when we
multiply all the monitoring signals by a positive scalar. Let
ﬁp(t) = e”,up(t), t>0, p e 2, be the scaled version of Kp-
From (22), for each p € 2, we have

t
fip () = s + /0 P 5(lep(s)ds, 120, (25)

which indicates that ft, is continuous and monotonically nonde-
creasing. Lemma 4.2 below provides a property of the switch-
ing signals generated by the switching logic (23) (cf. Hespanha
et al,, 2000, Theorem 1); the proof is along the lines of
Hespanha et al. (2000) (with more careful counting) and is
omitted due to space limitation.

4 By switched injected system we mean that there are no jumps in xcf
at switching times. When implementing (20), at each switching instant 7;, we
can ensure that xc(t; ) =xc(7;), and thus xc is continuous; xg is continuous
in view of (21).

Lemma 4.2. For every g € 2 and t >ty >0, we have

m :aq (t)
Nolt ) sm+ v ™ (minpeyﬁ,, (l0)> ’ (20
Ne(t,10)
D (g Thi1) = oy ()
k=0
<m((1+ h)fi, (1) — minpepfl, (t0)), 27)

where Ty, 12, ..., TN, (.19 are the discontinuities of o on (to, t)
and TNg(1,00)+1 ‘=1, T =10

Letting p = p* in (25), in view of Assumption 4.1, we get
(D <Kke™, K=&+ 7o)/ (28)

Since min ¢y ﬁp(to)>se)"’0 V>0, (26) with ¢ = p* and
(28) yield Ng(t,t0)<No + (¢t — t9)/t4, Where N, :=
m + mln(k/e)/In(1 + h), and 1, := In(1 + h)/(Am). With
q = p in (27), from (25) and (28), we arrive at

t "
/ " T(leots) (5)) ds + ee™ — &
0

Ne(t,t0)

= Y (ot @t1) = oy @)) <m(1 + ke’ (29)
k=0

We have the following result on switching supervisory control
of nonlinear plants with disturbances.

Theorem 4.3. Suppose that

(1) the state x of the process P is bounded when the input u,
output y and disturbance d are bounded,
(ii) the multi-estimator is designed such that Assumption 4.1
holds,
(iii) the candidate controllers are designed such that the hy-
potheses of Theorem 3.1 hold for the switched injected
system.

Then under the supervisor with scale-independent hysteresis
switching logic, all continuous states of the closed-loop sys-
tem are bounded for arbitrary initial conditions and bounded
disturbances.

Proof. From hypothesis (iii) and the condition on average
dwell-time (24), it follows from Theorem 3.1 that the state
of switched injected system xcg has the e -weighted iISS

property:
5 t
a1 (Ixce (D)) < v (Jxcr(0)) +ch "7 (leq(s)) ds,

where o, %y, and ) are 4 o functions as in (7). The above
inequality and (29) yield

|xcE(0)] S&fl (o (|xcp0)]) + em(1 + h)x) =: ¢
Vi >0. (30)
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We have Vg € 2, V120, |y, (t)|=1hq(xg(1))] SSUPpez 1< e
{lhp(E)]} =: c3. Since y = yp+ — ep+ and |ep (1) <co V=0
(by Assumption 4.1), it follows that |y(#)|<c3 + ¢ =:
c4 V1 20. Also e, =y, — y, and therefore |e,(1)|<co +
2c3 =: ¢5Vq € 2, Vt>0. Further, we have  Vr>0,
|u(t)|<supq€g;’|agcz",ﬂgmﬂrq(f, 1|} =: ce. Since d, u and
y are bounded, the state x is bounded in view of hypothesis (i).
Finally, every monitoring signal x,, g € #, is bounded since
leg| is bounded V g € 2. [

Remark 2. Hypothesis (i) of Theorem 4.3 holds, for exam-
ple, when the plant is input-output-to-state stable (see Sontag
& Wang, 1997 for the definition). Hypothesis (ii) requires that
at least one estimator provides a bounded estimation error in
the presence of disturbances. This is more or less a standard as-
sumption in multi-estimator design; a similar assumption was
used in Hespanha and Morse (1999a) for plants without dis-
turbances. Hypothesis (iii) stipulates that the injected systems
are ISS (which was also an assumption in Hespanha & Morse,
1999a); the design of ISS injected systems is nontrivial, and
is a topic of ongoing research (cf. Liberzon, Sontag, & Wang,
2002). All three hypotheses can be completely characterized
via detectability and stabilizability of the plant for linear sys-
tems Morse, 1996, but characterizing the nonlinear plants for
which these hypotheses hold is still an open question. However,
there are certain nonlinear systems for which these conditions
hold (see Example 1 below).

