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Abstract— We generalize and unify a range of recent results
in quantized control systems (QCS) and networked control
systems (NCS) literature and provide a unified framework for
controller design for control systems with quantization and time
scheduling via an emulation-like approach. A crucial step in our
approach is finding an appropriate Lyapunov function for the
quantization/time-scheduling protocol which verifies its uniform
global exponential stability (UGES). We construct Lyapunov
functions for several representative protocols that are commonly
found in the literature, as well as some new protocols not
considered previously.

I. INTRODUCTION

Currently, there are two main approaches to modelling

band-limited communication channels in control loops: (i)

the channel is digital and due to the finite word length

effects only a finite number of bits can be transmitted over

the channel at any transmission instant. The main issue in

control (stabilization) of systems with such channels is that of

quantization and we use the term quantized control systems

(QCS) to denote systems exhibiting this feature; (ii) the

channel is a serial bus and only a subset of sensors and/or

actuators can transmit their data over the channel at each

transmission instant (in this case, the quantization effects

are ignored). The main issue in this class of systems is time

scheduling of transmissions of various signals in the system

and these systems are often referred to in the literature as

networked control systems (NCS).

These two modelling approaches evolved separately in the

literature with little cross-referencing or cross-fertilization.

However, a very similar controller design approach has

been proposed for both QCS and NCS and this approach

consists of the following steps: (i) ignore the communication

constraints of the channels (quantization or time schedul-

ing) and design a controller using the classical techniques;

(ii) design/choose a particular quantizer or partition of the

sensor/actuator vector, as well as an algorithm (protocol)

that governs the quantization or time-scheduling during the

operation of the system; (iii) determine a sufficiently small

upper bound on the inter-transmission intervals, the so-

called maximal allowable transmission interval (MATI), that

guarantees the stability of the system. For instance, this
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controller design approach was proposed in [16] for NCS and

it was used in [7] for QCS. We note that this approach is a

natural generalization of the emulation approach to controller

design for sampled-data systems.

The main purpose of this paper is to unify the controller

design approach mentioned above for QCS and NCS which

naturally leads to the following contributions: (i) We provide

a unified framework for the emulation design approach that is

flexible, general and amenable to further extensions and mod-

ifications; (ii) Our unified controller emulation framework

brings two seemingly unrelated areas (QCS and NCS) under

one umbrella and facilitates a cross-fertilization between

them. For instance, we show that the notion of UGES

protocols that was introduced in the NCS literature (see [12])

has a natural interpretation in QCS. We believe that this is

the first time in the literature that this connection is made.

We mention that, while there have been no systematic

attempts to unify formulations and techniques from the NCS

and QCS literature, some specific designs combining quanti-

zation and time scheduling have been proposed, for instance,

in [2], [11], and [10]. We believe that this fact confirms

the need for developing a general framework encompassing

a large class of such protocols, which is the goal of this

work. In the sequel, we refer to systems that combine time

scheduling with quantization as networked and quantized

control systems (NQCS).

II. PRELIMINARIES

Given t ∈ R≥0 and a piecewise continuous function

f : R → R
n, we use the notation f(t+) := limsցt f(s).

The Euclidean and infinity norms on R
n are respectively

denoted by | · | and ‖x‖∞ := max{|xi| : 1 ≤ i ≤ n};

the corresponding induced matrix norms are denoted by

‖ · ‖ and ‖ · ‖∞. Given a piecewise continuous signal ϕ :
[t0, t] → R

n, we define its L∞ norm as follows: ‖ϕ‖∞ :=
sups∈[t0,t] |ϕ(s)|. A function γ : R≥0 → R≥0 is said to be of

class K∞ if it is continuous, zero at zero, strictly increasing

and unbounded. A function β : R≥0 × R≥0 → R≥0 is said

to be of class KL if for each s ≥ 0 the function β(s, ·)
is decreasing to zero and for each fixed t ≥ 0 the function

β(·, t) is of class K. A function β is said to be of class exp-

KL if there exist K, c > 0 such that β(s, t) = K exp(−ct)s.

