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Abstract— This paper is concerned with the problem of
stabilizing a nonlinear continuous-time system by using sampled
encoded measurements of the state. We demonstrate that global
asymptotic stabilization is possible if a suitable relationship
holds between the number of values taken by the encoder,
the sampling period, and a system parameter, provided that
a feedback law achieving input-to-state stability with respect to
measurement errors can be found.

I. INTRODUCTION

In recent years, extensive research activity has been de-
voted to the question of how much information a feedback
controller really needs in order to stabilize a given system.
Questions of this kind are motivated by applications where
communication capacity is limited (e.g., a large number
of systems sharing the same network cable or wireless
medium, microsystems with a large number of sensors and
actuators on a single chip) as well as situations where security
considerations compel one to transmit as little information
as possible. Among the many references on this subject, the
ones particularly close in spirit to the present work are [18],
[3], [17], [10], [14], [2], [7], [9].

All results developed in the aforementioned papers are
limited to linear systems. The work reported here is a first
step towards understanding information-based control aspects
for nonlinear systems. Specifically, we extend the result and
the control scheme described in [9] to nonlinear systems,
characterizing the amount of information sufficient for global
asymptotic stabilization. An underlying assumption is the
existence of a feedback law which stabilizes the system
in the case of perfect information and, moreover, provides
robustness with respect to measurement errors in the sense
of input-to-state stability (ISS) as defined in [15]. This
assumption is quite restrictive in general, although some
results on designing such control laws are available; see [5],
[6], [4], [8].

The set-up considered in this paper is as follows. The
system to be stabilized is

ẋ = f(x, u) (1)

where x ∈ R
n is the state variable, u ∈ R

m is the control
variable, and f : R

n×R
m → R

n is a locally Lipschitz func-
tion satisfying f(0, 0) = 0. Control inputs considered in this

paper are piecewise Lipschitz continuous. The term “limited
information feedback” refers to the following scenario:

SAMPLING. Measurements are to be received by the
controller at discrete times 0, τ , 2τ , . . . , where
τ > 0 is a fixed sampling period.

ENCODING. At each of the above sampling times, the
measurement received by the controller must be a
number in the set {0, 1, . . . , N}, where N is a fixed
positive integer.

Thus the data available to the controller is a stream of integers

q0(x(0)), q1(x(τ)), q2(x(2τ)), . . .

where qk(·) : R
n → {0, 1, . . . , N} is, for each k, some

encoding function. For different values of k we can use
different encoding functions. As we will see, it is natural to
use the previous values qi(x(iτ)), i = 0, . . . , k − 1 to define
the function qk(·). We assume that the controller knows
the initial encoding function q0(·) as well as the rule that
defines qk(·) on the basis of the previously received encoded
measurements, so that for each k the function qk is known
to the controller. In other words, there is a communication
protocol satisfying the above constraints upon which the
process and the controller agree in advance.

We find it convenient to use the infinity norm ‖x‖∞ :=
max{|xi| : 1 ≤ i ≤ n} on R

n. We let Bn
∞(x0, r) denote a

ball with respect to this norm with radius r and center x0,
i.e., the hypercube centered at x0 with edges 2r:

Bn
∞(x0, r) := {x ∈ R

n : ‖x − x0‖∞ ≤ r}.

II. CONTROL STRATEGY AND ASSUMPTIONS

In this section we describe the proposed control strategy
based on limited information feedback, stating and briefly
discussing necessary assumptions along the way. Our first
goal is to obtain an upper bound on the size of the state. We
do this by “zooming out”, i.e., expanding the support of the
encoding function, fast enough to dominate the growth of the
state for the uncontrolled system (no feedback is applied at
this stage). The following assumption is needed to execute
this task.
ASSUMPTION 1. The unforced system

ẋ = f(x, 0) (2)



is forward complete. This means that for every initial state
x(0) the solution of (2), which we denote by ξ(x(0), ·), is
defined for all t ≥ 0.

