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Abstract— A formal method based technique is presented
for proving the average dwell time property of a hybrid system,
which is useful for establishing stability under slow switching.
The Hybrid Input/Output Automaton (HIOA) of [12] is used
as the model for hybrid systems, and it is shown that some
known stability theorems from system theory can be adapted
to be applied in this framework. The average dwell time
property of a given automaton is formalized as an invariant
of a corresponding transformed automaton, such that the
former has average dwell time if and only if the latter
satisfies the invariant. Formal verification techniques can be
used to check this invariance property. In particular, the
HIOA framework facilitates inductive invariant proofs by
systematically breaking them down into cases for the discrete
actions and continuous trajectories of the automaton. The
invariant approach to proving the average dwell time property
is illustrated by analyzing the hysteresis switching logic unit
of a supervisory control system.

Index Terms— Average dwell time, Hybrid systems, Hybrid
I/O automaton, Hysteresis Switching, Invariant, Stability.

I. INTRODUCTION

Systems with both discrete and continuous dynamics are
called hybrid systems. Computer scientists have concen-
trated on verification of hybrid systems, and have developed
a wide range of techniques for proving safety proper-
ties, from model checking (see, e.g., [1] and [7]) which
is automatic but limited to moderate sized linear hybrid
systems, to interactive theorem proving [2], [6], which is
applicable to larger and more complicated hybrid systems.
Control theorists, on the other hand, have viewed hybrid
systems as switched systems or as dynamical systems with
special boolean variables, and have addressed stability, con-
trollability, and controller synthesis of such systems [18],
[10]. The differences in these approaches espoused different
terminologies and mathematical models, which has led to
a lack of interaction between the two communities and
isolated developments.

A platform bridging the gap by allowing computer sci-
entists and control theorists to apply their techniques in
the same modeling framework is desirable. To this end,
we introduce the Hybrid Input/Output Automaton (HIOA)
of [12] to the Control Systems community. HIOA is a math-
ematical model for developing compositional specifications
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for a very general class of hybrid systems and it subsumes
the class of untimed and timed distributed systems. Hybrid
behavior is modeled as an alternating sequence of actions
and trajectories; the actions correspond to discrete state
transitions and the trajectories capture continuous evolution
of the state variables of an automaton. Owing to this
structure, safety properties which are also invariants of
HIOA, can be proved inductively by a systematic case
analysis of the automaton’s actions and trajectories. Most
of the prior work with HIOA focused on verifying safety
of hybrid systems (see, e.g., [16], [11]).

In this paper we demonstrate how formal methods and
the HIOA framework can be useful for proving invariants
arising in stability analysis of hybrid systems. First, we
show the straightforward adaptation of some known stability
theorems from system theory to the HIOA framework.
Then, we show that the task of proving the average dwell
time property [9] which is used to prove stability of
hybrid systems under slow switching, can be reduced to
checking a set of invariants. We have chosen the average
dwell time property to demonstrate the invariant approach
because it decouples the problem of finding the Lyapunov
functions (which we assume are given), from the problem
of checking that all the executions of the HIOA satisfy
certain properties. In general, properties of the executions of
an automaton are harder to prove than invariant properties
which are properties of the state. We transform the given
HIOA A to a new HIOA A′ and find a condition I on the
states of A′, such that A satisfies the average dwell time
property if and only if I is an invariant of A′. This enables
us to prove the average dwell time property by checking I
with a suitable formal verification technique. We illustrate
our approach by analyzing the stability of the hysteresis
switching logic unit in a supervisory control system. In
this case study we have proved the invariants by hand;
however, our long term goal is to develop an integrated
system which uses automatic theorem provers to efficiently
verify the invariants arising in stability analysis of hybrid
systems.

The rest of this paper is organized as follows: In Sec-
tion II we describe the HIOA model, in Section III we define
the various notions of stability and restate some known
stability theorems in the HIOA framework. In Section IV
we formalize the average dwell time property as a set of
invariants. In Section V we present the analysis of the
hysteresis switching unit of a supervisory control and we
conclude in Section VI with a note on future research
directions. Owing to space limitations, some of the theorems
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and invariants are stated without proof in this paper. Details
can be found in the extended version of the paper [15].

