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Abstract— We discuss stability of a loop consisting of two
asynchronous switched systems, in which the first switched
system influences the input and the switching signal of the
second switched system and the second switched system affects
the first switched system’s jump map. We show that when the

first switched system has a small dwell-time and is switching
slowly in the spirit of average dwell-time switching, all the states
of the closed loop are bounded. We show how this result relates
to supervisory adaptive control of time-varying plants. When
the uncertain plant takes the form of a switched system with
an unknown switching signal, we show that all the states of
the closed-loop control system are guaranteed to be bounded
provided that the plant’s switching signal varies slowly enough.

I. INTRODUCTION

We study stability of a loop consisting of two switched

systems in which the first switched system’s jump map

is affected by the second switched system and the sec-

ond switched system’s switching is constrained by the first

switched system. Assuming that the subsystems of both

switched systems are (zero-input) exponentially stable, we

want to study stability of the closed loop.

Stability of certain interconnected switched

systems/hybrid systems has been studied in [1], [2],

[3]. In these works, the connection between the two

switched systems is the usual input-output connection and

as such, those results are not easily applicable to the type of

interconnected switched systems considered in this paper.

We provide here new tools for analyzing such interconnected

switched systems.

The type of interconnected switched systems in this paper

is motivated by supervisory adaptive control of uncertain

plants with time-varying parameters (see [4] for discussion

on advantages of supervisory adaptive control). In supervi-

sory adaptive control, there are multiple controllers and the

active controller at every time is selected by a supervisory

unit based on some switching logic (for background on

supervisory adaptive control, see, e.g [5, Chapter 6]). If the

plant’s parameter is a constant, we have only one switched

system in the closed loop (which comprises the multi-

controllers and the supervisory unit). However, if the plant

is a switched system itself, we will then have two switched
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systems in the loop, giving rise to interconnected switched

systems.

The paper’s organization is as follows. In Section II, we

define notations and symbols. In Section III, we describe

interconnected switched systems. In Section IV, we provide

a stability result for interconnected switched systems. In

Section V, we show how interconnected switched systems

arise from supervisory adaptive control of switched plants

and how to apply the stability result for interconnected

switched systems to study stability of the closed-loop control

system. Section VI concludes and discusses future work.

II. NOTATIONS

Denote by (·)t0,t, t > t0 > 0, the segmentation operator

such that (f)t0,t(τ) :=

{

f(τ) τ ∈ [t0, t)

0 else.
. For a vector v,

denote by | · | the Euclidean norm and by ‖ · ‖ the induced

matrix-norm. Denote by ‖(·)‖D the norm such that ‖x‖D :=
supt∈D |x(t)|. For λ > 0, define the eλt-weighted L2 norm

such that ‖(x)t0,t‖2,λ :=
(

∫ t

t0
e−λ(t−τ)|x(τ)|2dτ

)
1
2

t > t0.

Denote by ‖(x)t0,∗‖2,λ the function of t obtained when we

let t be a variable in ‖(x)t0,t‖2,λ. We refer to ‖ · ‖2,λ as the

L2,λ norm (the 2 refers to the 2-norm of x and λ refers to

the exponentially decaying rate). These norms are popular

in functional analysis of input/output properties of systems

(see, e.g., [6, Chapter 3] or [7, Chapter 5]).

A switching signal s is a piecewise constant right continu-

ous function. The discontinuities of s are called switches or

switching times. Denote by Ns(T, t0) the number of switches

in the interval [t0, T ). For a switching signal s and a time t,
denote by ts the latest switching time of s before the time

t. By convention ts = 0 if t is less than or equal the first

switching time of s.

III. INTERCONNECTED SWITCHED SYSTEMS

Consider two switched systems. The first switched system,

denoted by Γs, is of the following form:

Γs :







ẋ = Asx+ v,

ξ̇ = −λξ + |x|2,
y = x,

(1)
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where s : [0,∞) → P is the switching signal, P is the

index set, (x, ξ) is the state, and v is a bounded disturbance,

λ, γ > 0. Assume that ξ(0) = 0. The second switched

system, denoted by Πσ , has the same index set P :

ż = Eσz +Bσu (2)

where u is the input. Without loss of generality, let z(0) = 0.