Set the control u equal to 0. Let µ0 := 1. Pick a sequence
µ1, µ2, . . . that increases fast enough to dominate the rate
of growth of ‖x(t)‖∞ at the times τ , 2τ , . . . ; for ex-
ample, define µ1 := 2max‖x(0)‖∞≤τ, t∈[0,τ ] ‖ξ(x(0), t)‖∞,
µ2 := 2max‖x(0)‖∞≤2τ, t∈[0,2τ ] ‖ξ(x(0), t)‖∞, and so on.
This construction guarantees the existence of an integer
k0 ≥ 0 such that ‖x(k0τ)‖∞ ≤ µk0

. For k = 0, 1, . . . ,
define the encoding function qk by the formula

qk(x) :=

{

1 if x ∈ Bn
∞(0, µk)

0 otherwise

Then we can take k0 to be the smallest k for which
qk(x(kτ)) = 1. We have thus obtained the bound

‖x(k0τ)‖∞ ≤ E0 := µk0
(3)

using the encoded state measurements with N = 1. (Such
binary encoding can be realized by a quantizer taking 3n

values; cf. [3].)
The inequality (3) means that the state of the system at

time t = k0τ lies in Bn
∞(0, E0). In other words, x̂(k0τ) := 0

can be viewed as an estimate of x(k0τ) with estimation error
of infinity norm at most E0. Our goal now is to generate state
estimates with estimation errors approaching 0 as t → ∞,
while using these estimates to compute the feedback law.
ASSUMPTION 2. The system (1) admits a locally Lipschitz
feedback law u = k(x) which satisfies k(0) = 0 and
renders the closed-loop system input-to-state stable (ISS)
with respect to measurement errors. Written in terms of the
infinity norm and for piecewise continuous inputs (which is
sufficient for our purposes), this condition means that there
exist functions1 β ∈ KL and γ ∈ K∞ such that for every
initial condition x(t0) and every piecewise continuous signal
e the corresponding solution of the system

ẋ = f(x, k(x + e)) (4)

satisfies
‖x(t)‖∞ ≤ β(‖x(t0)‖∞, t − t0)

+ γ
(

sups∈[t0,t] ‖e(s)‖∞
)

∀ t ≥ t0.
(5)

Take κ to be some class K∞ function with the property
that κ(r) ≥ max‖x‖∞≤r ‖k(x)‖∞ for all r ≥ 0. Then

‖k(x)‖∞ ≤ κ(‖x‖∞) ∀x. (6)

Let L be the Lipschitz constant for f on the region

{(x, u) : ‖x‖∞ ≤ D, ‖u‖∞ ≤ κ(D)} (7)

1Recall that a function α : [0,∞) → [0,∞) is said to be of class K if
it is continuous, strictly increasing, and α(0) = 0. If α is also unbounded,
then it is said to be of class K∞. A function β : [0,∞)× [0,∞) → [0,∞)
is said to be of class KL if β(·, t) is of class K for each fixed t ≥ 0 and
β(r, t) decreases to 0 as t → ∞ for each fixed r ≥ 0.

where

D := β(E0, 0) + γ
( n
√

NE0

)

+
n
√

NE0. (8)

Define
Λ := eLτ ≥ 1. (9)

For t ∈ [k0τ, k0τ + τ), let u(t) = 0. At time t = k0τ + τ ,
consider the box Bn

∞(0,ΛE0).

ASSUMPTION 3. The number n
√

N is an odd integer. This
assumption is made mostly for notational convenience. If
n
√

N is not an integer, we can work with some N ′ ≤ N such
that n

√
N ′ is an integer. The reason for taking this integer

to be odd is to ensure that the control strategy described
below preserves the equilibrium at the origin. By making
slight modifications, we can also achieve this property when
the above integer is even.

