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Control With Minimal Cost-Per-Symbol Encoding
and Quasi-Optimality of Event-Based Encoders

Justin Pearson, João P. Hespanha, Fellow, IEEE, and Daniel Liberzon, Fellow, IEEE

Abstract—We consider the problem of stabilizing a
continuous-time linear time-invariant system subject to
communication constraints. A noiseless finite-capacity
communication channel connects the process sensors to
the controller/actuator. The sensor’s state measurements
are encoded into symbols from a finite alphabet, transmitted
through the channel, and decoded at the controller/actuator.
We suppose that the transmission of each symbol costs
one unit of communication resources, except for one spe-
cial symbol in the alphabet that is “free” and effectively
signals the absence of transmission. We explore the re-
lationship between the encoder’s average bit-rate, its av-
erage consumption of communication resources, and the
ability of the controller and encoder/decoder pair to sta-
bilize the process. We present a necessary and sufficient
condition for the existence of a stabilizing controller and
encoder/decoder pair, which depends on the encoder’s av-
erage bit-rate, its average resource consumption, and the
unstable eigenvalues of the process. Moreover, if this con-
dition is satisfied, a stabilizing encoding scheme can be
constructed that consumes resources at an arbitrarily small
rate, provided the encoder has access to a sufficiently pre-
cise clock or large memory. The paper concludes with the
analysis of a simple emulation-based controller and event-
based encoder/decoder pair that are easy to implement, sta-
bilize the process, and have average bit-rate and resource
consumption within a constant factor of the optimal bound.

I. INTRODUCTION

W E CONSIDER the problem of stabilizing a continuous-
time linear time-invariant process subject to communi-

cation constraints. The basic setup, also considered in [1]–[6]
and many other works, assumes that a finite capacity com-
munication channel connects the process sensors to the con-
troller/actuator. An encoder at the sensor sends a symbol through
the channel once per sampling time, and the controller deter-
mines the actuation signal based on the incoming stream of
symbols. The question arises: what is the smallest channel
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average bit-rate for which a given process can be stabilized?
It was shown in [2]–[4] that a necessary and sufficient condition
for stability can be expressed as a simple relationship between
the unstable eigenvalues of the open-loop system matrix and the
bit-rate of the communication channel. Extensions of this result
have been enthusiastically explored, see [7], [8] and references
therein.

A starting point for the present work is the observation that
an encoder can effectively save communication resources by
occasionally not transmitting information—the absence of an
explicitly transmitted symbol nevertheless conveys information.
We formulate a framework to capture this by supposing that
each symbol’s transmission costs one unit of communication
resources, except for one special free symbol that represents the
absence of a transmission.

Within this framework, we define an encoder’s average cost
per symbol—essentially the largest average fraction of non-
free symbols emitted by that encoder over all possible symbol
streams. This paper’s first technical contribution is a neces-
sary and sufficient condition for the existence of a stabilizing
controller and encoder/decoder pair obeying a constraint on its
average cost per symbol. This condition depends on the chan-
nel’s average bit-rate, the encoder’s average cost per symbol,
and the unstable eigenvalues of the open-loop system matrix.
The proof is constructive in that it explicitly provides a family of
controllers and encoder/decoder pairs that stabilize the process
when the condition holds. The pairs are optimal in the sense that
they satisfy the stability condition as tightly as desired. As the
constraint on the average cost per symbol is allowed to increase
(becomes looser), our necessary and sufficient condition recov-
ers the condition from [2]. Moreover, we show that if an encoder
can stabilize the process, then it can do so using arbitrarily small
amounts of communication resources per time unit. One way
to achieve this is by transmitting only a few non-free symbols
per time unit, but being very selective about which transmission
period to send them in. Alternatively, the encoder and decoder
could share a massive symbol library so that each symbol carries
sufficient information about the state. Finally, a counterintuitive
corollary to our main result shows that if the process may be st-
abilized with average bit-rate r bits per time unit, then there
exists a stabilizing controller and encoder/decoder pair using
average bit-rate r which uses no more than 50% non-free sym-
bols in any stream of symbols it may transmit.

It is important to point out that in our problem setup, the
transmission times are fixed; this prevents the encoder from
communicating an infinite amount of information in the (real-
valued) transmission times, which would require clocks with
infinite precision.

The encoders developed in the first part of the paper are
optimal in the sense that they can stabilize a process with an
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average cost-per-symbol as low as possible. However, they are
possibly very complex and difficult to implement. In particu-
lar, as an encoder’s cost-per-symbol approaches the minimum
bound, its codeword library grows to infinite size. In the last
part of the paper, we develop an easily-implementable event-
based encoder/decoder and compare it to the encoders from the
paper’s first part.

Recent results in event-based control [9]–[12] indicate that an
encoder can conserve communication resources by transmitting
only on a “need-to-know” basis. Since our framework forces
transmission at fixed transmission times, it would appear to pro-
hibit any sort of event-based control. However, our framework
can be regarded as event-based if one interprets non-free sym-
bols as transmission-worthy events and the free symbol as “no
transmission.”

Preliminary work in event-based control assumed that the
event-detector could transmit infinite-precision quantities across
the communication channel to the controller/actuator. To ex-
tend this work to finite-bit-rate communication channels, recent
works explore event-based quantized control, typically introduc-
ing an encoder/decoder or quantizer in the communication path
to limit the number of bits transmitted. Several recent works
offer strategies for event-based quantized control that study
trade-offs between quantizer complexity, bit-rate, and minimum
inter-transmission intervals. For example, [13] explores an intu-
itive event-based quantized control scheme that sends single bits
based on the state estimation error transitioning between quan-
tization levels. The design in [14] of an event-based quantized
control scheme for a disturbed, stable LTI system allows the
state trajectory to match as closely as desired the state-feedback
state trajectory that would be obtained without communication
constraints. In [15] the authors consider the simultaneous co-
design of the event-generator and quantizer for the control of a
non-linear system using the hybrid system framework from [16].
Sufficient bit rates for event-triggered stabilizability of nonlinear
systems were also studied in [17]. In [18], a method is devel-
oped for event-based quantized control design that achieves a
desired convergence rate of a Lyapunov function of the state,
while guaranteeing a positive lower bound on inter-transmission
times and a uniform upper bound on the number of bits in each
transmission.

In contrast to the optimal encoders introduced in the pa-
per’s first part, the proposed event-based encoders are easy to
implement but not optimal. However, they are only slightly
sub-optimal. Specifically, the paper’s second technical contri-
bution presents a sufficient condition for the existence of an
emulation-based controller and event-based encoder/decoder
pair. The condition resembles the sufficient condition from the
paper’s first part, and exceeds it by less than a factor of 2.5,
meaning that the proposed event-based encoding scheme needs
at most 2.5 times as many communication resources as an opti-
mal encoding scheme requires. This establishes that event-based
encoding schemes can offer “order-optimal” performance in
communication-constrained control problems.

The remainder of this paper is organized as follows.
Section III contains a necessary condition for stability, namely
that stability is not possible when our condition does not hold.
To prove this result we actually show that it is not possi-
ble to stabilize the process with a large class of encoders—
which we call M -of-N encoders—that includes all the encoders
with average cost per symbol not exceeding a given threshold.
Section IV contains a sufficient condition for stability, showing
that when our condition does hold, there is an encoder/decoder

Fig. 1. The limited-communication setup. At time tk , the encoder sam-
ples the plant state x(tk ) and selects symbol sk from alphabet A to send
to the decoder/controller. The decoder/controller constructs the actuation
signal u(t) for the plant.

pair that can stabilize the process. We explicitly construct a
possible encoding scheme. Finally, in Section V we develop an
event-based encoding scheme that stabilizes the process, pro-
vided a sufficient condition holds.

A subset of the results in Sections III and IV appeared with an
incomplete proof in the conference paper [19]. This paper pro-
vides a complete proof and generalizes the problem statement
to permit a larger class of encoders with arbitrary transmission
times. Moreover, this paper’s results apply to systems with non-
diagonalizable system matrices A, whereas our previous results
assumed that A was diagonalizable over C. Preliminary work for
the results in Section V appeared in the conference paper [20].

II. PROBLEM STATEMENT

Consider a stabilizable linear time-invariant process

ẋ = Ax + Bu, x ∈ Rn , u ∈ Rm , (1)

for which it is known that x(0) belongs to a known bounded set
X0 ⊂ Rn . A sensor that measures the state x(t) is connected to
the actuator through a finite-data-rate, error-free, and delay-free
communication channel, see Fig. 1. An encoder collocated with
the sensor samples the state at a fixed sequence of transmission
times {tk ∈ [0,∞) : k ∈ N>0}, and from the corresponding se-
quence of measurements {x(tk ) : k ∈ N>0} causally constructs
a sequence of symbols {sk ∈ A : k ∈ N>0} from a nonempty
finite alphabet A. Without loss of generality, A = {0, 1, . . . , S}
with S := |A| − 1. At time tk the encoder sends the symbol sk

through the channel to a decoder/controller collocated with the
actuator, which causally constructs the control signal u(t), t � 0
from the sequence of symbols {sk ∈ A : k ∈ N>0} that arrive
at the decoder. The sequence of transmission times {tk} is as-
sumed to be monotonically nondecreasing and unbounded (i.e.,
limk→∞ tk = +∞). The fact that the sequence of transmission
times is fixed a priori prevents the controller from communicat-
ing information in the transmission times themselves. Note that
because the sequence of transmission times is not necessarily
strictly increasing, this allows multiple transmissions at a single
time instant, which can be viewed as encoding several symbols
in the same message. The non-negative average bit-rate r of
a sequence of symbols {sk} ⊂ {0, . . . , S} transmitted at times
{tk} is the rate of transmitted information in units of bits per
time unit, and is defined as

r := log2(S + 1) lim sup
k→∞

k

tk
. (2)
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We assume that the symbol 0 ∈ A can be transmitted without
consuming any communication resources, but the other S sym-
bols each require one unit of communication resources per trans-
mission. One can think of the “free” symbol 0 as the absence
of an explicit transmission. The “communication resources” at
stake may be energy, time, or any other resource that may be
consumed in the course of the communication process. In order
to capture the average rate at which an encoder consumes com-
munication resources, we define the average cost per symbol of
an encoder as follows: We say an encoder has average cost per
symbol not exceeding γ if there exists a non-negative integer
N0 such that for every symbol sequence {sk} generated by the
encoder, we have