The two switched systems interact in the following way.

For the first switched system, at a switching time τ of the

switching signal s, the state satisfies

|x(τ)|2 6 c1|x(τ
−)|2 + c2|z(τ

−)|2, (3)

ξ(τ) 6 c1ξ(τ
−) + c2‖(z)0,t‖

2
2,λ (4)

for some c1, c2 > 0. We assume that there is no state jump at

switching times for the second switched systems i.e. z(τ−i ) =
z(τ+

i ) for all switching times τi of the switching signal σ.

For the second switched system, the eλt-weighted L2 norm

of the input u is bounded in terms of the state ξ of Γs:

‖(u)t0,t‖
2
2,λ 6 fu(ξ(t)) ∀t > t0 > 0 (5)

for some increasing function fu : [0,∞) → [0,∞). The

switching signal σ satisfies the following inequality:

Ns(t, t0) 6 N0(ξ(t)) +
t− t0
τa

∀t > t0, (6)

where τa > 0 and N0 is an increasing function. When N0

is bounded, the bound is known as chatter bound and the

number τa is known as average dwell-time [8]. However,

here N0 is a function of ξ(t) (and hence, is not bounded

a priori). With slight abuse of terminology, we also call τa
average dwell-time in a more general sense than in [8].

IV. STABILITY

Assume that Ap, Ep are Hurwitz for all p ∈ P . If the

switching signal s is a constant signal, then (3) and (4)

do not come into effect and Γs is a non-switched stable

linear system. Therefore, |x(t)| will be bounded for all t.
Then ξ and the chatter bound N0 are also bounded. Then

s is an average dwell-time switching signal with a bounded

chatter bound. The input is bounded in view of (5). Using

the stability result with average dwell-time switching [8], we

conclude that z is bounded if τa is large enough, regardless of

N0 (see also [9]). However, the situation is more complicated

when s is not a constant signal and the stability results [10],

[8], [9] are not applicable here.

We assume that N0 in (6) has the following form:

N0(ξ(t)) := c3 + c4 ln(d+ c̄ξ(t)) (7)

for some numbers c3, c4, d, c̄ > 0. We also assume that the

function f in (5) has the following form

fu(ξ(t)) := c5(d+ c̄ξ(t)) (8)

for some c5 > 0. The reason for these forms is that they

stem from the analysis of supervisory adaptive control later.

Let −λ0/2 < 0 be the largest real part of the eigenvalues

of Ep for all p ∈ P and −λ̂/2 < 0 be the largest real part

of the eigenvalues of Ap for all p ∈ P . We will present a

series of lemmas that characterize various input-to-state like

properties for Πσ and Γs. Proofs are omitted due to space

limitation.

A. The switched system Γs

The lemma below quantifies how the state of Γs is

bounded in terms of the states of the closed loop at the latest

switching time and the disturbance v.

Lemma 1: For every λ < λ̂, for all t > 0,

|x(t)|26X(ts)e
−λ̂(t−ts)+γ̂‖(v)ts,t‖

2
2,λ̂

(9)

ξ(t) 6 f1(ts)e
−λ(t−ts) + γ̂

λ̂−λ
‖(v)ts,t‖

2
2,λ (10)

where X(ts) := a0(c1|x(t
−
s )|2 + c2|z(ts)|

2), f1(ts) :=
c1a0ξ(t

−
s ) + c2a0‖(z)0,ts

‖2
2,λ + c1a0

λ̂−λ
|x(t−s )|2 + c2a0

λ̂−λ
|z(ts)|

2

for some constants a0, γ̂ > 0.

B. The switched system Πσ

The lemma below characterizes the state z between any

interval [t0, t). Proof is omitted due to space limitation.

