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Stability of switched systems: a Lie-algebraic condition (
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Abstract

We present a su�cient condition for asymptotic stability of a switched linear system in terms of the Lie algebra
generated by the individual matrices. Namely, if this Lie algebra is solvable, then the switched system is exponentially
stable for arbitrary switching. In fact, we show that any family of linear systems satisfying this condition possesses a
quadratic common Lyapunov function. We also discuss the implications of this result for switched nonlinear systems.
c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Suppose that we are given a compact (with respect to the usual topology in Rn×n) set of strictly stable real
n× n matrices {Ap :p∈P}, where the index set P is a subset of a �nite-dimensional normed linear vector
space, e.g., Rm. Consider the switched linear system

ẋ = A�x; (1)

where x ∈ Rn and � : [0;∞) → P is a piecewise constant switching signal. The problem of �nding con-
ditions that guarantee asymptotic stability of (1) for an arbitrary switching signal � has recently attracted a
considerable amount of attention – see the work reported in [2,3,8–11,14,15] and the references therein.
Some of the aforementioned results suggest that certain properties of the Lie algebra {Ap : p ∈ P}LA

generated by the matrices Ap may be of relevance to the question of stability of Eq. (1). In particular, it is well
known and easy to show that if these matrices commute pairwise, i.e., the Lie bracket [Ap; Aq] :=ApAq−AqAp
equals zero for all p; q ∈ P, and if P is a �nite set, then the system (1) is asymptotically stable for any
switching signal �. An explicit construction of a quadratic common Lyapunov function for the family of linear
systems

ẋ = Apx; p∈P (2)

in this case is given in [10].
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A connection between asymptotic stability of a switched linear system and the properties of the correspond-
ing Lie algebra was �rst explicitly discussed by Gurvits in [3]. That paper is concerned with the discrete-time
counterpart of Eq. (1) which takes the form

x(k + 1) = A�(k)x(k); (3)

where � is a function from nonnegative integers to a �nite index set P. Gurvits conjectured that if the Lie
algebra {Ap : p ∈ P}LA is nilpotent (see Section 2 for de�nitions) then (3) is asymptotically stable for any
switching signal �. He used the Baker–Campbell–Hausdor� formula to prove this conjecture for the particular
case when P = {1; 2}, the matrices A1 and A2 are nonsingular, and their third-order Lie brackets vanish:
[A1; [A1; A2]] = [A2; [A1; A2]] = 0.
By establishing the existence of a quadratic common Lyapunov function for the family of linear systems

(2), we will show that the system (1) is uniformly exponentially stable for arbitrary switching signals � if the
Lie algebra {Ap :p∈P}LA is solvable. The corresponding statement for the discrete-time case can be derived
in a similar fashion. Since every nilpotent Lie algebra is solvable, we obtain a more general result than the
one conjectured by Gurvits.
The outline of the paper is as follows. In Section 2 we state some basic facts about Lie algebras that we

need in the sequel. Our main result for the linear case is proved in Section 3. In Section 4 we brie
y discuss
the implications of this result in the nonlinear case. We make concluding remarks and sketch some directions
for future research in Section 5.
Throughout the paper we use the following notation. Given a complex number a, we denote by a its

conjugate. We use the symbols v∗ and A∗ to denote the conjugate transpose of a vector v and a matrix A,
respectively. Given a matrix A, we denote by (A)ij its ijth element. If A is complex, R A is the matrix de�ned
by (R A)ij =R [(A)ij], where R stands for the real part. The matrix IA, where I stands for the imaginary
part, is de�ned similarly.

