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Stabilization of Nonlinear Systems With Limited
Information Feedback

Daniel Liberzon and João P. Hespanha

Abstract—This note is concerned with the problem of stabilizing a non-
linear continuous-time system by using sampled encoded measurements of
the state. We demonstrate that global asymptotic stabilization is possible
if a suitable relationship holds between the number of values taken by the
encoder, the sampling period, and a systemparameter, provided that a feed-
back law achieving input-to-state stability with respect to measurement er-
rors can be found. The issue of relaxing the latter condition is also discussed.

Index Terms—Asymptotic stability, encoding, input-to-state stability,
limited information, measurement errors, nonlinear system.

I. INTRODUCTION

In recent years, extensive research activity has been devoted to the
question of howmuch information a feedback controller really needs in
order to stabilize a given system. Questions of this kind are motivated
by applications where communication capacity is limited (e.g., a large
number of systems sharing the same network cable or wirelessmedium,
microsystems with a large number of sensors and actuators on a single
chip) as well as situations where security considerations compel one to
transmit as little information as possible. Among the many references
on this subject, the ones particularly close in spirit to the present work
are [3], [4], [10], [16], [17], [21], [24], and [27].

All results developed in the aforementioned papers are limited to
linear systems. The work reported here is one of the first steps to-
ward understanding information-based control aspects for nonlinear
systems. (The recent independent work [18] also treats the nonlinear
problem, using a different approach.) Specifically, in this note we ex-
tend the result and the control scheme described in [16] to nonlinear
systems, characterizing the amount of information sufficient for global
asymptotic stabilization. As we will see, the main issues that arise in
this process are the following:

1) Due to limited information available to the controller, the
control law is based on estimated values of the state. The
propagation of the error between the actual state and the es-
timated state is not as straightforward to characterize as in the
linear case, because it is not decoupled from the state equa-
tions. Our analysis of the error dynamics relies on the Lip-
schitz property of the right-hand side, and in this sense our
solution bears a conceptual resemblance to the construction
given in [25]1 (see also [26]).

2) Unlike in the linear case, a feedback law that stabilizes the
system in the case of perfect information is not necessarily
robust with respect to the estimation error. Our main result
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is obtained under the assumption that the feedback law pro-
vides input-to-state stability (ISS) in the sense of [23] with
respect to measurement errors. This requirement is quite re-
strictive in general, although some results on designing such
control laws are available [5]–[7], [11]. (The same assump-
tion was also used in the context of nonlinear control with
limited information in [15].) An alternative result relying on a
more easily verifiable assumption is presented in Section IV.

The setup considered in this note is as follows. The system to be
stabilized is

_x = f(x; u) (1)

where x 2 n is the state variable, u 2 m is the control variable,
and f : n � m ! n is a locally Lipschitz function satisfying
f(0; 0) = 0. Control inputs considered in this note are piecewise Lip-
schitz continuous. The term “limited information feedback” refers to
the following scenario.

• SAMPLING: Measurements are to be received by the con-
troller at discrete times 0; �; 2�; . . ., where � > 0 is a fixed
sampling period.
• ENCODING: At each of these sampling times, the measure-
ment received by the controller must be a number in the set
f0; 1; . . . ; Ng, where N is a fixed positive integer.

Thus, the data available to the controller consists of a stream of integers

q0(x(0)); q1(x(�)); q2(x(2�)); . . .

where qk(�) : n ! f0; 1; . . . ; Ng is, for each k, some encoding
function. For different values of k, we can use different encoding func-
tions. As we will see, it is natural to use the previous values qi(x(i� )),
i = 0; . . . ; k� 1 to define the function qk(�). We assume that the con-
troller knows the initial encoding function q0(�) as well as the rule that
defines qk(�) on the basis of the previously received encoded measure-
ments, so that for each k the function qk is known to the controller.
In other words, there is a communication protocol satisfying the con-
straints just described upon which the process and the controller agree
in advance.
In what follows, we find it convenient to use the infinity norm

kxk1 := maxfjxij : 1 � i � ng on n. We let Bn

1
(x0; r) denote

a ball with respect to this norm with radius r and center x0, i.e., the
hypercubic box centered at x0 with edges 2r

B
n

1
(x0; r) := fx 2 n : kx� x0k1 � rg:

II. CONTROL STRATEGY AND ASSUMPTIONS

In this section, we describe the proposed control strategy based on
limited information feedback, stating and briefly discussing the cor-
responding assumptions along the way. Our first goal is to obtain an
upper bound on the size of the state. We do this by “zooming out,” i.e.,
expanding the support of the encoding function, fast enough to domi-
nate the growth of the state for the uncontrolled system (no feedback is
applied at this stage). The following assumption is needed to execute
this task.