1
N2

N1 +N2 −1∑

k=N1

Isk �=0 � γ +
N0

N2
∀N1 , N2 ∈ N>0 , (3)

where Isk �=0 := 1 if the kth symbol is not the free symbol, and
0 if it is. The summation in (3) captures the total resources spent
transmitting symbols sN1 , sN1 +1 , . . . , sN1 +N2 −1 , independent
of the symbols’ transmission times. Motivating this definition of
average cost per symbol is the observation that the lefthand side
has the intuitive interpretation of the average cost per transmit-
ted symbol between symbols sN1 and sN1 +N2 −1 . As N2 → ∞,
which corresponds to averaging over a growing window of sym-
bols, the rightmost term vanishes, leaving γ as an upper bound
on the average long-term cost per symbol of the symbol se-
quence. To illustrate the necessity of the N0 term, note that
without it, any symbol sequence with a nonzero symbol at some
index k will violate (3) for any γ ∈ [0, 1) by picking N1 := k
and N2 := 1; the presence of the N0 term allows an encoder to
have a very small average cost per symbol while still enabling it
to transmit long runs of non-free symbols. Note that because the
left-hand side of (3) never exceeds 1, every encoder has an av-
erage cost per symbol not exceeding c for any c � 1. Also, note
that any encoder with average cost per symbol not exceeding
γ = 0 can transmit at most N0 non-free symbols for all time,
making it unsuitable for stabilization. For these two reasons,
any encoder of interest will have an average cost per symbol not
exceeding some γ ∈ (0, 1].

Whereas the average bit-rate r only depends on the symbol
alphabet A and transmission times {tk}, the average cost per
symbol of an encoder/decoder pair depends on every possible
symbol sequence it may generate, and therefore may in general
depend on the encoder/decoder pair, the controller, process (1),
and the initial condition x(0).

The specific question considered in this paper is: under what
conditions on the average bit-rate and average cost per symbol
do there exist a controller and encoder/decoder pair that stabilize
the state of process (1)?

III. NECESSARY CONDITION FOR BOUNDEDNESS WITH

LIMITED-COMMUNICATION ENCODERS

It is known from [2]–[4] that it is possible to construct a
controller and encoder/decoder pair that stabilize process (1)
with average bit-rate r only if

r ln 2 �
∑

i:�λi [A ]>0

λi [A], (4)

where ln denotes the base-e logarithm, and the summation
is over all eigenvalues of A with nonnegative real part. The

Fig. 2. A plot of f (γ, S) versus γ for S = 1, 4, 20.

following result shows that a larger average bit-rate r may be
needed when one poses constraints on the encoder’s average cost
per symbol γ. Specifically, when γ � S/(S + 1) the (necessary)
stability condition reduces to (4), but when γ < S/(S + 1) an
average bit-rate r larger than (4) is necessary for stability.

Theorem 1: Suppose a controller and encoder/decoder pair
keep the state of process (1) bounded for every initial condition
x0 ∈ X0 . If the encoder uses an alphabet {0, . . . , S}, has average
bit-rate r, and has average cost per symbol not exceeding γ, then
we must have

r f(γ, S) ln 2 �
∑

i:�λi [A ]>0

λi [A], (5)

where the function f : [0, 1] × N>0 → [0,∞) is defined as

f(γ, S) :=

{
H (γ )+γ log2 S

log2 (S+1) 0 � γ < S
S+1

1 S
S+1 � γ � 1,

(6)

and H(p) := −p log2(p) − (1 − p) log2(1 − p) is the base-2
entropy of a Bernoulli random variable with parameter p.

It is worth making three observations regarding the function
f : First, f(γ, S) is nondecreasing and continuous in γ for any
fixed S, as illustrated in Fig. 2. Second, f(γ, S) is monotone
nonincreasing in S for any fixed γ ∈ [0, 1]. Therefore, for a fixed
r and γ, an encoder can increase its value of f(γ, S) “for free”
by decreasing S while commensurately decreasing its average
transmission period to keep r constant in accordance with (2).
This implies that smaller alphabets are preferable to large ones
when trying to satisfy (5) with a given fixed average bit-rate and
average cost per symbol.

The third observation is that the average cost per time unit,
which is γ lim supk→∞

k
tk

, can be made arbitrarily small while
still satisfying (5). This can be achieved in several ways:

1) Large symbol library with infrequent transmissions: For
a given average cost per symbol γ, pick the encoder’s
transmission times as tk := kT for sufficiently large T so
that the average cost per time unit γ lim supk→∞ k/tk =
γ/T is as small as desired. Then, using r := log2(S +
1)/T and leveraging the fact that

rf(γ, S) =

{
H (γ )+γ log2 S

T 0 � γ < S
S+1

log2 (S+1)
T

S
S+1 � γ � 1

(7)

is monotone increasing in S for fixed γ, pick S large
enough to satisfy (5). By choosing a large T and S,
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this scheme elects to send data-rich symbols only infre-
quently. The state—although remaining bounded—may
grow quite large between these infrequent transmissions.
Moreover, the large symbol library may require sizeable
computational resources to store and process.

2) Large symbol library with costly symbols rarely sent:
If the encoder’s transmission times {tk} are fixed, pick
γ small enough to make the average cost per time unit
γ lim supk→∞ k/tk as small as desired, then increase S
as in the previous case to satisfy (5). Like the previous
case, this approach requires processing a large symbol
library.

3) Frequent transmissions with costly symbols rarely sent:
If the number of non-free symbols S is fixed, it is
still possible to choose an average cost per symbol γ
and transmission times tk := kT so that (5) is satisfied
and the average cost per time unit γ lim supk→∞ k/tk
is as small as desired. To verify that this is possible,
note that the sequences γi := e−i , Ti := e−i

√
i, i ∈ N>0

have the property that as iarrow∞, we have γi → 0,
Ti → 0, and γi/Ti → 0, but H(γi)/Ti → ∞, so lever-
aging (7) we conclude that rif(γi, S) ln 2 → ∞ (where
ri := log2(S + 1)/Ti). This means that one can find
i ∈ N>0 sufficiently large to make the average cost per
time unit arbitrarily small and also satisfy the neces-
sary condition (5). In practice, to operate with a very
small sampling period T , this approach requires an en-
coder/decoder pair with a very precise clock.

Remark 1: The addition of the “free” symbol effectively in-
creases the average bit-rate without increasing the rate of re-
source consumption, as seen by the following two observations:

1) Without the free symbols, the size of the alphabet would be
S and the average bit-rate would be

log2(S) lim sup
k→∞

k

tk
< log2(S + 1) lim sup

k→∞

k

tk
.

It could happen that this average bit-rate is too small to bound
the plant, yet after the introduction of the free symbol, the
condition (5) is satisfied.

2) Since γ is essentially the fraction of non-free symbols, the
quantity rγ is the number of bits per time unit spent transmit-
ting non-free symbols. But since f(γ, S) � γ, again we see
that the free symbols help satisfy (5). To see that f(γ, S) � γ,
observe that for any S ∈ N>0 , f(·, S) is concave and reaches
1 before the identity function does, hence it is everywhere
above the identity function on (0, 1), and it matches the iden-
tity function at the endpoints 0 and 1.

A. Setup and Proof of Theorem 1

We lead up to the proof of Theorem 1 by first establishing
three lemmas centered around a restricted but large class of
encoders called M -of-N encoders. We first define M -of-N en-
coders, which essentially partition their symbol sequences into
N -length codewords, each with M or fewer non-free symbols.
Lemma 1 demonstrates that every encoder with a bounded av-
erage cost per symbol is an M -of-N encoder for appropriate N
and M . Next, in Lemma 2 we establish a relationship between
the number of codewords available to an M -of-N encoder and

the function f as defined in (6). Then, in Lemma 3 we establish a
necessary condition for an M -of-N encoder to bound the state
of process (1). Finally, the proof of Theorem 1 is built upon
these three results.

We now introduce the class of M -of-N encoders. For N ∈
N>0 , � ∈ N�0 , we define the �th N -symbol codeword to be
the sequence {s�N +1 , s�N +2 , . . . , s�N +N } of N consecutive
symbols starting at the index k = �N + 1. For M ∈ R�0 with
M � N , an M -of-N encoder is an encoder for which every
N -symbol codeword has M or fewer non-free symbols, i.e.,

�N +N∑

k=�N +1

Isk �=0 � M, ∀� ∈ N�0 . (8)

The total number of distinct N -symbol codewords available to
an M -of-N encoder is thus given by

L(N,M,S) :=

M �∑

i=0

(
N

i

)
Si, (9)

where the ith term in the summation counts the number of N -
symbol codewords with exactly i non-free symbols. In keep-
ing with the problem setup, the M -of-N encoders consid-
ered here each draw their symbols from the symbol library
A := {0, 1, . . . , S} and transmit symbols at times {tk}.

An intuitive property of M -of-N encoders is that they have an
average cost per symbol not exceeding M/N with N0 = 2M .
This result is presented as Lemma 5 in the Appendix.

The fact that an M -of-N encoder refrains from sending
“expensive” codewords effectively reduces its ability to trans-
mit information: A codeword sent from an M -of-N encoder
conveys log2 L(N,M,S) bits of information, whereas a code-
word from an encoder without the M -of-N constraint conveys
log2 L(N,N, S) = N log2(S + 1) bits.