Lemma 2: For every λ < λ0,

|z(t)|2 6 γ1η
κ(t)eλ◦−λκ|z(t0)|

2+γ2η
κ+1(t) ∀t > t0 (11)

for some constants γ1, γ2 > 0, κ > 1 and η(t) = d+ c̄ξ(t).
The following lemma characterizes z in terms of all of the

states of the closed loop at the latest switching time and the

disturbance v. Proof is omitted due to space limitation.

Lemma 3: For every λ < λ̄,

|z(t)|2 6 g(t)e−λ(t−ts) + γ3ν
κ+1(t) (12)

‖(z)0,t‖
2
2,λ 6‖(z)0,ts

‖2
2,λe

−λ(t−ts)+U(t), ∀t > 0 (13)

where U(t) := 1
λ̄−λ

g(t)e−λ(t−ts) + γ3‖(ν
κ+1

2 )ts,t‖
2
2,λ, λ̄ :=

min{λ0 − λκ, (κ + 1)λ}, ν(t) := d + c̄γ̂

λ̂−λ
‖(v)ts,t‖

2
2,λ,

and g(t) := (γ12
κ−1c̄κfκ

1 (ts) + γ12
κ−1‖ν‖κ

[ts,t])|z(ts)|
2 +

γ2γ̂2
κc̄κ+1fκ+1

1 (ts) and f1 is as in Lemma 1.

C. Lyapunov-like function

Let W(t) := c1a0ξ(t)+ c2a0‖(z)0,t‖
2
2,λ + c1a0

λ̂−λ
|x(t)|2 +

c2a0

λ̂−λ
|z(t)|2.

Lemma 4: Suppose ∃v̄ such that |v(t)| 6 v̄ ∀t. We have

W (t)6(α1W
κ(t−s )+α2)W (t−s )e−λ(t−ts)+α3 ∀t > 0 (14)

for some α1, α2, α3 > 0. By convention, W (0−) = W (0).

D. Quantifying slow switching by curves

The variable W satisfies inequality of the following form

W (t) 6 ρ(W (t−s ))W (t−s )e−λ(t−ts) + α3

for all ts > 0 and W (t) 6 W0e
−λt + α3 ∀t ∈ [0, t1), where

ρ is a non decreasing function and W0 = ρ(W (0))W (0).
Define the function

hρ(M,N, τ̄ , δd,W0) := ρN(M)W0e
−(λ−ln ρ(M)/τ̄)δd

+ α3 + α3ρ
N−1(M)

1

1 − e−(λ−ln ρ(M)/τ̄)δd
−M.

(15)
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This h function indeed stems from stability analysis of W .

The inequality hρ(M,N, τ̄ ,W0) 6 0 helps quantify the

relationship among the initial value of W (t) (via W0) and

a chatter bound, an average dwell-time, and a dwell-time of

the switching signal s (via N , τ̄ , and δd).

1) Average dwell-time vs. chatter bound curve: Fixed a

δd. Define the set Aρ,δd
parameterized by W0 as

Aρ,δd
(W0) := {(N, τ̄ ) : N > 1, τ̄ > δd > 0, and ∃M :

τ > ln ρ(M)/λ and hρ(M,N, τ̄ , δd,W0) 6 0}.
(16)

Note that for any ρ and W0, if δd is large enough, we can

always have hρ,δd
(M,N, τ̄ ,W0) < 0 if N=1 and M>2α3.