II. MATHEMATICAL PRELIMINARIES

The hybrid I/O automaton framework of [12] evolved
from the generalization of the timed I/O automaton
model [13] for real time distributed systems. A hybrid
I/O automaton models hybrid behavior in terms of discrete
transitions and continuous evolution of its state variables.
Let V be the set of variables of automaton A. Each v ∈ V
is associated with a (static) type which is the set of values v
can assume. A valuation v for V is a function that associates
each variable v ∈ V to a value in type(v). The set of all
valuations of V is denoted by val(V ). A restriction of v to
a subset of variables S ⊂ V will be denoted by v.S.

A trajectory τ of V is a mapping τ : J → val(V ), where
J is a left closed interval of time. The domain of τ is the
interval J and is denoted by τ.dom. The first time of τ is
the infimum of τ.dom, also written as τ.ftime. If τ.dom
is right closed then τ is closed and its limit time is the
supremum of τ.dom, also written as τ.ltime.

Each variable v ∈ V is also associated with a dynamic
type (or dtype) which is the set of trajectories that v may
follow. Dynamic type dtype(v) of a continuous (discrete)
variable v is the pasting closure of continuous (constant)
functions from left closed intervals of time to type(v).

A. HIOA Model

A hybrid I/O automaton A consists of :

1) A set V of variables, partitioned into internal X , input
U , and output variables Y . The internal variables are
also called state variables. The set W = U ∪Y is the
set of external variables. And, the set Z

∆= X ∪ Y is
called the set of locally controlled or local variables.

2) A set A of actions , partitioned into internal H , input
I , and output actions O.

3) A set of states Q ⊆ val(X) ,
4) A non-empty set of start states Θ ⊆ Q,
5) A set of discrete transitions D ⊆ Q × A × Q.

A transition (x, a,x′) ∈ D is written in short as
x a→A x′. The subscript is sometimes omitted and
written as x a→ x′ when the automaton A is clear
from the context.

6) A set of trajectories T for V , such that for ev-
ery trajectory τ in T , and for every t ∈ τ.dom,
τ(t).X ∈ Q and T is closed under prefix, suffix,
and concatenation. The first state τ(0).X of trajec-
tory is denoted by τ.fstate. If τ.dom is finite then
τ.lstate = τ(τ.ltime).X .

Further, A is: (1) input action enabled, that is, it cannot
block input actions, and (2) input trajectory enabled, that
is, it accepts any trajectory of the input variables either
by allowing time to progress for the entire length of the
trajectory or by reacting with some internal action before
that. As HIOA imposes few natural restrictions on its
trajectories, it is capable of modeling a large class of

hybrid systems. In particular it subsumes the class of hybrid
automata used in [1].

For this paper we add the following extra assumptions
to the HIOA model of [12]: (1) all variables are either
discrete or continuous. For a set of variables S, we denote
its discrete and continuous subsets by Sd and Sc, and the
corresponding state vectors by sd and sc. And, (2) discrete
transitions do not change the valuation of the continuous
variables, that is, if x a→ x′, then x.xc = x′.xc. These
assumptions are made for simplicity and bring our model
closer to the model of switched systems considered in [10].

B. Executions and Invariants

An execution fragment of A is a (possibly infinite)
sequence of actions and trajectories α = τ0, a1, τ1, a2 . . .,
where each τi ∈ T , ai ∈ A, and if τi is not the last trajectory
in α then τi is finite and τi.lstate

ai+1→ τi+1.fstate. For an
execution fragment α, the first state α.fstate = τ0.fstate,
likewise α.ftime = τ0.ftime. An execution fragment is
closed if it is a finite sequence and the domain of the
final trajectory is a finite closed interval. The length of
a closed execution fragment is the number of elements
(actions and trajectories) in the sequence and its limit time
α.ltime is τn.ltime, where τn is the last trajectory of α.
The duration of a closed execution fragment is its length in
time and is defined as α.dur =

∑n
i=0(τi.ltime−τi.ftime).