Assumption 3 allows us to define the encoding function
qk0+1 as follows: divide Bn

∞(0,ΛE0) into N equal hyper-
cubic boxes, numbered from 1 to N in some specific way,
and let qk0+1(x) be the number of the box that contains x
if x ∈ Bn

∞(0,ΛE0), and 0 otherwise. In case x lies on the
boundary of several boxes, the value qk0+1(x) can be chosen
arbitrarily among the candidates. If qk0+1(x(k0τ + τ)) > 0,
then the encoded measurement specifies a box with edges
at most 2ΛE0/

n
√

N which contains x(k0τ + τ). Letting
x̂(k0τ + τ) be the center of this box, we obtain

‖x̂(k0τ + τ) − x(k0τ + τ)‖∞ ≤ ΛE0/
n
√

N.

If qk0+1(x(k0τ + τ)) = 0, we interpret this as an error and
return to the “zooming-out” stage described earlier.

For t ∈ [k0τ + τ, k0τ + 2τ), we apply the control law

u(t) = k(x̂(t)) (10)

where x̂(·) is the solution of the “copy” of the system (1),
given by

˙̂x = f(x̂, u)

with the initial condition x̂(k0τ + τ) specified be-
fore. At time t = k0τ + 2τ , consider the box
Bn

∞(x̂(k0τ + 2τ−),Λ2E0/
n
√

N). To define the encoding
function qk0+2, divide this box into N equal hypercubic
boxes and let qk0+2(x) be the number of the box that contains
x or, if x /∈ Bn

∞(x̂(k0τ + 2τ−),Λ2E0/
n
√

N), let qk0+2(x) =
0. If qk0+2(x(k0τ +2τ)) > 0, then the encoded measurement
singles out a box with edges at most 2Λ2E0/(

n
√

N)2 which
contains x(k0τ + 2τ). Let x̂(k0τ + 2τ) be the center of this
box to obtain

‖x̂(k0τ + 2τ) − x(k0τ + 2τ)‖∞ ≤ Λ2E0/(
n
√

N)2

and continue. If qk0+2(x(k0τ + 2τ)) = 0, go back to the
“zooming-out” stage.

Repeating the above procedure, we see that as long as
the encoded measurements received by the controller are



positive, the upper bounds on the norm of the estimation error
‖x̂ − x‖∞ at the sampling times k0τ , k0τ +τ , k0τ +2τ , . . .
form a geometric progression with ratio Λ/ n

√
N . The goal

of forcing the estimation error to approach 0 motivates our
final assumption.
ASSUMPTION 4. We have

Λ <
n
√

N.

In view of the definition of Λ via the formula (9), this
inequality characterizes the trade-off between the amount
of information provided by the encoder at each sampling
time and the required sampling frequency. This relationship
depends explicitly on the Lipschitz constant L which, as we
will see, can be interpreted as a measure of expansiveness of
the system (1).

III. MAIN RESULT

Theorem 1 Under Assumptions 1–4, the control law de-
scribed in Section II globally asymptotically stabilizes the
system (1).

PROOF. We first show that ‖x(t)‖∞ < D and ‖x̂(t)‖∞ <
D for all t ≥ k0τ , where D is defined by (8) and E0 is
defined by (3). Suppose that this is not true. Then, since x is
continuous with ‖x(k0τ)‖∞ ≤ E0 < D and x̂ is continuous
from the right with x̂(k0τ) = 0, the time

t̄ := min{t > k0τ : max{‖x(t̄)‖∞, ‖x̂(t̄)‖∞} ≥ D} (11)

is well defined. We have ‖x(t)‖∞ < D and ‖x̂(t)‖∞ < D
for all t ∈ [k0τ, t̄). The formulas (10) and (6) imply that
(x, u) and (x̂, u) stay inside the region (7) on the interval
[k0τ, t̄). Let us label the estimation error as

e := x̂ − x. (12)

We know that ‖e(k0τ)‖∞ ≤ E0. Combining the equation
(valid between the sampling times)

ė = f(x̂, u) − f(x, u)

with the formula

‖f(x̂, u) − f(x, u)‖∞ ≤ L‖e‖∞
and applying the Bellman-Gronwall lemma, we conclude
that for every interval (t1, t2] ⊂ [k0τ, t̄) not containing any
sampling times we have