To shorten notation, we often use (x, y) := (xT yT )T . We

write diag{A1, . . . , Aℓ} for the (block-)diagonal matrix with

the indicated elements on the diagonal and zeros elsewhere.

For the systems we consider in this paper, a monotonically

increasing sequence of times ti ∈ R≥0 is given where i ∈ N

and t0 = 0. Moreover, we assume that there exist ε > 0 and
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τ > ε such that

ε ≤ ti − ti−1 ≤ τ ∀ i ∈ N . (1)

We set the stage by outlining the emulation approach

and recalling a result that follows from [12]. The emulation

approach was pursued, for instance in [16], [12] for NCS

and in [7] for QCS. First, we design a controller for a

given plant ignoring the network (i.e. quantization and/or

time scheduling). Namely, given a plant

ẋ = f̃(t, x, u) (2)

one first designs a “nominal” controller

u = k(t, x) . (3)

However, in the presence of time scheduling and/or quanti-

zation, the state x is not directly available for control. So,

one instead closes the loop with the controller

u = k(t, x̂) (4)

where x̂ is an estimate of x generated using quantized state

values transmitted over the network. In Section III we will

explain how x̂ is to be generated in various cases. To model

the systems arising in this way, we consider

ẋ = f(t, x, z) ∀ t ∈ [ti−1, ti] (5)

ż = g(t, x, z) ∀ t ∈ [ti−1, ti] (6)

z(t+i ) = h(i, x(ti), z(ti)) , (7)

where x ∈ R
nx , z ∈ R

nz , ti satisfy (1) and 0 < ε <
τ . Here (5) gives the closed-loop plant dynamics, while

z includes the network-induced error variables as well as

some other auxiliary variables needed to implement the

quantization procedure. We adopt terminology from [16] and

refer to τ as the maximum allowable transmission interval

(MATI). We can assume that the system ẋ = f(t, x, 0)
is stable in an appropriate sense. Note that this system is

the “nominal” closed-loop system without the quantization

and/or time scheduling, obtained from (5) by setting z ≡ 0.

We use standard notions (see [14]) to characterize robustness

of the plant with respect to z:

Definition 1 The system ẋ = f(t, x, z) is input-to-state

stable (ISS) from z to x if there exist functions κ ∈ K and

β ∈ KL such that for all t0 ≥ 0, x0 ∈ R
nx , z ∈ L∞ and

each corresponding solution x(·), we have that

|x(t)| ≤ β(|x0| , t − t0) + κ(‖z‖∞) ∀ t ≥ t0 ≥ 0 .

If the system is ISS with κ(s) = γ ·s, γ ≥ 0 a linear function

and β(·, ·) an exp-KL function, then we say that the system

is ISS with a linear gain and an exp-KL function. A system

with state x and no input (z ≡ 0) is uniformly globally

asymptotically stable (UGAS) if for all x0 ∈ R
nx and all

corresponding solutions x(·), we have that

|x(t)| ≤ β(|x0| , t − t0) ∀ t ≥ t0 ≥ 0 .

The system is uniformly globally exponentially stable

(UGES) if it is UGAS and β is of class exp-KL. ¤

Motivated by the results in [12], we refer to the jump

equation (7) as the network “protocol”. Our main results

in Section V are presented for a large class of “UGES

protocols” that are characterized in Definition 2 stated below.

To define this class of protocols, we introduce an auxiliary

discrete-time system:

z+ = h(i, x, z) i ∈ N , (8)

where h comes from (7).

Definition 2 1 We say that the protocol (7) is uniformly

globally exponentially stable (UGES) with Lyapunov func-

tion W if there exist W : N × R
nz → R≥0, ρ ∈ [0, 1) and

a1, a2 > 0 such that we have

a1 |z| ≤ W (i, z) ≤ a2 |z| (9)

W (i + 1, h(i, x, z)) ≤ ρW (i, z) , (10)

for all i ∈ N, x ∈ R
nx and all z ∈ R

nz . ¤

Section IV contains many examples of various UGES pro-

tocols. The following result is a corollary of main results in

[12] and it is central to the emulation approach.