We denote the valuation of the continuous variables Xc

at time t, α.ftime ≤ t ≤ α.ltime, in the execution
fragment α by α(t). Note that α(t) is uniquely determined
because the discrete actions do not alter the valuation of
the continuous variables. An execution fragment α is an
execution if α.fstate ∈ Θ. A state of A is reachable if
it is the last state of some closed execution. An execution
fragment α is reachable if α.fstate is reachable.

An invariant property of A is a condition on V that
remains true in all reachable states of A. The structure of
HIOA allows systematic proof of invariants. An invariant
I is either derived from other invariants or proved by
induction on the length of a closed execution of A as
follows:

1) base step: I(s) is true for all s ∈ Θ,
2) induction step: (a) discrete part: for every discrete

transition s
π→ s′, I(s) implies I(s′), and (b) con-

tinuous part: for any closed trajectory τ ∈ T , with
τ.fstate = s and τ.lstate = s′, I(s) implies I(s′).

This structure is particularly helpful in organizing large,
complex proofs and for automating invariant proofs in a
theorem prover.

III. STABILITY THEOREMS IN HIOA FRAMEWORK

In this section we define what it means for a HIOA A
to be stable. Here and in the following section, we are
concerned with hybrid systems with no continuous inputs,
and we assume that there exists a family of sufficiently
regular (locally Lipschitz) functions fp : Rn → Rn, p ∈ P ,
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such that every trajectory of A satisfies ẋc = fp(xc) for
some p ∈ P , where P is a finite index set.

A. Stability Definitions

Let us assume that all the subsystems of A have the origin
as their common equilibrium point, that is, fp(0) = 0 for all
p ∈ P . The origin is a stable equilibrium point of a HIOA
A, in the sense of Lyapunov, if for every ε > 0, there exists
a δ > 0, such that for every execution α of A, we have

|α(0)| ≤ δ ⇒ |α(t)| ≤ ε ∀t 0 ≤ t ≤ α.ltime, (1)

and we say that A is stable. A HIOA A is asymptotically
stable if it is stable and δ can be chosen so that

|α(0)| ≤ δ ⇒ α(t) → 0 as t → ∞ (2)

If the above condition holds for all δ then A is globally
asymptotically stable.

Uniform stability is a concept which guarantees that the
stability property in question holds, not just for executions,
but for any execution fragment. Therefore, A is uniformly
stable in the sense of Lyapunov, if for every ε > 0 there
exists a constant δ > 0, such that for any execution
fragment α,

|α(t0)| ≤ δ ⇒ |α(t)| ≤ ε,∀t0, t, 0 ≤ t0 ≤ t ≤ α.ltime

A HIOA A is said to be uniformly asymptotically stable if
it is uniformly stable and there exists a δ > 0, such that for
every ε > 0 there exists a T , such that for any execution
fragment α,

|α(t0)| ≤ δ ⇒ |α(t)| ≤ ε, ∀t ≥ t0 + T (3)

It is said to be globally uniformly asymptotically stable if
the above holds for all δ, with T = T (δ, ε).

All the above stability properties are by definition uni-
form over executions. We will also make use of the fol-
lowing weaker notion of stability: a given execution is
stable (uniformly stable, asymptotically stable, etc.) if the
corresponding property is satisfied for this execution.

B. Common Lyapunov Function

The basic tool for studying uniform stability of hybrid
systems relies on the existence of a single Lyapunov
function whose derivative along the trajectories of all the
subsystems in P satisfies the suitable inequalities.

Definition 1. Given a positive definite continuously differ-
entiable function V : Rn → Rn, we say that it is a common
Lyapunov function for a HIOA A if there exists a positive
definite continuous function W : Rn → Rn, such that we
have

∂V

∂xc
fp(xc) ≤ −W (xc) ∀xc, ∀p ∈ P (4)

Theorem 1. If a HIOA A has a radially unbounded
common Lyapunov function then A is globally uniformly
asymptotically stable.