Assumption 1: The unforced system

_x = f(x; 0) (2)

is forward complete. This means that for every initial state x(0) the
solution of (2), which we denote by �(x(0); �), is defined for all t � 0.
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Set the control u equal to 0. Let �0 := 1. Pick a sequence
�1; �2; . . . that increases fast enough to dominate the rate
of growth of kx(t)k1 at the times �; 2�; . . .; for example,
we can define �1 := 2maxkx(0)k ��;t2[0;�] k�(x(0); t)k1,
�2 := 2maxkx(0)k �2�;t2[0;2� ] k�(x(0); t)k1, and so on. This
construction guarantees the existence of an integer k0 � 0 such that
kx(k0�)k1 � �k . For k = 0; 1; . . ., define the encoding function
qk by the formula

qk(x) :=
1; if x 2 Bn

1(0; �k)

0; otherwise.

Then, we can take k0 to be the smallest k for which qk(x(k�)) = 1.
We have thus obtained the bound

kx(k0�)k1 � E0 := �k (3)

using the encoded state measurements with N = 1.
Remark 1: Constructing the sequence �1; �2; . . . requires an upper

bound on the size of the reachable set of (2) from a given compact ini-
tial set in a given time. In practice, some known structure of the system
can be utilized to obtain such an over-approximation to the reachable
set. We also note that computation and analysis of reachable sets and
their approximations is an active area of research (see, e.g., [14] for el-
lipsoidal approximation techniques and [1] for related results involving
Lyapunov functions).

The inequality (3) means that the state of the system at time t = k0�
lies in Bn

1(0; E0). In other words, x̂(k0�) := 0 can be viewed as an
estimate of x(k0�) with estimation error of infinity norm at most E0.
Our goal now is to generate state estimates with estimation errors ap-
proaching 0 as t!1, while at the same time using these estimates to
compute the feedback law. The next assumption was already discussed
in the Introduction.

Assumption 2: System (1) admits a locally Lipschitz feedback law
u = k(x) which satisfies k(0) = 0 and renders the closed-loop
system input-to-state stable (ISS) with respect to measurement errors.
Written in terms of the infinity norm and for piecewise continuous in-
puts (which is sufficient for our purposes), this condition means that
there exist functions2 � 2 KL and 
 2 K1 such that for every ini-
tial condition x(t0) and every piecewise continuous signal e the corre-
sponding solution of the system

_x = f(x; k(x+ e)) (4)

satisfies

kx(t)k1 � �(kx(t0)k1; t� t0)

+
 sup
s2[t ;t]

ke(s)k1 8 t � t0: (5)

Take � to be some class K1 function with the property that �(r) �
maxkxk �r kk(x)k1 for all r � 0. Then, we have

kk(x)k1 � �(kxk1) 8 x: (6)

Let L be the Lipschitz constant for the function f on the region

f(x; u) : kxk1 � D; kuk1 � �(D)g (7)

2Recall that a function � : [0;1) ! [0;1) is said to be of class K if it is
continuous, strictly increasing, and �(0) = 0. If � is also unbounded, then it is
said to be of classK . A function � : [0;1)� [0;1)! [0;1) is said to be
of class KL if �(�; t) is of class K for each fixed t � 0 and �(r; t) decreases
to 0 as t!1 for each fixed r � 0. We will write � 2 K , � 2 KL, etc.

where

D := �(E0; 0) + 
(N1=nE0) +N1=nE0: (8)

Define

� := eL� � 1: (9)

For t 2 [k0�; k0� + � ), let u(t) = 0. At time t = k0� + � , consider
the box Bn

1(0;�E0).
Assumption 3: The number N1=n is an odd integer. This assump-

tion is made mostly for notational convenience. If N1=n is not an in-
teger, we can work with someN 0 � N such that (N 0)1=n is an integer.
The reason for taking this integer to be odd is to ensure that the con-
trol strategy described later preserves the equilibrium at the origin. By
making slight modifications, we can also achieve the desired properties
when this integer is even.
Assumption 3 allows us to define the encoding function qk +1 as fol-

lows: Divide Bn
1(0;�E0) into N equal hypercubic boxes, numbered

from 1 to N in some specific way, and let qk +1(x) be the number of
the box that contains x, ifx 2 Bn

1(0;�E0), and 0, otherwise. In case x
lies on the boundary of several boxes, the value qk +1(x) can be chosen
arbitrarily among the candidates. If qk +1(x(k0� + � )) > 0, then the
encoded measurement specifies a box with edges at most 2�E0=N

