STABILIZING A NONLINEAR SYSTEM WITH LIMITED INFORMATION

(EXTENDED ABSTRACT)

Daniel Liberzon

Coordinated Science Laboratory
Univ. of Illinois at Urbana-Champaign
Urbana, IL 61801, U.S.A.

liberzon@uiuc.edu

In recent years, extensive research activity has been de-
voted to the question of how much information a feedback
controller really needs in order to stabilize a given system.
Questions of this kind are motivated by applications where
communication capacity is limited (e.g., a large number of
systems sharing the same network cable or wireless medium,
microsystems with a large number of sensors and actuators
on a single chip) as well as situations where security con-
siderations compel one to transmit as little information as
possible. Among the many references on this subject, the
ones particularly close in spirit to the present work are [1, 2,
3,4,5,6,7, 8].

All results developed in the aforementioned papers are
limited to linear systems. The work reported here is a first
step towards understanding information-based control as-
pects for nonlinear systems. Specifically, we extend the
result and the control scheme described in [8] to nonlin-
ear systems, characterizing the amount of information suf-
ficient for global asymptotic stabilization. An underlying
assumption is the existence of a feedback law which sta-
bilizes the system in the case of perfect information and,
moreover, provides robustness with respect to measurement
errors in the sense of input-to-state stability (ISS) as de-
fined in [9]. This assumption is quite restrictive in gen-
eral, although some results on designing such control laws
are available; see [10, 11, 12, 13]. We also note that this
assumption can be relaxed in several ways, as will be dis-
cussed elsewhere.

The set-up considered in this paper is as follows. The
system to be stabilized is

&= f(z,u) ey

where x € R" is the state variable, u € R™ is the control
variable, and f : R™ x R™ — R" is a locally Lipschitz
function satisfying f(0,0) = 0. Control inputs considered
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in this paper are piecewise Lipschitz continuous. The term
“limited information feedback” refers to the following sce-
nario:

SAMPLING. Measurements are to be received by the con-
troller at discrete times O, 7, 27, ..., where 7 > 0 is
a fixed sampling period.

ENCODING. At each of the above sampling times, the mea-
surement received by the controller must be a number
in the set {0,1,..., N}, where N is a fixed positive
integer.

Thus the data available to the controller is a stream of inte-
gers

qO(CC(O)), Ch(m(T))v q2(.1‘(27‘)),

where gi () : R" — {0,1,..., N} is, for each k, some
encoding function. For different values of k£ we can use dif-
ferent encoding functions. As we will see, it is natural to use
the previous values ¢; (x(i7)), i = 0, ...,k — 1 to define the
function g (-). We assume that the controller knows the ini-
tial encoding function ¢o(-) as well as the rule that defines
qx(+) on the basis of the previously received encoded mea-
surements, so that for each k the function ¢y, is known to the
controller. In other words, there is a communication proto-
col satisfying the above constraints upon which the process
and the controller agree in advance.

We find it convenient to use the infinity norm ||z|| :=
max{|z;| : 1 < i < n}onR" Welet B%(zg,r) denote
a ball with respect to this norm with radius r and center xg,
i.e., the hypercube centered at xy with edges 2r:

B (zo,r) :={x € R" : ||z — 2¢]|lcc <7}

Our first goal is to obtain an upper bound on the size of
the state. We do this by “zooming out”, i.e., expanding the
support of the encoding function, fast enough to dominate



the growth of the state for the uncontrolled system (no feed-
back is applied at this stage). The following assumption is
needed to execute this task.

ASSUMPTION 1. The unforced system

T = f(aj’ O) 2

is forward complete. This means that for every initial state
2(0) the solution of (2), which we denote by &(z(0), -), is
defined for all ¢ > 0.

Set the control u equal to 0. Let o := 1. Pick a se-
quence (1, U2, - .. that increases fast enough to dominate

the rate of growth of ||« (¢)|| - at the times 7, 27, . . . ; for ex-
ample, define 111 := 2 max ;0| <r, tef0,7] [1£(2(0), )|l 0
2 1= 2MaX|4(0)[ <27, te[0,27] [|§(2(0), )]0, and so on.

This construction guarantees the existence of an integer kg >
0 such that ||z(ko7)|lco < pii,- Fork = 0,1, ..., define the
encoding function g by the formula

qr(z) == {(1)

Then we can take kg to be the smallest k£ for which we have
qr(x(kT)) = 1. We have thus obtained the bound

if x € B2 (0, ux)
otherwise

(ko) [loo < Eo := pio 3)

using the encoded state measurements with N = 1. (Such
binary encoding can be realized by a quantizer taking 3"
values; cf. [2].)

The inequality (3) means that the state of the system at
time t = ko7 lies in B (0, Ey). In other words, & (ko) :=
0 can be viewed as an estimate of x(kq7) with estimation
error of infinity norm at most Ey. Our goal now is to gener-
ate state estimates with estimation errors approaching 0 as
t — oo, while using these estimates to compute the feed-
back law.