C. Multiple Lyapunov Functions

In the absence of a common Lyapunov function for all
the subsystems in P , the stability of HIOA in general
depends on the choice of an execution. Multiple Lyapunov
functions [3] is an useful tool for proving stability of a
chosen execution. In this case, each subsystem p ∈ P is
associated with a Lyapunov function Vp, and one attempts
to prove the stability of the execution using the contin-
uous decay of the Vp’s and the switching logic between
the subsystems. In control theory literature [10], [9] the
switches between the subsystems p ∈ P are defined in
terms of a “switching signal” which is a piece-wise constant
function σ : [0,∞) → P . In the HIOA model the switches
are defined by the discrete transitions of the automaton, so
we define the notion of switching times as follows:

Let M : T → P be a function that gives the index p
of the function fp, which is active over the trajectory τ .
Whenever a discrete action ai occurs such that M(τi−1) �=
M(τi), the HIOA A is said to undergo a switch.

Definition 2. For any execution fragment α = τ0a1τ1 . . .,
an instant of time t ∈ α.dom is called a switching time
if there exists i such that t = τi.ltime, and M(τi) �=
M(τi+1).

Theorem 2. Let Vp be a radially unbounded Lyapunov
function corresponding to the globally asymptotically stable
system ẋ = fp(x) for each p ∈ P . An execution α
of a HIOA A is globally asymptotically stable if there
exists a family of positive definite continuous functions
Wp, p ∈ P such that, for every pair of switching times
t, t′ in α, and the corresponding trajectories τi, τj , if
M(τi) = M(τj) = p and M(τk) �= p,∀k, i < k < j then
Vp(τj(t′)) − Vp(τi(t)) ≤ −Wp(τi(t)).

D. Stability Under Slow Switching

It is well known that a switched system is stable if
all the individual subsystems are stable and the switching
is sufficiently slow, so as to allow the dissipation of the
transient effects after each switch. The dwell time [17] and
the average dwell time [9] criteria define restricted classes
of switching signals, based on switching speeds, and one
can conclude the stability of a system with respect to these
restricted classes.

Definition 3. Let t1, t2, . . . be the switching times of an
execution fragment α of a HIOA A. The execution fragment
α has a dwell time τd > 0 if it satisfies the inequality
ti+1−ti ≥ τd, for all i. If all reachable execution fragments
of A have dwell times ≥ τd then A has a dwell time τd.

Definition 4. Let N(α) denote the number of switches
over an execution fragment α of a HIOA A. The execution
fragment has an average dwell time τa > 0 if there exists
a positive number N0 such that:

N(α) ≤ N0 +
α.dur

τa
. (5)
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If all reachable execution fragments of A have average
dwell times ≥ τa with a fixed N0 then A has an average
dwell time τa.

The following theorem, adapted to the HIOA framework
from the results in [9], uses the concept of average dwell
time to give a sufficient condition for stability. Since dwell
time is a special case of average dwell time with N0 = 1,
a separate theorem for dwell time is not necessary.

Theorem 3. Consider a HIOA A with its trajectories
specified by a family of functions fp, p ∈ P . Suppose there
exist positive definite, radially unbounded, and continuously
differentiable functions Vp : Rn → Rn, for each p ∈ P , and
positive numbers λ0 and µ such that:

∂Vp

∂xc
fp(xc) ≤ −λ0Vp(xc), ∀xc, ∀p ∈ P (6)

Vp(xc) ≤ µVq(xc), ∀xc, ∀p, q ∈ P. (7)

Then A is globally uniformly asymptotically stable if it has
an average dwell time τa > log µ

2λ0
.

Theorem 3 roughly states that a hybrid system is uni-
formly stable if the discrete switches are between modes
which are individually stable, provided that the switches
do not occur too frequently on the average. This stability
condition effectively allows us to decouple the construc-
tion of Lyapunov functions—one for each p ∈ P , which
we assume are known from available methods of system
theory—from the problem of checking that every execution
of the automaton satisfies Equation (5).

IV. AVERAGE DWELL TIME: INVARIANT APPROACH

In general, it is harder to prove properties of executions
of automata than it is to prove invariants, which are prop-
erties of state. Several formal verification techniques have
been developed expressly for checking invariants of hybrid
automata (see [1], [7], [6], and Chapters 5 and 6 of [18]).
So, once we have translated the average dwell time property
to a set of invariant properties, we can appeal to the suitable
formal verification tool for checking the invariants.