The next lemma, proved in the Appendix, shows that the set of
M -of-N encoders is “complete” in the sense that every encoder
with average cost per symbol not exceeding a finite threshold
γ is actually an M -of-N encoder for N sufficiently large and
M ≈ γN .

Lemma 1: For any encoder/decoder pair with average cost
per symbol not exceeding γ ∈ (0, 1], and every constant ε > 0,
there exist M ∈ R�0 and N ∈ N>0 with M < Nγ(1 + ε) such
that the encoder/decoder pair is an M -of-N encoder.

The next lemma establishes a relationship between the num-
ber of codewords L(N,M,S) available to an M -of-N encoder
and the function f defined in (6).

Lemma 2: For any N ∈ N>0 , S ∈ N�0 and γ ∈ [0, 1], the
function L defined in (9) and the function f defined in (6) satisfy

lnL(N,Nγ, S)
N ln(S + 1)

� f(γ, S), (10)

with equality holding only when γ = 0 or γ = 1. Moreover, we
have asymptotic equality in the sense that

lim
N →∞

ln L(N,Nγ, S)
N ln(S + 1)

= f(γ, S). (11)

The left and right sides of (10) are plotted in Fig. 3.
Proof of Lemma 2: In this proof, we use the base-2 logarithm

to match the notation of an information theoretic theorem that
we invoke. Let N ∈ N>0 and S ∈ N�0 be arbitrary. First, we
prove (10) for γ ∈ (0, S

S+1 ]. Applying the Binomial Theorem
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Fig. 3. A plot of f (γ, S) and ln L(N, Nγ, S)/N ln(S + 1) versus γ for
S = 1 and N = 4, 12, 50.

to the identity 1 = (γ + (1 − γ))N , we obtain

1 =
N∑

i=0

(
N

i

)
γi(1 − γ)N −i .

Since each term in the summation is positive, keeping only the
first 
Nγ� terms yields the inequality

1 >


N γ �∑

i=0

(
N

i

)
γi(1 − γ)N −i . (12)

Next, a calculation presented as Lemma 6 in the Appendix
reveals that

γi(1 − γ)N −i � 2−N H (γ ) Si

SN γ
(13)

for all N,S ∈ N>0 , γ ∈ (0, S
S+1 ], and i ∈ [0, Nγ]. Using this

in (12) and taking log2 of both sides yields

log2 L(N,Nγ, S)
N

< H(γ) + γ log2 S. (14)

By the definition of f , we have log2(S + 1)f(γ, S) = H(γ) +
γ log2 S when γ ∈ [0, S

S+1 ]. Thus, (14) proves the strict in-

equality in (10) for γ ∈ (0, S
S+1 ]. Next, suppose γ ∈ ( S

S+1 , 1)
and observe from (9) that L(N,M,S) is a sum of positive terms
whose index reaches 
M�, hence L(N,Nγ, S) is strictly less
than L(N,N, S) for any γ < 1. We conclude that

log2 L(N,Nγ, S)
N

<
log2 L(N,N, S)

N

= log2(S + 1) = log2(S + 1)f(γ, S), (15)

where the first equality follows simply from the fact that
L(N,N, S) is the number of all possible codewords of length
N and hence equals (S + 1)N , and the second equality follows
from the definition of f when γ ∈ ( S

S+1 , 1). This concludes the
proof of the strict inequality in (10) for γ ∈ (0, 1). The proof of
(10) for γ = 0 follows merely from inspection of (10), and the
γ = 1 case follows from (15).

Next we prove the asymptotic result (11) using information-
theoretic methods. First we prove (11) for γ ∈ [0, S

S+1 ). Con-
sider a random variable X parameterized by S ∈ N�0 and

γ ∈ [0, S
S+1 ) which takes values in X := {0, 1, . . . , S} with

probabilities given by P (X = 0) := (1 − γ) and P (X = i) :=
γ/S, i = {1, 2, . . . , S}. Following our convention, we call 0 the
“free” symbol and 1, . . . , S the “non-free” symbols. To lighten
notation we write p(x) := P (X = x), x ∈ X . The entropy of
the random variable X is

H(X) := −
S∑

i=0

p(i) log2 p(i) = H(γ) + γ log2 S, (16)

where we have overloaded the symbol H so that H(γ) :=
−γ log2 γ − (1 − γ) log2(1 − γ) is the entropy of a Bernoulli
random variable with parameter γ.

Next, for some arbitrary N ∈ N>0 , we consider N -length
sequences of i.i.d. copies of X . Let XN := {(x1 , . . . , xN ) :
xi ∈ X}. We use the symbol xN as shorthand for (x1 , . . . , xN ),
and we use p(xN ) as shorthand for P ((X1 ,X2 , . . . , XN ) =
(x1 , x2 , . . . , xN )).

Given an N -length sequence xN ∈ XN , the probability that
the N i.i.d. random variables (X1 , . . . , XN ) take on the values
in the N -tuple xN is given by

p(xN ) = (1 − γ)N −∑N
i = 1 Ix i �= 0

γ
∑N

i = 1 Ix i �= 0

S
∑N

i = 1 Ix i �= 0
. (17)

The summation
∑N

i=1 Ixi �=0 is the number of non-free symbols
in the N -tuple xN .

For arbitrary ε > 0, define the set A
(N )
ε ⊆ XN as

A(N )
ε :=

{
xN ∈ XN

∣∣∣ N (γ − δε) �
N∑

i=1

Ixi �=0 � N (γ + δε)

}
,

(18)

where δε := ε/ log2
(1−γ )S

γ . That is, A
(N )
ε is the set of all N -

length sequences with “roughly” Nγ non-free symbols. Using
(16), (17), and the definition of δε , we can express the inequali-
ties in (18) as

A(N )
ε =

{
xN ∈ XN

∣∣∣ 2−N (H (X )+ε) � p(xN ) � 2−N (H (X )−ε)
}

.

(19)

Here, we relied on the fact that (1−γ )S
γ > 1 for S ∈ N>0 , γ ∈

[0, S
S+1 ). In the form of (19), we recognize A

(N )
ε as the so-

called “typical set” of N -length sequences of i.i.d. copies of X
as defined in [21]. In [21, Theorem 3.1.2] uses the Asymptotic
Equipartition Property of sequences of i.i.d. random variables
to prove that for any ε > 0, we have

(1 − ε)2N (H (X )−ε) �
∣∣∣A(N )

ε

∣∣∣ (20)

for N ∈ N>0 large enough.
Next, we observe that

∣∣∣A(N )
ε

∣∣∣ � L (N,N (γ + δε) , S) (21)

because |A(N )
ε | is the number of N -length sequences with a

number of non-frees in the interval [N(γ − δε), N(γ + δε)],
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whereas the right-hand side counts sequences with a number of
non-frees in the larger interval [0, N(γ + δε)]. Combining (20)
and (21), we obtain that for any ε > 0,

1
N

log2(1 − ε) + H(γ) + γ log2 S − ε

� 1
N

log2 L (N,N (γ + δε) , S) (22)

for N large enough. Moreover, by (10) we have

1
N

log2 L (N,N (γ + δε) , S)

� H (γ + δε) + (γ + δε) log2 S (23)

for any γ ∈ [0, S
S+1 ), N, S ∈ N>0 , and ε > 0. Combining

these two observations establishes an upper and lower bound
on 1

N log2 L(N,N(γ + δε), S). Letting ε → 0, the upper and
lower bounds converge to H(γ) + γ log2 S, establishing (11)
for γ ∈ [0, S

S+1 ). Since the upper and lower bounds are contin-

uous in γ, this proves (11) for γ = S
S+1 as well.

Lastly, suppose γ ∈ ( S
S+1 , 1]. Since L is monotonically non-

decreasing in its second argument, we have

1
N

log2 L

(
N,N

S

S + 1
, S

)
� 1

N
log2 L (N,Nγ, S) . (24)

Moreover, by (10) we have

1
N

log2 L (N,Nγ, S) � log2(S + 1). (25)

Combining these establishes an upper and lower bound on
1
N log2 L(N,Nγ, S). Taking N → ∞, the bounds become
equal because (11) holds for γ = S

S+1 in the lower bound. Here,
we relied on the fact that f(γ, S) is continuous in γ. We obtain

lim
N →∞

1
N

log2 L (N,Nγ, S) = log2(S + 1). (26)

This concludes the proof of Lemma 2. �
The following lemma provides a necessary condition for an

M -of-N encoder to be able to bound the state of process (1).
Lemma 3: Consider an M -of-N encoder/decoder pair with

average bit-rate r using a channel with alphabet {0, . . . , S}
(with 0 the free symbol). If the pair keeps the state of process
(1) bounded for every initial condition, then we must have

r
ln L(N,M,S)
N ln(S + 1)

ln 2 �
∑

i:�λi [A ]>0

λi [A]. (27)

Proof of Lemma 3: The proof of this result can be con-
structed using an argument similar to the ones found in [2],
[4], which considers the rate at which the uncertainty on the
state, as measured by the volume of the set where it is known to
lie, grows through the process dynamics (1) and shrinks upon the
receipt of each N -symbol codeword. Details on this argument
can be found in the technical report [22]. �

Now we are ready to prove Theorem 1.
Proof of Theorem 1: If γ = 0, then the encoder transmits at

most N0 non-free symbols, and therefore cannot bound an
unstable system for all time. We assumed that the encoding
scheme keeps the state of process (1) bounded, so we must
have

∑
i:�λi [A ]>0 λi [A] = 0, and so (5) is satisfied trivially.

