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Abstract

This note examines stability properties of systems that
result from switching among globally asymptotically
stable nonlinear systems in triangular form. We show
by means of a counterexample that, unlike in the lin-
ear case, such a switched system might not be globally
asymptotically stable, uniformly over all switching sig-
nals. We then formulate conditions that guarantee this
uniform global asymptotic stability property.

1 Introduction

In this note we study systems that result from switch-
ing among a given family of asymptotically stable sys-
tems. Simple examples show that switching might have
a destabilizing effect. A lot of research has recently
been devoted to the problem of finding conditions un-
der which a switched system remains asymptotically
stable under arbitrary switching. Many references on
this subject are listed in the survey article [7].

To formalize the notion of a switched system, suppose
that we are given a family of systems

&= fp(x)a

where f,, p € P is a family of sufficiently regular (e.g.,
smooth) vector fields in R™, parameterized by some in-
dex set P. The switched system is then defined by

z :fa(;[;) (2)

peEP (1)

where ¢ : [0,00) — P is a piecewise constant function
of time, called a switching signal. We assume that the
state of (2) does not jump at the switching instants,
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i.e., the solution z(-) is everywhere continuous. The
case of infinitely fast switching (chattering), which calls
for a concept of generalized solution, is not considered
here. Everything that follows can also be applied to the
time-varying system & = f,(z) with o not necessarily
piecewise constant.

In the particular case when all the individual subsys-
tems are linear, we obtain a switched linear system

= A,z (3)

A question that has attracted considerable attention
in the literature is the following one: when is the sys-
tem (3) globally exponentially stable, uniformly over
the set of all switching signals ¢? In other words, under
what circumstances do there exist positive constants ¢
and A such that the solution of (3) for every initial state
z(0) and every switching signal o satisfies the estimate
|z(t)] < ce *|z(0)| Vt > 07 (It was shown in [2] that
this is actually equivalent to the seemingly weaker prop-
erty that (3) is asymptotically stable for every switching
signal.) To ensure this property, it is not sufficient to
require that all the individual matrices A,, p € P be
Hurwitz; some additional structure on these matrices
must be imposed.

It is not hard to show that the switched linear system
(3) is asymptotically stable for arbitrary switching if the
set of Hurwitz matrices {4, : p € P} is compact (with
respect to the usual topology in R**™) and each matrix
in this set takes the upper-triangular form

(Ap)ll (AP)12 (Ap)ln
A 22 Ap 2n

| O W ()
0 0 (A

(this observation was made, e.g., in [10, 11, 6]). In-
deed, the evolution of the last component of the state
vector z of the switched linear system is described by
En = (Ao)nn®n. Since {A, : p € P} is a compact
set of Hurwitz matrices, there exists a number ¢ > 0



such that (4,)nn < —e for each p € P. This implies
that z,(t) decays to zero exponentially. Next, consider
Tp_1 = (Ag)n_l,n_l.’L'n_1 + (.Ao')n_lynxn- By virtue
of the same argument as before, this equation can be
viewed as an exponentially stable scalar linear system,
forced by an exponentially decaying input ,(¢). There-
fore, z,—1 (t) also decays to zero exponentially. Contin-
uing this analysis, one proves that the switched system
is exponentially stable, uniformly over all switching sig-
nals. Alternatively, the same result can be deduced
from the fact that in the present case all the systems in
the family & = A,z, p € P share a common quadratic
Lyapunov function V(z) = z” Dz, where D is a suit-
ably chosen diagonal matrix (see [6] for details).

The goal of this paper is to investigate to what ex-
tent the above reasoning applies to nonlinear switched
systems. Throughout the paper we make the following
assumptions regarding the family of systems (1):

A1 The origin is a globally asymptotically stable equi-
librium for all the systems in the family (1).

A2 For each p € P, the vector field f, takes the upper-
triangular form

fpl(xtha s ;wn)
fp(x) — fp2 (xg-, ‘. ‘. .y .’L'n)
fon(@n)

A3 The index set P is a compact subset of some topo-
logical space.

A4 The map p — fp(z) is continuous for each 2 € R™.

(The last two assumptions are trivially satisfied if P is
a finite set.)