A. Transformation for Stability Verification

We transform the given HIOA A to a new HIOA A′ as
follows: In addition to all the variables of A, automaton A′

has two new internal variables: a counter Q and a timer
t, both initialized 0. The counter Q counts the number of
mode switches, and the timer reduces the count by 1 in
every τa time. For every discrete transition s

a→A s′ of A,
automaton A′ has a corresponding transition s

a→A′ s′, such
that s′.Q = s.Q+1. In addition A′ has internal action which
occurs every τa time and decrements Q by one. Finally,
for every trajectory τ ′ of A′, the restriction of τ on the
set of continuous variables of A is a trajectory of A, i.e.,
τ ′ ↓ Zc ∈ TA, and ṫ = 1.

Lemma 1. All closed executions of A satisfy Equation (5)
if and only if Q ≤ N0 in all reachable states of A′.

Proof. Since α is a closed execution of A, we can replace
α.dur in Equation (5) with α.ltime. For the “if” part,
consider a closed execution α of A and let α′ be the
“corresponding” execution of A′. Let s′ be the last state
of α, therefore from the invariant we know that s′.Q ≤ N0.
From construction of A′ we know that, N(α) = N(α′)
and α′.ltime = α.ltime and therefore s′.Q = N(α′) −
α′.ltime

τa
�. It follows that N(α) − α.ltime

τa
≤ N0.

For the “only if” part, consider a reachable state s′ of A′.
There exists an execution α′ such that s′ is the last state of
α′. Let α be an execution of A “corresponding” to α′. Since
N(α) ≤ N0 + α.time

τa
� implies N(α′) ≤ N0 + α′.ltime

τa
�,

it follows that s′.Q ≤ N0.

Theorem 4. All executions of A satisfy Equation (5) if and
only if Q ≤ N0 in all reachable states of A′.

Proof. We only have to show that if any execution α of
A violates (5), then there exists a closed execution α′ of
A that violates (5) as well. If α is infinite, then there is a
closed prefix of α that violates (5). If α is finite and open,
then the closed prefix of α excluding the last trajectory of
α violates (5).

In (5), the number N0 can be arbitrary. Thus to show that
a given τa is an average dwell time of an execution, we
need to show that Q is bounded, while to show that it is an
average dwell time of an automaton, we need to show that
Q is bounded uniformly over all executions.

B. Transformation for Uniform Stability Verification

The above transformation is acceptable for asymptotic
stability, but it allows Q to become negative, and then
rapidly return to zero, so it does not guarantee uniform sta-
bility. For uniform stability we want all reachable execution
fragments of A to satisfy (5).

Consider any reachable execution fragment α of A, with
α.ftime = t1, and α.ltime = t2. Let N(t2, t1) and
Q(t2, t1) denote the number of switches and the number
of “extra” switches over α with respect to dwell time τa,
that is, Q(t2, t1) = N(t2, t1) − (t2 − t1)/τa. Thus, every
reachable execution fragment α of A satisfies (5), if

N(t, t0) = Q(t, 0) +
t

τa
− Q(t0, 0) − t0

τa
≤ N0 +

t − t0
τa

or,
Q(t, t0) ≤ N0,

where t0 = α.ftime, and t = α.ltime. So, we introduce
an additional variable Qmin which stores the magnitude
of the smallest value ever attained by Q. Then, for uniform
stability we need to show that the total change in Q between
any two reachable states is bounded by N0.

Theorem 5. All reachable execution fragments of A satisfy
Equation (5), if and only if Q−Qmin ≤ N0 in all reachable
states of A′.
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V. HYSTERESIS SWITCHING

In this section the invariant based technique is applied to
a hysteresis switching logic unit which is a subsystem of
an adaptive supervisory control system taken from [8] (also
Chapter 6 of [10]). Our goal is to prove the average dwell
time property of this switching logic, which guarantees
stability of the overall supervisory control system (see the
above references for details).