Now suppose γ > 0. By Lemma 1, for any ε > 0 there exist
M ∈ R�0 and N ∈ N>0 with M < Nγ(1 + ε) for which the
encoder/decoder is an M -of-N encoder. Since the state of the
process is kept bounded, by Lemma 3 we have

∑

i:�λi [A ]>0

λi [A] � r
ln L(N,M,S)
N ln(S + 1)

ln 2. (28)

Since L is monotonically nondecreasing in its second argument
and M < Nγ(1 + ε), we have

r
ln L(N,M,S)
N ln(S + 1)

� r
ln L(N,Nγ(1 + ε), S)

N ln(S + 1)
. (29)

Lemma 2 implies that

r
ln L(N,Nγ(1 + ε), S)

N ln(S + 1)
� rf(γ(1 + ε), S). (30)

Combining these and letting ε → 0, we obtain (5). This com-
pletes the proof of Theorem 1. �

IV. SUFFICIENT CONDITION FOR STABILITY WITH

LIMITED-COMMUNICATION ENCODERS

The previous section established a necessary condition (5)
on the average bit-rate and average cost per symbol of an en-
coder/decoder pair in order to bound process (1). In this section,
we show that with a strict inequality this condition is also suf-
ficient for a stabilizing encoder/decoder to exist. The proof is
constructive in that we provide the encoder/decoder.

The proposed scheme is sometimes called emulation-based
because the encoder/decoder emulates a stabilizing state-
feedback controller u = Kx. This state-feedback controller
cannot be used in the limited-communication environment
considered in this paper because the infinite-precision state
x(t) ∈ Rn cannot be sent over the channel and hence is un-
available to the controller. Instead, in emulation-based control,
the state-feedback controller is coupled to an encoder/decoder
pair that estimates the state as x̂(t), resulting in the control law
u(t) = Kx̂(t), t � 0.

Theorem 2: Assume that A + BK is Hurwitz. For every S ∈
N�0 , r � 0, and γ ∈ [0, 1] satisfying

rf(γ, S) ln 2 >
∑

i:�λi [A ]>0

λi [A], (31)

where the function f is defined in (6), there exists an emulation-
based controller and an M -of-N encoder/decoder pair that uses
S non-free symbols, has average bit-rate not exceeding r, has
an average cost per symbol not exceeding γ, and exponentially
stabilizes process (1) for every initial condition x0 ∈ X0 .

Remark 2: The encoding scheme that follows relies on a
strict inequality in (31) for the existence of a suitable M -of-N
encoder, and as that gap shrinks to 0, the codeword length N be-
comes unbounded. In contrast, the event-based encoding scheme
presented in Section V has the property that if its corresponding
data-rate condition (68) holds with equality, the scheme bounds
the state of the process, cf. Remark 5.

The proof of Theorem 2 uses the following lemma, proved
in the Appendix, which establishes a useful coordinate transfor-
mation for the error system of an emulation-based controller.
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Lemma 4: Consider the process and the (open-loop) state
estimator

ẋ(t) = Ax(t) + Bu(t), x(tk ) = x0 ∀t ∈ [tk , tk+1) (32)

˙̂x(t) = Ax̂(t) + Bu(t), x̂(tk ) = x̂0 ∀t ∈ [tk , tk+1). (33)

There exists a time-varying matrix P (t) ∈ Rn×n such that for
any tk , tk+1 , x0 , x̂0 , the state estimation error

e(t) := P (t)(x(t) − x̂(t)) (34)

satisfies

ei(t) = eai (t−tk )Gi(t − tk )ei(tk ), ei(t) ∈ Rdi (35)

for all t ∈ [tk , tk+1) and all i ∈ {1, . . . , nb}, where nb is the
number of real Jordan blocks in the real Jordan normal form of
A, ai is the real part of the eigenvalue associated with Jordan
block i, and di is the geometric multiplicity of that eigenvalue;
the time-varying real matrix Gi(t) has the form

Gi(t) :=

⎡

⎢⎢⎢⎢⎢⎣

1 t t2

2! . . . td i −1

(di −1)!

1 t

. . .

1

⎤

⎥⎥⎥⎥⎥⎦
∈ Rdi ×di (36)

if the ith Jordan block corresponds to a real eigenvalue, and

Gi(t) :=

⎡

⎢⎢⎢⎢⎢⎣

I2 I2t I2
t2

2! . . . I2
td i −1

(di −1)!

I2 I2t

. . .

I2

⎤

⎥⎥⎥⎥⎥⎦
∈ R2di ×2di

(37)
if it corresponds to a complex conjugate pair, where I2 :=
[ 1
0

0
1 ]. Moreover, there exists a positive scalar εP for which

σmin(P (t)) � εP ∀t � 0, (38)

where σmin(·) denotes the smallest singular value of a matrix.

A. Proof of Theorem 2

The basic idea of the proof is as follows. The encoder and
decoder each run internal copies of the process to compute an
estimate x̂ of the state. Since there is no channel noise, the
encoder’s and decoder’s state estimates will be equal, which
corresponds to an information pattern “encoder class 1a” in the
terminology of [23].

The encoder monitors the state estimation error and period-
ically transmits symbols to the decoder that essentially encode
a quantized version of the error, making sure that the average
cost per symbol does not exceed γ. The decoder then uses those
symbols to update its state estimate x̂.

1) Definition of the Encoding and Decoding
Scheme: We first select the integers M and N for our M -
of-N encoder. Assume that S, r, and γ satisfy (31), so that

η := rf(γ, S) ln 2 −
∑

i:�λi [A ]>0

λi [A] > 0. (39)

In view of (10) and (11), we conclude that we can pick N
sufficiently large to satisfy

rf(γ, S) ln 2 − r
ln L(N,Nγ, S)
N ln(S + 1)

ln 2 < η/2 (40)

and we then define M := Nγ. By Lemma 5 in the Appendix,
this encoder has an average cost per symbol not exceeding γ.

Now we specify which N -length codewords will be trans-
mitted. Here is the basic idea: The encoder and decoder each
estimate the state of the process as x̂(t) as defined in (33), with
t0 := 0 and x̂(t0) := 0. The encoder monitors the state estima-
tion error e(t) := P (t)(x(t) − x̂(t)), where P (t) is determined
by Lemma 4. For each of the nb error subsystems ei(t) ∈ Rdi

given by (35) we employ a sub-encoder i that monitors ei(t)
and every Ti time units (to be defined shortly) transmits to the
decoder a set of N -length codewords with M or fewer non-free
symbols from the alphabet {0, . . . , S}. The chosen set of code-
words is essentially the index of the di-dimensional quantization
cell in which ei(kTi) ∈ Rdi lies. Based on this set of codewords,
the encoder and decoder each adjusts their state estimates, and
the procedure repeats.

We now define the scheme formally. We first select the trans-
mission periods Ti : partition the nb error systems based on
whether or not they are stable

S := {i ∈ {1, . . . , nb} : ai < 0}
U := {i ∈ {1, . . . , nb} : ai � 0}

where ai is the real part of the ith eigenvalue of A. For the
subsequent argument, in the case that ai = 0 we add a small
positive number to it so that (31) still holds, and use the same
label ai to denote this number. Note that, in contrast with the
previous section, we treat eigenvalues with zero real part as
unstable.

The error dynamics for ei with i ∈ S are stable and so there
is no need to transmit information on behalf of ei, i ∈ S, since
these errors will converge to zero exponentially fast. So there is
no need to define Ti for i ∈ S. For i ∈ U , we select the trans-
mission period for sub-encoder i to be

Ti := ci
ln L(N,M,S)

ai

1
1 + η/(2

∑
i:�λi [A ]>0 λi [A])

(41)

where the positive integer ci is chosen large enough so that Ti

satisfies
dj −1∑

j=0

T j
i

j!
< eκTi (42)

where κ := aiη/(4
∑

i:�λi [A ]>0 λi [A]) > 0.
Note that for those eigenvalues whose real part was 0, the

transmission period can be arbitrarily large (but finite) because
the positive number that was added to them can be arbitrarily
small.

Now we specify how the sub-encoder i selects which code-
word to transmit. For i ∈ S no symbols are transmitted. For i ∈
U , the ith sub-encoder initializes with Li,0 := supx0 ∈X0

‖x0‖∞
and at time kTi, k ∈ N>0 , performs the following steps:

1) Divide the di-dimensional box e(ai +κ)Ti Li,k−1 [−1, 1]di

into L(N,M,S)ci di smaller boxes of equal size by divid-
ing each of its di dimensions into L(N,M,S)ci intervals
of equal length. the sub-encoder i determines in which of
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these boxes the error ei(kTi)− lies and transmits this in-
formation to the decoder. Since there are L(N,M,S)ci di

boxes, this requires sending exactly cidi M -of-N code-
words.
Let Bi,k ⊂ Rdi denote the indicated box, bi,k ∈ Rdi de-
note the box’s center, and wi,k denote the transmitted set
of codewords. Note that set Bi,k − bi,k ⊂ Rdi is a cube
centered at 0.

2) Update the state estimate as

x̂(kTi)+ = x̂(kTi)− + I ′ibi,k (43)

where x̂+(t) := limτ ↓t x̂(τ) and x̂−(t) := limτ ↑t x̂(τ),
and the matrix Ii ∈ Rdi ×n “extracts” from the error e(t)
its component ei(t) such that ei(t) = Iie(t). Specifically

Ii :=
[
0di ×d1 0di ×d2 . . . Idi ×di

. . . 0di ×dn b

]
.

3) Define

Li,k := sup
z∈Bi , k −bi , k

‖z‖∞ (44)

The sequences {wi,k}, {Bi,k}, {bi,k}, and {Li,k} are avail-
able both to the encoder and the decoder, so the decoder can
maintain and update its own state estimate via Step 2, which is
used by the state feedback controller u := Kx̂. We now show
that the proposed encoding/decoding scheme satisfies the con-
ditions of Theorem 2, namely that the state goes to 0 and that
the average bit-rate is at most r.