If the linearization matrices %ﬁz) (0) are all Hurwitz

and %L;(m) depends continuously on p, then the lin-
earized systems have a common quadratic Lyapunov
function by virtue of the result mentioned above. It
follows that in this case the original nonlinear switched
system (2) is locally exponentially stable, uniformly
over o (this is a fairly straightforward consequence of
Lyapunov’s 1st method; cf. [6, Corollary 5]). However,
in this paper we are concerned primarily with global
stability properties of the switched system (2). Work-
ing with the nonlinear vector fields directly, one gains
an advantage even if only local stability conditions are
sought, because the linearization matrices may fail to
be Hurwitz.

In Section 2 we show, by means of a counterexam-
ple, that for nonlinear systems the triangular structure
alone does not guarantee global asymptotic stability of
the switched system, uniform over the set of all switch-
ing signals. Thus, in order to ensure this uniform global

asymptotic stability property, one must impose some
additional conditions. One set of such conditions is
proposed in Section 3. They ensure, loosely speaking,
that each component of the state vector stays small if
the subsequent components are small. We address the
question of how these conditions can be verified, and
give a construction of a common Lyapunov function.
We also discuss a generalization to block-triangular sys-
tems. Section 4 contains some concluding remarks.

2 A counterexample

We first recall some standard terminology and neces-
sary definitions. A function a : [0,00) — [0,00) is
said to be of class K if it is continuous, strictly in-
creasing, and a(0) = 0. If in addition a(r) — oo as
r — 00, then it is said to be of class K. A function
B : [0,00) x [0,00) = [0,00) is said to be of class KL
if B(-,t) is of class K for each fixed t > 0 and S(r,t)
decreases to 0 as t — oo for each fixed r > 0.

We will say that the switched system (2) is uniformly
globally asymptotically stable (with respect to o taking
values in P) if for each pair of positive numbers ¢, R
there exist positive numbers ¢ and 7" such that for every
switching signal o the solution of (2) exists globally and
satisfies |z(t)| < e V¢t > 0 whenever |z(0)| < & (uniform
stability) and |z(t)| < € V¢t > T whenever |2(0)| < R
(uniform attraction). This is equivalent to the existence
of a class KL function  with the property that for
every initial state 2(0) and every switching signal o the
solution of (2) satisfies

[z(t)] < B(|=(0)],1)

(see, e.g., Proposition 2.5 in [8]). An equivalent char-
acterization of the uniform global asymptotic stabil-
ity property is the existence of a common Lyapunov
function for all the systems in the family (1), i.e., a
positive definite radially unbounded smooth function
V : R® — R such that the inequality

VV (2)fp(z) < —allz])

Vt>0

Vp € P

holds for some positive definite function «; we can actu-
ally assume, without loss of generality, that a € K [8].

One might be tempted to conjecture, on the basis of
the result reviewed in the Introduction, that Assump-
tions A1-A4 guarantee uniform global asymptotic sta-
bility of the switched system (2). We now provide a
counterexample showing that this is not true. Take
P = {1, 2}, and consider the following vector fields:

filz) = (_ml + ZSin2($1)$%$2>

—Io

fa(z) = (_ml +2 0052(331)93%302)

—Io



To see that the system & = f;(z) is globally asymp-
totically stable, take an arbitrary initial condition
(z1(0),22(0))T. We have x2(t) = 22(0)et. As for z1,
it is not hard to see that |z1(¢t)| < E V¢ > 0, where E is
the smallest integer multiple of = that is greater than or
equal to |z1(0)|. Therefore, there exists a time T such
that 223 (t)z2(t)] < |z1(t)|/2 YVt > T, which implies
that z1(t) — 0. We conclude that the system is glob-
ally attractive; its stability in the sense of Lyapunov
easily follows from the same estimates. Global asymp-
totic stability of the system & = fo(x) is established by
a similar argument.

Now, if the switched system (2) defined by these two
systems were uniformly globally asymptotically stable,
the converse Lyapunov theorem of [8] would guarantee
that the two systems have a common Lyapunov func-
tion V. This in turn would imply that V is a Lyapunov
function for an arbitrary “convex combination” of these
systems, given by

&1 = —x1 4+ 2(asin®(z1) + (1 — @) cos®(z1)) 2T 2
.’i?z = —X2
where 0 < a < 1. In particular, for « = 1/2 we arrive
at the following system:
T = —x1 + a:fxg
.7.32 = —X2

This system was discussed in [5, p. 8] in the context of
adaptive control. Its solutions are given by the formulas

2.’L'1 (0)
21(0)z2(0)e~t + (2 — 21 (0)z2(0))et
x2(t) = z2(0)e?