An adaptive supervisory controller consists of a family
of candidate controllers up, p ∈ P , which correspond to
the parametric uncertainty range of the plant in a suitable
way. Such a controller structure is particularly useful when
the parametric uncertainty is so large that robust control
design tools are not applicable. The controller operates in
conjunction with a set of on-line estimators that provide
monitoring signals µp, p ∈ P; intuitively, smallness of µp

indicates high likelihood that p is the actual parameter value.
Based on these signals, the switching logic unit generates,
at each instant of time t, the index σ(t) of the controller to
be applied to the plant.

In building the HIOA model, we take as inputs the
monitoring signals µp and focus on the switching logic unit
which implements scale independent hysteresis switching as
follows: at an instant of time when controller r is operating,
that is, σ = r for some r ∈ P , if there exists a p ∈ P such
that µp(1 + h) ≤ µr for some fixed hysteresis constant h,
then the switching logic sets σ = p and applies output of
controller p to the plant. Below we describe and analyze
the HIOA representing this switching logic unit, which we
call HysteresisSwitch automaton.

We consider a finite set of continuous, monotonically
nondecreasing monitoring signals µp, p ∈ P satisfying:

µp(0) ≥ C0 (8)

µp∗(t) ≤ C1 + C2e
2λt, for some p∗ ∈ P (9)

where C0, C1 and C2 are positive constants. Equation (8)
sets a lower bound on the initial values of all the monitoring
signals, and Equation (9) states that there exists some p∗ ∈
P for which the corresponding monitoring signal satisfies
the exponential upper bound.

A. HIOA Specification

The hysteresis switch is specified as a HIOA (Figure 1) in
the style described in [16]. The variables of the automaton
are declared and initialized in the variables section; each
variable’s name is followed by its type and its initial value.
The analog keyword preceding a variable name indicates
that it is a continuous variable. The input variables µp,
p ∈ P model the monitoring signals that are inputs to
the switch. The discrete switching signal σ is an output
variable because it is visible to the outside word; remaining
variables are internal to the automaton. The variables c
and d count the number of switches and the number of τa

periods elapsed. Variable µi
p stores the values of µp at the

instant when σ became equal to p for the ith time; initially
µ0

p = µp, for all p ∈ P , µ1
p = µp, for p = σ, and the rest

of the µi
ps are set to a null value ⊥. The variable cp counts

the number of intervals in which σ equaled p; and tp is a
reset timer measuring the length of the last such interval.

The discrete transitions section defines the two actions
of the automaton, namely dequeue and switchp, p ∈ P . An
action is enabled or in other words, it can occur when the
condition following the precondition keyword is true. The
change in the state variables when the action does occur is
described by the effect part of the transition definition.

The trajectories section defines the evolution of the
continuous variables in terms of the differential and al-
gebraic equations. The d(.) in the evolve section stands
for derivative. The stopping condition, in this automaton,
is the disjunction of the action preconditions, so it forces
the actions to occur whenever they are enabled.

B. Invariant Properties

In this section we state a sequence of invariants which
lead to the target average dwell time property of the
HysteresisSwitch automaton. As a representative in-
variant proof in the HIOA framework we present the proof
of Invariant 2. The proofs of the other invariants are omitted
owing to space constraints and can be found in the longer
online version of the paper [15]. The first three invariants
lead to give a lower bound on the change in the history
variables (µi

p’s) necessary to perform a certain number of
switches. And we already have an upper bound on the rate
of growth of the monitoring signals from Equations (8)
and (9). Putting these two pieces together in Invariant 5,
and using Theorem 4 we derive the average dwell time
property.

Invariant 1. Q ≤ c − now
τa

+ 1.

Invariant 2. ∀q ∈ P ,
(1) σ = q ⇒ ∀ p ∈ P, µq ≤ (1 + h)µp,

(2) σ = q ∧ cq > 0 ∧ tq = 0 ⇒ ∀ p ∈ P, µq ≤ µp.