2. Solvable Lie algebras

Given a Lie algebra g, the descending sequence of ideals g(k) is de�ned inductively as follows: g(1) := g,
g(k+1) := [g(k); g(k)]⊂ g(k). If g(k) = 0 for k su�ciently large, then g is called solvable. Similarly, one de�nes
the descending sequence of ideals gk by g1 := g, gk+1 := [g; gk ]⊂ gk , and calls g nilpotent if gk = 0 for k
su�ciently large. For example, if g is a Lie algebra generated by two matrices A and B, i.e., g = {A; B}LA,
then we have: g(1) = g1 = g = span{A; B; [A; B]; [A; [A; B]]; : : :}, g(2) = g2 = span{[A; B]; [A; [A; B]]; : : :}; g(3) =
span{[[A; B]; [A; [A; B]]]; : : :}⊂ g3 = span{[A; [A; B]]; [B; [A; B]]; : : :}, and so on. Every nilpotent Lie algebra is
solvable, but the converse is not true.
The following result plays a key role in our subsequent developments. It is known as Lie’s Theorem and

can be found in most textbooks on the theory of Lie algebras (see, e.g., [12]).

Proposition 1. Let g be a solvable Lie algebra over an algebraically closed �eld, and let � be a represen-
tation of g on a vector space V of �nite dimension n. Then there exists a basis {v1; : : : ; vn} of V such that
for each X ∈ g the matrix of �(X ) in that basis takes the upper-triangular form


�1(X ) : : : ∗
...

. . .
...

0 : : : �n(X )




(�1(X ); : : : ; �n(X ) being its eigenvalues).

In our context, this means that if {Ap :p∈P}LA is solvable, then there exists a nonsingular complex matrix
T such that

Ap = T−1ÃpT; p∈P; (4)

where the complex matrices Ãp are upper-triangular.
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3. Uniform exponential stability

We will say that the system (1) is globally uniformly exponentially stable if there exist positive constants
c and � such that the solution of (1) for any initial state x(0) and any switching signal � satis�es

||x(t)||6ce−�t ||x(0)|| ∀t¿0 (5)

(here || · || denotes the standard Euclidean norm in Rn). Following [6], we use the word “uniform” in this
de�nition to describe uniformity with respect to switching signals. Our main result is as follows.

Theorem 2. If the Lie algebra {Ap : p∈P}LA is solvable; then the system (1) is globally uniformly expo-
nentially stable.

In view of Eq. (4), we would like to show that the system

ẋ = Ã�x; x ∈Cn

is globally uniformly exponentially stable (with respect to the standard norm in Cn). We could do this directly
by starting with the bottom component of the vector x and working our way up, aided by the upper-triangular
structure of the matrices Ãp and the fact that the state of an exponentially stable linear system with an
exponentially decaying input decays exponentially. To see how it works, suppose that P= {1; 2} and x ∈R2.
For k = 1; 2 let �k := min{−(R Ã1)kk ;−(R Ã2)kk}¿ 0. We have

|x2(t)|6e−�2t |x2(0)|;
where | · | stands for complex magnitude. Moreover,

|x1(t)|6 e−�1t |x1(0)|+
∫ t

0
e−�1(t−�)e−�2�|x2(0)| d�

=


 e−�1t |x1(0)|+ 1

�1 − �2 (e
−�2t − e−�1t)|x2(0)| if �1 6= �2;

e−�1t |x1(0)|+ te−�1t |x2(0)| if �1 = �2:

The required estimate (5) can be easily deduced from the above inequalities.
However, to prove Theorem 2 in the general case we �nd it more convenient to proceed by showing that

the family of linear systems (2) has a quadratic common Lyapunov function, a fact that is of interest in its
own right. To do this, we make use of the two results stated below. The �rst one is a special case of [5,
Corollary 4.2], while the second one is basic and can be found, e.g., in [4].

Lemma 3. If there exist real symmetric positive de�nite matrices Q and R such that

− QAp − ATpQ¿R; p∈P (6)

then the system (1) is globally uniformly exponentially stable.

In other words, the existence of a quadratic common Lyapunov function for the family of linear systems
(2) guarantees global uniform exponential stability of Eq. (1).

Lemma 4. All leading principal minors of a Hermitian matrix are real. A Hermitian matrix H is positive
de�nite (i.e., x∗Hx¿ 0 ∀x ∈Cn) if and only if all its leading principal minors are positive.

