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Abstract

We present a stability criterion for switched nonlinear systems which involves Lie brackets of the individual vector fields but does
not require that these vector fields commute. A special case of the main result says that a switched system generated by a pair of
globally asymptotically stable nonlinear vector fields whose third-order Lie brackets vanish is globally uniformly asymptotically stable
under arbitrary switching. This generalizes a known fact for switched linear systems and provides a partial solution to the open problem
posed in [D. Liberzon, Lie algebras and stability of switched nonlinear systems, in: V. Blondel, A. Megretski (Eds.), Unsolved Problems
in Mathematical Systems and Control Theory, Princeton University Press, NJ, 2004, pp. 203–207.]. To prove the result, we consider an
optimal control problem which consists in finding the “most unstable” trajectory for an associated control system, and show that there
exists an optimal solution which is bang-bang with a bound on the total number of switches. This property is obtained as a special case
of a reachability result by bang-bang controls which is of independent interest. By construction, our criterion also automatically applies
to the corresponding relaxed differential inclusion.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A finite family of smooth vector fields f0, f1, . . . , fm on
Rn gives rise to the switched system

ẋ = f�(x), x ∈ Rn. (1)

Here, � : [0, ∞) → {0, 1, . . . , m} is a piecewise constant
function of time, called a switching signal. A frequently dis-
cussed example, which we will occasionally use for illustra-
tion, is when the given vector fields are linear: fi (x) = Aix,
where Ai is an n × n matrix, i = 0, 1, . . . , m. This yields
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the switched linear system

ẋ = A�x, x ∈ Rn. (2)

Switched systems have numerous applications and represent
a subject of extensive ongoing research (see, e.g., [10] and
the references therein).

By a solution of (1) we understand an absolutely contin-
uous Rn-valued function x(·) which satisfies the differen-
tial equation for almost all t in its domain. In the context
of switched systems, one usually assumes for simplicity
that the switching signal � has a finite number of dis-
continuities, or switches, on every bounded time interval.
Our results will in fact automatically apply to measurable
switching signals and also to solutions of the relaxed differ-
ential inclusion associated with (1). This is the differential
inclusion

ẋ ∈ co{f0(x), f1(x), . . . , fm(x)}, (3)
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where co denotes the convex hull. Its solutions are absolutely
continuous functions x(·) satisfying (3) for almost all t, and
this includes all solutions of the switched system (1) with
piecewise constant � (see, e.g., [4] for more information on
differential inclusions).

When we refer to stability of the switched system (1),
the precise property of interest will be global asymptotic
stability which is uniform over the set of all switching sig-
nals, formally defined as follows. The switched system (1)
is called globally uniformly asymptotically stable (GUAS)
if there exists a class KL function3 � such that for ev-
ery switching signal � and every initial condition x(0) the
corresponding solution of (1) satisfies

|x(t)|��(|x(0)|, t) ∀ t �0 (4)

(here and below, | · | denotes the standard Euclidean norm on
Rn). An equivalent definition can be given in the �–� style
(cf. [13]). If the function � in (4) takes the form �(r, t) =
are−bt for some a, b > 0, then the switched system (1)
is called globally uniformly exponentially stable (GUES).
The above definitions reduce to the usual notions of global
asymptotic and exponential stability in the case of a single
system. If (4) holds along all solutions of the differential in-
clusion (3), then this differential inclusion is called globally
asymptotically stable. This property implies GUAS of the
switched system (1) because solutions of (1) are contained
in those of (3).

It is well known and easy to demonstrate that global
asymptotic stability of the individual subsystems ẋ = fi (x),
i = 0, 1, . . . , m is necessary but not sufficient for global
asymptotic stability of the switched system (1) for every
possible switching signal, let alone GUAS. In this paper, we
are concerned with the problem of identifying conditions
on the individual subsystems—besides the obviously neces-
sary requirement of their global asymptotic stability—which
guarantee GUAS of (1). This problem has received consider-
able attention in the literature; see [10, Chapter 2] for some
available results.

We now review two directions of attack on the GUAS
problem. The difficulty in analyzing the stability of (1) is
that the switched system admits an infinite number of so-
lutions for each initial condition. A natural idea is to try to
characterize the “worst-case” (that is, the “most unstable”)
switching law, and then analyze the behavior of the unique
trajectory produced by this law. Pyatnitskiy and Rapoport
[19,20] developed a variational approach to describe the
“worst-case” switching law, and the corresponding trajec-
tory, for the switched linear system (2). Applying the maxi-
mum principle, they derived an implicit characterization of
this switching law in terms of a two-point boundary value

3 Recall that a function � : [0, ∞) → [0, ∞) is said to be of class
K if it is continuous, strictly increasing, and �(0) = 0. A function � :
[0, ∞) × [0, ∞) → [0, ∞) is said to be of class KL if �(·, t) is of
class K for each fixed t �0 and �(s, t) decreases to 0 as t → ∞ for
each fixed s �0.

problem. More recently, the same variational problem was
addressed using a dynamic programming approach [15]. For
the particular case of second-order switched linear systems,
this approach yields an easily verifiable necessary and suf-
ficient condition for GUAS [16] (see also [8] as well as the
related work [5]).