I (t) =

We see from this that solutions with z1(0)z2(0) = 2 are
unbounded, and solutions with z1(0)z2(0) > 2 escape
to infinity in finite time. Thus the switched system
is not uniformly globally asymptotically stable, even
though the individual subsystems satisfy Assumptions
Al1-A4.

3 Stability results

Following Sontag [12], we will say that a general system
of the form

= f('z'a ’U,)
is input-to-state stable (ISS) with respect to the mea-
surable and locally essentially bounded input v if for
some functions 8 € KL and v € K, for all initial
states z(0), and all u the following estimate holds:

|lz(#)] < B2 (0)];2) + v(lluell)

where ||u¢|| := esssup{|u(s)| : s € [0,t]}. As established
in [14], a necessary and sufficient condition for ISS is the

vVt >0

existence of an ISS-Lyapunov function, i.e., a positive
definite radially unbounded smooth function V : R* —
R such that for some K, functions a and x we have

VV(2)f(z,u) < —a(lz]) + x(|ul)

We now use this concept to state the following result.

Theorem 1 If for eachi =1,...
the system

,n—1 and eachp € P

&; = fpi(®i, Tit1,---,Tn)

is input-to-state stable (ISS) with respect to the input
u = (Tig1,---,2n)’, then the switched system (2) is
uniformly globally asymptotically stable.

PROOF. Assumptions Al and A2 imply that each of
the scalar systems &, = fpn(zn), p € P is globally
asymptotically stable. In view of Assumptions A3 and
A4, it is well known and not hard to show that the
scalar switched system &, = fon(%n) is uniformly glob-
ally asymptotically stable. Equivalently, there exists
a positive definite radially unbounded smooth function
Vo : R = R and a class K, function «a,, with the prop-
erty that

Vvi(mn)fpn(xn) < —an(|zal) VpeP (4)
Fix an arbitrary ¢ € {1,...,n — 1}. Since all the

systems in the family

pEP (5)

'i'i = fpi(xiawi-f-la s ,'Z.TL)7

are ISS with respect to the input v = (ziy1,...,2Zn)7, it
follows from the results of [14] that there exist functions
¢p € Koo, p € P such that each one of the auxiliary
systems

T; = fpi(z'i:(pp(lz'il)d): peP

is uniformly globally asymptotically stable with respect
to d taking values in the unit ball of R*7*. The same
conclusion then holds for the systems

&; = fpi(xi, o(|23)d), peP

where (r) = minyep{p,(r)}. In other words, there
exists a common “gain margin” ¢ € K. It is now a
standard exercise to verify that the inequality

Wi () fpi(zi, p(|zi])d) < —y(|2:])
holds with W;(z;) := z?/2 and
{=W (@) fpi(zi, o(|2i])d) }

VpeP

r) = min
() |zi|=nr,|d|<1,pEP

Along the same lines as in [14] one can show that this is
equivalent to the existence of a common ISS-Lyapunov



function triple (V;,a;,x;) for the systems in the fam-
ily (5); in other words, there exist a positive definite
radially unbounded smooth function V; : R — R and
class K, functions «; and x; such that we have

%) < —ay(|zg))
VpeP

V;I(xi)fpi(xia Titl,---
+Xi(|(@ig1,-- -5 70)T])

We now have the functions Vi, V5, ..., V, which sat-
isfy the inequalities (4) and (6) for each i € {1,...,n—
1}, with the functions a1, ...,a, and xi1,..., Xn—1 be-
ing of class K. In fact, it follows from the findings of
[8, 14] that each V; is of the form V;(z;) = pi(2?) for
some smooth K, function p;. Using the technique de-
scribed in [13], we can modify the functions V;,_; and
V. if necessary, to have xn—1 = a,/2. Then for each
p € P we will have

Voo 1(@n—1) fpn—1(@n—1,2n) + V(%) fpn(@n)
< _an71(|w"*1|) + anl(|xn|) - an(|$n|)
= —an-1(|zn-1]) — an(|znl)/2

< _dn—l,n(|(xn—17 xn)TD

for a suitable choice of &,,—1,n € Koo. We can write this
as

Vs aa) (P p Gl

S _an—l,n(|(wn—laxn)T|) vp € P

where Vi, 1 n(Tn 1,2Zn) = Vo 1(Tn_1) + Va(z,). Re-
peating this procedure, we construct a positive definite
radially unbounded smooth function V' : R* — R for
which the inequality

VV(z)fp(z) < —a(|z]) VpeP

holds with some @ € K. We conclude that all the
systems in the family (1) share a common Lyapunov
function, and the statement of the theorem follows. [

Remark. We saw from the counterexample given in
the previous section that global asymptotic stability is
not necessarily preserved under switching among trian-
gular systems. Since asymptotic stability always im-
plies ISS locally (i.e., for sufficiently small values of the
state and the input [15]), Theorem 1 can be used to
show that local asymptotic stability can never be lost
due to switching.

