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Abstract

We address the problem of controlling a linear system with unknown parameters ranging over a continuum by means of switching among
a 4nite family of candidate controllers. We present a new hysteresis-based switching logic, designed speci4cally for this purpose, and
derive a bound on the number of switches produced by this logic on an arbitrary time interval. The resulting switching control algorithm
is shown to provide stability and robustness to arbitrary bounded noise and disturbances and su6ciently small unmodeled dynamics.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Suppose that a given process admits a model containing
unknown parameters, and the goal is to design a feedback
controller that achieves some desired behavior in the face
of noise, disturbances, and unmodeled dynamics. The kind
of control algorithm that we have in mind is the one that
relies on switching among a family of candidate controllers,
and bases controller selection on certainty equivalence. In
this framework, one associates to each possible value of
the unknown parameters a monitoring signal, designed in
such a way that a small value of this signal indicates a high
likelihood that the corresponding parameters are close to
the actual unknown values. The switching algorithm then
selects, from time to time, a controller that has been de-
signed for the parameter values associated with the smallest
monitoring signal.

Relevant questions in this context are: How to pick
the individual controllers? How to design the monitoring
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signals? Which controller to switch to? When to switch? In
addressing the 4rst question, the methods considered here
allow one to rely on conventional techniques from linear
robust control theory. An answer to the second question
emerges from the supervisory control architecture (Morse,
1996; Hocherman-Frommer, Kulkarni, & Ramadge, 1998;
Mosca, Capecchi, & Casavola, 2001; Pait & Kassab, 1997)
reviewed later in this paper. The certainty equivalence prin-
ciple provides one way to settle the third question. To deal
with the last question, one needs to specify a switching logic.
It is this last question that will be of primary concern in
what follows.

One way to orchestrate the switching is provided by
the dwell-time switching logic. In this logic, consecutive
switching instants are separated by (at least) a prespeci4ed
time interval, called the dwell time, which is su6ciently
large so that the switching does not destabilize the system.
Dwell-time switching was used in Morse (1996, 1997) to
design set-point supervisory control algorithms for linear
systems with a continuum of parametric uncertainty, noise,
disturbances, and unmodeled dynamics.

However, dwell-time switching has some signi4cant dis-
advantages. With a prespeci4ed dwell time, the performance
of the currently active controller might deteriorate to an
unacceptable level before the next switch is permitted. If
the uncertain process is nonlinear, the trajectories may even
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escape to in4nity in 4nite time. These considerations moti-
vate the study of switching algorithms which do not rely on
a 4xed dwell time.

An example of such a switching logic is the hysteresis
switching logic described in Middleton, Goodwin, Hill,
and Mayne (1988), Morse, Mayne, and Goodwin (1992).
According to this logic, a switch occurs when the moni-
toring signal that corresponds to the controller currently in
the feedback loop exceeds the smallest monitoring signal
by a prespeci4ed positive number, called the hysteresis
constant. Using a multiplicative hysteresis constant instead
of an additive one, one arrives at the scale-independent
hysteresis switching logic, which was studied and applied
to control of uncertain nonlinear systems in Hespanha
(1998) and elsewhere. For a 4nite family of monitoring
signals satisfying suitable assumptions, these logics guar-
antee that switching stops in 4nite time. This allows one
to design supervisory control algorithms which are eKec-
tive when the unknown parameters take values in a 4nite
set and there are no noise, disturbances, or unmodeled
dynamics.

We continue to study the scale-independent hysteresis
switching logic in this paper by establishing a bound on the
number of switches on an arbitrary 4nite interval. Combin-
ing this with the results of Hespanha and Morse (1999) on
stability of switched systems with average dwell time, it is
possible to analyze the correctness of the supervisory con-
trol algorithm for the case when the unknown parameters
belong to a 4nite set, without relying on the termination of
switching. Details of this analysis are provided in Hespanha
et al. (2001).

The main contribution of the present work is to deal with
the case when the unknown parameters belong to a contin-
uum. To do this, we need a new switching logic, which we
develop here and call hierarchical hysteresis switching. It
relies on a partition of the parametric uncertainty set into a
4nite number of subsets. The name of the logic comes from
the fact that the minimization of the monitoring signals is
carried out on two levels: 4rst, the smallest one is taken
for each of the subsets that form the partition, and then the
smallest signal among these is chosen. We derive a bound
on the number of switches produced by the hierarchical hys-
teresis switching logic, using the corresponding result for
scale-independent hysteresis switching.

In the context of supervisory control with hierarchical
hysteresis switching, the subsets in the partition used by
the switching logic are chosen to be su6ciently small so
that there exists a robustly stabilizing controller for each
subset. We show that this leads to a supervisory control
algorithm whose stability can be analyzed in the presence
of noise, disturbances, and unmodeled dynamics. Thus we
are able to handle the same class of systems as that treated
in Morse (1996, 1997), without requiring a 4xed dwell
time.