Theorem 1 Consider the system (5)–(7) with (1). Suppose

that the following conditions hold:

(i) System (5) is ISS from z to x with linear gain κ(s) =
γ · s, γ ≥ 0;

(ii) Inequalities (9), (10) hold, i.e. the protocol (7) is Lya-

punov UGES with a Lyapunov function W (i, z);
(iii) For some L, c ≥ 0, we have that W from item (ii) and

g in (6) satisfy
〈

∂W (i,z)
∂z , g(t, x, z)

〉
≤ LW (i, z) + c |x| for

almost all z ∈ R
nz , x ∈ R

nx and t ≥ 0.

(iv) MATI in (1) satisfies τ ∈ (ε, τ∗) where τ∗ :=
1
L ln

(
L+cγ/a1

ρL+cγ/a1

)
, ε ∈ (0, τ∗) is arbitrary, L and c come

from the item (iii), γ from item (i), a1 from (9), and ρ from

(10).

Then, the system (5)–(7) is UGAS. Moreover, if the system

(5) is ISS from z to x with linear gain and exp-KL function

β, then the system (5)–(7) is UGES. ¤

III. SYSTEM MODELS

In this section we demonstrate that models of various NCS

and QCS that were previously considered in the literature, as

well as NQCS that were not considered in the literature, can

be written in the form (5), (6), (7). This modelling framework

allows us to unify, generalize, and compare many results in

the NCS and QCS literature, such as [12], [16], [7], [8],

[15], [2], [11], [10]. For simplicity, we consider static state

feedback controllers and plants without disturbances, and we

assume that only the state is sent over the network.

1This definition was first used in [12] for a smaller class of protocols of
the form z+ = h(i, z) whose right hand side is independent of x. However,
with the definition we use here, all main results in [12] still hold for the
system (5)–(7).
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A. NCS

For the purpose of comparison and to illustrate the unify-

ing nature of our results, we reproduce the class of models

for NCS considered in [12], [16] and show that it is a special

case of (5), (6), (7). In this and the following subsections, we

always assume that (1) holds. Consider a general nonlinear

plant (2) where x ∈ R
n. As we said, we first design a

“nominal” stabilizing controller (3). We then implement it

over the network in the following manner. We assume that the

vector x is partitioned into ℓ, 1 ≤ ℓ ≤ n different subvectors

enumerated from 1 to ℓ, i.e., x = (x1, x2, . . . , xℓ). We refer

to the ith subvector as the ith “node”. At each transmission

time ti, the protocol gives access to the network to one of

the nodes i ∈ {1, 2, . . . , ℓ}. We consider general nonlinear

NCS of the following form:

ẋ = f̃(t, x, k(t, x̂)) ∀ t ∈ [ti−1, ti]
˙̂x = 0 ∀ t ∈ [ti−1, ti]

x̂(t+i ) = x(ti) + h(i, e(ti))

(11)

where x̂ is the vector of most recently transmitted plant state

values via the network, e := x̂ − x is the network-induced

error, and we closed the loop with the controller (4). We

assume that x̂ is held constant between the transmission

instants (i.e. we use a zero-order hold in each node). The

function h is typically such that, if the jth node gets access to

the network at some transmission time ti, the corresponding

part of the error vector is reset to zero. Rewriting the system

in (x, e) coordinates, we obtain the following NCS model:

ẋ = f(t, x, e) ∀ t ∈ [ti−1, ti] (12)

ė = g(t, x, e) ∀ t ∈ [ti−1, ti] (13)

e(t+i ) = h(i, e(ti)) , (14)