Since h is increasing in N and decreasing in τ̄ , in view

of (16), ∃ a function τ̄ = φρ,δd,W0
(N) that is the lower

boundary of Aρ,δd
(W0) such that Aρ,δd

(W0) := {(n, t) :
1 6 n 6 Nmax, t > φρ,δd,W0

(n)} for some Nmax (Nmax

can be ∞). We call φρ,δd,W0
an average dwell-time vs.

chatter bound curve. The function φρ,δd,W0
is not easy to

characterize analytically but can be calculated numerically

for given ρ, α3, λ, κ, δd, and W0. For example, for α1 =
1, α2 = 2, α3 = 0.01,W (0) = 0.01, κ = 1.5, λ = 0.1, δd =
0.5, we plot an approximation of φρ,δd,W0

in Fig. 1.
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N

τ̄

φρ,δd,W0

Aρ,δd
(W0)

Fig. 1. Average dwell-time vs. chatter bound curve

2) Average dwell-time vs. dwell-time curve: Fixed a N .

Define the set Bρ,N parameterized by W0 as

Bρ,N (W0) := {(τ̄ , δd) : τ̄ > δd > 0, and ∃M :

τ > ln ρ(M)/λ and hρ(M,N, τ̄ , δd,W0) 6 0}.
(17)

Since h is decreasing in δd and also decreasing in τ̄ , in

view of (17), there exists a function τ̄ = ψρ,N,W0
(δd) that

is the lower boundary of Bρ,N (W0) such that Bρ,N (W0) :=

{(t, d) : δmin
d 6 d 6 δmax

d , t > ψρ,N,W0
(d)} for some

δmax
d > δmin

d . We call ψρ,N,W0
an average dwell-time

vs. dwell-time curve. The function ψρ,N,W0
is not easy to

characterize analytically but can be calculated numerically

for given ρ, α3, λ, κ, N , and W0. For example, for α1 =
1, α2 = 2, α3 = 0.01,W (0) = 0.01, κ = 1.5, λ = 0.1, N =
2, we plot an approximation of ψρ,N,W0

in Fig. 2.

When ρ(M) 6 ρ̄ ∀M for some ρ̄, then for every W0 > 0,

δd > 0, N > 1, and τ > ln ρ/λ, we can always choose M
large enough so that hρ(M,N, τ̄ , δd,W0) < 0. Therefore,

Aρ,δd
(W0) = {(N, τ̄ ) : N > 1, τ̄ > ln ρ̄/λ}, which does

not depends on W0 and δd and also, Bρ,N (W0) = {(t, d) :

2 4 6 8 10 12
0

20

40

60

80

100

120

δd

τ̄

ψρ,N,W0

Bρ,N (W0)

Fig. 2. Average dwell-time vs. dwell-time curve

d > 0, t > ln ρ̄/λ, t > d}, which does not depend on N and

W0. Then both the sets A and B can be characterized by a

single number ln ρ̄/λ, which is the lower bound on average

dwell-time for stability of W (as reported in [8], [9]; see

also [10]) (in that case, the two curves are horizonal).

E. Stability

Let ρ(M) := α1M
κ+α2 where α1, α2, κ are the constants

as in Lemma 4. Suppose that the initial state is bounded by

X0 : |x(0)|2 6 X0. Let W0 := ρ( c1a0

λ̂−λ
X0)

c1a0

λ̂−λ
X0 where

c1, a0 are as in the definition of W (t). Let φρ,δd,W0
be the

average dwell-time vs. chatter bound curve and ψρ,N,W0
be

the average dwell-time vs. dwell-time curve defined as in

subsection IV-D.

Theorem 1: The interconnected switched system de-

scribed in Section III has all the states bounded for all

|x(0)|2 6 X0 and for every switching signal s having a

dwell-time δd, a chatter bound N , and an average dwell-

time τ̄ such that τ̄ > φρ,δd,W0
(N) and τ̄ > ψρ,N,W0

(δd).
Proof: Proof is omitted due to space limitation.

Remark 1: The switching signal s is characterized by both

a dwell-time δd, an average dwell-time τ̄ , τ̄ > δd, and a

chatter bound N . For the variable W having property (14), it

is not possible to guarantee stability using only average dell-

time (we need δd > 0). If using dwell-time alone (N = 1),

a stability result will be more restrictive (the dwell-time will

be greater than δd whereas average dwell-time switching still

allows switching intervals as small as δd).