Another particularly promising research avenue is to ex-
plore the role of commutation relations among the subsys-
tems being switched. We now briefly recall available results,
starting with the case of the switched linear system (2).
The commutator, or Lie bracket, is defined as [Ai, Aj ] :=
AiAj − AjAi . First, suppose that the matrices commute:
[Ai, Aj ] = 0 for all i, j . Then it is well known that the
system (2) is GUES provided that A1, . . . , Am are all Hur-
witz. (This is not hard to show by a direct analysis of the
transition matrix, or by constructing a quadratic common
Lyapunov function via the iterative procedure proposed in
[17].) It was shown in [7] that for m = 1 the above state-
ment remains true if the Lie bracket condition is relaxed
to [A0, [A0, A1]] = [A1, [A0, A1]] = 0. This result was ex-
tended in [12] to all nilpotent and solvable matrix Lie alge-
bras for arbitrary m by using simultaneous triangularization
(Lie’s Theorem), and later in [1] to a more general class
of matrix Lie algebras; the latter paper also established that
no further generalization based on the Lie bracket relations
alone is possible.

Let us now return to the nonlinear setting described by
the switched system (1), which is much less thoroughly
understood. Linearizing the individual subsystems and ap-
plying the previous results together with Lyapunov’s indi-
rect method, it is not difficult to obtain conditions for local
asymptotic stability of (1); this was done in [12,1]. To tackle
the global stability question, one can try to inspect commu-
tation relations between the original nonlinear vector fields
f0, f1, . . . , fm. The Lie bracket is now defined as

[fi , fj ](x) := �fj (x)

�x
fi (x) − �fi (x)

�x
fj (x).

It turns out that if the two vector fields commute, i.e., if
[fi , fj ](x) ≡ 0 for all i, j , then global asymptotic stabil-
ity of the individual subsystems still implies GUAS of the
switched system (1). Similarly to the linear case, this can
be proved either by direct analysis of the flow (see [14]) or
by an iterative construction of a common Lyapunov func-
tion in the spirit of [17] (see [21,27]). All attempts to for-
mulate global asymptotic stability criteria valid beyond the
commuting nonlinear case have so far been unsuccessful, as
the methods employed to obtain the corresponding results
for switched linear systems do not seem to apply. These is-
sues are explained in [11], where this is proposed as an open
problem for which an altogether different approach seems
to be required.

Such a different approach is proposed in this paper. It is
based on merging the two directions outlined above; namely,
it combines the variational approach with a Lie-algebraic
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analysis of the “worst-case” switching law. It is a well-
known fact that Lie brackets play an essential role in the
maximum principle of optimal control (see, e.g., [24]). In
the present context, it turns out that the “worst-case” switch-
ing law for the switched nonlinear system (1) is governed
by the signs of suitable functions of time whose derivatives
are determined by Lie brackets of f0, f1, . . . , fm. We impose
conditions on these Lie brackets which guarantee that each
of these functions is a polynomial. This leads to a bound on
the total number of switches for the “worst-case” switching
law, and GUAS of the switched system can be deduced from
global asymptotic stability of the individual subsystems.

In fact, we show that our Lie-algebraic conditions imply
the following general reachability result. Suppose that there
exist p, q ∈ Rn, a time t �0, and a trajectory of (3) satis-
fying x(0) = p and x(t) = q. Then there exists a trajectory
x(·) of (1), with no more than N switchings, which also sat-
isfies x(0) = p and x(t) = q. Furthermore, the bound N is
uniform over all trajectories and all t. This theoretical result
has the important practical implication that point-to-point
control problems reduce to determining a set of 2N + 1 pa-
rameters: N switching times and N + 1 control values (this
relies on a well-known equivalence between differential in-
clusions and control systems, discussed in the next section).
There is a rich literature on conditions guaranteeing that op-
timal controls are, in some sense, regular (e.g., finite com-
binations of bang-bang and singular arcs); cf. [22,24] and
the references therein. However, these results are typically
local, in the sense that the value of the bound N depends on
the length of the time interval.

We now formally state our main result. We denote by
(ad f)r , r = 0, 1, . . . the operators defined by (ad f)0(g) := g
and (ad f)r (g) := [f, (ad f)r−1(g)] for r �1, where f and g
are smooth vector fields on Rn. The analyticity assumption
in the theorem can be relaxed, as explained in Remark 7 in
Section 4. See also Remark 2 in Section 2 for a different
version of this result.

Theorem 1. Suppose that f0, f1, . . . , fm are analytic vec-
tor fields on Rn such that the systems ẋ = fi (x), i =
0, 1, . . . , m are globally asymptotically stable and backward
complete.4 Suppose that there exists a positive integer r
such that for every index l ∈ {0, 1, . . . , m} we have

(ad fl )
r (fi )(x) = 0 ∀x ∈ Rn, ∀i �= l (5)

and

[fk − fl , (ad fl )
s(fi − fl )](x) = 0

∀x ∈ Rn, ∀i, k �= l, s = 0, . . . , r − 1. (6)

Then the differential inclusion (3) is globally asymptotically
stable, and in particular the switched system (1) is GUAS.