The system (12), (13), (14) has exactly the same form as (5),

(6), (7) if we think of e in (13), (14) as z in (6), (7). The

error vector e models the effects of the network and, since

we assumed that NCS has ℓ nodes, it can be partitioned as

e = (e1, e2, . . . , eℓ). We refer to the jump equation (14) as a

time-scheduling protocol. In [12], time-scheduling protocols

with the maps h of the following form were considered:

h(i, e) = (I − Ψ(s))e , (15)

where s = s(i, e) : N×R
n → {1, . . . , ℓ} is some scheduling

function,

Ψ(s) = diag{δ1sIn1
, . . . , δℓsInℓ

} , (16)

ℓ is the number of nodes, δij is the standard Kronecker

delta, and Inj
are identity matrices of dimension nj , with∑ℓ

j=1 nj = n. This protocol model assumes that if the node

j is transmitted at time ti over the network, then ej(t
+
i ) = 0.

Examples of this class of protocols are given in Section IV-A.

B. QCS

We now consider the model for QCS described in [7]

for linear plants and in [8] for nonlinear plants. Models

considered elsewhere (e.g., [15], [11], [2]) are very similar.

However, in the QCS literature these models have previously

not been written in the way we do it here.

Let the plant be given by (2), where x ∈ R
n. We assume

that a nominal feedback law (3) is given. When the state is

quantized, this feedback law is not implementable. Instead,

the control law will depend not on the state x but on its

estimate, x̂, which we generate as follows. In between the

times ti, we let
˙̂x = f̃(t, x̂, u) (17)

which is a “copy” of the plant dynamics. The initial condition

can be arbitrary, e.g., x̂(t0) = 0. At each ti, we reset x̂ to

a new value obtained from the quantized measurement. The

quantizer, q, is defined by three parameters: an integer N > 1
(a given constant which defines the number of quantization

levels), x̂ ∈ R
n (the current state estimate), and ξ ∈ R≥0 (an

auxiliary variable which defines the size of the quantization

regions). Consider a hypercubic box centered at x̂ with edges

2ξ and divide it into Nn equal smaller sub-boxes (N in each

dimension), numbered from 1 to Nn in some specific way.2

We let q(x) be the number of the sub-box that contains x
(provided that x is indeed contained in one of them). The new

value of x̂ is then defined to be the center of this box. This

can be described by a jump equation of the form x̂(t+i ) =
g(i, q(x(ti)), x̂(ti), ξ(ti)). We also update ξ to reflect the fact

that the size of the box known to contain x was divided by N
as the result of the above procedure: ξ(t+i ) = ξ(ti)/N . Until

the time ti+1, we propagate ξ according to some differential

equation ξ̇ = gξ(t, ξ) and then the procedure is repeated. We

can think of x̂ and ξ as being implemented synchronously on

both ends of the communication channel, i.e., in the encoder

and the decoder, starting from some known initial values.

Having defined x̂, we can now also close the loop using the

control law (4).

It is convenient to rewrite the closed-loop system dynamics

in terms of the quantization-induced error e := x̂ − x,

suppressing the equations for x̂:

ẋ = f(t, x, e) ∀t ∈ [ti−1, ti] (18)

ė = ge(t, x, e) ∀t ∈ [ti−1, ti] (19)

ξ̇ = gξ(t, ξ) ∀t ∈ [ti−1, ti] (20)

e(t+i ) = he(i, x(ti), e(ti), ξ(ti)) , (21)

ξ(t+i ) = hξ(ξ(ti)) (22)

This is similar to (12), (13), (14) and becomes a special case

of (5), (6) and (7) if we define z := (e, ξ).
To make sure that the quantizer is well defined, we need

to assume that the initialization of ξ and its evolution during

continuous flows and jumps fulfills the following.

Assumption 1 A bound on the initial state x(0) is known

and ξ and x̂ are such that ‖e(t)‖∞ ≤ ξ(t) ∀ t ≥ 0.

2In [7] and [8], the total number of sub-boxes is N , i.e., N1/n in each
dimension. While our present choice of notation somewhat simplifies the
formulas that follow, it is a trivial matter to adapt the results to the notation
used in [7], [8]. Similarly, we could let ξ be an n-vector instead of a scalar
and thus allow more general rectilinear boxes, as done, e.g., in [2], [15].
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This assumption basically means that the quantizer will never

saturate. It is easy to enforce it when the plant is linear [7].