Proof of Theorem 2. According to Lemma 3, it su�ces to �nd real symmetric positive de�nite matrices Q
and R that satisfy the inequalities (6). We start by showing that there exists a positive de�nite matrix Q̃ such
that

− Q̃Ãp − Ã∗pQ̃¿ 0; p∈P: (7)
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Let us look for Q̃ that takes the form of a real diagonal matrix Q̃ = diag(q1; : : : ; qn). We have

− Q̃Ãp − Ã∗pQ̃ =




−2q1(R Ãp)11 −q1(Ãp)12 : : : −q1(Ãp)1n
−q1(Ãp)12 −2q2(R Ãp)22 : : : −q2(Ãp)2n

...
...

. . .
...

−q1(Ãp)1n −q2(Ãp)2n : : : −2qn(R Ãp)nn


 : (8)

Choose an arbitrary q1¿ 0. Since the eigenvalues of the matrices Ãp have negative real parts, we have
−2q1(R Ãp)11¿ 0 ∀p∈P. Now, suppose that q1, : : :, qk ¿ 0 have been chosen so that the leading principal
minors of the matrix on the right-hand side of Eq. (8) up to order k are larger than some positive number �
for all p∈P. It is not hard to see that by choosing qk+1 su�ciently large we can make the (k +1)× (k +1)
leading principal minors positive for all p∈P. Indeed, since an m×m determinant is given by a sum of m!
terms, any qk+1 such that

qk+1¿
k!k2k−1max16i6k{qk+1i }max16i; j6k+1; p∈P{|(Ãp)ij|k+1}

2�minp∈P{−(R Ãp)k+1;k+1}

will serve the purpose. The above expression is well de�ned and �nite by virtue of compactness of the set
{Ap :p∈P}.
Proceeding in this fashion, we can construct a positive de�nite diagonal matrix Q̃ satisfying (7). Combined

with Eq. (4) this implies that

−T ∗Q̃TAp − ATpT ∗Q̃T ¿ 0; p∈P:

Let us denote T ∗Q̃T by Q̂ and −T ∗Q̃TAp − ATpT ∗Q̃T by Rp to obtain

−Q̂Ap − ATp Q̂ = Rp
or, more explicitly (recall that the matrices Ap are real)

−(R Q̂ +
√−1I Q̂)Ap − ATp (R Q̂ +

√−1I Q̂) =R Rp +
√−1IRp:

It follows that

−R Q̂Ap − ATpR Q̂ =R Rp:

But for any x ∈ Rn we have 0¡xTQ̂x = xTR Q̂x because Q̂ is Hermitian hence I Q̂ is skew-symmetric.
Similarly, 0¡xTRpx = xTR Rpx for any x ∈ Rn and any p ∈ P. Moreover, since the set {Ap : p ∈ P} is
assumed to be compact, the set of positive de�nite matrices {Rp :p∈P} is also compact, and therefore there
exists a real symmetric positive de�nite matrix R such that R Rp¿R for all p ∈ P. Thus we see that the
matrices Q :=R Q̂ and R satisfy the assumptions of Lemma 3, which completes the proof of the theorem.

Remark. The existence of a quadratic common Lyapunov function for a family of linear systems whose
matrices can be simultaneously put into the upper-triangular form has been pointed out before (see, e.g.,
[8,15] and related earlier work in [1]). It is important to recognize, however, that while it is a nontrivial
matter to �nd a basis in which all matrices take the triangular form or even decide whether such a basis
exists, the Lie-algebraic condition given by Theorem 2 is formulated in terms of the original data and can
always be checked in a �nite number of steps if P is a �nite set.
Note that although we showed that a quadratic common Lyapunov function exists, its actual construction

depends on the knowledge of the matrix T . Standard numerical methods can be employed to compute this
matrix, but it might in fact be more e�cient to solve the linear matrix inequalities (6) directly [2].
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4. Switched nonlinear systems

Consider the family of nonlinear systems

ẋ = fp(x); p∈P (9)

where fp :D→ Rn is continuously di�erentiable with fp(0) = 0 for each p∈P and D is a neighborhood of
the origin in Rn. Consider also the corresponding family of linearized systems