2) The Scheme Exponentially Stabilizes the Pro-
cess: From process (1) and the definition of e(t) in (34),
the control law u = Kx̂ results in the following closed-loop
dynamics:

ẋ(t) = (A + BK)x(t) − BKe(t). (45)

Since A + BK is Hurwitz, the state x(t) converges exponen-
tially to 0 provided that e(t) → 0 exponentially. We now prove
that e(t) → 0 exponentially under the proposed scheme.

The basic idea is as follows: On one hand, in view of (35)
and (42), the error ei(t) grows in magnitude by a factor less
than e(ai +κ)Ti in the Ti time units between the transmission
of sets of codewords. On the other hand, every Ti time units
the ith sub-encoder sends L(N,M,S)ci di codewords, allow-
ing the ith sub-decoder to reduce its uncertainty of ei(t) by a
factor of L(N,M,S)ci di . We will show that condition (31) in
Theorem 2 implies that L(N,M,S)ci di > e(ai +κ)Ti , meaning
that the sub-decoder’s uncertainty in ei(t) shrinks faster than
the error dynamics expands ei(t). Therefore the decoder can
determine e(t) and drive it to 0.

First we prove by induction that the rule (43) for updating the
state estimate guarantees that ‖ei(kTi)+‖∞ � Li,k . From the
definition of e(t) and Ii , we have

ei(kTi)− = Iie(kTi)− = Ii

(
x(kTi)− − x̂(kTi)−

)
. (46)

Solving the update rule (43) for x̂(kTi)− and substituting the
result into (46) yields

ei(kTi)− = Ii

(
x(kTi)− − (

x̂(kTi)+ − I ′ibi,k

))

= ei(kTi)+ + bi,k (47)

where we used the fact that x(kTi)− = x(kTi)+ due to the
continuity of the solution x(t). Next, suppose by the induction

hypothesis that ‖ei((k − 1)Ti)+‖∞ � Li,k−1 . Then we have

‖ei((k − 1)Ti)+‖∞ � Li,k−1 (48)

⇔ ei((k − 1)Ti)+ ∈ Li,k−1 [−1, 1]di (49)

⇒ ei(kTi)− ∈ eai Ti ‖Gi(Ti)‖∞Li,k−1 [−1, 1]di (50)

⇒ ei(kTi)− ∈ e(ai +κ)Ti Li,k−1 [−1, 1]di (51)

where (50) holds because ei(t) follows the dynamics (35) be-
tween transmissions, and (51) follows because Ti was chosen
to satisfy (42) and we have ‖Gi(Ti)‖∞ =

∑dj −1
j=0 T j

i /j!.
Moreover, the set in (51) is precisely the box in Step 1 of the

proposed scheme, so therefore we must have ei(kTi)− ∈ Bi,k .
Applying (47) yields ei(kTi)+ ∈ Bi,k − bi,k , and therefore

‖ei(kTi)+‖∞ � sup
z∈Bi , k −bi , k

‖z‖∞ =: Li,k . (52)

This demonstrates that ‖ei(kTi)+‖∞ � Li,k for all k ∈ N>0 .
From Step 1 of the encoding scheme, the length Li,k is

essentially the side-length of the cube Bi,k . The set Bi,k

was constructed by dividing every dimension of e(ai +κ)Ti

Li,k−1 [−1, 1]di into L(N,M,S)ci pieces. Therefore the lengths
Li,k are recursively related via

Li,k =
e(ai +κ)Ti

L(N,M,S)ci
Li,k−1 (53)

and therefore

Li,k = eRkLi,0 (54)

where

R := ln
(

e(ai +κ)Ti

L(N,M,S)ci

)
. (55)

The transmission period Ti and κ were chosen in (41) to satisfy

e(ai +κ)Ti

L(N,M,S)ci
< 1 (56)

and so R < 0. Therefore, the event boundaries Li,k shrink to 0
at an exponential rate.

This implies that ei(t) → 0 exponentially, as follows. For any
time t, we have t = kTi + t, where k := 
t/Ti� and t ∈ [0, Ti).
Therefore

‖ei(t)‖∞ = ‖ei(kTi + t)‖∞ (57)

� eai t‖Gi(t)‖∞‖ei(kTi)+‖∞ (58)

� eai Ti ‖Gi(Ti)‖∞‖ei(kTi)+‖∞ (59)

� eai Ti ‖Gi(Ti)‖∞Li,k (60)

= eai Ti ‖Gi(Ti)‖∞Li,0e
Rk (61)

� eai Ti ‖Gi(Ti)‖∞Li,0e
−ReRt/Ti (62)

where (58) follows from the error dynamics (35), (60) follows
from (52), and (61) follows from (54). Since R < 0, this estab-
lishes that ei(t) → 0 at an exponential rate. Since this holds for
all i, e(t) exponentially converges to 0 as well. Therefore, by
(45), the state x(t) exponentially converges to 0.
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3) The Scheme’s Average Bit-Rate Does Not Ex-
ceed r: Since each sub-encoder is transmitting independently,
the average bit-rate of this encoding scheme as a whole is sim-
ply the sum of the sub-encoder’s average bit-rates. For i ∈ S,
the ith sub-encoder never transmits. For i ∈ U , every Ti time
units the ith sub-encoder sends cidi codewords, each from a
codeword library of length L(N,M,S). Therefore its average
bit-rate is ri := cidi log2 L(N,M,S)/Ti . The encoder’s total
average bit-rate is therefore

∑

i∈U
ri = log2 L(N,M,S)

∑

i∈U

cidi

Ti
.

Leveraging (41) yields

∑

i∈U
ri � 1

ln 2

(
1 +

η

2
∑

i:�λi [A ]>0 λi [A]

)
∑

i∈U
diai. (63)

Since U contains the non-negative real parts of the eigenvalues
of A, we have

∑
i∈U diai =

∑
i:�λi [A ]>0 λi [A]. From this and

(63), we conclude that

∑

i∈U
ri � 1

ln 2

⎛

⎝
∑

i:�λi [A ]>0

λi [A] +
η

2

⎞

⎠

< r
ln L(N,M,S)
N ln(S + 1)

� r (64)

where in (64) we leveraged (39) and (40) and then used the
fact that L is nonincreasing in its second argument and so
L(N,M,S) � L(N,N, S) = (S + 1)N . We conclude that this
encoding scheme has average bit-rate less than r.

This concludes the proof of Theorem 2. �
An unexpected consequence of Theorems 1 and 2 is that

when it is possible to drive the state of process (1) to 0 with a
given average bit-rate r, one can always find M -of-N encoders
that stabilize it for (essentially) the same average bit-rate and
average cost per symbol not exceeding S/(S + 1), i.e., approx-
imately a fraction 1/(S + 1) of the symbols will not consume
communication resources. In the most advantageous case, the
encoder/decoder use the alphabet {0, 1} and the encoder’s sym-
bol stream consumes no more than 50% of the communication
resources.

The following summarizes this observation.
Corollary 1: If process (1) can be bounded with an en-

coder/decoder pair with average bit-rate r, then for any ε > 0
and S ∈ N>0 there exists an M -of-N encoder using alpha-
bet {0, . . . , S} with average bit-rate r + ε and average cost per
symbol not exceeding S/(S + 1) that bounds its state.

Proof of Corollary 1: Since the original encoder/decoder
pair bounds the state, then by (4) we have

∑

i:�λi [A ]>0

λi [A] � r ln 2 < (r + ε) ln 2

= (r + ε)f
(

S

S + 1
, S

)
ln 2.

Applying Theorem 2 completes the proof. �
The price paid for using an encoder/decoder with average

cost per symbol close to S/(S + 1) is that it may require
prohibitively long codewords (large N ) as compared to an
encoder with higher average cost per symbol. To see this,

note that f(γ, S) = 1 when γ ∈ [S/(S + 1), 1] and recall that
ln L(N,Nγ, S)/N is monotonically nondecreasing in γ and N .
Hence, with r and S fixed, one can decrease γ from 1 toward
S/(S + 1) and still satisfy (40) by increasing N . This can be
seen in Fig. 3.

Remark 3: In the problem statement, x(0) was assumed to
belong to a known bounded set. If the region X0 is not precisely
known, the proposed scheme could be modified by introducing
an initial “zooming-out” stage as described in [1], where the
encoder picks an arbitrary box to quantize and successively
zooms out at a super-linear rate until the box captures the state.

V. EVENT-DRIVEN ENCODERS

In Section IV, we constructed an N -of-M encoding scheme
that stabilizes process (1) provided that the bit-rate and aver-
age cost condition (31) holds. This scheme may be difficult to
implement in practice if the encoder/decoder pair use a large
number of codewords. In this section we present an event-based
encoding scheme that is easy to implement and does not require
storing a large set of codewords. Instead, it uses a library of
only three symbols {−1, 0, 1} and does not group them into
codewords. The basic idea is to monitor in parallel each one-
dimensional component of the error system, and as long as it
stays inside a fixed interval, send the free symbol 0. A non-free
symbol is sent only when the one-dimensional component of
the error leaves the interval: send −1 if the error exited the left
side of the interval and send 1 if it exited out the right side.
Communication resources are therefore consumed only upon
the occurrence of this event, justifying the label event-based.
The proposed scheme resembles the distributed-sensor scheme
of [23], in that each coordinate of a plant measurement is sent
by a dedicated encoder to a central decoder.

The proposed scheme has similarities with the one from
Section IV in the following ways: the encoder and decoder
each estimate the process as x̂ using (33); the emulation-based
controller is u := Kx̂, where K is a stabilizing state-feedback
gain; Lemma 4 decouples the error system into nb sub-systems;
each of nb sub-encoders monitors the di-dimensional compo-
nent of the error and transmits a block of symbols every Ti time
units; only the unstable systems U require transmission. If A is
diagonalizable over C, then this event-based encoding scheme
reduces to the one proposed in [20].