V. SUPERVISORY ADAPTIVE CONTROL

Consider time-varying uncertain plants of the form:

ẋ = A(t)x+B(t)u + v,

y = C(t)x+ w,
(18)

where the matrices A(t), B(t), C(t) are not known a pri-

ori and v, w are disturbance and measurement noise, re-

spectively. Assuming that the open loop is unstable, the

objective is to stabilize the plant, making |x(t)| → 0 as

t → ∞. Various robust adaptive control schemes for time-

varying plants have been proposed (see, e.g., [11], [12], [13],

[14], [15] and the references therein). These works, more

or less, follow the following strategy: use a continuously

parameterized controller in parallel with an online parameter

estimation scheme. For parameter estimation to work, it is

often assumed that the unknown parameter belongs to a
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known convex set [12], [13] or the sign of high frequency

gain is known [13], [11], [15] or some closed-loop signals are

rich enough [14], [15]. A notably different approach is [16],

in which the author approximates a desired control input

directly using alternation of probing and control.

We will approach the problem using the supervisory

adaptive control framework [17], [18] (see also [19])).

The supervisory adaptive control technique has been shown

to robustly stabilize uncertain linear plants with constant

unknown parameters [17], [18], [20]. If the range of the

plant’s time-varying parameter is small such that the plant

can be approximated by a system with a constant unknown

parameter with small time-varying unmodeled dynamics,

then the robustness result [20] can be applied for such time-

varying plants. However, if the plant’s variation is large such

that in order to keep unmodeled dynamics small, the plant

must be approximated by a switched system with unmodeled

dynamics, then supervisory adaptive control of such large-

variation time-varying plants remains an open problem (see

also a related problem of identification and control of time-

varying systems using multiple models [21]).

A. Supervisory adaptive control

Let Ω be the uncertainty set, i.e. (A(t), B(t), C(t)) ∈
Ω ∀t. Assume that Ω is compact. We divide Ω into a finite

number of non-overlapping subsets such that
⋃

i∈P
Ωi = Ω,

where P = {1, . . . ,m}. How to divide and what the number

of subsets is are interesting research questions of their own

and are not pursued here (see [22]). We approximate the

time-varying system (18) by a switched system with pertur-

bation in the following way: construct a piecewise constant

signal s : [0,∞) → P as s(t) := {i : (A(t), B(t), C(t)) ∈
Ωi}, and for every subset Ωi, i ∈ P , pick a nominal value

(Ai, Bi, Ci) ∈ Ωi. Assume that (Ai, Bi) are controllable and

(Ai, Ci) are detectable ∀i ∈ P . We rewrite the plant (18) as

ẋ = As(t)x+Bs(t)u+ δA(t)x+ δB(t)u + v,

y = Cs(t)x+ δC(t)x + w,
(19)

where δA(t) := A(t) − As(t), δB(t) := B(t) − Bs(t), and

δC(t) := C(t) − Cs(t). The plant (19) can be seen as a

perturbed version of the following switched system

ẋ = As(t)x+Bs(t)u+ v,

y = Cs(t)x+ w.
(20)

In this paper, we will treat the case where the uncertain

plant is of the form (20) with unknown signal s and with non-

switched output, Cs(t) = C ∀t. The non-switched output

assumption is applicable to, for example, SISO systems y =
G(s, t)u, in which a constant C of the form [1 0 . . . 0]
can be obtained by using state-space realization such that

y = [1 0 . . . 0]x while leaving A(t) and B(t) time-varying.

We also assume that w = 0; for the case w 6= 0, see Remark

4 at the end of this section.

The architecture of supervisory adaptive control comprises

: 1) a multi-estimator, 2) a family of controllers, and 3) a

decision maker (supervisory unit) (see Fig. 3).

Process

Controller 1

Decision

Maker

Switching
Signal

Controller 2 yu

u1

u2

..

.