4 Backward completeness means that all solutions are well defined
for arbitrary negative times.

For example, it is easy to check that for r = 1, conditions
(5) and (6) are equivalent to [fi , fj ](x) ≡ 0 for all i, j , and
we recover the known result for commuting vector fields
[14]. The first interesting situation is when r = 2. It is not
difficult to verify that conditions (5) and (6) then reduce to

[fk, [fj , fi]](x) = 0 ∀x ∈ Rn, ∀i, j, k ∈ {0, 1, . . . , m}
and

[fk − fj , fi − fj ](x) = 0

∀x ∈ Rn, ∀i, j, k ∈ {0, 1, . . . , m}.
Note that in the particular case when m= 1 (i.e., the case of
two subsystems) the last condition is trivially satisfied, and
we arrive at the following nonlinear extension of the result
proved in [7].5

Corollary 1. Suppose that f0, f1 are analytic vector fields
on Rn such that the systems ẋ = fi (x), i = 0, 1 are globally
asymptotically stable and backward complete, and suppose
that

[f0, [f0, f1]](x) = [f1, [f0, f1]](x) = 0 ∀x ∈ Rn. (7)

Then the differential inclusion (3) is globally asymptotically
stable, and in particular the switched system (1) is GUAS.

The remainder of the paper is devoted to proving
Theorem 1. In the next section we formulate the “worst-
case” optimal control problem associated with (1) and note
some of its basic properties. In Section 3 we obtain a key
bound on the total number of switches for bang-bang con-
trols, which is used in Section 4 to establish the main result.
Section 5 contains some concluding remarks.

2. Optimal control approach

Our starting point is to replace the differential inclusion
(3) by the control system with drift

ẋ = f0(x) +
m∑

k=1

gk(x)uk ,

u = (u1, . . . , um)T ∈ U, (8)

where

gk(x) := fk(x) − f0(x), k = 1, . . . , m (9)

and U is the standard simplex

U :=
{

u ∈ Rm : uk �0,

m∑
k=1

uk �1

}
.

5 Leonid Gurvits has informed us that he recently also obtained a
generalization of his original result to nonlinear systems, using a technique
different from ours.
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Throughout the rest of the paper, admissible control inputs
for (8) will be measurable functions of time taking values
in U (i.e., the control u(t) = (u1(t), . . . , um(t))T belongs
to U for all t). The equivalence between the control sys-
tem (8) and the differential inclusion (3) is revealed by the
result stated next, which is well known as Filippov’s Selec-
tion Lemma (see, e.g., [4, Section 14, Corollary 1] or [26,
Theorem 2.3.13]).

Lemma 1. The set of solutions of the control system (8)
coincides with the set of solutions of the differential
inclusion (3).

Note that trajectories of the original switched system (1)
correspond to piecewise constant controls taking values in
the set of m+1 vertices of U. In particular, ẋ= f0(x) results
by setting u ≡ 0 in (8), while each ẋ = fi (x), i = 1, . . . , m

results by setting ui ≡ 1 and uj ≡ 0, j �= i. (The choice
of f0 as the drift vector field simplifies the notation, but
is otherwise completely arbitrary.) We also remark that the
switched linear system (2) is associated in this way with the
bilinear control system ẋ = A0x + ∑m

k=1(Akx − A0x)uk .
Fix an arbitrary point p ∈ Rn. Since the right-hand side

of (8) is bounded on every bounded ball in Rn, we can find
a time T (which depends on |p|) such that all solutions of
(8) starting at p are bounded by, say, 2|p| for all t ∈ [0, T ].
In particular, these solutions are defined at least up to time
T. Thus there exists the largest time Tmax(|p|)�∞ such that
all solutions of (8) starting at p are defined for t ∈ [0, Tmax).

Remark 1. Note that since the systems ẋ = fi (x),
i = 0, 1, . . . , m are assumed to be globally asymptotically
stable, solutions of (8) corresponding to piecewise constant
controls taking values in the set of vertices of U automat-
ically exist for all t �0 (these are solutions of the original
switched system). However, this is not a priori true for
arbitrary measurable controls taking values in U, unless
f0, f1, . . . , fm satisfy suitable growth conditions (such as
|fi (x)|�r(|x| + c), r, c > 0; see, e.g., [26, p. 92]). Although
we will show later that under the hypotheses of Theorem 1
solutions of (8) indeed exist globally, for the moment we
need to work with sufficiently small time intervals. See also
Remark 6 in Section 4.

Let x(·; p, u) denote the solution of the system (8) with
initial condition x(0) = p corresponding to an admissi-
ble control u. Picking a positive final time tf < Tmax(|p|),
we define

J (tf , p, u) := |x(tf ; p, u)|2.

We pose the following optimal control problem in terms of
the cost functional J.

Problem 1. Find a control u that maximizes J along the
solutions of (8).

We note that this problem is well posed, i.e., an optimal
control does exist.

Lemma 2. Problem 1 admits a solution for every pair (p, tf)

such that tf < Tmax(|p|).

Proof. By Lemma 1, solutions of the control system (8) co-
incide with solutions of the differential inclusion (3). We can
thus apply [6, Section 7, Theorem 3] and conclude that the
set of these solutions with x(0) = p for 0� t � tf is compact
with respect to the topology of uniform convergence. The
functional J represents a continuous functional on this set.
Therefore, its maximum is well defined. �

The intuitive interpretation of Problem 1 is clear: find
a control that “pushes” the state as far away from the ori-
gin as possible (from a given initial condition in a given
amount of time). If we can show that the resulting closed-
loop system is stable, then the same property should hold
for all other controls, and stability of the original switched
system—as well as the differential inclusion—will be es-
tablished. This program will be formally carried out in what
follows.