Remark 3. If the disturbance d is vanishing and in Assump-
tion 4.1 we replace the constant bound co with a time-varying
bound co(t) — 0 as t — oo, and further, if the plant is IOSS,
then we can have |x(f)] — 0 as t — oo if we use a non-
negative decaying &(¢) in the monitoring signal generator such
that ¢(r) — 0 and y(co(t))/e(t) < oo as t — oo (which means
¢ should decay more slowly than 7(cg)). If this is the case,
x — 0 in (28) and the chatter bound N, < co. Then the iISS
property of the switched injected system together with (29)
yields [xcg(1)] <o (e #aa(Ixce(0)]) + em (1 + () — 0
as t — oo; thus, ¢; in (30) becomes a time-varying c(¢) — 0
as t — oo. It then follows that c3(¢), c4(2), c5(t), cg(t) — 0
as t — oo where c3(t), ca(t), c5(t), cs(t) are the time-varying
bounds in places of c3, c4, c5, cg in the proof of the theorem.
Since |u(t)| — 0, |y(¢)| — 0 and the plant is IOSS, the state
norm |x(¢)] — 0 as t — oo.

Example 1. Consider a scalar nonlinear plant
y=y'+pru+d, 31

where p* is an unknown constant belonging to a finite index
set Z of m elements, 2 := {p1, ..., pm}, and d is a disturbance.
Our objective is to keep the state bounded in the presence of
a bounded disturbance. The unknown parameter enters as the
input gain, which makes the problem challenging to solve in
the framework of conventional adaptive control when the sign
of p* is unknown.

The multi-estimator and the candidate controllers are
yp = _(yp —-y) - (yp - y)3 + pu +y2,
up ==y —y> =y,

The injected system for the controller with an index ¢ is

pEP.

: p
Jp=—p =) —Op —y)3+5(—y—y2—y3)+y2,
peP. 32)

Consider the candidate ISS-Lyapunov functions V,(xcE) =
aryy + biy; + X pzg per oYy + boyy.q € P, where
XCE = [Yp,, ...,ypm]T is the state of the injected system,
for some ai, by, ap, bp >0 to be determined. One can pick
W= max{al/ao,ao/al,bl/bo,bo'/bl}. The derivative of V,
along the gth injected system is V, = 4a1y2j}q + 2b1ygyg +
Zp#q’peg%zoygy,, + 2boypyp. Substituting (32) into the
foregoing V,, after some expansions and simplifications, we
arrive at

Vv, < —a1y2 _401)’3 —2191qu

+ Y (—aoy$ — 4aoyy — 2boy;

P#q
peP

+ (4agy; + 2boyp)Kpg 8(¥)), (33)

where 1, == (1 — p/q) and g(y) =y + y? + y3. Define
Kmax = max{|kpq| : p,q € 2}. Using completions of the
squares with —aoyf7 — boy]z, + (4aoyf, + ZbOyf,)qug(y) and
using the triangle inequality with lg(y)|? in (33), after some
computations, we obtain

V< = Vg — (a1 — 256(4ag + bo)mig, )yS
— (b1 — 16(4a0 + bo)micma) Ve

+ (4ag + bo)mic,, (16¢; + 256€0).

max

If by, ag are chosen such that (4ay + bo)m;crznaX <1, a; =256,
b1 >16, we then get ng — Vy + 7(e4l), where y(r) =
16r2 425610 is a class # o function. The foregoing inequality
shows that for each fixed controller with index ¢, the corre-
sponding injected system is ISS with respect to the output er-
ror ¢,. By Theorem 4.3, all the continuous states are bounded
for arbitrary initial conditions and bounded disturbances un-
der the supervisor with scale-independent hysteresis switching
logic for a large enough % satisfying (24).

