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Abstract— In this paper, we study the property of
input/output-to-state stability (IOSS) for switched nonlinear
systems under average dwell-time switching signals, both when
each of the constituent systems is IOSS as well as when only
some of the constituent systems are IOSS and others are not.
This extends available results on input-to-state stability for
switched nonlinear systems whose constituent systems are all
ISS. We show that if the average dwell-time is big enough and
if the fraction of time where one of the non-IOSS systems is
active is not too big, then IOSS of the switched system can be
established.

I. INTRODUCTION

Switched systems arise in a situation where several dy-
namical subsystems are present together with a switching
signal, i.e. a rule specifying the active subsystem at each
point of time. In recent years, different properties of switched
systems, especially stability issues, were extensively studied
in literature (see e.g. [1] and the references therein). In
general, a switched system does not necessarily inherit the
properties of its subsystems; for example, it is well known
that a switched system consisting of linear exponentially
stable subsystems might become unstable [1]. In [2] it was
shown that such a switched system is exponentially stable if
the switching signal satisfies a certain dwell-time condition.
This approach was generalized to the average dwell-time
concept in [3]. In [4], the authors considered the situation
of a linear switched system consisting of both stable and
unstable subsystems, by imposing a condition on the fraction
of time where those unstable subsystems are active. A
similar idea was used in [5], where stability of switched
systems consisting of a stable and an unstable subsystem was
considered for the case where a common Lyapunov function
exists. For nonlinear randomly switched systems including
unstable subsystems, stochastic stability was established in
[6] under the condition that the probability of activating the
unstable modes is not too high.

When external inputs are present, the concept of input-to-
state stability (ISS), introduced in [7], has proved very useful
when investigating stability properties of continuous-time
nonlinear systems. The dual of this concept, output-to-
state stability (OSS), and the combination of the two,
input/output-to-state stability (IOSS), were established in
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[8] and [9]. Loosely speaking, the IOSS property means
that no matter what the initial state is, if the inputs and
the observed outputs are small, then eventually also the
state of the system will become small. Studied a lot for
continuous-time nonlinear systems, the ISS property has also
been investigated for other classes of systems like switched
systems (see e.g. [10], [11], [12], [13]) and recently also
for impulsive systems [14]. In [10], the authors examine
the ISS property for a deterministic switched system under
a dwell-time switching signal where all of the constituent
subsystems are ISS. This was extended to average dwell
time switching signals in [12]. ISS properties of randomly
switched systems were studied in [13].

In this paper, we give sufficient conditions under which
a deterministic switched nonlinear system with an average
dwell-time switching signal is IOSS, also examining the case
where some of the constituent subsystems are not IOSS. In
fact, the results of the latter case are also new for systems
with no outputs, i.e. if we consider ISS of switched nonlinear
systems where not all of the constituent subsystems are
ISS, which is an extension of the results in [12]. Even for
systems with no inputs we give some novel results, namely
on asymptotic stability for switched nonlinear systems where
not all of the constituent subsystems are asymptotically
stable; this is an extension of the results in [4], where these
issues were considered for switched linear systems.

The paper is structured as follows. In section II, the
notation and definitions we use are introduced. In section
III the main results are stated and proven. Section IV gives
a short summary and an outlook on future work.

II. PRELIMINARIES

Consider a family of systems

ẋ = fp(x, u)
y = hp(x)

p ∈ P (1)

where the state x ∈ Rn, the input u ∈ Rm, the output y ∈ Rl
and P is an index set. For every p ∈ P , fp(·, ·) and hp(·)
are locally Lipschitz and fp(0, 0) = hp(0) = 0. A switched
system

ẋ = fσ(x, u)
y = hσ(x)

(2)

is generated by the family of systems (1) and a switching
signal σ(·), where σ : [0,∞) → P is a piecewise constant,
right continuous function which specifies at each time t the
index of the active system.
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According to [3] we say that a switching signal has
average dwell-time τa if there exist numbers N0, τa > 0
such that

∀T ≥ t ≥ 0 : Nσ(T, t) ≤ N0 +
T − t
τa

, (3)

where Nσ(T, t) is the number of switches occurring in the
interval (t, T ].