Unlike the scheme from Section IV, this scheme differs in
what symbols are sent and how the state estimate x̂ is updated:
For i ∈ U , at time kTi, k ∈ N>0 (with Ti to be determined
shortly), the sub-encoder i monitors the di scalar components
ei,j (t) ∈ R, j ∈ {1, . . . , di} of ei(t), and for each one sends a
symbol si,j (k) ∈ {−1, 0, 1} according to

si,j (k) =

⎧
⎪⎨

⎪⎩

−1 ei,j (kTi) < −Lj

0 ei,j (kTi) ∈ [−Lj , Lj ]
1 ei,j (kTi) > Lj

k ∈ N>0 ,

(65)

with the event boundaries Lj > 0 also to be determined
shortly.The encoder and decoder then each update their state
estimates as

x̂(kTi)+ = x̂(kTi)− + P (kTi)−1vi,jΔi,j (si,j (k)),

i ∈ {1, . . . n}, k ∈ N>0 (66)
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Algorithm 1: (Encoder).

Set state estimate x̂(0) → 0
Continuously compute state estimate x̂(t) from (33)
for each sub-encoder i ∈ U in parallel, do
for time t = kTi, k ∈ {1, 2, . . .} do

measure state x(t) and compute ei(t) from (34)
for each scalar component ei,j (t), j ∈ {1, . . . , di}, do
compute si,j (k) from (65) and transmit it to decoder
update x̂(t) from (66)

end for
end for

end for

Algorithm 2: (Decoder).

Set state estimate x̂(0) → 0
Continuously compute state estimate x̂(t) from (33)
Continuously compute actuation signal u(t) := Kx̂(t)
for each sub-decoder i = 1 to n in parallel, do
for time t = kTi, k = 1, 2, . . . do

receive si,j (k) from the encoder
update x̂(t) from (66)

end for
end for

where the unit vector vi,j ∈ Rdi satisfies ei,j (t) = v′
i,j e(t),

x̂(t)+ and x̂(t)− denote limiting values of x̂(t) from above and
below t, P (t) is from Lemma 4, and the decoding function
Δi,j : {−1, 0, 1} → R is defined as

Δi,j (s) :=

⎧
⎪⎨

⎪⎩

−Lj

2 (1 + exp(aiTi)) s = −1
0 s = 0

Lj

2 (1 + exp(aiTi)) s = 1

(67)

where ai := �λi [A] is defined as before. Note that the nonzero
values of Δi,j are merely the midpoints of the intervals
[Lj , Lj exp(aiTi)] and [−Lj ,−Lj exp(aiTi)].

The event-based encoding/decoding scheme and controller
are described in pseudo-code as Algorithms 1 and 2 below.

This concludes the description of the event-based en-
coder/decoder pair, except for the precise choice of the trans-
mission periods Ti and the event boundaries Lj . The following
result states that if the average bit-rate and average cost per sym-
bol satisfy a particular condition, then one can choose transmis-
sion periods and event boundaries for which this scheme obeys
the communication constraints and bounds the process state.

Theorem 3: Consider process (1), and assume that A + BK
is Hurwitz. For every γ ∈ [0, 1] and r > 0 satisfying

r
h−1(γ)

ln 3
ln 2 �

∑

i:�λi [A ]>0

λi [A], (68)

h(x) :=
x

ln 2
ex −1

, x ∈ (0, ln 3), h(0) := 0, (69)

there exists an emulation-based controller and event-based en-
coder/decoder pair of the type described above that keeps the
state of the process bounded for every initial condition in X0 ;
the encoder has average bit-rate not exceeding r and has average
cost per symbol not exceeding γ.

Fig. 4. Plot of g(γ, S) versus γ , for S = 1 (thick solid line) and S = 2
(thin solid line).

Remark 4: Whereas the necessary and sufficient bounds
from Theorems 1 and 2 had the term f(γ, S), the event-based
encoding bound in (68) has the term h−1(γ)/ ln 3. The ratio
g(γ, S) := f(γ, S)/(h−1(γ)/ ln 3) captures the factor by which
the event-based bound exceeds the tight theoretical bound de-
veloped in the previous sections. This factor is a function of the
encoder’s average cost per symbol γ and the alphabet size S,
and is plotted in Fig. 4 for S = 2 and S = 1. Since the event-
based encoder has S = 2, the g(γ, 2) curve provides a “fair”
comparison between the event-based encoder and all other en-
coders with alphabet size S = 2. The g(γ, 1) curve compares the
event-based encoder with all other encoders with the smallest
(most efficient) alphabet, S = 1. We observe:

1) g(γ, 1) < 2.43 for all γ ∈ (0, 1].
2) g(γ, 2) < 2.0 for all γ ∈ (0, 1].
3) g(1, S) = ln 3/ ln 2 ≈ 1.58 for all S ∈ N>0 .

The first point guarantees that this encoding and control scheme
is never more than 2.43 times more conservative than the opti-
mal bound established in Theorems 1 and 2. Specifically, if a
given process may be bounded with a certain average bit-rate r,
then there exists an average bit-rate r̃ not exceeding 2.43r such
that this event-based scheme can bound the process using aver-
age bit-rate r̃. The second point establishes that this event-based
scheme never requires more than twice the average bit-rate of
any stabilizing N -of-M encoding scheme that, like this scheme,
uses a three-symbol alphabet. The third point states that as the
communication constraint relaxes (γ → 1), this event-based en-
coding scheme is only 1.58 times more conservative than the
optimal average bit-rate bound from Theorems 1 and 2. A con-
sequence of g(γ, S) > 1 is that event-based encoders are sub-
optimal in the following sense: if r, γ, and S satisfy (68), then
there exists r̃ := r/g(γ, S) < r for which r̃, γ, and S satisfy
(31). Therefore, whenever Theorem 3 could be invoked with
(r, γ, S) to build a stabilizing event-based encoding scheme,
one could instead invoke Theorem 2 with (r̃, γ, S) to construct
a stabilizing M -of-N encoding scheme with a smaller average
bit-rate. This is the price paid for the convenience of the simple
event-based logic as opposed to having to implement an en-
coder/decoder with a (possibly quite large) library of M -of-N
codewords.

Remark 5: In Remark 2, it was noted that the sufficiency
result in Theorem 2 would not bound the process state if the
data-rate condition (31) held only with equality. In contrast,
if the present data-rate inequality (68) holds with equality, the
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following event-based scheme bounds the state of the process, as
we will show in the proof of Theorem 3. However, the two suf-
ficiency results of Theorems 2 and 3 are consistent in the sense
that if their data-rate conditions [(31) and (68) respectively]
hold with strict inequality, then exponential stabilization can be
achieved, with the rate of exponential convergence determined
by the “gap” in the inequality. To see this for the present scheme,
suppose (68) holds with strict equality and let x(t) := eεtx(t),
where ε > 0 is small enough that

r
h−1(γ)

ln 3
ln 2 >

∑

i:�λi [A ]>0

λi [A] + nε, (70)

and suppose A + εI + BK is Hurwitz. Applying Theorem 3
to the x system provides a controller and encoder/decoder that
bounds x. However, ‖x(t)‖ � c is equivalent to ‖x(t)‖ < ce−εt ,
so the state x(t) converges to 0 exponentially fast.

A. Proof of Theorem 3

The main idea behind the proof is to show that, when assump-
tion (68) holds, it is possible to allocate the available average
bit-rate among sub-encoders in such a way that each sub-encoder
has a sufficiently large average bit-rate to bound its components
of the state estimation error.

For the sub-encoder i ∈ U , we pick the transmission period
Ti as

Ti := h−1(γ)/(ai + η), (71)

where the definition of h is from (69) and η > 0 satisfies

r
h−1(γ)

ln 3
ln 2 �

∑

i:�λi [A ]>0

λi [A] + nη. (72)

As mentioned above, no information needs to be sent on behalf
of the stable systems i ∈ S.

The event boundaries Lj > 0 are chosen as follows. Define

τ i :=
1
ai

ln
(

2
e(ai +η )Ti − 1

)
. (73)

Note that ∞ > τi > 0 because ai > 0 for i ∈ U and
2

e(a i + η )T i −1 > 1 by our choice of Ti . Next, pick 1 > φ > 0 suf-
ficiently small so that

φ < e−Ti /4 (74)

τ i � 1
ai

ln
(

2
(eai Ti (1 + 2eTi φ) − 1 + 2eτ i φ

)
(75)

for all i ∈ U . Finally, define the event boundaries recursively as

Ln := sup
x0 ∈X0

‖P (0)x0‖∞ (76)

Lj :=
1
φ

n∑

l=j+1

Ll j ∈ {1, . . . , n − 1}. (77)

1) The Scheme’s Average Bit-Rate Does Not Ex-
ceed r: For i ∈ U , sub-encoder i sends di symbols from the
alphabet {−1, 0, 1} every Ti time units, resulting in an average
bit-rate of

ri := di log2 3/Ti, (78)

and so the average bit-rate used by the encoder as a whole is
simply

∑

i∈U
ri = log2 3

∑

i∈U

di

Ti
=

log2 3
h−1(γ)

∑

i∈U
di(ai + η) (79)

=
log2 3
h−1(γ)

⎛

⎝
∑

i:�λi [A ]>0

λi [A] + nη

⎞

⎠ � r (80)

where the last inequality follows from hypothesis (68). Hence,
this encoding scheme uses an average bit-rate of r or less.

2) The Scheme Stabilizes the Process: Next we
show that this controller and event-based encoder/decoder pair
bound the state of process (1). In view of (45), this is ensured if
e(t) is bounded. Since ei(t) → 0 for i ∈ S, we focus on ei(t)
for i ∈ U .