‖e(t2)‖∞ ≤ eL(t2−t1)‖e(t1)‖∞ ≤ Λ‖e(t1)‖∞
where the last inequality follows from (9). This in turn
guarantees that at each sampling time kτ ∈ [k0τ, t̄), we
have qk(x(kτ)) > 0 and the upper bound on ‖e‖∞ is
divided by n

√
N . Invoking Assumption 4, we arrive at the

bound ‖e(t)‖∞ ≤ ΛE0 for all t ∈ [k0τ, t̄). If t̄ is not a
sampling time, then e is continuous at t̄; if t̄ is a sampling
time, then e can only decrease at t̄. In either case, we

actually have ‖e(t)‖∞ ≤ ΛE0 for all t ∈ [k0τ, t̄]. Now,
Assumption 2 expressed by the formula (5) with t0 = k0τ
implies that ‖x(t)‖∞ ≤ β(E0, 0) + γ(ΛE0) < D for all t ∈
[k0τ, t̄], where the last inequality follows from Assumption 4.
Using (12), we also obtain ‖x̂(t)‖∞ ≤ β(E0, 0)+γ(ΛE0)+
ΛE0 < D for all t ∈ [k0τ, t̄]. This yields a contradiction
with the definition (11) of t̄.

We have thus established that all of the above estimates
are valid with t̄ = ∞. In particular, the upper bound on ‖e‖∞
is divided by n

√
N at the sampling times k0τ + τ , k0τ + 2τ ,

. . . and grows by the factor of Λ on every interval between
these times. By Assumption 4, we have e(t) → 0 as t → ∞.
The evolution of x is governed by the system (4), and in
view of the ISS property of this system with respect to e we
conclude that x converges to 0 as well.

It remains to prove that the origin is a stable equilibrium
of the closed-loop system in the sense of Lyapunov. The
fact that it is an equilibrium is clear from the conditions
f(0, 0) = 0 and k(0) = 0 and from Assumption 3 (the latter
ensures that if x ≡ 0 then x̂ ≡ 0 because one of the boxes is
always centered at the origin). Take an arbitrary ε > 0. We
need to find a δ > 0 such that the solutions of (4) with initial
conditions in Bn

∞(0, δ) remain in Bn
∞(0, ε) for all time. From

the Lyapunov-like characterization of ISS proved in [16] we
know that there exists a C1 function V : R

n → R such
that for some class K∞ functions α1, α2, α3, ρ and for all
x, e ∈ R

n we have

α1(‖x‖∞) ≤ V (x) ≤ α2(‖x‖∞) (13)

and

‖x‖∞ ≥ ρ(‖e‖∞) ⇒ ∂V

∂x
f(x, k(x + e)) ≤ −α3(‖x‖∞).

These formulas are easily seen to imply that the solutions
of (4) starting in the region

R := {x : V (x) ≤ α1(ε)} (14)

remain in this region as long as

‖e‖∞ ≤ c := ρ−1 ◦ α−1
2 ◦ α1(ε).

Choose a sufficiently large integer k̄ ≥ 0 such that

Λk̄+1E0/(
n
√

N)k̄ ≤ c.

Our previous analysis implies that ‖e(t)‖∞ ≤ c for all
t ≥ k0τ + k̄τ . Moreover, in view of Assumption 1 and
the fact that the origin is an equilibrium of the unforced
system (2), there exists a class K∞ function ν such that all
solutions of (2) satisfy ‖ξ(x(0), t)‖∞ ≤ ν(‖x(0)‖∞) for all
t ∈ [0, k̄τ ]. (Just take some function ν ∈ K∞ satisfying
ν(r) ≥ max‖x(0)‖∞≤r, t∈[0,k̄τ ] ‖ξ(x(0), t)‖∞ for all r ≥ 0.)
Choose a sufficiently small δ > 0 such that

ν(δ) < min
{

Λk̄−1/(
n
√

N)k̄−1, α−1
2 ◦ α1(ε)

}

.