Fig. 3. supervisory adaptive control

Multi-estimator: A multi-estimator with the state xE =
(x̂1, . . . , x̂m) is constructed as follows:

˙̂xq = Aqx̂q +Bqu+ Lq(Cx̂q − y) q ∈ P , (21)

where Lq are such that Aq +LqC are Hurwitz ∀q ∈ P . We

set x̂q(0) = 0 ∀q ∈ P . Let x̃q := x̂q −x and ỹq := y−Cx̃q .

Multi-controllers: A family of candidate feedback gains

{Kq} is designed such that Aq + BqKq are Hurwitz for

all q ∈ P . The family of controllers is

uq = Kqx̂q q ∈ P . (22)

The injected system with index p ∈ P for some k, 1 6

p 6 m, is formed by the combination of the multi-estimator

and the controller with index p:

ẋCE = ĀpxCE + B̄(Cx̂p − y), (23)

where Āp is the square matrix of dimension dim(xCE). The

formula of Āp is omitted due to space limitation. From the

fact that Aq+BqKq and Aq+LqC are Hurwitz for all q ∈ P ,

it follows that Āp are Hurwitz for all p ∈ P .

∃ a family of Lyapunov functions Vq such that ∀p ∈ P ,

a1|xCE|
2

6 Vp(xCE) 6 a2|xCE|
2 (24a)

∂Vp(xCE)

∂x
(ĀpxCE + B̄ỹp) 6 −λ◦Vp(xCE) + γ|ỹp|

2. (24b)

for some constants a1, a2, λ◦, γ > 0 (the existence of such

common constants for the family of injected systems is

guaranteed since we have a finite number of systems).

There exists a number µ > 1 such that

Vq(x) 6 µVp(x) ∀x ∈ R
n, ∀p, q ∈ P . (25)

We can always pick µ = a2/a1 but there may be other

smaller µ satisfying (25) (for example, µ = 1 if Vp are the

same for all p even though a2/a1 > 1).

Supervisory unit: The decision maker, consisting of a

monitoring signal generator and a switching logic, produces

a switching signal that indicates at every time the active

controller. The monitoring signals µp are generated as

˙̂µp = −λµ̂p + γ|ỹp|
2, µ̂p(0) = 0, µp = ε+ µ̂p, (26)

for some ε > 0, λ ∈ (0, λ◦), where λ◦, γ as in (24b).

The switching signal is produced by the scale-independent

hysteresis switching logic [8]:

σ(t) :=







argmin
q∈P

µq(t) if ∃ q ∈ P such that
(1+h)µq(t)6µσ(t−)(t),

σ(t−) else,

(27)
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where h > 0 is called a hysteresis constant. At a switching

time τ of σ, we replace the current controller by the new

controller with index σ(τ) and we set xCE(τ) = xCE(τ−).
The following lemma characterizing σ is [9, Lemma 4.2]

with µ̄p = eλt(ε+ µp(t)) (see also [23]):

Lemma 5: For every q ∈ P and for all t0, we have

Nσ(t, t0) 6 m+ m
ln(1+h) ln

(

µq(t)
ε

)

+ mλ(t−t0)
ln(1+h) , (28)

‖(ỹσ)t0,t‖
2
2λ 6

m(1+h)
γ µq(t) ∀t > t0. (29)

B. Design parameters

Let −λ̂/2 < 0 be the maximum real part of the eigenval-

ues of Ap +LpC over all p ∈ P . For the stability proof, the

parameter h > 0 is chosen such that

ln(1 + h) 6 m lnµ, (30)

then chose λ > 0 such that

(κ+ 1)λ < λ◦, κ :=
m lnµ

ln(1 + h)
, (31a)

λ < λ̂. (31b)

Remark 2: For the case of plants with constant unknown

parameters, we only need (31a), not the extra conditions

(31b) and (30), to prove stability of the closed-loop system

[8] (the condition (31a) can be rewritten as
ln(1+h)

λm > ln µ
λ◦−λ

exactly as in [8]). We can give the conditions (30), (31a),

and (31b) the following interpretation: (30) means that the

switching logic must be active enough (smaller h) to cope

with changing parameters in the plant; (31a) implies that the

“forgetting rate” λ of the monitoring signal generator must be

less than the “convergence rate” λ◦ of the injected systems;

and (31b) can be seen as saying that the “estimation rate”

λ̂ of the multi-estimator must be faster than the “forgetting

rate” λ of the monitoring signal generator.