The scale-independent hysteresis switching logic is de-
4ned and studied in the next section. The hierarchical

hysteresis switching logic and its properties are presented
in Section 3. The supervisory control system is described
in Section 4. Its analysis is given in Section 5.

2. Scale-independent hysteresis switching logic

The functioning of the scale-independent hysteresis
switching logic, introduced in Hespanha (1998), is as fol-
lows (see Figure 1). Inputs to the logic are continuous
signals �p : [0;∞) → R, p∈P, where the index set P
is taken throughout the paper to be a compact subset of a
4nite-dimensional normed linear vector space. The output
of the logic will be a switching signal � taking values in P.
Let us pick a number h¿ 0 called the hysteresis constant.
First, we set �(0) = arg minp∈P{�p(0)}. Suppose that at
a certain time ti the value of � has just switched to some
q∈P. We then keep � 4xed until a time ti+1¿ti such that
(1 + h)minp∈P {�p(ti+1)}6 �q(ti+1), at which point we
set �(ti+1) = arg minp∈P {�p(ti+1)}.

Repeating the above steps, we generate a piecewise con-
stant signal � which is continuous from the right every-
where. If �p, p∈P are uniformly bounded away from zero,
i.e., if for some 
¿ 0 we have �p(t)¿ 
 for all p∈P
and all t¿ 0, then in4nitely fast switching (chattering) is
avoided. In fact, there must be an interval [0; Tmax) of max-
imal length on which � exists, and there can only be a 4nite
number of switches on each proper subinterval of [0; Tmax);
see Hespanha (1998) for details.

When the indicated arg min is not unique, a particular
value for � among those that achieve the minimum can be
chosen arbitrarily. Carrying out the minimization over P is
a trivial task if P is a 4nite set. If P is a continuum, in
many cases of interest (including those when the unknown
parameters enter the model of the process linearly) the prob-
lem reduces to solving a polynomial equation in p on-line.
Tractability issues regarding the above minimization proce-
dure in the context of supervisory control are further dis-
cussed in Morse (1996).

It is not hard to see from the de4nition of the above
switching logic that its output � would not be aKected if we
replaced the signals �p, p∈P by their scaled versions

N�p(t) := �(t)�p(t); p∈P; (1)

where � is some positive function of time. This is where
the term “scale-independent” comes from. One can choose
� so that the scaled signals N�p, p∈P have some additional
properties (such as monotonicity) and then use these signals
for analysis purposes (cf. below).

For 06 t0¡t¡Tmax, we will denote by N�(t; t0) the
number of discontinuities of � on the interval (t0; t). For the
case of a 4nite P, we have the following result.

Lemma 1 (Scale-independent hysteresis switching lemma).
Let P = {1; 2; : : : ; m} with m a positive integer. Suppose
that the signals N�p, p∈P are continuous and monotone
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Fig. 1. Scale-independent hysteresis switching logic.

increasing, and that there exists a number 
¿ 0 such that
N�p(0)¿ 
 ∀p∈P. Then, for an arbitrary index l∈P and
arbitrary numbers t0 and t satisfying 06 t0¡t¡Tmax, we
have

N�(t; t0)6 1 + m+
m

log(1 + h)
log
(

N�l(t)
minp∈P N�p(t0)

)
(2)

and
N�(t; t0)∑
k=0

( N��(tk )(tk+1) − N��(tk )(tk))

6m
(

(1 + h) N�l(t) − min
p∈P

N�p(t0)
)

(3)

where t1¡t2¡ · · ·¡tN�(t;t0) are the discontinuities of � on
(t0; t) and tN�(t;t0)+1 := t.

Remark 1. The left-hand side of inequality (3) can be
thought of as the variation of N�� over the interval [t0; t]. If
the signals N�p, p∈P are (piecewise) diKerentiable, then
the left-hand side of (3) equals the integral

∫ t
t0

Ṅ��(�)(�) d�,
which is to be interpreted as the sum of integrals over
intervals on which � is constant.

Proof. For each k ∈{0; 1; : : : ; N�(t; t0)}, the value of � re-
mains constant and equal to �(tk) on [tk ; tk+1). Therefore,

N��(tk )(t)6 (1 + h) N�p(t) ∀t ∈ [tk ; tk+1];

∀k ∈{0; 1; : : : ; N�(t; t0)}; ∀p∈P: (4)

Since � switched to �(tk) at time tk , k ∈{1; 2; : : : ; N�(t; t0)},
we also have

N��(tk )(tk)6 N�p(tk) ∀k ∈{1; 2; : : : ; N�(t; t0)};
∀p∈P: (5)

Moreover, � switched from �(tk) to �(tk+1) at time tk+1,
k ¡N�(t; t0) − 1, thus, because of the continuity of N��(tk ),

N��(tk )(tk+1) = (1 + h) N��(tk+1)(tk+1)

∀k ∈{0; 1; : : : ; N�(t; t0) − 1}: (6)

Inequalities (4)–(6) summarize all the properties of the
switching logic that are relevant for this proof.