C. NQCS

In this subsection, we combine quantization with time

scheduling and show that the closed-loop system can be

written in the form (5), (6), (7). As a special case, when there

is only one node (ℓ = 1), we obtain the previous QCS model.

We note also that a slightly different class of quantization

protocols with “zoom” studied in [1], [6], [9] can also be

incorporated into our framework.

We again start with the plant (2) and the nominal control

law (3). The next step is to implement this controller over

a band-limited channel that will involve quantization and

time scheduling. Namely, we apply the control law (4),

where x̂ is an estimate of x generated as explained next.

In between the transmission times, x̂ is obtained by running

a copy of the plant, given by (17), in the encoder and

decoder. As in Section III-A, we partition the state vector

as x = (x1, x2, . . . , xℓ), where ℓ is the number of nodes

and each xj has dimension nj . The vector x̂ is partitioned

accordingly as x̂ = (x̂1, x̂2, . . . , x̂ℓ), and the error vector

e := x̂− x is partitioned as e = (e1, e2, . . . , eℓ). We assume

that for each j ∈ {1, 2, . . . , ℓ}, we are given a quantizer qj

with parameters N ∈ N, x̂j ∈ R
nj , ξj ∈ R≥0 defined as

explained in Section III-B. Here we take N to be the same

for all j, but this is not necessary (see also footnote 2).

We assume that at any transmission time ti, a quantized

value of only one xj , j ∈ {1, 2, . . . , ℓ} will be transmitted

over the network. To decide which component xj we are

going to transmit, we use a scheduling function s : N ×
R

n × R
n × R

ℓ → {1, 2, . . . , ℓ}:

s = s(i, x, e, ξ) . (23)

Then, we quantize the component xs(ti)(ti) using the corre-

sponding quantizer qs(ti) (which we write simply as q since

it is always clear which quantizer is being used) and send

the quantized value over the network to the decoder. The

decoder takes the transmitted quantized value and resets the

value of x̂s(ti) to be the center of the box corresponding

to q(xs(ti)(ti)), while keeping all other components of x̂
unchanged. In other words, at transmission times we have

x̂j(t
+
i ) = gj(i, q(xs(ti)(ti)), x̂s(ti)(ti), ξs(ti)(ti)) if j =

s(ti). This leads to

ej(t
+
i ) =

{
hj(i) if j = s(ti)

ej(ti) if j 6= s(ti)
(24)

where hj(i) = hj(i, xs(ti)(ti), es(ti)(ti), ξs(ti)(ti)) and

hj(i, xs, es, ξs) := gj(i, q(xs), xs + es, ξs) − xs. We find

it convenient to rewrite (24) in the following form:

e(t+i ) = (I − Ψ(s(ti)))e(ti) + Ψ(s(ti))H(i) , (25)

where Ψ(s) was defined in (16), H(i) =
H(i, xs(ti)(ti), es(ti)(ti), ξs(ti)(ti)), and

H := (h1, . . . , hℓ)
T (26)

At each transmission time we need to adjust the size of

the box (ξj) that corresponds to the component xj that is

being transmitted. We consider update laws of the form

ξ(t+i ) = hξ(i, s(ti), ξ(ti)) . (27)

In particular, ξs(ti) is typically divided by N as before. In be-

tween the transmission times, the vector ξ = (ξ1, ξ2, . . . , ξℓ)
is propagated according to some differential equation of the

form (20). To summarize, the closed-loop dynamics are

ẋ = f(t, x, e) ∀ t ∈ [ti−1, ti]

ė = ge(t, x, e) ∀ t ∈ [ti−1, ti]

ξ̇ = gξ(t, ξ) ∀ t ∈ [ti−1, ti] (28)

e(t+i ) = he(i, x(ti), e(ti), ξ(ti))

ξ(t+i ) = hξ(i, s(ti), ξ(ti)) ,

where s is given in (23). Note that we are again suppressing

the dynamics of x̂. Finally, it is clear that this system can be

written in the form (5), (6) and (7) by defining z := (e, ξ).