C. Stability

We now show how the interconnected switched system in

Section III arises in the supervisory adaptive control context.

There are two switched systems in the closed loop:

1) The first one arises from the error dynamics. Then from

(21) and (20), since s is constant in [ts, t), we have
˙̃xs(ts)(t) = (As(ts) + Ls(ts)C)x̃s(ts)(t) + v(t). The

foregoing equation is rewritten as a switched system

ζ̇ = Asζ + v (32)

where ζ(t) = x̃s(ts) and Ap = Ap + LpC; Ap are

Hurwitz ∀p ∈ P . We augment ζ by the variable ξ(t) =
‖(xts

)0,t‖
2
2,λ to arrive at the first switched system:

ζ̇ = Asζ + v

ξ̇ = −λξ + |ζ|2
. (33)

2) The second switched system is the switched injected

system from (23):

ż = Eσz + B̄u1 (34)

where z(t) := xCE(t), Ep := Āp, and u1 := (Cx̂p −
Cx) = −ỹp. Ep are Hurwitz ∀p ∈ P .

These two switched systems interact as follows:

1) Since x̃p(t)+ x̂p(t) = x̃q(t)+ x̂q(t) = x(t) ∀t, ∀p, q ∈
P , we have |x̃p(t)|

2 62|x̃q(t)|
2+2|x̂p−x̂q|

2. Then

|x̃p(t)|
2
62|x̃q(t)|

2+4|xCE(t)|
2 ∀t (35)

in view of xCE = (x̂1, . . . , x̂q)
T . Therefore, in view of

ζ(t) = x̃s(t)(t), we have that at every switching time

ti of the switching signal s,

|ζ(ti)|
2

6 2|ζ(t−i )|2 + 4|z(ti)|
2. (36)

Also from (35), ‖(x̃p)0,t‖
2
2,λ 6 2‖(x̃q)0,t‖

2
2,λ +

4‖(xCE)0,t‖
2
2,λ so

ξ(ts) 6 2ξ(t−s ) + 4‖(z)0,t‖
2
2,λ. (37)

2) We have ỹp(t) = Cx̃p(t) ∀p ∈ P , t > 0, so

|ỹp| 6 γC |x̃p|, (38)

where γC := ‖C‖. From (28), we have

Nσ(t, t0) 6 N0(ξ(t)) +
t− t0
τa

(39)

where τa = ln(1+h)
mλ and N0(ξ(t)) := m +

m
ln(1+h) (ln(ε+ γγ2

Cξ(t)) − ln ε) in view of µs(t)(t) =

ε + γ‖(ỹs(t))0,t‖
2
2,λ, equation (38), and the definition

of ξ(t). From (29), (38), and the definition of u1 in

(34), we have

‖(u1)0,t‖
2
2,λ 6 γ1(ε+γγ

2
Cξ(t)), γ1 := m(1+h)

γ . (40)

Equations (33), (34), (36), (37), (39), and (40) describe an

interconnected switched system in the framework presented

in Section III. We then use the stability result in the pre-

vious section to conclude about stability of the closed-loop

adaptive control system.

For the interconnected switched system with equations

(33), (34), (36), (37), (39) and (40), let ρ(M) := α1M
κ+α2

where α1, α2, κ are the constants as in Lemma 4, W0 :=
ρ( c1a0

λ̂−λ
X0)

c1a0

λ̂−λ
X0 for some X0 > 0. Let φρ,δd,W0

be the

average dwell-time vs chatter bound curve and ψρ,N,W0
be

the average dwell-time vs. dwell-time curve defined as in

subsection IV-D.