The assumption that z,, € R was used in the above
proof to deduce that the switched system &,, = fon(2n)
is uniformly globally asymptotically stable. Likewise,
for each ¢ € {1,...,n — 1} the assumption that z; € R
was used to deduce that the family of systems &; =
fpi(®i,u), p € P, with u = (%i41,...,2,)7, has a com-
mon ISS-Lyapunov function triple (V;, a;, x;)- The last

property is equivalent to uniform input-to-state stability
(uniform ISS) of the switched system Z; = fri(x;,u),
which amounts to the existence of functions 8 € KL
and v € K such that the estimate

|z:(8)] < B(|2:(0)],2) + y([|uel])

holds for all switching signals o, all initial states z;(0),
and all u. Once the above properties are established,
the fact that the components z;, i = 1,...,n of the
state vector x are scalar is of no significance. The proof
could in fact be carried out directly in the time domain
from this point on, although we found it more conve-
nient to rely on a Lyapunov argument. These remarks
lead at once to the following generalization of Theo-
rem 1.

Vt>0

Theorem 2 Suppose that Assumption A2 is relaxed to
the following:

A2' For each p € P, the vector field f, takes the block-
triangular form

for(z1, 22, ..., 21)
fo(z) = fp2(za,. .., 2k)
for(zr)
wherex; E R™ ,i=1,...)k, andny+---+ng =n.

Suppose that the switched system Ty = for(x) is uni-
formly globally asymptotically stable, and that for each
i€ {l,...,k — 1} the switched system

.Til‘i = fcri(a;i;-ri+1; - ,.CL‘k)

is uniformly input-to-state stable (uniformly ISS) with
respect to the input u = (%i11,...,2,)T. Then the
switched system (2) is uniformly globally asymptotically
stable.

As we mentioned earlier, the requirement that the
switched system % = f,r(xr) be uniformly globally
asymptotically stable is automatically satisfied if the
last component of the state vector is scalar, i.e., if we
have n; = 1.

4 Concluding remarks

As we recalled in the Introduction, a compact family of
asymptotically stable linear systems in triangular form
gives rise to a uniformly globally asymptotically sta-
ble switched linear system. We sketched two possible
derivations of this result, one using a direct iterative
argument and the other relying on the existence of a
common Lyapunov function. Clearly, the conclusion re-
mains valid if the triangular structure is obtained after



applying a linear change of coordinates. It thus follows
from Lie’s Theorem that uniform asymptotic stability
is guaranteed if the Lie algebra generated by the indi-
vidual matrices is solvable (see [6] for details, and [1]
for further results in this direction).

In this paper we demonstrated that for nonlinear sys-
tems the triangular structure does not automatically
ensure that a switched system is uniformly globally
asymptotically stable (see the counterexample in Sec-
tion 2). We singled out a set of conditions which can
be added to guarantee uniform global asymptotic sta-
bility (see Theorem 1 in Section 3). As in the linear
case, stability can be established in two different ways:
by a direct time-domain analysis or via constructing a
common Lyapunov function (we preferred to take the
latter approach to prove Theorem 1). We also provided
a generalization of this result to block-triangular sys-
tems (Theorem 2 in Section 3).

An important and challenging problem for future re-
search is to try to obtain a coordinate-free version of
Theorem 1. The first step is to find conditions, formu-
lated in terms of the original data, which would imply
that all systems in a given family can be simultaneously
triangularized by a suitable change of coordinates. Im-
posing certain additional assumptions, it is possible to
obtain analogues of Lie’s Theorem which yield trian-
gular structure in the nonlinear setting (see [3, 4, 9]).
However, the methods described in these papers require
that the Lie algebra spanned by a given family of vector
fields have full rank, and so typically they do not apply
to families of systems with common equilibria of the
type treated here. Moreover, even if this first task were
accomplished, it is not clear under what circumstances
the ISS conditions of Section 3 would be satisfied.
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