Consider an optimal control ũ = (ũ1, . . . , ũm)T and the
corresponding optimal trajectory x̃. We will study properties
of ũ using the maximum principle (see, e.g, [2,9] for back-
ground on the maximum principle of optimal control, in a
geometric framework suitable for our subsequent develop-
ments). The Hamiltonian for Problem 1 is

H(x, u, �) := �Tf0(x) +
m∑

k=1

�Tgk(x)uk , (10)

where � : [0, tf ] → Rn is a costate satisfying the adjoint
equation associated with (8):

�̇ = −�H

�x
= −

(
�f0

�x

)T

� −
m∑

k=1

(
�gk

�x

)T

�uk . (11)

More precisely, � is identified with the linear functional
on Rn defined via the inner product 〈�(t), �〉 = �T(t)�. (In
the more general formulation of the maximum principle for
manifolds, �(t) is a linear functional on the tangent space at
x(t); its evolution is described by the adjoint equation, which
can be defined intrinsically and is given by (11) in local co-
ordinates.) The necessary condition for optimality provided
by the maximum principle states that ũ(t), t ∈ [0, tf ] must
pointwise maximize H(x̃(t), ·, �̃(t)) for the costate �̃ asso-
ciated with the optimal trajectory satisfying the boundary
condition �̃(tf) = 2x̃(tf). For i = 1, . . . , m, let us define the
functions �i : Rn × Rn → R by

�i (x, �) := �Tgi (x). (12)
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Then the optimal control must satisfy the following condi-
tions almost everywhere: for each i,

ũi (t) = 0 if �i (x̃(t), �̃(t)) < 0 or

�i (x̃(t), �̃(t)) < �j (x̃(t), �̃(t)) for some j �= i,

ũi (t) = 1 if �i (x̃(t), �̃(t)) > 0 and

�i (x̃(t), �̃(t)) > �j (x̃(t), �̃(t)) for all j �= i. (13)

If �i (x̃(t), �̃(t)) = max{0, �j (x̃(t), �̃(t)) : j �= i}, then the
maximum principle does not yield enough information to
uniquely determine ũi (t).

We say that a control u is bang-bang if it takes values in
the set of vertices of U and has a finite number of switches
on every bounded time interval. It is clear from (13) that if
all functions �i (x̃(·), �̃(·)) and �i (x̃(·), �̃(·))−�j (x̃(·), �̃(·)),
1� i, j �m have isolated zeros on [0, tf ], then the optimal
control is bang-bang (modulo a modification on a set of mea-
sure 0 which does not change the trajectory). On the other
hand, it may happen that one of these functions identically
vanishes on some subinterval of [0, tf ], giving rise to a sin-
gular optimal trajectory.

The connection between the bang-bang property and Lie
brackets comes from the fact that time derivatives of the
functions �i , i = 1, . . . , m evaluated along state-costate tra-
jectories are expressed in terms of iterated Lie brackets of
f0, g1, . . . , gm. This is revealed in the next lemma, which
will be crucial in establishing a bound on the total number
of switches for bang-bang optimal controls.

Lemma 3. Assume that the hypotheses of Theorem 1 hold.
Let x(·) and �(·) be trajectories of (8) and (11) corre-
sponding to some arbitrary control u. Then all functions
�i (x(·), �(·)), i=1, . . . , m are polynomial functions of time,
with degrees not exceeding r − 1.

Proof. Pick an arbitrary index i ∈ {1, . . . , m}. To simplify
the notation, denote �i (x(t), �(t)) by �i (t). We know from
(12) that �i is absolutely continuous. Differentiating it and
using (8) and (11), we find that the derivative is given (almost
everywhere) by

�̇i (t) = �T(t)[f0, gi](x(t))

+
m∑

k=1

�T(t)[gk, gi](x(t))uk(t). (14)

Recalling definition (9) and applying (6) with l=0 and s=0,
we see that [gk, gi] ≡ 0 for all i, k. Thus (14) simplifies to

�̇i (t) = �T(t)[f0, gi](x(t)).

It follows from this expression that �̇i is absolutely con-
tinuous, and we can differentiate it again. Proceeding in

this fashion, we have

�(s+1)
i (t) = �T(t)(ad f0)

s+1(gi )(x(t))

+
m∑

k=1

�T(t)[gk, (ad f0)
s(gi )](x(t))uk(t),

s = 0, . . . , r − 1. (15)

The summation terms involving the control vanish for each
s by virtue of (6) with l=0, and for s=r−1 the first term on
the right-hand side also vanishes because of (5) with l = 0.
This means that �(r)

i (t) ≡ 0, and the claim follows (in view
of absolute continuity of �i). �

Remark 2. With the help of the Jacobi identity, it is possible
to arrive at an equivalent reformulation of the conditions of
Theorem 1 for r �3. Namely, let us rewrite the Lie brackets
appearing in the summation terms in (15) for s�2 using the
Jacobi identity as

[gk, (ad f0)
s(gi )] = [gk, [f0, (ad f0)

s−1(gi )]]
= [f0, [gk, (ad f0)

s−1(gi )]]
+ [(ad f0)

s−1(gi ), [f0, gk]].
Thus, we can deduce the equality [gk, (ad f0)

s(gi )] ≡ 0 from
the equality [gk, (ad f0)

s−1(gi )] ≡ 0 if we impose the con-
dition [(ad f0)

s−1(gi ), [f0, gk]] ≡ 0 for s = 2, . . . , r − 1. In
terms of the original vector fields, this yields an alternative
version of Theorem 1, in which condition (6) is retained for
s = 0, 1 but replaced for s = 2, . . . , r − 1 by

[(ad fl )
s−1(fi − fl ), [fl , fk]](x) = 0

∀ x ∈ Rn, ∀i, k �= l.