Denote the switching times in the interval (0, t] by
τ1, τ2, ..., τNσ(t,0) (by convention, τ0 := 0) and the index
of the system that is active in the interval [τi, τi+1) by pi.

The switched system (2) is input/output-to-state stable
(IOSS) [8] if there exist functions γ1, γ2 ∈ K∞ 1 and
β ∈ KL 2 such that for all x0 ∈ Rn and each input u(·), the
corresponding solution satisfies

|x(t)| ≤ β(|x0|, t) + γ1(‖u‖[0,t]) + γ2(‖y‖[0,t]) (4)

for all t ≥ 0, where ‖ · ‖J denotes the supremum norm on
an interval J .

III. INPUT/OUTPUT-TO-STATE PROPERTIES OF SWITCHED
SYSTEMS

In this section, input/output-to-state stability of switched
nonlinear systems will be examined more closely, both for
the case where all of the constituent subsystems are IOSS
and where only some are IOSS and some are not. In the
following, a Lyapunov-like characterization of the IOSS
property will be given.

A. All subsystems IOSS

Theorem 1: Consider the family of systems (1). Suppose
there exist functions α1, α2, ϕ1, ϕ2 ∈ K∞, continuously
differentiable functions Vp : Rn → R and constants λs > 0,
µ ≥ 1 such that for all x ∈ Rn and all p, q ∈ P we have

α1(|x|) ≤ Vp(x) ≤ α2(|x|) (5)
|x| ≥ ϕ1(|u|) + ϕ2(|hp(x)|)

⇒ ∂Vp
∂x

fp(x, u) ≤ −λsVp(x) (6)

Vp(x) ≤ µVq(x). (7)

If σ is a switching signal with average dwell-time

τa >
lnµ
λs

, (8)

then the switched system (2) is IOSS.

In the following, the assumptions of Theorem 1 will
be discussed shortly. First of all, note that conditions of
the type (5)–(8) are quite common in the literature, when
average dwell-time switching signals are considered. All
subsystems are IOSS if and only if conditions (5) and

1A function α: [0,∞)→ [0,∞) is of class K if α is continuous, strictly
increasing, and α(0) = 0. If α is also unbounded, it is of class K∞.

2A function β: [0,∞) × [0,∞) → [0,∞) is of class KL if β(·, t) is
of class K for each fixed t ≥ 0, and β(r, t) decreases to 0 as t→∞ for
each fixed r ≥ 0.

(6) are satisfied [9]. The function Vp, which is positive
definite (ensured by (5)), is called an exponential decay
IOSS-Lyapunov function for the p-th subsystem [9]. Taking
the right hand side of (6) as some negative multiple of Vp
instead of just some negative definite function Wp is no
loss of generality [15]. The set of possible IOSS-Lyapunov
functions for the subsystems is constrained by (7). For
example, this condition doesn’t hold if Vp is quadratic and
Vq is quartic for some p, q ∈ P . This condition might seem
to be quite restrictive; however, it is quite common in the
literature when dealing with average dwell-time switching
signals, and it is a considerable relaxation to the case where
a common Lyapunov function is required, i.e. where (7) has
to hold for µ = 1 (cf. also Remark 1).

Proof of Theorem 1: Let ν(t) := ϕ1(‖u‖[0,t]) +
ϕ2(‖y‖[0,t]) and ξ(t) := α−1

1 (µN0α2(ν(t))), where N0

comes from (3). Furthermore, define the balls around the
origin Bν(t) := {x | |x| ≤ ν(t)} as well as Bξ(t) :=
{x | |x| ≤ ξ(t)}. Note that ν, and thus also ξ, are non-
decreasing functions of time, and therefore the balls Bν and
Bξ are dynamic sets with non-decreasing volume.