Since P has m elements, there must be a q∈P such that
�= q on at least 1 NN := 	(N�(t; t0)− 1)=m
 of the intervals

[t1; t2); [t2; t3); : : : ; [tN�(t;t0)−1; tN�(t;t0)): (7)

If NN6 1, then we must have N�(t; t0)6 1+m and therefore
(2) automatically holds. Suppose now that NN¿ 2 and let
[tk1 ; tk1+1); [tk2 ; tk2+1); : : : ; [tk NN

; tk NN+1) be the NN intervals on
which �=q. Picking any i∈{1; 2; : : : ; NN−1}, in view of (6),
the assumed monotonicity of N��(tki+1), and (5), we conclude
that

N�q(tki+1) = (1 + h) N��(tki+1)(tki+1)

¿ (1 + h) N��(tki+1)(tki)

¿ (1 + h) N�q(tki): (8)

Moreover, because the intervals are nonoverlapping,
tki+1 ¿ tki+1, hence N�q(tki+1)¿ N�q(tki+1). From this and
(8) we obtain (1 + h) N�q(tki)6 N�q(tki+1) for i∈{1; 2; : : : ;
NN − 1}. Iterating the last inequality from i = 1 to
NN − 1 yields (1 + h) NN−1 N�q(tk1 )6 N�q(tk NN

) and therefore
(1 + h) NN−1 N�q(tk1 )6 N�l(tk NN

) for all l∈P because of (5).
Using the monotonicity of the N�p, we conclude that
(1 + h) NN−1 N�q(t0)6 N�l(t) for all l∈P. In light of this, we
must have (1 + h) NN−1minp∈P N�p(t0)6 N�l(t) for all l∈P,
from which the inequality (2) follows by virtue of the fact
that NN¿ (N�(t; t0) − 1)=m.

It remains to show that inequality (3) holds. Grouping all
the terms in the summation on the left-hand side of (3) for
which �(tk) is the same, we obtain

N�(t; t0)∑
k=0

(
N��(tk )(tk+1) − N��(tk )(tk)

)

=
∑
q∈P

N�(t; t0)∑
k=0

�(tk )=q

(
N�q(tk+1) − N�q(tk)

)
: (9)

Take some value q∈P that � takes on (t0; t). Since intervals
(7) are nonoverlapping, it follows from the monotonicity of
N�q that

N�(t; t0)∑
k=0

�(tk )=q

(
N�q(tk+1) − N�q(tk)

)
6 N�q(tkq+1) − N�q(t0); (10)

where kq denotes the largest index k ∈{0; 1; : : : ; N�(t; t0)}
for which �(tk) = q. Now, because of (4), N�q(tkq+1)6 (1 +
h) N�l(tkq+1) for all l∈P. From this, (10), and the

1 Given a scalar a, we denote by �a� the smallest integer larger than
or equal to a.
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monotonicity of the N�p, we conclude that

N�(t; t0)∑
k=0

�(tk )=q

(
N�q(tk+1) − N�q(tk)

)

6 (1 + h) N�l(t) − min
p∈P

N�p(t0) ∀l∈P:

Inequality (3) follows from this, (9), and the fact that P has
m elements.

3. Hierarchical hysteresis switching

We now describe the hierarchical hysteresis switching
logic. Its inputs are continuous signals �p, p∈P, where P
is a compact index set as before. Fix a positive integer m
and denote by M the set {1; 2; : : : ; m}. Assumed given is
a family of closed subsets Di ; i∈M of P, whose union
is the entire P. The output of the switching logic will be
a switching signal � taking values in M. Pick a number
h¿ 0, called the hysteresis constant. First, we select some
j0 ∈M such that Dj0 contains arg minp∈P {�p(0)}, and set
�(0)= j0. Suppose that at a certain time ti the value of � has
just switched to some ji ∈M. We then keep � 4xed until a
time ti+1¿ti such that the following inequality is satis4ed:

(1 + h) min
p∈P

{�p(ti+1)}6 min
p∈Dji

{�p(ti+1)}:

At this point, we select some ji+1 ∈M such that Dj+1 con-
tains arg minp∈P{�p(ti+1)}, and set �(ti+1) = ji+1.