Proof. Part(1): Initial states satisfy. For the induction step
we need to consider only discrete transitions s

a→ s′, where
a = switchq. Let s.σ = r, we know that s′.σ = q. By
inductive hypothesis s.µr ≤ (1 + h)s.µp, for all p ∈ P . By
precondition of switchq, (1+h)s.µq ≤ s.µr. By continuity
of µp’s (1+h)s′.µq ≤ s′.µr ≤ (1+h)s′.µp, for all p ∈ P .

From the above it follows that s′.µq ≤ (1 + h)s′.µp, for
all p ∈ P . The stopping condition of activity flow ensures
that the invariant is preserved over all trajectories.

Part(2) : Initial states satisfy the invariant because q =
arg minp∈Pµp. For the induction step, consider a discrete
transition s

a→ s′, where a = switchq. Let s.σ = r, we
know that s′.σ = q. From Part (1), s.µr ≤ (1 + h)s.µp, for
all p ∈ P . By precondition of switchq, (1+h)s.µq ≤ s.µr,
and by continuity of µp’s, s′.µq ≤ s′.µp, for all p ∈ P .

We note that the dequeue actions do not alter any of
the variables involved in the invariant. Now, consider any
trajectory τ . If τ is a point trajectory, then the invariant
holds. If τ is not a point trajectory, then the invariant holds
vacuously because τ.lstate.tq �= 0.
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hybridautomaton HysteresisSwitch(h:PosReal, P :IndexSet)

variables
input analog µp : Real, for each p ∈ P ,

output σ : P , initially σ = arg minp∈P µp,

internal analog now : Real, initially 0,

internal c, d : Int, initially 0,

internal µi
p : Real ∪ {⊥}, for p ∈ P and i ∈ {0, 1, 2, . . .},

initially µ0
p = µp, µ1

σ = µσ , otherwise µi
p = ⊥,

internal cp : Int, initially 0, for p �= σ, and cσ := 1

internal tp : Real, initially 0, for each p ∈ P ,

derived variables m : Int = |P|, Q : Int = c − d

discrete transitions
switchp for each p ∈ P
precondition (1 + h)µp ≤ µσ

effect σ := p; c := c + 1;

cp := cp + 1; µ
cp
p := µp; tp := 0

dequeue

precondition now = kτa

effect d := d + 1

trajectory definitions
evolve d(now) := 1 ; d(tp) := 1

stop at (∃p, (1 + h)µp ≤ µσ) ∨ (now = kτa)

Fig. 1. HIOA specification of the hysteresis switching logic in the supervisory controller

Invariant 3. ∀ q ∈ P , cq ≥ 2 ⇒ µ
cq
q ≥ (1 + h)µ

cq−1
q .

Invariant 4. ∃ q ∈ P such that cq ≥ � c−1
m

	.

Invariant 5. If we set τa to log(1+h)
2λm

then,

Q ≤ 2 + m +
m

log(1 + h)
log

(
C1 + C2

C0

)

Theorem 6. The HysteresisSwitch automaton has an
average dwell time of at least log(1+h)

2λm .

To ensure stability of the overall supervisory control
system, the parameters h and λ must be such that this
average dwell time satisfies the inequality of Theorem 3.

VI. REMARKS AND FUTURE WORK

We have introduced the hybrid I/O automaton framework
as a modeling platform in which analysis techniques from
both computer science and control theory can be applied.
To demonstrate its utility and expressive power, we have
shown how known stability theorems from system theory
literature can be adapted and applied in this framework.
Then, we formalized the average dwell time property of
hybrid systems as a set of invariants, thereby making it
possible to prove (uniform) stability of hybrid systems under
slow switching using formal verification techniques. The
suggested method has been illustrated by analyzing the
stability of a hysteresis switching logic unit in a supervisory
control system.

In this paper we examined internal stability only; how-
ever, the explicit external variables of HIOA make the
framework suitable for studying input-output properties of
hybrid systems as well. Secondly, the hand-proofs of invari-
ants can be partially-mechanized with theorem provers, as
shown in [2], [14]. Another direction of future research is
to extend these techniques to stochastic hybrid systems, by
combining the probabilistic IOA model of [5] with stability
results for stochastic switched systems from [4].
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