If |x(t)| ≥ ν(t) ≥ ϕ1(|u(t)|) + ϕ2(|y(t)|) during some
time interval t ∈ [t′, t′′], we have that according to (6), in
this time interval it holds that

∂Vpi
∂x

fpi(x(t), u(t)) ≤ −λsVpi(x(t)) (9)

for all pi ∈ P such that [τi, τi+1)∩ [t′, t′′] 6= ∅. Thus, for all
t ∈ [t′, t′′], |x(t)| is bounded above [3] by

|x(t)| ≤ α−1
1 (µN0e−λ(t−t′)α2(|x(t′)|))

:= β(|x(t′)|, t− t′) (10)

for some λ ∈ (0, λs). To see why this is true, consider
the function W (t) := eλstVσ(t)(x(t)). On any interval
[τi, τi+1) ⊆ [t′, t′′], we have according to (9) Ẇ (t) ≤ 0. Us-
ing (7), we arrive at W (τi+1) ≤ µW (τ−i+1) ≤ µW (τi) and
thus, for any t ∈ [t′, t′′], we obtain W (t) ≤ µNσ(t,t′)W (t′)
and therefore

Vσ(t)(x(t)) ≤ eNσ(t,t′) lnµ−λs(t−t′)Vσ(t′)(x(t′))

≤ eN0 lnµe(
lnµ
τa
−λs)(t−t′)Vσ(t′)(x(t′)).(11)

If τa satisfies the condition (8), then Vσ(t)(x(t)) decays
exponentially in the time interval [t′, t′′], namely for every
t ∈ [t′, t′′], it is upper bounded by

Vσ(t)(x(t)) ≤ eN0 lnµe−λ(t−t′)Vσ(t′)(x(t′))

for some λ ∈ (0, λs). Using (5), we arrive at (10).
Denote the first time when x(t) ∈ Bν(t) by ť1, i.e. ť1 :=
min{t ≥ 0 : |x(t)| ≤ ν(t)}. As ν(t) ≥ ν(0) = ϕ1(|u(0)|) +
ϕ2(|y(0)|) for all t ≥ 0, we get according to (10) that

0 ≤ ť1 ≤ max
{

0,− 1
λ

ln(
α1(ϕ1(|u(0)|) + ϕ2(|y0|))

µN0α2(|x0|)
)
}
.

Thus, for 0 ≤ t ≤ ť1 we get

|x(t)| ≤ β(|x0|, t). (12)
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For t > ť1, |x(t)| can be bounded above in terms of ν(t).
Namely, let t̂1 := inf{t > ť1 : |x(t)| > ν(t)}. If this is an
empty set, let t̂1 := ∞. Clearly, for all t ∈ [ť1, t̂1), it holds
that |x(t)| ≤ ν(t). Furthermore, according to (10),

|x(t)| ≤ β(ν(t̂1), t− t̂1)

= α−1
1 (µN0e−λ(t−t̂1)α2(ν(t̂1))) (13)

≤ α−1
1 (µN0α2(ν(t̂1)))

= ξ(t̂1) (14)

for all t ∈ [t̂1, ť2), where ť2 := min{t ≥ t̂1 : |x(t)| ≤ ν(t)}.
Note that ť2 <∞ either due to the decrease of x(t) according
to (13) or due to the increase of ν(t).
Continuing in this way, we define

ťi := min{t ≥ t̂i−1 : |x(t)| ≤ ν(t)}, i = 2, 3, ...
t̂i := inf{t > ťi : |x(t)| > ν(t)}, i = 2, 3, ...

and we obtain the result that for any i, |x(t)| ≤ ν(t) ≤ ξ(t)
if t ∈ [ťi, t̂i) and |x(t)| ≤ ξ(t̂i) if t ∈ [t̂i, ťi+1). Note that
this sequence of intervals is either infinite and all subintervals
are finite, or the sequence is finite and the last subinterval is
infinite.