This inequality and Assumption 4 ensure that if ‖x(0)‖∞ ≤
δ, then k0 = 0, x̂(t) = 0 for all t ∈ [0, k̄τ), and ‖x(t)‖∞ <
α−1

2 ◦ α1(ε) for all t ∈ [0, k̄τ ]. Since the last inequality
implies V (x(t)) < α1(ε) by virtue of (13), we see that the
solutions of the closed-loop system with initial conditions
in Bn

∞(0, δ) stay in the region R defined by (14) for all
t ∈ [0, k̄τ ]. In light of the analysis given before for t ≥ k0τ+
k̄τ = k̄τ , we conclude that these solutions stay in R forever.
To finish the proof, note that R ⊂ Bn

∞(0, ε) by (13).

Remark 1 Instead of binary encoding functions, we could
let qk, k ≤ k0 be encoding functions taking N + 1 values,
similar to the functions qk, k ≥ k0 + 1 but defined for the
boxes Bn

∞(0, µk). While this would make the “zooming-
out” stage slightly more complicated, it has the advantage
that the upper bound on ‖e(k0τ)‖∞ would then be divided
by n

√
N . This would allow us to eliminate n

√
N from the

formula for D and obtain the bound ‖e(t)‖∞ < E0 for all
t ≥ k0τ , thus rendering Λ independent of N and making
the relationship expressed by Assumption 4 more transparent
(although Λ would still implicitly depend on the initial state
through E0). Another way to achieve the same goal is to
leave the functions qk, k ≤ k0 as they are but observe that
by virtue of Assumption 1, x(k0τ +τ) belongs to a bounded
region whose size is determined by E0 and which could be
used to define D and to bound ‖e(t)‖∞ for t ≥ k0τ + τ . In
both cases, the functions qk, k ≥ k0 + 1 would need to be
redefined appropriately.

Remark 2 In Theorem 1, we were only concerned with the
behavior of the state x. Since the control law applied to the
system for t ≥ k0τ is a dynamic one with the (discontinuous)
state x̂, it is more accurate to refer to stability properties of
the resulting composite system. Global asymptotic stability of
this overall system (appropriately defined to take into account
the constraint x̂(k0τ) = 0 imposed by the construction) can
be easily deduced from the above proof.

IV. CONCLUSIONS

We studied the problem of stabilizing a nonlinear system
using sampled encoded measurements of its state. The result
and the method of proof presented here are extensions
of those described in [9] for the case of linear systems.
Our sufficient condition for global asymptotic stabilization
involves a relationship between the number of values taken
by the encoder and the sampling frequency, and relies on
the assumption of input-to-state stabilizability with respect
to measurement errors. The stabilizing control law takes the
form of a “certainty equivalence” discontinuous dynamic
feedback. Similar techniques can be used for the case when
control signals rather than state measurements are encoded,
assuming ISS with respect to actuator errors.

The limited information feedback strategy proposed in
this paper is not intended for practical implementation. Our

main goal was to identify the difficulties associated with
extending relevant existing results from linear to nonlinear
systems, as well as possible tools that can be used to
overcome them. Compared with the analysis given in [9],
the key complications in the nonlinear context are that the
propagation of the estimation error is not as straightforward
to characterize and that a strong form of robustness with
respect to this error is needed from the controller.

Regarding the latter restriction, Claudio De Persis has
kindly pointed out to the author that it can be relaxed in at
least two ways. First, using the exponential decay of e(t) and
the results of [1], one can replace ISS in Assumption 2 by
the weaker integral-ISS property plus an additional technical
condition on the corresponding nonlinear gain; see [12],
[11]. Second, if one assumes only that the control law
globally asymptotically stabilizes the system in the absence
of measurement errors, then asymptotic stabilization with
encoded state feedback can still be achieved at the expense
of increasing the sampling rate according to the size of the
initial condition [13].
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