ASSUMPTION 2. The system (1) admits a locally Lipschitz
feedback law w = k(x) which satisfies k(0) = 0 and ren-
ders the closed-loop system input-to-state stable (ISS) with
respect to measurement errors. Written in terms of the in-
finity norm and for piecewise continuous inputs (which is
sufficient for our purposes), this condition means that there
exist functions' 3 € KL and v € K4 such that for ev-
ery initial condition z(t¢) and every piecewise continuous
signal e the corresponding solution of the system

= f(z,k(z+e)) “4)

IRecall that a function « : [0, 00) — [0, c0) is said to be of class K if
it is continuous, strictly increasing, and «(0) = 0. If « is also unbounded,
then it is said to be of class Koo A function 8 : [0, 00) X [0, 00) — [0, 00)
is said to be of class ICL if (-, t) is of class /C for each fixed ¢ > 0 and
B(r, t) decreases to 0 as t — oo for each fixed » > 0.

satisfies

[2(t)lloc < Bll2(t0)lloos t — to)

(%)
+v(suPsepry g lle(s)lloo)

Vi > to.

Take ~ to be some class o, function with the property
that /() > max ), <r [|k(2)|/co forall 7 > 0. Then

k(@)oo < Kll2floc) V. ©)

Let L be the Lipschitz constant for f on the region

{(z,u) : |2]loc <D, [Julloo < (D)} @)

where
D := B(Ey,0) +v(VNE) + VNE. (8)

Define

A:=elm > 1. 9)

Fort € [koT, koT + 7), let u(t) = 0. Attime t = ko7 + 7,
consider the box BY (0, AE)y).

ASSUMPTION 3. The number YN is an odd integer. This
assumption is made mostly for notational convenience. If
YN isnotan integer, we can work with some N’ < N such
that ¥/ N is an integer. The reason for taking this integer to
be odd is to ensure that the control strategy described below
preserves the equilibrium at the origin. By making slight
modifications, we can also achieve this property when the
above integer is even.

Assumption 3 allows us to define the encoding function
Qko+1 as follows: divide B (0, AEy) into N equal hyper-
cubic boxes, numbered from 1 to /N in some specific way,
and let gy,+1(z) be the number of the box that contains x
if £ € BZ(0,AE)), and 0 otherwise. In case z lies on
the boundary of several boxes, the value gx,+1(x) can be
chosen arbitrarily among the candidates. If gg,+1(x(koT +
7)) > 0, then the encoded measurement specifies a box
with edges at most 2A Ey/ ¥/ N which contains z(ko7 + 7).
Letting (ko7 + 7) be the center of this box, we obtain

|Z(kom + 7) — 2(koT 4+ 7)||oo < AEy/ VN.

If gry+1(z(koT + 7)) = 0, we interpret this as an error and
return to the “zooming-out” stage described earlier.

Fort € [koT + T, koT + 27), we apply the control law
u(t) = k(&(t)) (10)

where Z(-) is the solution of the “copy” of the system (1),
given by .

&= f(Z,u)
with the initial condition & (ko7 + 7) specified before. At
time t = ko7 + 27, consider the box

B (&(kot + 277),A2Ey/ V/N).



To define the encoding function gy, 2, divide this box into
N equal hypercubic boxes and let gx,+2(x) be the num-
ber of the box that contains z or, if it happens that = ¢
B (2(kot 4+ 277), A2Eo/ V/N), let g, +o(z) = 0. If we
have qi,+2(x (ko™ + 27)) > 0, then the encoded measure-
ment singles out a box with edges at most 2A2Ey/( V/N)?
which contains z (ko7 + 27). Let Z(ko7 + 27) be the center
of this box to obtain

|2 (kor + 27) — a(koT + 27) |0 < A2Eo/(VN)?

and continue. If gy, 42(x(koT + 27)) = 0, go back to the
“zooming-out” stage.

Repeating the above procedure, we see that as long as
the encoded measurements received by the controller are
positive, the upper bounds on the norm of the estimation er-
ror || — || oo at the sampling times ko7, ko7 + 7, ko7 + 27,
... form a geometric progression with ratio A/ {/N. The
goal of forcing the estimation error to approach 0 motivates
our final assumption.

ASSUMPTION 4. We have A < V/N.

In view of the definition of A via the formula (9), this
inequality characterizes the trade-off between the amount
of information provided by the encoder at each sampling
time and the required sampling frequency. This relationship
depends explicitly on the Lipschitz constant L which, as we
will see, can be interpreted as a measure of expansiveness
of the system (1).

Our main result can now be stated as follows. See [14]
for further details.

Theorem 1 Under Assumptions 1-4, the above control law
globally asymptotically stabilizes the system (1).
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