Assumption 2 A bound on the initial state x(0) is known

and ξ and x̂ are such that ‖ei(t)‖∞ ≤ ξi(t) ∀ i ∈
{1, . . . , ℓ}, ∀ t ≥ 0 .

IV. UGES PROTOCOLS

In this section we consider various examples of protocols

that may arise in Subsections III-A, III-B and III-C and show

that they are UGES in the sense of Definition 2. Many other

protocols, not considered here, can be treated in a similar

manner.

A. NCS protocols

In this subsection, we consider protocols of the form

e+ = (I − Ψ(s))e = h(i, e) s = s(i, e) , (29)

which arise in NCS considered in Subsection III-A; the

function Ψ is defined by (16). We typically assume that

if a node j transmits at time ti, then ej is reset to zero

at time t+i , i.e., ej(t
+
i ) = 0. In other words, we ignore

possible quantization effects in this subsection. However,

we emphasize that this assumption is not needed in general

and this will become clear in the sequel. We present two

examples of protocols from [12], [16] and quote results

from [12] that show that these protocols are UGES. Besides

serving to illustrate the unifying nature of our results, the

RR and TOD protocols that we present next are used in

the sequel to generate several genuinely new protocols that

combine quantization and time scheduling.

1) Round robin (RR) protocol: The simplest time-

scheduling protocol is round robin in which the node j is

transmitted periodically with period ℓ, where ℓ is the total

number of nodes (see, for instance, [3], [4], [5]). Note that

the scheduling function becomes in this case:

s = s(i) = j if i = j + kℓ for some k = 0, 1, 2, . . . . (30)
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Proposition 2 ([12]) The RR protocol (29), (30) is UGES

with the Lyapunov function W (i, e) :=
√∑∞

k=i |φ(k, i, e)|2,

where φ denotes the solution of (29), (30) at time k starting

at time i and initial condition e. In particular, we can take

a1 = 1, a2 =
√

ℓ, and ρ =
√

ℓ−1
ℓ . ¤

2) Try-once-discard (TOD) protocol: The Try-Once-

Discard (TOD) time-scheduling protocol proposed by Walsh

et al in [16] and its stability was analysed in [12]. In TOD

protocol, the scheduling function takes the following form:

s = s(e) = min{arg max
i

|ei|} . (31)

Proposition 3 ([12]) The TOD protocol (29), (31) is UGES

with the Lyapunov function W (e) := |e|. In particular, we

can take a1 = a2 = 1 and ρ =
√

ℓ−1
ℓ . ¤

B. QCS protocols

We now prove that the quantization “box” protocol from

Section III-B is UGES. As far as we are aware, this is the

first analysis of stability properties for this protocol, taken

separately from the continuous-time dynamics. However,

protocols of this kind have been widely used in the litera-

ture as encoder/decoder models of communication channels

between the plant and the controller; see, e.g., [7], [8], [15],

[11], [13], [2]. The protocol is given by

e+ = he(i, x, e, ξ); ξ+ =
ξ

N
. (32)

From Assumption 1 and other constructions in Section III-B,

it is easy to show that there exists a d1 ≥ 0 such that he in

(32) satisfies

|he(i, x, e, ξ)| ≤ d1ξ ∀ i, x, e, ξ , (33)

where we can take d1 =
√

n
N .

Proposition 4 Suppose that (33) holds. Then, the box quan-

tization protocol (32) is UGES with the Lyapunov function

W (e, ξ) := ε|e| + ξ, where ε ∈ (0, ρ̃) and ρ̃ = N−1
d1N . In

particular, we can take a1 = min{1, ε}, a2 = 1 + ε, and

ρ = εd1 + 1
N . ¤

C. NQCS protocols

The focus of this subsection are protocols of the form

e+ = (I − Ψ(s))e + Ψ(s)H(i, xs, es, ξs)

ξ+ = hξ(i, s, ξ) (34)

s = s(i, x, e, ξ)

that arise in Subsection III-C. The functions H and hξ de-

pend on the quantization procedure, whereas the scheduling

function s depends on the time-scheduling procedure. Hence,

the protocol (34) combines time scheduling and quantization.