We proceed with an inductive proof that the sequence
{ei,j (kTi)+}k∈N> 0 is bounded for i ∈ U , j ∈ {1, . . . , di}.
The base of induction k = 0 follows from the definition of
Lj in (76). Next we prove that ei,j (kTi)+ ∈ [−Lj , Lj ] pro-
vided that ei,l(kTi − Ti)+ ∈ [−Ll, Ll ] for l ∈ {j, . . . , di}. If
ei,j (kTi − Ti)+ is so small that it does not grow outside the
box [−Lj , Lj ] by the next timestep, then we naturally have
ei,j (kTi)+ ∈ [−Lj , Lj ]. On the other hand, suppose at a spe-
cific time t∗ satisfying kTi − Ti � t∗ < kTi , the scalar error
ei,j (t∗) grows to the boundary of the box [−Lj , Lj ]; without
loss of generality suppose ei,j (t∗) = Lj . Up to Ti time units
later, the timestep kTi occurs and the sub-encoder i transmits
si,j (k) = 1 to the decoder. Upon receiving symbol 1, the de-
coder knows from the encoding scheme (65) that the scalar er-
ror ei,j (kTi)− immediately before the transmission must have
exceeded the event boundary Lj and hence ei,j (kTk )− > Lj .
Moreover

|ei,j (kTi)−| = |v′
i,j ei(kTi)−| (81)

= |v′
i,j e

ai Ti Gi(Ti)ei(kTi − Ti)+ | (82)

� eai Ti

∣∣∣∣∣

di −j∑

l=0

T l
i

l!
ei,j+ l(kTi − Ti)+

∣∣∣∣∣ (83)

� eai Ti

(
|ei,j (kTi − Ti)+ |

+
di −j∑

l=1

T l
i

l!

di −j∑

l=1

|ei,j+ l(kTi − Ti)|+
)

(84)

� eai Ti

(
Lj +

di −j∑

l=1

T l
i

l!

di −j∑

l=1

Lj+ l

)
(85)

� eai Ti Lj

(
1 + eTi φ

)
(86)

where vi,j ∈ Rdi is a unit vector satisfying (81), (82) follows
from the error dynamics (35) in Lemma 4, (83) follows from the
definition of the matrix Gi(Ti), (84) follows from the triangle
inequality, (85) follows from the induction hypothesis, and (86)
follows by the definition of φ, and by upper-bounding the sum∑di −j

l=1 T l
i /l! by eTi . Therefore, the decoder can conclude that

ei,j (kTi)− ∈ (Lj , Lj eai Ti (1 + eTi φ)]. (87)
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We can express the scalar error ei,j (kTi)− as the overall error
vector e(kTi)− ∈ Rn times an appropriate unit vector

ei,j (kTi)− = v′
i,j e(kTi)− (88)

= v′
i,jP (kTi)(x(kTi)− − x̂(kTi)−). (89)

Rearranging the update rule (66) yields an expression for
x̂(kTi)−

x̂(kTi)− = x̂(kTi)+ − P (kTi)−1vi,jΔi,j (1). (90)

Substituting this into (89) yields

ei,j (kTi)− = v′
i,jP (kTi)

(
x(kTi)−

− x̂(kTi)+ + P (kTi)−1vi,jΔi,j (1)
)

= v′
i,jP (kTi)

(
x(kTi)− − x̂(kTi)+) + Δi,j (1)

= ei,j (kTi)+ + Δi,j (1)

where we used the fact that x(kTi)− = x(kTi)+ due to the
continuity of the solution x(t). Substituting this into (87) and
simplifying yields

ei,j (kTi)+ ∈
(
−Lj (eai Ti − 1)

2
,
Lj (eai Ti (1 + 2eTi φ) − 1)

2

]
.

(91)

Recall that Ti was chosen to satisfy h(ai Ti) = γ � 1. Applying
h−1 to this yields ai Ti � ln 2, and so eai Ti � 2. Combining this
with the upper bound (74) on φ yields

Lj (eai Ti (1 + 2eTi φ) − 1)
2

< Lj . (92)

Applying this to (91) establishes that

ei,j (kTi)+ ∈ (−Lj , Lj ) (93)

and completes the inductive proof that the sequence {ei,j

(kTi)+}k∈N> 0 is bounded. Since this holds for arbitrary
j ∈ {1, . . . , di}, the sequence {ei(kTi)+}k∈N> 0 ⊂ Rdi is also
bounded. Following a similar argument to (57), we conclude
that ei(t) is bounded for any t � 0. Since ei(t) is bounded
for all i ∈ U and ej (t) → 0 for j ∈ S, this controller and en-
coder/decoder pair bound the estimation error. Therefore the
state is bounded for all time as well.

3) The Scheme’s Average Cost Per Symbol Does
Not Exceed γ: Lastly we prove that this encoding scheme has
average cost per symbol not exceeding γ. The symbol stream
emitted by the encoder is comprised of the |U| individual sym-
bol sequences {si,j (k)}k∈N> 0 , i ∈ U , j ∈ {1, . . . , di}. We first
show that each individual symbol sequence has average cost
per symbol not exceeding γ. Then we show that superimposing
these sequences preserves this property.

Consider the scalar error component ei,j (t), i ∈ U , j ∈
{1, . . . , di}. By (93) we have |ei,j (kTi)+ | < Lj with strict
inequality. So there will be a strictly positive period of time
with duration τi,j > 0 starting at time kTi until ei,j (t) grows to
leave the [−Lj , Lj ] box. During this time, no non-free symbols
will be transmitted. The “dead time” τi,j is simply the amount
of time required for the bound Lj (eai Ti (1 + 2eTi φ) − 1)/2
in (91) to grow to size Lj . Specifically, the dead time τi,j

satisfies |ei,j (τi,j + kTi)| = Lj provided that |ei,j (kTi)| � Lj

(eai Ti (1 + 2eTi φ) − 1)/2. We now prove that the parameters
τ i were chosen so that

|ei,j (τ i + kTi)| � Lj (94)

provided that

|ei,j (kTi)+ | � Lj

(
eai Ti (1 + 2eTi φ) − 1

)
/2, (95)

and therefore τ i lower-bounds the dead time τi,j . Following a
similar process to (81), we have

|ei,j (τ i + kTi)| = |v′
i,j ei(τ i + kTi)| (96)

= |v′
i,j e

ai τ i Gi(τ i)ei(kTi)+ | (97)

� eai τ i

∣∣∣∣∣

di −j∑

l=0

τ l
i

l!
ei,j+ l(kTi)+

∣∣∣∣∣ (98)

� eai τ i

(
|ei,j (kTi)+ |

+
di −j∑

l=1

τ l
i

l!

di −j∑

l=1

|ei,j+ l(kTi)|+
)

(99)

� eai τ i

(
Lj

eai Ti (1 + 2eTi φ) − 1
2

+
di −j∑

l=1

τ l
i

l!

di −j∑

l=1

Lj+ l

)
(100)

� eai τ i Lj

(
eai Ti (1 + 2eTi φ) − 1

2
+ eτ i φ

)

(101)

� Lj (102)

where vi,j ∈ Rdi is a unit vector satisfying (96), (97) follows
from the error dynamics (35) in Lemma 4, (98) follows from the
definition of the matrix Gi(τ i), (99) follows from the triangle
inequality, (100) follows from the premise (95) and also (93),
(101) follows by the definition of φ, and by upper-bounding
the sum

∑di −j
l=1 τ l

i/l! by eτ i , and (102) follows from (75). We
conclude that τ i � τi,j .

Therefore, by (73) we have

τi,j � τ i :=
1
ai

ln
(

2
e(ai +η )Ti − 1

)
(103)

=
(

ai + η

ai

)(
Ti

h((ai + η)Ti)

)
(104)

⇔ Ti

τi,j
� ai

ai + η
γ < γ, (105)

where (104) and (105) follow from the definitions of h
and Ti . This establishes a bound on the number of non-
free transmissions as follows. Consider the symbol se-
quence {si,j (k)}k∈N> 0 emitted by this encoding scheme.
Let N2 , N1 be arbitrary positive integers, and let Nnf :=∑N1 +N2 −1

k=N1
Isi , j (k) �=0 be the number of non-free symbols

among symbols si,j (N1), . . . , si,j (N1 + N2 − 1). Let tl , l ∈
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{1, . . . , Nnf} be the time that the lth non-free transmission oc-
curred. The tl satisfy N1Ti � t1 < . . . < tNn f � (N1 + N2 −
1)Ti . Only free symbols are transmitted in the time interval
[tl , tl + τi,j ), and so

tl � τi,j + tl−1 , ∀l = 2, . . . , Nnf . (106)

Iterating this formula over l, we obtain

tNn f � τi,j (Nnf − 1) + t1 . (107)

Rearranging this and using the facts that N1Ti ≤ t1 and tNn f �
(N1 + N2 − 1)Ti , we obtain

N1 +N2 −1∑

k=N1

Isi , k �=0 =: Nnf � Ti

τi,j
N2 + 1 � γN2 + 1,

where we leveraged (105). This implies the average cost per
symbol condition (3), so we conclude that for any i ∈ U and
any j ∈ {1, . . . , di}, the symbol sequence {si,j (k)}k∈N> 0 has
average cost per symbol not exceeding γ.

Finally, we show that superimposing the symbol streams re-
sults in a stream with average cost per symbol not exceeding γ.
Let N1 , N2 ∈ N be arbitrary positive integers, and let Ji , i ∈ U
partition {N1 , N1 + 1, . . . , N1 + N2 − 1} such thatJi is the set
of indices between N1 and N1 + N2 − 1 where the transmitted
symbol was sent by sub-encoder i. Then

∑
i∈U |Ji | = N2 , and

we obtain
N1 +N2 −1∑

k=N1

Isi , k �=0 =
∑

i∈U

∑

k∈Ji

Isi , k �=0

�
∑

i∈U
(γ|Ji | + N0,i)

= γN2 + N0

where N0 :=
∑

i∈U N0,i . The inequality comes from leveraging
(3) for each sub-encoder on its respective index interval Ji . This
completes the proof of Theorem 3. �

B. Numerical Example

In this subsection we present a numerical example of the
event-based encoding scheme from Section V.