The above procedure yields a piecewise constant signal �
which is continuous from the right everywhere. By the same
argument as in Hespanha (1998), one can show that chat-
tering is avoided if �p, p∈P are uniformly bounded away
from zero. In fact, there exists a maximal interval [0; Tmax)
on which � is de4ned, and there can only be a 4nite num-
ber of switches on each proper subinterval of [0; Tmax). In
the supervisory control application treated below, we will
always have Tmax = ∞. When the indicated arg min is not
unique, a particular index among those that achieve the min-
imum can be chosen arbitrarily. The understanding here is
that minimization over Di’s is computationally tractable if
these sets are su6ciently small.

The above switching logic is also scale independent, i.e.,
its output would not be aKected if we replaced the signals
�p, p∈P by their scaled versions (1), where � is some
positive function of time. In the supervisory control context
to be discussed below, we will arrange matters in such a
way that it is possible to 4nd a function � which makes
the scaled signals N�p, p∈P strictly positive and monotone
increasing. For analysis purposes, we will always use the
scaled signals N�p, p∈P that have this property, while the
actual inputs to the switching logic are the original signals
�p, p∈P.

De#nition. We say that a piecewise constant signal � taking
values in P is {Di}-consistent with a given switching signal
� on an interval [t0; t] if:

1. For all s∈ [t0; t] we have �(s)∈D�(s).
2. The set of discontinuities of � on [t0; t] is a subset of the

set of discontinuities of �.

We now note the following fact, which follows immedi-
ately from the de4nitions of the switching logics considered
in this section and the previous one.

Remark 2. The signal � produced by the hierarchical hys-
teresis switching logic coincides with the signal that would
be produced by the scale-independent hysteresis switching
logic with inputs minp∈Di {�p(t)}, i∈M.

The result presented below is a consequence of this ob-
servation. As before, for 06 t0¡t¡Tmax we denote by
N�(t; t0) the number of discontinuities of � on the interval
(t0; t).

Lemma 2 (Hierarchical hysteresis switching lemma).
Suppose that the signals N�p, p∈P are continuous and
monotone increasing, and that there exists a number

¿ 0 such that N�p(0)¿ 
 ∀p∈P. Then, for an arbitrary
index l∈P and arbitrary numbers t0 and t satisfying
06 t0¡t¡Tmax, we have

N�(t; t0)6 1 + m+
m

log(1 + h)
log
(

N�l(t)
minp∈P N�p(t0)

)
:

(11)

In addition, there exists a signal �, which is {Di}-consistent
with � on [t0; t], such that
N�(t; t0)∑
k=0

(
N��(tk )(tk+1) − N��(tk )(tk)

)

6m
(

(1 + h) N�l(t) − min
p∈P

N�p(t0)
)
; (12)

where t1¡t2¡ · · ·¡tN�(t;t0) are the discontinuities of � on
(t0; t) and tN�(t;t0)+1 := t.

Proof. Inequality (11) follows at once from the scale-
independent hysteresis switching lemma (Lemma 1) and
Remark 2. A signal � that satis4es the second statement of
the lemma can be de4ned as follows: for each s∈ [t0; t],
let �(s) := arg minp∈D�(s)

{ N�p(tk+1)}, where k is the largest
index in the set {0; 1; : : : ; N�(t; t0)} for which �(tk) = �(s).
In other words, �(s) = arg minp∈D�(s)

{ N�p(�)}, where � is
the right endpoint of the last subinterval of [t0; t] on which
� equals �(s). Then � is {Di}-consistent with � on [t0; t]
by construction. Grouping all the terms in the summation
on the left-hand side of (12) for which � is the same, and
reasoning exactly as in the proof of Lemma 1, we arrive at
(12).
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Remark 3. The signal � depends on the choice of the time
t. As before, if the signals N�p, p∈P are (piecewise) dif-
ferentiable, then the left-hand side of inequality (12) equals
the integral

∫ t
t0

Ṅ��(�)(�) d�, which is to be interpreted as the
sum of integrals over intervals on which � is constant.

4. Supervisory control system

Suppose that the uncertain process P to be controlled ad-
mits the model of a SISO 4nite-dimensional stabilizable and
detectable linear system with control input u and measured
output y, perturbed by a bounded disturbance input d and a
bounded output noise n. It is assumed known that the trans-
fer function of P from u to y belongs to a family of admis-
sible process model transfer functions

⋃
p∈P F(p), where

p is a parameter taking values in a compact index set P.
Here each F(p) denotes a family of transfer functions “cen-
tered” around some known nominal process model transfer
function �p.

The problem of interest is to design a feedback controller
that achieves output regulation, i.e., drives the output y of
P to zero, whenever the noise and disturbance signals are
zero. Moreover, all system signals must remain bounded in
response to arbitrary bounded noise and disturbance inputs.
Everything that follows can be readily extended to the more
general problem of set-point control with the help of adding
an integrator in the feedback loop, as in Morse (1996, 1997).
Extensions to MIMO systems are also possible.