For # ={-2, —1, 1, 2}, p* =1, numerical values are m =4,
Kmax =3, @0 =6.5 x 1073, bp =0.5 x 1073, a; =256, by = 16,
1=13.94 x 10*. Choose ¢ = 1075, =2 x 10~*. The hystere-
sis constant 4 = 0.02 satisfies the condition on average dwell-
time (24). Simulation results in MATLAB® with disturbance
uniformly distributed between —5 and 5 (solid lines) and ex-
ponentially decaying disturbance (dotted lines), and x¢ = 0.1,
xr(0) = 0 are plotted in Fig. 1. The simulation shows that the
state is bounded for the bounded disturbance and is decaying
for the vanishing disturbance (indeed, the bound in the simu-
lation is much smaller than those given by the analysis).
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Plant state

... vanishing disturbances
I | —— non-vanishing disturbances

0 0.5 1 1.5 2 25 3 35 4
Switching signal

0 0.5 1 1.5 2 25 3 3.5 4
Time (s)

Fig. 1. Example 1.

4.1. Boundedness under weaker hypotheses

As noted in Remark 1, the existence of u as in (9) for all &
restricts the set of possible ISS—Lyapunov functions. We now
assume that we only have p such that the inequality (9) holds in
some annulus Q := {& € R" : r| <|&| <ry}, for some numbers
ry>r1 20.

Consider the switched injected system described in the
previous section. Suppose u>1 such that V(&) <uV, (&),
Vri<|E|<r Yp,q € P. We can set xcp(0) = 0. Let 7] =
inf{t>0 : |xcp(?)| > r1). If f; = oo, then |xcp(t)| <ryp Vi =0.
Otherwise, let #» := inf{t># : |xcp(®)|>r2} and f; =
inf{r > |xcg(®)| <r1)} and 7 := min{f, 7). Since
ri<|xcp(@®)|<rp Vt € [71, 1), it follows from (30) that V¢ €
[71, 1), we have

Ixce )< () + em (1 + b)) =: ¢ (34)

with ¢ and k being as in (17) and (28).

Let Xo and d be the bounds on the plant initial state and
disturbance, respectively. Then the bound c( in Assumption 4.1
depends on ¥ and d only. Suppose that Xy and d are sufficiently
small such that ¢y <rp. This inequality together with (34) and
the definition of 7, imply that we must have f, = co. If f] = o0,
then 7 = oo and hence, |xcp(t)|<cp VE=0. If 11 < oo, then
=1, and let f3 := inf{t>f : |xcp(®)|>r1). If 3 = oo,
then |xcp(1)| <rj <cz Vi =1, and hence, |xcg(1)|<cz Vi >0;
otherwise, repeat the current argument with 73 playing the role
of 1. We can then conclude that |xcp ()] <c¢z V¢ >0. From the
boundedness of xc, we can prove that all continuous states are
bounded using similar arguments as in the proof of Theorem
4.3. We then have the following result.

Theorem 4.4. Suppose that

(1) the state x of the process P is bounded when the input u,
output y and disturbance d are bounded,

(i) the multi-estimator is designed such that Assumption 4.1
holds;

(iii) the candidate controllers are designed such that hypothe-
ses (7) and (8) of Theorem 3.1 hold for the switched in-
Jected system for some family of ISS—Lyapunov functions
{Vp}pey;

(iv) there exist positive numbers ry,ra, i, such that V, (&) <
uVy (&) Vr1 <IE| <y and positive numbers X, d such that
cy<ry for some ¢>0,h>0,0< A<, where ¢; is as
in (34).

Then under the supervisor with the scale-independent hystere-
sis switching logic, with hysteresis constant h, all continu-
ous states of the closed-loop system are bounded for bounded
disturbances |d(t)|<d, t >0 whenever the initial plant state
|x (0)] < Xo.

Example 2. Consider the scalar nonlinear plant in Example 1,
and the following simpler multi-estimator and candidate con-
trollers:

yp:_(yp -y +y2+P14’

pEP
up=—50 -+,

The injected system with the controller indexed by ¢ is
. p
Vp=—0p =N+ + Pl ), pe.

Using the candidate ISS—-Lyapunov function V, := b1y3 +

by yg +a) pzq ylzj, it can be checked that for each fixed con-
pEP
troller indexed by ¢ € 2, the injected system is ISS:

Vq=—4b1y3—2b2y§+2a Z yp(—yp+quy+quy2)
p#q,p€?