Consider process (1) with

A :=
[

57 −25
125 −53

]
B :=

[
1
0

]
K :=

[ −7
3.784

]

for which λ[A] = 2 ± 10i and K is the state-feedback gain
of a stabilizing emulation-based controller. Suppose the initial
condition is known to lie in the box X0 := {(x1 , x2) : −1 �
xi � 2}, and that x(0) := (1,−1). Using the coordinate trans-
formation from Lemma 4 yields the open-loop error system
ėi(t) = 2ei(t) for i ∈ {1, 2}. Note that although the two error
components grow at the same rate, their initial conditions are
different: e1(0) = −3, e2(0) = 2.

With average bit-rate r := 10, average cost per symbol
γ = 0.2, and alphabet A := {0, 1}, the sufficient bound (31) is
satisfied. Following the encoder design in Subsection IV-A1, we
pick N := 10, M := 2, and Ti = 1.9 for i ∈ {1, 2}. There are
L(N,M,S) = 56 length-10 codewords with 2 or fewer non-
free symbols. In accordance with the encoder design in Sub-
section IV-A.1, at time kTi, k ∈ N>0 , sub-encoder i measures

Fig. 5. Plot of the closed-loop state estimation error component e1 (t)
for the x(t) system, using the event-based encoding scheme. Once the
error leaves [−L1 , L1 ] (thin dashed lines), a non-free symbol is trans-
mitted at the next transmission time. The error stays bounded between
−L1 e(a 1 +0 .1)T 1 and −L1 e(a 1 +0 .1)T 1 (thick dashed lines). Unlike the
encoder from Section IV, the transmission of non-free symbols is event-
triggered and non-periodic.

Fig. 6. Plot of the closed-loop state x1 (t) exponentially decaying to 0
using the event-based encoding scheme described in Section V. The
curve 100e−0 .1 t is plotted for reference.

the scalar ei(kTi), quantizes it into one of 56 bins—one per
codeword—and transmits the appropriate 10-symbol codeword
to the decoder. Then the encoder and decoder each update their
state estimate according to (43). One observes the state x(t) of
the closed-loop system converging to 0. Plots were omitted for
space reasons.

Next we demonstrate an event-based controller to stabilize
the same system. Note that r = 10 and γ = 0.2 do not satisfy
the sufficient bound (68), so they cannot be used in Theorem 3.
Instead, we use r := 21, leaving γ := 0.2 as before. This sat-
isfies (70) with ε = 0.1, so we apply Theorem 3 to obtain an
encoder/decoder and controller that together bound the system
x(t) := e0.1tx(t), and therefore x(t) decays exponentially. This
is illustrated in Figs. 5 and 6.

With the codeword-based encoder, the two sub-encoders each
transmit up to 2 non-free symbols every 1.9 time units, resulting
in a total average rate of resource consumption of 2.1 non-free
transmissions per time unit. On the other hand, the event-based
encoder’s two sub-encoders each transmit a symbol every 0.151
time units, and a fraction γ = 0.2 of these symbols are non-free.
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Therefore this event-based encoder consumes communication
resources at a total average rate of 2.65 non-free transmissions
per time unit. This is in accordance with Remark 5: this larger
rate of consumption is the price paid for using an easier-to-
implement event-based encoding scheme.

VI. CONCLUSION AND FUTURE WORK

In this paper. we considered the problem of bounding the
state of a continuous-time linear process under communica-
tion constraints. We considered constraints on both the channel
average bit-rate and the encoding scheme’s average cost per
symbol. Our main contribution was a necessary and sufficient
condition on the process and constraints for which a bounding
encoder/decoder/controller exists. In the absence of a limit on
the average cost per symbol, the conditions recovered previous
work. A surprising corollary to our main result was the obser-
vation that one may impose a constraint on the average cost
per symbol without necessarily needing to loosen the average
bit-rate constraint. Specifically, we proved that if a process may
be bounded with a particular average bit-rate, then there exists a
(possibly very complex) encoder/decoder that can bound it with
that same average bit-rate, while using no more than 50% non-
free symbols on average. One would expect that the prohibition
of some codewords would require that the encoder necessarily
compensate by transmitting at a higher average bit-rate, but this
not the case.

Another surprising result was the observation that, for any
constraint on average bit-rate and average cost per symbol sat-
isfying the necessary and sufficient conditions for stability, one
can always construct a stabilizing encoder with an arbitrarily
small average cost per time unit. In many communication-
constrained control problems this is the quantity of interest. We
observed that constructing such an encoder boils down to either
having precisely-synchronized clocks between the encoder and
decoder, or storing a large symbol library on the encoder and
decoder.

We then examined an event-based controller and proved its
average bit-rate requirements were order-optimal with respect
to the necessary and sufficient condition for stabilizability.
This supports the use of event-based controllers in limited-
communication control schemes.

The controller in the event-based scheme of Section V re-
quired state feedback. This could be extended to an output-
feedback setting by embedding a state observer in the encoder,
which is the subject of future work.

APPENDIX

Proof of Lemma 1: Let � ∈ N�0 be arbitrary. Since the pair’s
average cost per symbol is at most γ, (3) holds for some N0 ∈
N>0 . Rearranging (3) yields

N1 +N2 −1∑

k=N1

Isk �=0 � N2γ + N0 , ∀N1 , N2 ∈ N>0 . (108)

Let N be any positive integer greater than (N0 + 1)/εγ and
define M := 
Nγ + N0 + 1�. Invoking (108) for N1 := �N

+ 1 and N2 := N yields

�N +N∑

k=�N +1

Isk �=0 � Nγ + N0 � M

� Nγ + N0 + 1 < Nγ(1 + ε). (109)

Therefore, we have found an M and N satisfying M < Nγ(1 +
ε) and moreover (109) implies the condition (8) defining M -of-
N encoders. This completes the proof. �

Proof of Lemma 4: There exists a real invertible matrix Q ∈
Rn×n that transforms A to its real Jordan normal form, namely

Q−1AQ = Λ := diag (J1 , . . . , Jnb
)

where the Ji are real Jordan blocks: for real eigenvalue ai with
geometric multiplicity di , the corresponding real Jordan block
Ji ∈ Rdi ×di has the form

⎡

⎢⎢⎣

ai 1

. . .

ai

⎤

⎥⎥⎦ (110)

for a complex conjuguate pair of eigenvalues ai ± jbi with mul-
tiplicity di , the associated real Jordan block Ji ∈ R2di ×2di has
the form

⎡

⎢⎢⎣

Λi I2

. . .

Λi

⎤

⎥⎥⎦ , (111)

where the 2-by-2 matrix Λi ∈ R2×2 has the form

Λi :=

[
ai bi

−bi ai

]
. (112)

Next, define the time-varying invertible block-diagonal matrix
R(t) ∈ Rn×n , t � 0 as

R(t) := diag (R1(t), . . . , Rnb
(t)) (113)

where Ri(t) := Idi
∈ Rdi if Ji corresponds to a real eigenvalue

ai , and Ri(t) := diag(Θi(t)−1) ∈ R2di ×2di if Ji corresponds
to a complex conjugate eigenvalue ai ± jbi , where

Θi(t) :=

[
cos(bit) − sin(bit)

sin(bit) cos(bit)

]
∈ R2×2 . (114)

Let P (t) := R(t)Q−1 , t � 0. We have

e(t) := P (t)(x(t) − x̂(t)) (115)

= R(t)Q−1eAt(x(0) − x̂(0)) (116)

= R(t)Q−1eQdiag(Ji )Q−1 t(x(0) − x̂(0)) (117)

= R(t)ediag(Ji )tQ−1(x(0) − x̂(0)) (118)

= R(t)ediag(Ji )te(0) (119)

= R(t)diag(eJi t)e(0) (120)
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where (118) follows from a well-known property of the ma-
trix exponential, and (119) follows the definition of e(0) and
the observation that R(0) is the identity matrix. A well-known
property of real Jordan blocks is that

eJi t = eai t

⎡

⎢⎢⎢⎢⎢⎣

1 t t2

2! . . . td i −1

(di −1)!

1 t

. . .

1

⎤

⎥⎥⎥⎥⎥⎦

if the real Jordan block Ji corresponds to a real eigenvalue, and

eJi t = eai t

⎡

⎢⎢⎢⎢⎢⎣

Θi(t) Θi(t)t Θi(t) t2

2! . . . Θi(t) td i −1

(di −1)!

Θi(t) Θi(t)t

. . .

Θi(t)

⎤

⎥⎥⎥⎥⎥⎦

if it corresponds to a complex conjugate pair. In terms of Ri(t)
and Gi(t) these equations become simply

eJi t = eai tRi(t)−1Gi(t). (121)

Using this in (120) yields

e(t) = R(t)diag(eai tdiag(Ri(t)−1Gi(t)))e(0)

e(t) = diag(Ri(t))diag(Ri(t)−1)diag(eai tGi(t))e(0)

e(t) = diag(eai tGi(t))e(0)

implying (35).
Lastly, it is straightforward to verify that the minimum singu-

lar value of Ri(t) is σmin(Ri(t)) = 1 for any t. Moreover, since
Q is invertible, there exists ε > 0 for which σmin(P (t)) � ε for
all t. This concludes the proof. �

Lemma 5: For any N ∈ N>0 and M ∈ R�0 with M � N ,
every M -of-N encoder has average cost per symbol not exceed-
ing M/N .

Proof of Lemma 5: The proof is omitted for space consider-
ations and can be found in the technical report [22]. �

Lemma 6: The following inequality holds for all N,S ∈
N>0 , q ∈ (0, S/(S + 1)], and i ∈ [0, Nq]:

qi(1 − q)N −i � 2−N H (q) Si

SN q
(122)

where H(q) := −q log2 q − (1 − q) log2(1 − q) is the base-2
entropy of a Bernoulli random variable with parameter q.

Proof of Lemma 6: The proof is omitted for space consider-
ations and can be found in [22]. �
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