Thus, as ξ(t) is non-decreasing, |x(t)| cannot leave the
ball Bξ(t) anymore for all t ≥ ť1, i.e. it can be bounded
above by

|x(t)| ≤ ξ(t)

= α−1
1

(
µN0α2

(
ϕ1(‖u‖[0,t]) + ϕ2(‖y‖[0,t])

))
≤ α−1

1

(
µN0α2

(
2ϕ1(‖u‖[0,t]))) +

+α−1
1 (µN0α2(2ϕ2(‖y‖[0,t])

))
=: γ1(‖u‖[0,t]) + γ2(‖y‖[0,t]). (15)

Combining (12) and (15) we arrive at

|x(t)| ≤ β(|x0|, t) + γ1(‖u‖[0,t]) + γ2(‖y‖[0,t])

for all t ≥ 0, which means according to (4) that the switched
system (2) is IOSS. �

Remark 1: If (7) holds for µ = 1, then the condition (8)
which the average dwell-time has to satisfy in order that the
system is IOSS reduces to τa > 0, which means that the
system is IOSS for arbitrarily small dwell time. Actually,
µ = 1 in condition (7) implies the existence of a common
IOSS-Lyapunov function for the switched system (2), and
thus it is in fact IOSS for arbitrary switching (see also [11]).

Remark 2: If no outputs are present in the system,
Theorem 1 includes as a special case the first statement
of Theorem 3.1 in [12], where ISS of switched nonlinear
systems with an average dwell-time switching signal (all
subsystems ISS) is considered. However, the proof of
Theorem 1 is quite different than the proof of Theorem 3.1
in [12].

Remark 3: In the proof of Theorem 1, one major
difference compared to the non-switched case is the
proceeding after the time ť1. Namely, if we denote the
index of the subsystem active at this time by p∗1 and if we
define the level set Ωp(t) := {x | Vp(x) ≤ α2(ν(t))}, then
the solution x(t) couldn’t leave the level set Ωp∗1 (t) again
if no switching occurred for t > ť1, because V̇p∗1 is negative
on its boundary. Thus in this case, we could conclude the
proof by simply noting that |x(t)| ≤ α−1

1 (α2(ν(t))) for all
t > ť1. Due to switching, however, x(t) can leave the level
set Ωp∗1 ,η(t) again and thus we have to proceed with the
proof as shown above.

B. Some subsystems not IOSS

In the following, the result of Theorem 1 will be extended
to the case where not all systems of the family (1) are IOSS,
i.e. (6) doesn’t hold for all p ∈ P , but only for a subset Ps
of P .

Let P = Ps ∪ Pu such that Ps ∩ Pu = ∅. Denote by
Tu(t, τ) the total activation time of the systems in Pu and
by T s(t, τ) the total activation time of the systems in Ps
during the time interval [τ, t), where 0 ≤ τ ≤ t. Clearly,
T s(t, τ) = t− τ − Tu(t, τ).

For the later examinations of the IOSS property for these
kind of systems, the following lemma, where we consider
asymptotic stability of a switched system without inputs
(i.e. a switched system (2) with u ≡ 0), will be helpful.

Lemma 1: Suppose there exist functions α1, α2 ∈ K∞,
continuously differentiable functions Vp : Rn → R and
constants λs, λu > 0, µ ≥ 1 such that (5) and (7) hold for
all x ∈ Rn and all p, q ∈ P and furthermore the following
holds for all x ∈ Rn:

∂Vp
∂x

fp(x, 0) ≤ −λsVp(x) ∀p ∈ Ps (16)

∂Vp
∂x

fp(x, 0) ≤ λuVp(x) ∀p ∈ Pu (17)

If there exist constants τ0, ρ ≥ 0 such that

ρ <
λs

λs + λu
(18)

∀t ≥ 0 : Tu(t, 0) ≤ τ0 + ρt (19)

and if σ(·) is a switching signal with average dwell-time

τa >
lnµ

λs(1− ρ)− λuρ
, (20)

then the switched system (2) is globally asymptotically
stable.