Uncertainty of the kind considered here may be associ-
ated with unpredictable changes in operating environment,
component failures, or various external inTuences. The set
P represents the range of parametric uncertainty, while for
each 4xed p∈P the subfamily F(p) accounts for unmod-
eled dynamics. There are several ways to specify allowable
unmodeled dynamics around the nominal process model
transfer functions �p (see Hespanha et al. (2001)). For ex-
ample, take two arbitrary numbers �¿ 0 and �u ¿ 0. Then
for each p∈P we can de4ne

F(p) := {�p(1+�mp)+�ap : ‖�mp‖∞; �u6 �; ‖�ap‖∞; �u6 �};
where ‖ · ‖∞; �u denotes the e�ut-weighted H∞ norm of a
transfer function, i.e., ‖�‖∞; �u = sup!∈R |�(j!− �u)|. This
yields the class of admissible process models treated in
Morse (1996, 1997). In the sequel, we assume for concrete-
ness that unmodeled dynamics are speci4ed in this way; we
will refer to the parameter � as the unmodeled dynamics
bound. The results presented below can be extended to other
classes of admissible process models, such as those studied
in Hespanha et al. (2001).

Typically, no single controller is capable of solving the
regulation problem for the entire family of admissible pro-
cess models. Therefore, one needs to develop a controller
whose dynamics can change on the basis of available
real-time data. Within the framework of supervisory control
discussed here, this task is carried out by a “high-level”

�

� �

�

�

nd

u

-
ep

SUPERVISOR

y

+
�

�p

yp

Fig. 2. Supervisory control architecture.

controller, called a supervisor, whose purpose is to or-
chestrate the switching among a parameterized family of
candidate controllers {Cq : q∈Q}, where Q is an index
set. This leads to a switched controller which we call the
multi-controller and denote by C. We require the above
controller family to be su6ciently rich so that every ad-
missible process model can be stabilized by placing in the
feedback loop the controller Cq for some index q∈Q. In
this paper, we focus on the case when Q is a 4nite set.
Without loss of generality, we take Q = M = {1; 2; : : : ; m}
where m is a positive integer.

The supervisor consists of three subsystems (Fig. 2):
Multi-estimator E: A dynamical system whose inputs are

the output y and the input u of the process P and whose
outputs are the signals yp, p∈P. Each yp would converge
to y asymptotically if the transfer function of P were equal
to the nominal process model transfer function �p and there
were no noise or disturbances.
Monitoring signal generator M: A dynamical system

whose inputs are the estimation errors

ep := yp − y; p∈P

and whose outputs �p, p∈P are suitably de4ned integral
norms of the estimation errors, called monitoring signals.
Switching logic S: A switched system whose inputs are

the monitoring signals �p, p∈P and whose output is a
switching signal �, taking values in M, which is used to
de4ne the control law u.

We now brieTy recall from Morse (1996) the key
state-space equations for the diKerent subsystems appearing
in Fig. 1. As i ranges over M, let

ẋC = AixC + biy;

u= kixC + riy

be realizations of the transfer functions of the candidate
controllers, all sharing the same state xC. See Morse (1996)
for more details on constructing such realizations. We then
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describe the multi-controller C by the equations

ẋC = A�xC + b�y;

u= k�xC + r�y:

We assume that the multi-estimator is also realized in a
state-shared fashion, as given by

ẋE = AExE + bEy + dEu;

yp = cpxE; p∈P

with AE a stable matrix. This type of structure is quite com-
mon in adaptive control. We denote by x the composite state
(x′E; x

′
C)′ of the multi-estimator and the multi-controller, and

by p∗ an (unknown) element of P such that the transfer
function of P belongs to F(p∗), i.e., the “true” parame-
ter value (due to possibly overlapping sets of unmodeled
dynamics, p∗ may not be unique). For every l∈P, the
evolution of x can then be described by a system of the
form

ẋ = A�lx + d�el; (13)

y = (cp∗0)x − ep∗ ; (14)

u= f�x + g�ep∗ : (15)

We assume that a partition P=
⋃
i∈M Di is given, such that

the matrices Aip, i∈M, p∈P have the following stability
margin property: for every i∈M and every p∈Di the ma-
trix Aip + �0I is stable, where �0 is a 4xed positive number.
It follows from the developments of Morse (1996) that such
a partition exists, provided that the sets Di, i∈M are su6-
ciently small and each Ci stabilizes the pth nominal process
model whenever p∈Di. We take the sets Di to be closed.