ẋ = Fpx; p∈P (10)

where Fp =
@fp
@x (0). Assume that the matrices Fp are strictly stable, that P is a compact set, and that @fp@x (x)

depends continuously on p for each x ∈ D. We will say that a smooth function V : D → Rn is a common
local Lyapunov function for the family (9) if V (0) = 0, V (x)¿ 0 ∀x ∈ D \ {0}, and there exists an open
set �D⊂D containing the origin such that the derivative of V along solutions of each system in Eq. (9) is
negative for all x ∈ �D \ {0}.
If the Lie algebra {Fp : p ∈ P}LA is solvable, then the family (9) possesses a quadratic common local

Lyapunov function. Indeed, the present assumptions guarantee that {Fp : p ∈P} is a compact set of strictly
stable matrices, hence according to Theorem 2 the linearized family (10) possesses a quadratic common
Lyapunov function. One can then apply Lyapunov’s �rst method (see, e.g., [5, Theorem 3.7]) to show that
this function is a quadratic common local Lyapunov function for the original family (9).
Now, consider the switched nonlinear system

ẋ = f�(x) (11)

where � : [0;∞)→ P is a piecewise constant switching signal. We will say that the system (11) is (locally)
uniformly exponentially stable if there exist positive constants M , c and � such that for any switching signal
� the solution of Eq. (11) with ||x(0)||6M satis�es

||x(t)||6ce−�t ||x(0)|| ∀t¿0:
The following statement is an immediate consequence of the above.

Corollary 5. If the Lie algebra {Fp :p∈P}LA is solvable; then the system (11) is uniformly exponentially
stable.

5. Conclusions and future work

We obtained a Lie-algebraic su�cient condition for asymptotic stability of a system that switches between
members of a �xed family of asymptotically stable linear systems. We demonstrated, via proving the exis-
tence of a quadratic common Lyapunov function for this family, that such a system is globally uniformly
exponentially stable under arbitrary switching if the associated matrix Lie algebra is solvable. This relaxes
stability conditions found in earlier work; moreover, for our result to hold the given family of systems does
not need to be �nite. We also presented a su�cient condition for local asymptotic stability of a switched
nonlinear system in terms of the Lie algebra generated by the linearization matrices.
In [7] (see also [6]) it is proved that global uniform exponential stability implies the existence of a common

Lyapunov function. The paper [6] contains an example which illustrates that even when such a function exists,
a quadratic one cannot always be found. This clearly shows that the condition presented here is not necessary
for uniform exponential stability.
Both exponential stability and existence of a quadratic common Lyapunov function are robust properties in

the sense that they are not destroyed by su�ciently small perturbations of the systems’ parameters. Regarding
perturbations of upper-triangular matrices, one can obtain explicit bounds that have to be satis�ed by the
elements below the diagonal so that the quadratic common Lyapunov function for the unperturbed systems
remains a common Lyapunov function for the perturbed ones [8]. Unfortunately, the condition of Theorem
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2 is not robust. In fact, Lie’s theorem suggests that among the families of matrices {Ap : p ∈P}, those that
generate solvable Lie algebras form a nowhere dense set. It is not clear whether it is possible to obtain a
more general result than the one given here by characterizing those sets of matrices that give rise to “almost
solvable” Lie algebras.
An interesting possible direction for future research is to try to �nd Lie-algebraic conditions that guarantee

uniform exponential stability of (1) when some additional structure is imposed on the matrices Ap. For
example, when di�erent state feedback control laws u = Fpx, p ∈ P are applied to a given linear system
ẋ = Ax + Bu, the matrices of the resulting closed-loop systems take the form Ap = A+ BFp.
As for the nonlinear case, we mention here the recent work [13] which directly generalizes the result and

the proof technique of [10] to switched nonlinear systems. The main result of [13] states that a �nite family
of commuting vector �elds that give rise to exponentially stable systems has a common Lyapunov function.
The commuting condition is formulated in terms of the Lie algebra generated by the original nonlinear vector
�elds, which opens interesting new possibilities. Without the assumption that all these vector �elds satisfy a
global Lipschitz condition the asymptotic stability is local, as in our Corollary 5. It remains to be seen whether
Lie-algebraic su�cient conditions for global asymptotic stability under arbitrary switching can be found in
the general nonlinear case.
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