Remark 4: The constant τ0 in (19) can be interpreted as
an initial offset on the activation time Tu of the systems in
Pu, which allows us to start with a system in Pu (if τ0 = 0,
we have to start with a system in Ps in order to be able to
satisfy (19) because ρ < 1).
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Remark 5: The idea to restrict the fraction of time
during which the unstable systems are active was also
used in [4], where asymptotic stability for switched linear
systems, including some unstable systems, was considered.
In [4], an upper bound for this fraction of time is gained
in terms of the maximum eigenvalues of the unstable and
the stable system matrices. In Lemma 1, where switched
nonlinear systems are considered, the maximal instability
margin and minimal stability margin are characterized by
the constants λu and λs, respectively, which give a bound
for the (exponential) growth and decay, respectively, of the
Lyapunov functions Vp. The upper bound for the fraction
of time during which the unstable systems are active (18) -
(19) is given in terms of these constants.

Proof of Lemma 1: Consider the function W (t) :=
eλstVσ(t)(x(t)). On any interval [τi, τi+1) we have according
to (16) and (17)

Ẇ (t) ≤ 0 if pi ∈ Ps
Ẇ (t) ≤ (λs + λu)W (t) if pi ∈ Pu.

Using (7), we thus arrive at

W (τi+1) ≤ µW (τ−i+1) ≤ µW (τi)

if pi ∈ Ps and

W (τi+1) ≤ µW (τ−i+1) ≤ µW (τi)e(λs+λu)(τi+1−τi)

if pi ∈ Pu. Thus, for any t ≥ 0 we obtain

W (t) ≤ µNσ(t,0)W (0)e(λs+λu)Tu(t,0)

and therefore, using (19),

Vσ(t)(x(t)) ≤ eNσ(t,0) lnµ+(λs+λu)Tu(t,0)−λstVσ(0)(x0)

≤ eN0 lnµ+(λs+λu)τ0 ×
× e(

lnµ
τa

+(λs+λu)ρ−λs)tVσ(0)(x0). (21)

We conclude that if ρ and τa satisfy the conditions (18)
and (20) respectively, then Vσ(t)(x(t)) decays exponentially,
namely it is upper bounded by

Vσ(t)(x(t)) ≤ eN0 lnµ+(λs+λu)τ0e−λtVσ(0)(x0)

for some λ ∈ (0, λs − (λs + λu)ρ).
Finally, using (5), we obtain

|x(t)| ≤ α−1
1 (µN0e(λs+λu)τ0e−λtα2(|x0|)) (22)

which proves global asymptotic stability. �

Combining Theorem 1 and Lemma 1, we obtain the
following result concerning input/output-to-state stability
for switched systems including unstable systems:

Theorem 2: Consider the switched system (2). Suppose
there exist functions α1, α2, ϕ1, ϕ2 ∈ K∞, positive definite
functions Vp : Rn → R and constants λs, λu > 0, µ ≥ 1

such that (5) and (7) hold for all x ∈ Rn and all p, q ∈ P
and furthermore, the following holds:

|x| ≥ ϕ1(|u|) + ϕ2(|hp(x)|)

⇒

{
∂Vp
∂x fp(x, u) ≤ −λsVp(x) ∀p ∈ Ps
∂Vp
∂x fp(x, u) ≤ λuVp(x) ∀p ∈ Pu.

(23)

If there exist constants ρ ≥ 0 satisfying (18) and τ0 ≥ 0
such that

∀ t ≥ τ ≥ 0 : Tu(t, τ) ≤ τ0 + ρ(t− τ) (24)

and if σ is a switching signal with average dwell-time τa
satisfying (20), then the switched system (2) is IOSS.

Proof: The proof of Theorem 2 follows the lines of the
proof of Theorem 1. Define ν(t), Bν(t) and the points ťi
and t̂i where the solution enters (respectively, leaves) the
ball Bν(t) as in the proof of Theorem 1. Furthermore, define
ξ(t) := α−1

1 (µN0e(λs+λu)τ0α2(ν(t))).