Fix a number �∈ (0;min{�u; �0}). As shown in Morse
(1996, 1997), there exist positive constants �1; �2 that only
depend on the unmodeled dynamics bound � and go to zero
as � goes to zero; positive constants B1; B2 that only depend
on the noise and disturbance bounds and go to zero as these
bounds go to zero; and positive constants C1; C2 that only
depend on the system’s parameters and on initial conditions,
such that along all solutions of the closed-loop system we
have∫ t

0
e2��e2

p∗(�) d�6B1e2�t + C1 + �1

∫ t

0
e2��u2(�) d� (16)

and

|ep∗(t)|6 B2 + C2e−�t

+ �2e−�t
√∫ t

0
e2��u2(�) d�: (17)

The above inequalities represent the basic requirements be-
ing placed on the multi-controller and the multi-estimator,
upon which the subsequent analysis depends.

The constant � will play the role of a “weighting” de-
sign parameter in the de4nition of the monitoring signals.
Fix an arbitrary constant 
�¿ 0 (its role will become clear
later). We generate the monitoring signals �p, p∈P by the
equations

Ẇ = −2�W +

(
xE

y

)(
xE

y

)′
; W (0)¿ 0;

�p := (cp − 1)W (cp − 1)′ + 
�; p∈P; (18)

where W (t) is a symmetric nonnegative-de4nite k × k
matrix, k := dim(xE) + 1. Since cpxE − y = ep ∀p∈P,
this yields

�p(t) = e−2�t �̃p(0)

+
∫ t

0
e−2�(t−�)e2

p(�) d�+ 
�; p∈P;

where �̃p(0) := (cp − 1)W (0)(cp − 1)′. Note that the
dynamics of the monitoring signal generator, as well as those
of the multi-estimator, are 4nite-dimensional even if P is
an in4nite set.

Finally, we de4ne the switching signal using the hierar-
chical hysteresis switching logic described in Section 3,
where the sets Di, i∈M are chosen as explained
earlier. Setting �(t) := e2�t in (1), we see that the signals
N�p, p∈P are monotone increasing, because they
satisfy

N�p(t) = �̃p(0) +
∫ t

0
e2��e2

p(�) d�+ 
�e2�t ; p∈P: (19)

Moreover, it is easy to ensure that �p, p∈P are
uniformly bounded away from zero, either by set-
ting 
� ¿ 0 or by requiring W (0) to be positive def-
inite. Therefore, we can apply Lemma 2 and con-
clude that inequalities (11) and (12) are valid. Since in
this case the signals N�p, p∈P are diKerentiable, the
left-hand side of inequality (12) equals

∫ t
t0

Ṅ��(�)(�) d�
(see Remark 3). From (19) we have the following
formula:

Ṅ�p(t) = e2�te2
p(t) + 2�
�e2�t ; p∈P: (20)

5. Analysis

We now proceed to the analysis of the supervisory
control system de4ned by (13)–(15), (18), and the hie-
rarchical hysteresis switching logic. We will sometimes
appeal to the state of the uncertain process P, which
we denote by xP. However, the analysis centers around
system (13) and its stability margin property described
earlier. Consider the system obtained from (13) by
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substituting � for l, where � is some signal that is
{Di}-consistent with �:

ẋ = A��x + d�e�: (21)

The stability margin property implies that for every 4xed
time s¿ 0, the matrix A�(s)�(s) is stable, with stability margin
�0. Note that this is true even if the controller C�(s) does not
stabilize the process. (In this case, the estimation error e�(s)
may be large. The underlying property of the closed-loop
system is detectability with respect to the estimation error;
cf. Morse (1996).)

Following Hespanha and Morse (1999b), we say that the
switching signal � has an average dwell time �AD ¿ 0 if
there exists a nonnegative number N0 such that the number
of discontinuities of � on an arbitrary interval (t0; t), denoted
by N�(t; t0), satis4es

N�(t; t0)6N0 +
t − t0
�AD

: (22)

We need the following result, which in view of the present
assumptions is a straightforward corollary of Theorem 1 of
Hespanha and Morse (1999b). It states that the switched
system

ẋ = A��x (23)

is exponentially stable with stability margin �, uniformly
over all � with su6ciently large average dwell time and all
� that are {Di}-consistent with �.

Lemma 3. There exist positive constants �∗ and c such
that for every switching signal � with an average dwell
time �AD¿ �∗ and every signal � that is {Di}-consistent
with � on a given interval [t0; t], all solutions of (23) satisfy
|x(t)|6 ce−�(t−t0)|x(t0)|.

Let �∗ be the number speci4ed by this lemma; it can be cal-
culated explicitly from the proof of (Hespanha and Morse,
1999b, Theorem 1). An immediate corollary of Lemma 3
is that system (21) has a 4nite e�t-weighted L2-to-L∞
induced norm, uniform over all � with average dwell
time no smaller than �∗ and all � that are {Di}-consistent
with �.