Together with (5), this results in a set of conditions equiva-
lent to those of Theorem 1.

The main difficulty that remains is the possibility of sin-
gular optimal trajectories. As we show next, this problem
can be overcome with the help of a construction due to
Sussmann [23].

3. Bang-bang property

In this section we first summarize the basic steps of the
construction given by Sussmann in [23], adopted to our con-
text, and then show that the present assumptions lead to a
more specific result which will play an important role in the
proof of Theorem 1. We note that [23] is concerned with
the time-optimal control problem. However, the relevant ar-
guments from [23] carry over to the present setting with
no significant changes. In fact, the Hamiltonians for Prob-
lem 1 and for the time-optimal problem are the same (mod-
ulo an additive constant), which makes their analysis quite
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similar. The reader is referred to [23] as well as [2,9] for
more details on the terminology and concepts involved.

Let L denote the Lie algebra generated by the vector
fields f0, g1, . . . , gm (or, equivalently, the vector fields
f0, f1, . . . , fm). Under the assumption that these vector
fields are analytic, Rn is partitioned into maximal integral
manifolds of L, whose tangent spaces are given by L. Let us
again consider Problem 1 for some initial state p ∈ Rn and
final time tf < Tmax(|p|). Let ũ be an optimal control and x̃
be the corresponding state trajectory. Then this trajectory is
entirely contained in the maximal integral manifold S of L
passing through p. For each x ∈ S, the tangent space to S at
x is L(x). The maximum principle applied to the restriction
of the system (8) to S asserts the existence of a costate
function t 
→ �̃(t) which satisfies the adjoint equation and
is nontrivial on L(x̃(t)) for all t ∈ [0, tf ].

Next, let L0 be the ideal in L generated by g1, . . . , gm

and let S0 be the maximal integral manifold of L0 pass-
ing through p. As will become clear below, we cannot use
Lemma 3 to prove that ũ is bang-bang unless �̃(t) is non-
trivial on L0(x̃(t)). The dimension of L0(x̃(t)) is constant
and equal to either dim L(x̃(t)) or dim L(x̃(t)) − 1. We see
that unless dim L0(x̃(t)) = dim L(x̃(t)), our optimal control
ũ is not necessarily bang-bang. To handle this difficulty, we
bring in an additional concept.

Following [23], we call a trajectory x̄(·; p, v̄) of (8)
strongly extremal if its control v̄ pointwise maximizes the
Hamiltonian H(x̄, ·, �̄) defined via (10) for some costate
function t 
→ �̄(t) which satisfies the adjoint equation and
has a nontrivial restriction to the subspace L0(x̄(t)) for all
t in its domain. Note that unlike for the costate �̃ appearing
in the maximum principle of Section 2, no boundary condi-
tion is imposed on the costate �̄ appearing in the definition
of strong extremality. The notion of strong extremality does
not directly correspond to optimality in the sense of Problem
1 (we will see later that it is related to a suitable auxiliary
time-optimal control problem). However, the Hamiltonian
maximization condition implies as before that the compo-
nents of the control v̄ must almost everywhere satisfy

v̄i (t) = 0 if �i (x̄(t), �̄(t)) < 0 or

�i (x̄(t), �̄(t)) < �j (x̄(t), �̄(t)) for some j �= i,

v̄i (t) = 1 if �i (x̄(t), �̄(t))) > 0 and

�i (x̄(t), �̄(t)) > �j (x̄(t), �̄(t)) for all j �= i (16)

with �i as defined in (12). In other words, since the bound-
ary condition for �̃ was not used in deriving (13), controls
corresponding to strongly extremal trajectories retain this
important property of optimal controls.

The usefulness of strong extremality for us is that x̃ can
be replaced by a concatenation of a strong extremal and
a trajectory corresponding to an arbitrary constant control,
such that the final state at t = tf remains the same (hence the
new control is also optimal). In fact, we have the following
more general result, which is essentially a global version of
[23, Lemma 2].

Lemma 4. Assume that the hypotheses of Theorem 1 hold.
Consider an arbitrary trajectory x(t), t ∈ [0, tf ] of the
system (8) with x(0) = p, and let q := x(tf). Let u0 =
(u0

1, . . . , u
0
m)T be an arbitrary vertex of U. Then there exists

a time t̄ ∈ [0, tf ] and an admissible control v̄ : [0, t̄] → U
with the following properties:

1. The trajectory x(t; p, v̄), t ∈ [0, t̄] of (8) is strongly ex-
tremal.

2. The solution of (8) with x(0) = p corresponding to the
control

ū(t) =
{

v̄(t) if t ∈ [0, t̄],
u0 if t ∈ (t̄ , tf ] (17)

satisfies x(tf ; p, ū) = q.