According to Lemma 1, for 0 ≤ t ≤ ť1 we get

|x(t)| ≤ α−1
1 (µN0e(λs+λu)τ0e−λtα2(|x0|)) := β(|x0|, t) (25)

for some λ ∈ (0, λs − (λs + λu)ρ).

Similarly to Theorem 1, we obtain that for any i ≥ 1,
|x(t)| ≤ ν(t) ≤ ξ(t) if t ∈ [ťi, t̂i) and |x(t)| ≤ ξ(t̂i) if
t ∈ [t̂i, ťi+1).

Thus, as ξ(t) is non-decreasing, we conclude that for all
t ≥ 0

|x(t)| ≤ β(|x0|, t) + ξ(t)
≤ β(|x0|, t) + γ1(‖u‖[0,t]) + γ2(‖y‖[0,t]),

where

γ1(r) := α−1
1 (µN0e(λs+λu)τ0α2(2ϕ1(r)))

γ2(r) := α−1
1 (µN0e(λs+λu)τ0α2(2ϕ2(r))),

which means according to (4) that the switched system (2)
is IOSS. �

Remark 6: Condition (24) is stricter than condition (19),
i.e. we have to impose a stricter condition on the activation
time for the unstable systems in the case where IOSS is
considered than if we just consider asymptotic stability.
Namely, in (19), we just require that for any t ≥ 0 the
amount of time during the interval [0, t) where systems in Pu
are active doesn’t exceed a certain fraction of this interval
(plus an offset τ0), whereas in (24) we require this upper
bound to hold uniformly over any interval [τ, t) with arbitrary
starting point τ ≤ t. This means that in contrast to (19), we
cannot ”save up” activation time for systems in Pu for a
later point in time. This is the case because in the proof of
Theorem 2, in order to be able to apply Lemma 1 in each
time interval t ∈ [t̂i, t∗i+1), i.e. to ensure the decaying of
|x(t)| outside the ball Bν(t), we need that in each of these
intervals, Tu(t, t̂i) ≤ τ0 + ρ(t− t̂i). As the points t̂i may be
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different for each u(·) and σ(·), this results in the condition
(24).

In the case where we consider asymptotic stability (i.e.
systems with u ≡ 0), ”saving up” activation time for systems
in Pu is no problem as this means that systems in Ps have
been active for a longer time before and thus |x| is already
small during the longer activation time of systems in Pu.
Hence also the growth of |x| during this period of time is
small and the switched system is still asymptotically stable.
However, if inputs are present in the switched system, they
might increase |x| both during the periods when systems in
Ps as well as in Pu are active, and thus the growth of |x|
might be large and |x(t)| cannot be bounded in terms of
‖u‖[0,t] and ‖y‖[0,t] anymore if only (19) and not (24) is
satisfied.

Similar considerations apply to the average dwell-time
property. Namely, if we consider systems with no inputs, it
is enough to require that the average dwell time property (3)
is satisfied for an interval starting at the initial time, whereas
in the case where inputs are present the average dwell-time
property (3) has to hold uniformly over any interval [τ, t)
with arbitrary starting point τ ≤ t (see e.g. [1] p.61).

IV. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we studied the IOSS property of switched
nonlinear systems. We showed that if the average dwell time
and the activation time of the non-IOSS subsystems satisfy
appropriate sufficient conditions, IOSS can be established for
the switched system.

An interesting topic in the context of IOSS is the existence
of a state-norm estimator, introduced in [8]. For continuous-
time nonlinear systems, and even more for switched non-
linear systems, reconstructing the state of the system from
the observations of the input and the output is a challenging
task far from being solved completely. For control purposes,
it is often sufficient to gain an estimate of the magnitude,
i.e. the norm, of the state ([8], [9]). It was shown in [9]
that for continuous-time nonlinear systems, the existence of
a state-norm estimator is equivalent to the system being
IOSS. For switched systems, state-norm estimators have
been considered in [16] for the case where a common
Lyapunov function exists. Introducing the concept of state-
norm estimators to switched systems with average dwell-time
and examining its relation to the IOSS property is a topic of
our current research.
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