Corollary 4. There exist positive constants g and g0 such
that for every t ¿ 0, every switching signal � with an
average dwell time �AD¿ �∗, and every signal � that
is {Di}-consistent with � on [0; t], all solutions of (21)
satisfy

e2�t |x(t)|26 g
∫ t

0
e2��e2

�(�)(�) d�+ g0|x(0)|2: (24)

With these results in place, the analysis is similar to
that given in Hespanha et al. (2001), where a supervisory
control system employing the scale-independent hysteresis

switching logic was studied with the help of Lemma 1; some
details will be omitted.

5.1. No noise, disturbances, or unmodeled dynamics

We 4rst consider the simple situation where the noise
and disturbance signals are zero (n = d ≡ 0) and there are
no unmodeled dynamics (�= 0), i.e., the process P exactly
matches one of the nominal process models. In this case,
the constants B1; B2; �1; �2 in (16) and (17) are all zero. Let
us take 
� in the de4nition of the monitoring signals to be
zero as well (W (0) must then be taken positive de4nite).
Inequality (16) gives

∫ t
0 e2��e2

p∗(�) d�6C1, which together
with (19) implies N�p∗ 6 �̃p∗(0)+C1. It follows from (11),
applied with l = p∗, that N�(t; t0) is bounded by a 4xed
constant for arbitrary t ¿ t0¿ 0. This means that switching
stops in 4nite time, i.e., there exist a time T ∗ and an index
i∗ ∈M such that �(t) = i∗ for t¿T ∗. Thus, (22) holds for
every �AD if N0 is large enough. Fix an arbitrary t ¿ 0. In
view of Lemma 2, Remark 3, and formula (20), there exists
a signal � which is {Di}-consistent with � on [0; t] and satis-
4es

∫ t
0 e2��e2

�(�)(�) d�6m(1+h)(�̃p∗(0)+C1). Using (24),
we have e2�t |x(t)|26 gm(1 + h)(�̃p∗(0) + C1) + g0|x(0)|2,
thus x → 0. Since ep∗ → 0 by virtue of (17), we conclude
from (14) that y → 0. Therefore, the output regulation
problem is solved. Also note that since the evolution of
xP and x for t¿T ∗ is described by a linear time-invariant
system, the rate of convergence is actually exponential.
In light of (15), (18), and detectability of P, all the other
signals remain bounded for all t¿ 0 (in fact, here the
state converges to 0, but this would no longer be true
in the case of set-point control). We summarize this as
follows.

Proposition 5. Suppose that the noise and disturbance
signals are zero and there are no unmodeled dynamics,
and set 
� = 0. Then all the signals in the supervisory
control system remain bounded for every set of initial con-
ditions such that W (0)¿ 0. Moreover, switching stops in
:nite time, after which y(t) converges to 0 exponentially
fast.

5.2. Noise and disturbances, no unmodeled dynamics

We now assume that bounded noise n and disturbance
d are present, but there are no unmodeled dynamics. In
this case the switching typically will not stop in 4nite time.
Inequalities (16) and (17) hold with some unknown but
4nite constants B1 and B2. The parameters �1 and �2 are
still zero, and C1 and C2 are positive constants as before.
We take 
� to be a positive number. From (16) and (19) we
have

N�p∗(t)6 �̃p∗(0) + B1e2�t + C1 + 
�e2�t : (25)
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Applying (11) with l = p∗ and using the bound N�p(t0)¿

�e2�t0 provided by (19) yields

N�(t; t0)6N0 +
t − t0
�AD

;

where

�AD =
log(1 + h)

2�m
and

N0 = 1 + m+
m

log(1 + h)
log
(
�̃p∗(0) + B1 + C1 + 
�


�

)
:

We can guarantee that �AD¿ �∗ by increasing the hysteresis
constant h and/or decreasing the weighting constant � if
necessary. In the sequel, we assume that h and � have been
chosen in this way.

Using (12) with l = p∗ and t0 = 0, (20), and (25), we
obtain∫ t

0
e2��e2

�(�)(�) d�6m((1 + h)(�̃p∗(0) + B1e2�t

+C1 + 
�e2�t) − 
�e2�t0 );

where t ¿ 0 is arbitrary and � is the signal provided by
Lemma 2. Together with (24) this implies that

|x(t)|2 6 (gm(1 + h)(�̃p∗(0) + C1) + g0|x(0)|2)e−2�t

+ gm(1 + h)(B1 + 
�):

Two conclusions can be drawn from the last formula. First,
x is bounded and, as in the previous subsection we can
easily deduce from (15), (17), (18), and detectability of
P that all system signals remain bounded. Note that the
choice of the design parameters �, h and 
� did not de-
pend on the noise or disturbance bounds, in other words,
explicit knowledge of these bounds is not necessary (we
are merely requiring that such bounds exist). Secondly, if
n and d equal or converge to zero, then x will approach a
neighborhood of the origin whose size is proportional to
g
�. A close examination of the last quantity reveals that
it decreases to 0 as 
� goes to 0, which means that we can
make this neighborhood as small as desired by choosing

� su6ciently small. Moreover, ep∗ will converge to zero
because of (17), hence y will also become arbitrarily small
in view of (14). We arrive at the following result.