Proof (sketch). Let �(·, x) denote the integral curve of the
vector field f0 + ∑m

k=1gku
0
k ∈ L passing through x ∈ Rn

at t = 0. This is well defined for all t and all x because it
is the integral curve of one of the original complete vector
fields f0, f1, . . . , fm. Let hk(t, x) := �(−t, ·)∗gk(�(t, x)),
k = 1, . . . , m, where �(t, ·)∗ is the differential of the map
�(t, ·). Then hk(t, x) ∈ L0(x) for all k and all t. Let �v(t), t ∈
[0, tf ] be a trajectory of (8) corresponding to some control
v = (v1, . . . , vm)T, with �v(0) = p. Let �v be the solution of
the system

ẋ(t) =
m∑

k=1

(vk(t) − u0
k)hk(t, x(t)) (18)

with the same initial condition �v(0) = p. Then it can be
directly verified that we have

�v(t) = �(t, �v(t)), t ∈ [0, tf ]. (19)

(This is the so-called “variations formula”, which is a non-
linear extension of the variation-of-constants formula for
linear systems.)

The system (18) is a time-varying control system, with
the same controls as (8). In particular, associated to our
trajectory x(t), t ∈ [0, tf ] we have the trajectory �u(t), t ∈
[0, tf ] of (18), where u is the control that generates x (so
that �u = x). Let q′ := �u(tf). Now we can choose, for
the system (18), a time-optimal control v̄ which steers p
to q′ in minimal time t̄ � tf (this control exists because our
assumptions guarantee that �v is well defined on [0, tf ] for
all v; cf. [23, pp. 633–634]). By (19), this control v̄ then
steers the state of the original system (8) from p to �(t̄ , q′).
Repeating the arguments [23, p. 634], we can show that the
resulting trajectory of (8) is strongly extremal. (The basic
idea is that by time-optimality of v̄ we have a costate for the
system (18) which is nontrivial on L0(�v̄) and which can
be “lifted” to produce a desired costate �̄ for the original
system.) Finally, the control (17) steers the state of (8) from
p to �(tf − t̄ , �(t̄ , q′)) = �(tf , q′) = �u(tf) = q. �

Remark 3. There are three minor differences between the
above result and [23, Lemma 2]. First, Lemma 2 in [23] is
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stated for a time-optimal trajectory; however, the result is
actually true for every trajectory (and in particular for an
optimal trajectory x̃ corresponding to Problem 1). Second,
the treatment in [23] is limited to the single-input control
system

ẋ = f(x) + g(x)u, |u|�1 (20)

but the above result remains valid for the multiple-input
system (8). Finally, the construction given in [23] works on a
small time interval, so that the overall trajectory is replaced
by a concatenation of several pairs of strong extremals and
constant-control trajectories, while the present completeness
assumptions guarantee the existence of just one pair on the
given time interval (see the remark on [23, p. 635]).

Remark 4. The purpose of considering strongly extremal
trajectories of the system (8) is to avoid singular trajectories
and establish the existence of bang-bang optimal controls
with a bound on the total number of switches. This task will
be completed in Lemma 5 by using Lemmas 3 and 4 and
the formula (16). Alternatively, it is possible to achieve the
same goal by applying the maximum principle directly to
the time-optimal control problem for the system (18) and
obtaining a bound on the number of switches for the time-
optimal control v̄. Then strong extremality of the “lifted” tra-
jectory x(·; p, v̄) of the original control system would not be
needed (and the proof could be made more self-contained).
Yet another possibility, which would let us avoid any explicit
use of the variations formula, is to construct an argument
along the lines of the proof of Theorem 8.1.2 in [24].

Remark 5. It is clear that Lemma 4 remains valid if tf is
replaced by an arbitrary time in [0, tf ]. In view of this and
the fact that the system (8) is time-invariant, we immediately
obtain the following generalization of Lemma 4 which will
be needed in the sequel. Consider an arbitrary trajectory
x(t), t ∈ [0, tf ] of (8) with x(0) = p, and take two points
a := x(t1) and b := x(t2), 0� t1 < t2 � tf on it. Let u0 be an
arbitrary vertex of U. Then there exists a time t̄ ∈ [t1, t2] and
a control v̄ : [t1, t̄] → U such that the concatenated control

ū(t) =
{

v̄(t) if t ∈ [t1, t̄],
u0 if t ∈ (t̄ , t2]

transfers the state of (8) from a at time t1 to b at time t2 and
the restriction of the resulting trajectory to [t1, t̄] is strongly
extremal.

We say (cf. [24]) that the control system (8) has the bang-
bang property if, given an arbitrary trajectory x(t), t ∈ [0, tf ]
of (8) with x(0) = p and two points a := x(t1) and b :=
x(t2), 0� t1 < t2 � tf on it, there exists a bang-bang control
that transfers the state from a at time t1 to b at time t2. By
time-invariance of (8), this depends only on the difference
t2 −t1 and not on the individual times t1 and t2. If in addition
there is an upper bound N, uniform over all trajectories and
all t2 − t1 ∈ [0, tf ], on the total number of switches of such

bang-bang controls, then we say that (8) has the bang-bang
property with N switches.