Theorem 2: Consider the supervisory adaptive control

scheme described in Section V-A. All the states of the closed-

loop control system are bounded for all |x(0)|2 6 X0

and for every switching signal s having a dwell-time δd,

a chatter bound N , and an average dwell-time τ̄ such that

τ̄ > φρ,δd,W0
(N) and τ̄ > ψρ,N,W0

(δd).
Proof: Using Theorem 1, we have that x̃s(ts)(t), xCE(t)

are bounded for all t. Then x̂p is bounded for all p ∈ P .

Since x(t) = x̃s(ts)(t)+ x̂s(ts)(t), we have x bounded. Since

x̃p = x − x̂p, we have x̃p bounded for all p ∈ P . Then µ̂p

are bounded for all p ∈ P , and hence, µp are bounded.

Remark 3: The final state bound depends on ε in the

following way. The constant c3 = ε − m
ln(1+h) ln ε and

d = ε where c3 and d as in (7). The constants defined
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as in Section IV for the interconnected switched system

arising from the control system in this section depend on ε as

follows: γ1, γ2 ∼ µεε−κ, γ4 ∼ (γ1, γ2), γ5 ∼ γ1. Then the

constants α1, α2, α3 in (14) depend on ε as α1 ∼ γ4 ∼ ε−κ,

α2 ∼ γ5 + const ∼ ε−κ + const, and α3 ∼ γ3ε
κ+1 + ν̄ ∼

ε + v̄. The bound on W (t) as t → ∞ is approximately

α3 + α3µ̄
N−1 1

1−e−λ̄δd
and so, for every ε > 0, there exists

T > 0 such that W (t) < ε+α3 +α3µ̄
N−1 1

1−e−λ̄δd
∀t > T .

If v̄ = 0 or if the disturbance is vanishing v̄ → 0, we can

make the final state bound as small as possible by reducing

ε gradually to 0, possibly in a piecewise constant fashion.

Note that we cannot simply choose a very small constant ε
from the beginning because α1, α2 ↑ as ε ↓. However, we

can reduce ε later when W as in (14) has become small

enough so that (α1W (t−s )κ + α2)W (ts) is still bounded by

the same bound as before ε is reduced.

Remark 4: The case of measurement noise (w 6= 0) can

be incorporated in the analysis presented here. The variable

v in (32) will become v−Ls(t)w, which is bounded if v, w
are bounded. Equation (34) will have a disturbance −B̄w.

Equation (38) will be of the form |ỹp| 6 γC |x̃p|+ δw where

δw = ‖w‖∞. Equation (40) and formula for N0(ξ(t)) needs

to be modified. Some constants in Lemma 1, Lemma 2,

Lemma 3, Lemma 4, and Theorem 1 will depend on w but

the statements of the lemmas and the theorem are the same.

VI. CONCLUSIONS

We considered interconnected switched systems, in which

the first switched system affects the input and the switch-

ing signal of the second switched system and the second

switched system affects the jump map of the first switched

system. We provided a stability condition for the closed loop,

which says that the first switched system should have a small

dwell-time and switch slowly enough on average. Unlike the

case of single switched systems where there is a constant

lower bound on average dwell-time for stability, we use av-

erage dwell-time vs. chatter bound curves and average dwell-

time vs. dwell-time curves as lower bounds. We showed how

the stability result of interconnected switched systems can be

applied to analyze supervisory adaptive control of uncertain

time-varying plants in which the plant is a switched system

with unknown switching signal and non-switched output and

there is no measurement noise.

Remaining to be investigated are supervisory adaptive

control of switched plants with switched outputs and with

unmodeled dynamics. In these cases, the inequality (5) no

longer holds (the input u will be bounded by ξ(t) as well as

z). The case will require robustness study of interconnected

switched systems. Further study of the average dwell-time

vs. chatter bound curves will broaden understanding of the

problem of characterizing slowly switching signals.
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