Using (26) and Assumption 2, there exists a d ≥ 0 such that

|H(i, q(x), e, ξ)| ≤ d|ξ| ∀ i, x, e, ξ . (35)

In what follows, this is all we need to know about the

function H . Various NQCS protocols are possible and we

consider two such protocols where we combine the RR and

TOD time-scheduling protocols with the “box” quantization

protocol. We are not aware of this class of protocols having

been systematically studied in the literature.

1) RR protocol with quantization: In this section we

combine the RR protocol considered in Subsection IV-A with

the “box” quantization protocol considered in Subsection IV-

B. A somewhat similar (but more complicated) protocol was

considered in [11]. The function s in (34) is given by (30)

and the function Ψ is defined in (16). We know that H
satisfies (35). We let hξ in (34) be given by

hξ(i, s, ξ) = (I − Ψ̃(s(i)))ξ +
1

N
Ψ̃(s(i))ξ , (36)

where Nns is the number of quantization levels for the

corresponding quantizer (qs),

Ψ̃(s) := diag{δ1i, . . . , δℓi} (37)

(note that Ψ and Ψ̃ have different dimensions); δij is the

Kronecker symbol; ℓ denotes the number of nodes used in the

time scheduling. This means that ξs(i) is divided by N while

other components of ξ remain unchanged. To summarize, the

discrete-time system induced by the protocol is

e+ = (I − Ψ(s(i)))e + Ψ(s(i))H(i, xs(i), es(i), ξs(i))

ξ+ = (I − Ψ̃(s(i)))ξ +
1

N
Ψ̃(s(i))ξ

(38)

Proposition 5 Suppose that (35) holds. Then, the protocol

(38) is Lyapunov UGES. In particular, there exists3 W
such that (9) and (10) hold with a1 = min{1, ε}, a2 =

ε
√

ℓ +
√

N2ℓ
N2−1 , and ρ = max

{√
ℓ−1

ℓ , εd
√

ℓ + ρ̃
}

, where

ε ∈
(
0, 1−ρ̃

d
√

ℓ

)
and ρ̃ =

√
N2ℓ−N2+1

N2ℓ . ¤

2) TOD protocol with quantization: In this subsection we

consider a combination of TOD protocol and quantization.

We believe that this protocol has not been considered previ-

ously in the literature. The protocol is given by:

e+ = (I − Ψ(s))e + Ψ(s)H(i, xs, es, ξs)

ξ+ = (I − Ψ̃(s))M(s(e), ξ) +
1

N
Ψ̃(s)ξ

(39)

where Ψ is defined in (16), Ψ̃(s) is defined in (37),

s is defined in (31), H satisfies (35), and M(s, ξ) =
(m1(s, ξ), . . . ,mℓ(s, ξ)), where mj(s, ξ) := min{ξs, ξj}. In

other words, the updated value of ξj for any j ∈ {1, . . . , ℓ}
satisfies the following:

ξ+
j =





ξj

N if j = s

ξs if ξj ≥ ξs and j 6= s

ξj if ξj ≤ ξs and j 6= s .

(40)

The above protocol first compares the errors ei in individual

nodes and then transmits a quantized version of the mea-

surement in the node with the largest error. Note that the

3We omit the explicit formula for W due to space reasons. It will be
reported in the journal version of this paper.
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ξj corresponding to this node is divided by N after the

transmission. Moreover, since we already know which node

has the largest error, any of the ξ′is corresponding to other

nodes that are larger than ξj are reset to be equal to ξj

(recall Assumption 2). While not immediately obvious, this

protocol is quite a natural way to combine TOD with a box

quantization protocol. We note that a naive update for ξ as

follows: ξ+ = (I − Ψ̃(s))ξ + 1
N Ψ̃(s)ξ, where s is defined

in (31), may not work and, in particular, we were unable to

prove that this modified protocol is Lyapunov UGES.