In [23], Sussmann used an analog of Lemma 4 to derive
a condition on the Lie brackets of f and g which guarantees
the bang-bang property of (20), with bounds on the number
of switches on finite time intervals. Bang-bang theorems
for multiple-input nonlinear control systems, along similar
lines but with additional hypotheses, are also available; see
[3,25]. However, the bang-bang property of (8) is not enough
for proving that the switched system (1) is GUAS, because
the number of switches may grow with the length of the
time interval. To establish Theorem 1, we need to have a
bound on the number of switches which is independent of
time, i.e., we need to show that the control system (8) has
the bang-bang property with N switches for some N. The
hypotheses of Theorem 1 are stronger than the conditions
imposed in the above papers, and indeed allow us to reach
such a conclusion. This is shown in the next lemma, which is
of independent interest and will be our main tool in proving
Theorem 1. Similarly to Lemma 4, this is a result about
arbitrary trajectories, which includes the desired property of
optimal trajectories as a special case.

Lemma 5. Under the hypotheses of Theorem 1 the system
(8) has the bang-bang property with N := (r + 1)m − 1
switches.

Proof. 6 Consider two points a = x(t1) and b = x(t2) on an
arbitrary trajectory x with x(0) = p. We want to show that
there is a control that steers the state of (8) from a to b in
time t2−t1, takes values in the vertices of U, and has at most
(r + 1)m − 1 switches. This will imply the statement of the
lemma. The number of vertices of U is m + 1. Similarly to
the proof of Theorem 8.1.2 in [24], we proceed by induction
on m. If m = 0, then U is a singleton and the statement
is obvious. We now treat the case of an arbitrary m > 0,
supposing that the above property with m − 1 instead of m
would hold for two arbitrary points on every trajectory of
(8) if U were a simplex with m vertices. Apply Lemma 4
and Remark 5 to find another trajectory connecting a and b,
which is a concatenation of a strongly extremal trajectory
x̄(t), t ∈ [t1, t̄] generated by a control v̄ and a trajectory
generated by a fixed vertex u0 of U for t ∈ (t̄ , t2]. The
costate function �̄ associated with x̄ is nontrivial on L0(x̄).
Using(5) and (6) with l = 0 together with (9), we have

L0 = span {(ad f0)
s(gi ) : i = 1, . . . , m,

s = 0, . . . , r − 1}. (21)

Considering the functions �i , i = 1, . . . , m defined by (12)
and using the formulas for their derivatives obtained in the
proof of Lemma 3, we see that the functions �i (x̄(·), �̄(·))
cannot all be identically zero. To simplify the notation, de-
note �i (x̄(t), �̄(t)) by �̄i (t).

6 We thank an anonymous reviewer for identifying a gap in an earlier
version of this proof.
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Suppose first that there exist some i �= j for which �̄i−�̄j

is not identically zero. By Lemma 3, �̄i −�̄j is a polynomial
function of degree at most r − 1. Hence, the time interval
[t1, t̄] is divided into at most r subintervals, inside some
of which we have �̄i (t) − �̄j (t) < 0 and inside the others
�̄i (t)− �̄j (t) > 0. The formula (16) implies that the control
v̄ satisfies v̄i = 0 on subintervals of the former type and
v̄j =0 on subintervals of the latter type (almost everywhere).
Consider one such subinterval [�1, �2] ⊂ [t1, t̄]. Let ā :=
x̄(�1)and b̄ := x̄(�2). Assume, for example, that �̄i − �̄j is
negative on (�1, �2). We have just shown that the restriction
of x̄ to [�1, �2] is a trajectory of (8) with controls taking
values in the set Ui := {u ∈ U : ui = 0}. This set is a
simplex with m vertices (which are also vertices of U). By
the induction hypothesis, there is a control that steers the
state of (8) from ā to b̄ in time �2 − �1, takes values in
the set of vertices of Ui , and is a concatenation of at most
(r +1)m−1 constant controls. A similar conclusion holds for
the restriction of x̄ to every other subinterval.

We also need to treat the case when each �̄i − �̄j is
identically zero, i.e., when all functions �̄i are identically
equal to some constant c. We know that c cannot be 0. If
c < 0, then by (16) we have v̄ ≡ 0 (almost everywhere). If
c > 0, then the fact that v̄ maximizes H(x̄, ·, �̄) implies that
v̄1 + · · · + v̄m ≡ 1 (almost everywhere), in other words, v̄
takes values in the set U0 := {u ∈ U : u1 + · · · + um = 1}.
This set is again a simplex with m vertices which are also
vertices of U. It does not contain the zero vertex, but we
can bring the resulting control system back to the desired
form by simply relabeling the vector fields f0, f1, . . . , fm so
that f0 corresponds to one of the vertices of U0 (recall that
conditions (5) and (6) hold for all l, so l = 0 does not have
any special property). By the induction hypothesis, the state
of (8) can be steered from a to x̄(t̄) in time t̄ − t1 by a
concatenation of at most (r + 1)m−1 constant controls.