< — 4o Vg +7(legD)s

with y? := |y, — 4[> <2(y; + ¢;) and y*<8(y; + ¢;) for
some 0 < A, <2, aj, ap > 0, such that a; +ar =2 — 4., where
Kpg = (1 = p/q), Kmax = HlaXp,qey{leql}, bz = a(m —
K200 7(r) == b3(2r*/ay + 8r*/az), and by, by, a such that
b3y <min{(4 — 1,)b1a2/8, (2 — Jo)brai/2}.

The ISS-Lyapunov functions V,, have the property (7), (8);
however, there is no global p as in (9) because V, is quartic
in y, whilst V), ,+, are quadratic in y,. Nevertheless, we can
obtain a stability result using Theorem 4.4.

We can choose % (r) := min{bs, a}r?> =: ;7> and % (r) :=
max{(b1r22 + by), ayr? =: n2r2. Then p := u,/n;. The er-
ror dynamics for p = p* is é,« = —e,» — d and hence, the
bound on e+ is |ep+ (1)| < |e = (0)|4+d < Xo +d since |e, (0)| =
[yp(0) — y(0)|<Xxo by virtue of y,(0) =0Vp € 2. Now,
co=(pu!tNe (112r12+m(1 +h)rc)/111)1/2 <ryif r; and d are small
enough. Choosing the hysteresis constant % to satisfy the aver-
age dwell-time condition, we conclude that all the continuous
states x, xcf are bounded.

For 2 ={-2,—1,1,2}, p* =1, then m =4, kmax = 3. Let
r=0.1,r1=1078,5 =296 x 107, b, =13x 10710, a =8 x
10_12, a; =1.75,a, =0.15, A, =0.1. Then u=19.95. Choose
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Plant state

0 05 1 16 2 25 3 35 4 45 5

Switching signal

%

0 05 1 15 2 25 3 35 4 45 5
Time (s)

Fig. 2. Example 2.

h =0.05, .=0.0003, ¢ =3.2914 x 1072, Then N, = 4.0819.
If [x(0)] <107 and d < 107, then all the states are bounded
by ¢ =0.0836 for all time. A simulation result with uniformly
distributed disturbances between (—d, d) is in Fig. 2.

On the one hand, when ISS-Lyapunov functions satisfying
(9) are not available, Theorem 4.4 can provide a way to achieve
local boundedness of the plant state. There are more choices of
ISS-Lyapunov functions, which can lead to simpler controller
and multi-estimator designs, but it may be difficult to find the
positive numbers in hypothesis (i) in Theorem 4.4. Also, the
hysteresis constant # cannot be chosen arbitrarily small since
A cannot be arbitrarily small (¢ increases when A decreases).
On the other hand, if we can find ISS—Lyapunov functions sat-
isfying (9), Theorem 4.3 provides a global boundedness result.
It also provides the flexibility to choose a small hysteresis con-
stant , which can be made arbitrarily small by reducing / (see
(24)), and a smaller % possibly leads to a better performance.

5. Conclusions

In this paper, we have shown that under switching signals
with large enough average dwell-time, a switched system is
ISS, e*-weighted ISS, and e* -weighted iISS, if the individual
subsystems are ISS. We applied this result to show that us-
ing switching supervisory control with the scale-independent
hysteresis switching logic, the states of an uncertain nonlinear
plant can be kept bounded for arbitrary initial conditions and
bounded disturbances, provided that the injected systems are
ISS with respect to the estimation errors and there is a global
constant u as in (9). We relaxed the requirement of a global u
and achieved local boundedness of the plant state in the pres-
ence of bounded disturbances.

There are several possible avenues for future research. It
is interesting to study the ISS property of switched systems
under other classes of slowly switching signals that do not
require the existence of a global constant g in (9). Another
consideration is to include measurement noises and unmodeled
dynamics, as well as the case of a continuum Z. Regarding

multi-estimators and controller design for nonlinear plants, this
is a challenging problem and has not been solved in general.
However, for certain classes of nonlinear systems that possess
special structure, it may be possible to obtain interesting results
in multi-estimator and controller design.
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