Proposition 6. Suppose that the noise and disturbance
signals are bounded and there are no unmodeled dynamics.
Then for an arbitrary 
� ¿ 0 all the signals in the supervi-
sory control system remain bounded for every set of initial
conditions. Moreover, for every number 
y ¿ 0 there is a
value of 
� leading to the property that if the noise and dis-
turbance signals converge to zero, then for each solution
there is a time NT such that |y(t)|6 
y for all t¿ NT .

Note that we cannot simply let 
� = 0, as this would in-
validate the above analysis even if W (0)¿ 0. However, by

decreasing 
� on-line (e.g., in a piecewise constant fashion),
it is possible to recover asymptotic convergence of y to zero
when the noise and disturbance signals converge to zero.

Remark 4. The above analysis relies on the property that
the average dwell time is su6ciently large. However, using
techniques described in (Morse (1996), Section VIII), it is
possible to establish the same result for an arbitrary average
dwell time, thus removing the restrictions on the design
parameters h and �. We do not pursue this issue here due to
lack of space.

5.3. Noise, disturbances, and unmodeled dynamics

If unmodeled dynamics are present, i.e., if the parame-
ter � is positive, then �1 and �2 in (16) and (17) are also
positive. In this case, the analysis becomes more compli-
cated, because we can no longer deduce from (16) that the
switched system must possess an average dwell time. How-
ever, it is possible to prove that the above control algorithm,
without any modi4cation, is robust with respect to unmod-
eled dynamics in the following, “semi-global”, sense. The
proof uses a small-gain argument, and is almost identical to
the proof of Theorem 4 in Hespanha et al. (2001).

Theorem 7. For arbitrary bounds on the noise and distur-
bance signals, the supervisory control system has the fol-
lowing properties:

1. For every positive value of 
� and every number E¿ 0
there exists a number N�¿ 0 such that if the unmodeled
dynamics bound � is smaller than N�, then all signals
remain bounded for every set of initial conditions such
that |xP(0)|; |x(0)|6E.

2. For arbitrary positive numbers E and 
y there exist a
value of 
� and a number N�¿ 0 such that if the noise and
disturbance signals converge to zero and the unmodeled
dynamics bound � is smaller than N�, then for each solu-
tion with |xP(0)|; |x(0)|6E there is a time NT such that
|y(t)|6 
y for all t¿ NT .

6. Concluding remarks

The main contribution of the paper was to develop a new
hysteresis-based switching logic, together with appropriate
analysis tools, which can be used in the case of in4nite
parametric uncertainty (ranging over a continuum) to design
provably correct supervisory control algorithms. The results
obtained here for linear systems with noise, disturbances,
and unmodeled dynamics extend those available previously
for systems with unknown parameters taking values in 4nite
sets.

For linear systems, other types of switching logics—
particularly those based on dwell time—can be ap-
plied in similar situations. However, as explained in the
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Introduction, dwell-time switching logics have inherent lim-
itations when one tries to use them in the nonlinear context.
Hysteresis-based switching logics, on the other hand, have
proved to be successful in dealing with nonlinear systems
whose parametric uncertainty is described by a 4nite set
(Hespanha & Morse, 1999a; Hespanha, Liberzon, & Morse,
2002). The work reported here is motivated by these re-
sults and serves as an important step towards extending
the supervisory control techniques to nonlinear systems
with parameters taking values in a continuum. In fact,
the hierarchical hysteresis switching logic presented above
can be applied to nonlinear systems without any changes;
di6culties lie elsewhere, particularly in designing candidate
controllers which achieve a suitable nonlinear counterpart
of the stability margin property de4ned in Section 4 and
exploited in Section 5.

Another direction for future research is to understand
relative advantages of the algorithm presented here and
existing schemes for linear systems, from the implementa-
tion and performance points of view. This issue fell outside
the scope of the present paper. For some examples of how
supervisory control methods of the kind considered here
can be applied to speci4c problems, as well as compar-
ison with more traditional adaptive control techniques,
we refer the reader to Hespanha, Liberzon, and Morse,
(to appear).
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