We have shown that the time interval [t1, t̄] can be divided
into at most r subintervals, on each of which there exists
a control which is a concatenation of at most (r + 1)m−1

constant controls, such that the overall control steers the state
of (8) from a to x̄(t̄). Applying the control u0 on the interval
(t̄ , t2], we conclude that we can steer the state of the system
from a to b in time t2 − t1 by a bang-bang control which
is a concatenation of at most r(r + 1)m−1 + 1�(r + 1)m

constant controls, and the induction step is complete. �

For m > 1 the bound on the number of switches provided
by Lemma 5 is conservative, as is clear from the proof.
However, all we need is the fact that—in contrast with the
result of [23]—this bound is independent of the final time tf .

4. Proof of Theorem 1

We are now ready to prove the main result stated in the
Introduction. Consider the control system (8). Each vertex
of U corresponds to the closed-loop system ẋ = fi (x) for
some index i between 0 and m. This system is globally

asymptotically stable, hence its solutions satisfy |x(t)|�
�i (|x(0)|, t) for some class KL function �i . Let �̄ :=
max{�i : i = 0, . . . , m} ∈ KL. Let � be the class K
function defined by �(r) := �̄(r, 0).

Consider Problem 1 with arbitrary p and tf < Tmax(|p|).
By Lemmas 2 and 5, there exists a piecewise constant opti-
mal control ũ : [0, tf ] → U that takes values in the vertices
of U and has at most N = (r + 1)m − 1 switches. The inter-
val [0, tf ] is thus divided into at most N +1 subintervals, on
each of which the optimal trajectory x̃ satisfies one of the
equations ẋ = fi (x), i = 0, . . . , m. The length of at least one
of these subintervals is no smaller than tf/(N + 1). Consid-
ering all possible locations of this subinterval relative to the
others, it is straightforward to check that x̃ satisfies

|x̃(tf)|��(|p|, tf), (22)

where

�(r, t) := max{�k(�̄(�l (r), t/(N + 1))):

k, l�0, k + l = N}
is a class KL function. (Here �k denotes the composition
of � with itself k times.)

All the desired conclusions follow from the formula (22).
Since x̃ is an optimal trajectory for Problem 1 which con-
sists in maximizing |x(tf)|2, it is clear that every other so-
lution of (8) with x(0) = p also satisfies |x(tf)|��(|p|, tf).
Note that N, and consequently �, do not depend on p or tf . In
view of the bound �(|p|, tf)��(|p|, 0) and the fact that p and
tf < Tmax(|p|) were arbitrary, we conclude that all solutions
of (8) are bounded and so exist globally in time. Therefore,
tf could be an arbitrary positive number, and all solutions of
(8) satisfy the bound (4). We know from Lemma 1 that the
same is automatically true for the solutions of the differen-
tial inclusion (3), which in turn include all solutions of the
switched system (1). It remains to recall that (4) defines the
stability properties that needed to be established.

Remark 6. It is clear from (21) that L0 is a finite-
dimensional Lie algebra, hence so is L (because dim
L� dim L0 + 1). Hector Sussmann has pointed out to us
that in view of this fact, completeness of the differential
inclusion (3) is guaranteed if the vector fields f0, f1, . . . , fm
which generate L are complete. This means that in fact there
is no need to take tf to be small initially. (Note also that the
special case of piecewise constant switching in (3) is covered
by Palais’ Theorem [18, Chapter IV, Theorem III] which
guarantees completeness of all convex combinations of
f0, f1, . . . , fm.)

Remark 7. The analyticity of the vector fields f0, f1, . . . , fm
was only needed to ensure that the Lie algebras L and L0
have the maximal integral manifold property (see the be-
ginning of Section 3). This property also holds for vec-
tor fields that are only smooth, provided that L(x) and
L0(x) are assumed to be of constant rank on Rn. Thus the

liberzon
Highlight
This is Corollary 5.1 in P. Jouan, "Equivalence of control systems with linear systems on Lie groups and homogeneous spaces", ESAIM: COCV 16 (2010) 956-973
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analyticity hypothesis can be relaxed accordingly. See, e.g,
[9, Chapter 2] for more details on this issue.

Remark 8. In the above proof we applied Lemma 5 to the
optimal trajectory, but this lemma is valid for arbitrary tra-
jectories. Thus optimality of x̃ was not important in the proof
and was used just for concreteness. In other words, we have
established a general reachability result with a bound on the
total number of switches, which includes the desired prop-
erty of optimal trajectories as a special case and, combined
with global asymptotic stability of the individual subsys-
tems, directly implies Theorem 1. (However, the notion of
strong extremality and the maximum principle did play a
crucial role in the construction.)

5. Conclusions

We have formulated the first stability criterion for
switched nonlinear systems (or, more generally, differen-
tial inclusions) that involves Lie brackets of the individual
vector fields but does not require that these vector fields
commute (Theorem 1). As a special case, we have shown
that a switched system generated by two globally asymp-
totically stable nonlinear vector fields whose third-order
Lie brackets vanish is globally uniformly asymptotically
stable (Corollary 1). This represents a nonlinear extension
of an earlier result from [7] and a promising step toward a
solution of the open problem described in [11]. In contrast
with the methods previously used to obtain results of this
kind, our approach relied on reducing the stability analysis
problem to the “worst-case” optimal control problem and
then proving, via the maximum principle, the existence of
an optimal control which is bang-bang with a bound on the
total number of switches.
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