Proposition 6 Suppose that (35) holds. Then, the pro-

tocol (39) is Lyapunov UGES. In particular, (9) and

(10) hold with a1 = min{1, ε}, a2 = 1 + ε, and

ρ = max

{√
ℓ−1

ℓ , εd + ρ̃

}
, where ε ∈

(
0, 1−ρ̃

d

)
, ρ̃ =

max

{√
ℓ+α2−1

ℓ ,
√

N2ℓ−α2N2+α2

N2ℓ

}
, and α ∈ (0, 1) is ar-

bitrary. ¤

V. MAIN RESULTS

In this section we demonstrate the utility and generality

of our unifying approach to the controller emulation design

for systems considered in Section III. For space reasons,

we only state two corollaries that provide MATI bounds for

linear NQCS4. As special cases, we recover linear versions

of results for NCS from [12] as well as results for QCS

from [7] and elsewhere (when ℓ = 1). We thus consider the

plant ẋ = Ax+Bu. We pick a feedback gain K such that the

matrix A + BK is Hurwitz. In the presence of the network,

we apply u = Kx̂, where ˙̂x = Ax̂ + Bu. Then the error e
evolves according to

ė = Ae ∀ t ∈ [ti−1, ti] (41)

Using e we rewrite the closed-loop system as follows:

ẋ = (A + BK)x + BKe . (42)

We will consider the NQCS for the two protocols given in

Subsection IV-C. To define the quantization protocol, we

need to generate the auxiliary variable ξ ∈ R
ℓ
≥0:

ξ̇ = Aξξ ∀t ∈ [ti−1, ti] (43)

and Aξ is chosen appropriately so that Assumption 2 holds.

For example, we can define (43) via

ξ̇i = ‖Aii‖∞ξi +
∑

j 6=i

‖Aij‖∞ξj , i = 1, . . . , ℓ , (44)

where the initial data satisfies ‖ei(0)‖∞ ≤ ξi(0) ∀ i, the

indices i = 1, 2, . . . , ℓ are consistent with the decomposition

of the vector e = (e1, e2, . . . , eℓ) used in the time-scheduling

protocol, and the matrices Aij form the corresponding par-

tition of the matrix A. If the matrix A has some structure,

such as block-diagonal, then (44) simplifies (cf. [2], [15]).

The following are direct consequences of Theorem 1 and

Propositions 5 and 6.

4Similar corollaries can be stated for NCS and QCS and they will be
reported in the journal version of this paper.

Corollary 7 Consider the NQCS (42), (41), (43) with (1)

and the protocol (38) that has ℓ nodes. Suppose that K
is designed so that A + BK is Hurwitz. Then, the system

is UGES if MATI satisfies τ ∈ (0, τ∗), where τ∗ :=
1

max{
√

ℓ‖A‖,ã‖Aξ‖}
ln

(
1
ρ

)
, ρ comes from Proposition 5, and

ã =
√

N2ℓ
N2−1 . ¤

Corollary 8 Consider the NQCS (42), (41), (43) with (1)

and the protocol (39). Suppose that K is designed so that

A + BK is Hurwitz. Then, the system is UGES if MATI

satisfies τ ∈ (0, τ∗), where τ∗ := 1
max{‖A‖,‖Aξ‖} ln

(
1
ρ

)
and

ρ comes from Proposition 6. ¤

VI. CONCLUSIONS

In this paper, we unified results on emulation for QCS

and NCS by generalizing recently reported results for NCS

in [12]. A central issue in our approach is proving stability

properties of the corresponding quantization/time scheduling

protocols. We illustrated how this can be done for several

representative protocols. Our approach is amenable to vari-

ous generalizations, modifications and extensions as will be

discussed in the forthcoming journal version.
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