1=n

which contains x(k0� + � ). Letting x̂(k0� + � ) be the center of this
box, we obtain

kx̂(k0� + � )� x(k0� + � )k1 �
�E0

N1=n:

If qk +1(x(k0� + � )) = 0, we interpret this as an error and return to
the “zooming-out” stage described earlier.
For t 2 [k0� + �; k0� + 2�), we apply the control law

u(t) = k(x̂(t)) (10)

where x̂(�) is the solution of the “copy” of the system (1), given by

_̂x = f(x̂; u) (11)

with the initial condition x̂(k0� + � ) specified earlier. At time t =
k0� +2� , we consider the boxBn

1(x̂(k0� + 2��);�2E0=N
1=n). To

define the encoding function qk +2, divide this box into N equal hy-
percubic boxes and let qk +2(x) be the number of the box that contains
x, or let qk +2(x) = 0 if x =2 Bn

1(x̂(k0� + 2��);�2E0=N
1=n). If

qk +2(x(k0�+2�)) > 0, then the encoded measurement singles out a
box with edges at most 2�2E0=(N

1=n)2 which contains x(k0�+2�).
Let x̂(k0� + 2�) be the center of this box to obtain

kx̂(k0� + 2�)� x(k0� + 2�)k1 �
�2E0

(N1=n)2

and continue. If qk +2(x(k0� + 2�)) = 0, go back to the “zooming-
out” stage.
Repeating this procedure, we see that as long as the encoded mea-

surements received by the controller are positive, the upper bounds
on the norm of the estimation error kx̂� xk1 at the sampling times
k0�; k0� + �; k0� + 2�; . . . form a geometric progression with ratio
�=(N1=n). The goal of forcing the estimation error to approach 0 mo-
tivates our final assumption.

Assumption 4: We have

� < N1=n:

In view of the definition of � via the formula (9), this inequality char-
acterizes the tradeoff between the amount of information provided by
the encoder at each sampling time and the required sampling frequency
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(see also Remark 2 in Section III). This relationship depends explicitly
on the Lipschitz constant L which, as we will see, can be interpreted
as a measure of expansiveness of (1).

III. MAIN RESULT

Theorem 1: Under Assumptions 1–4, the control law described in
Section II globally asymptotically stabilizes the system (1).

Proof: We first show that kx(t)k1 < D and kx̂(t)k1 < D

for all t � k0� , where D is defined by (8) and E0 is defined by
(3). Suppose that this is not true. Then, since x is continuous with
kx(k0�)k1 � E0 < D and x̂ is continuous from the right with
x̂(k0�) = 0, the time

�t := minft > k0� : maxfkx(�t)k1; kx̂(�t)k1g � Dg (12)

is well defined. We have kx(t)k1 < D and kx̂(t)k1 < D for all
t 2 [k0�; �t). Formulas (10) and (6) imply that (x; u) and (x̂; u) stay
inside the region (7) on the interval [k0�; �t). Let us label the estimation
error as

e := x̂� x: (13)

We know that ke(k0�)k1 � E0. Combining the equation (valid be-
tween the sampling times)

_e = f(x̂; u)� f(x; u)

with the formula

kf(x̂; u)� f(x; u)k1 � Lkek1

and applying the Bellman–Gronwall lemma, we conclude that for every
interval (t1; t2] � [k0�; �t) not containing any sampling times we have

ke(t2)k1 � e
L(t �t )ke(t1)k1 � �ke(t1)k1

where the last inequality follows from (9). This in turn guarantees that
at each sampling time k� 2 [k0�; �t), we have qk(x(k�)) > 0 and the
upper bound on kek1 is divided byN1=n. Invoking Assumption 4, we
arrive at the bound ke(t)k1 � �E0 for all t 2 [k0�; �t). If �t is not a
sampling time, then e is continuous at �t; if �t is a sampling time, then e
can only decrease at �t. In either case, we actually have

ke(t)k1 � �E0 8 t 2 [k0�; �t]: (14)

Now, Assumption 2 expressed by (5) with t0 = k0� implies that
kx(t)k1 � �(E0; 0) + 
(�E0) < D for all t 2 [k0�; �t], where
the last inequality follows from Assumption 4. Using (13) and (14),
we also obtain kx̂(t)k1 � �(E0; 0) + 
(�E0) + �E0 < D for all
t 2 [k0�; �t]. This yields a contradiction with the definition (12) of �t.

We have thus established that all of the previous estimates are valid
with �t = 1. In particular, the upper bound on kek1 is divided by
N1=n at the sampling times k0� + �; k0� + 2�; . . . and grows by the
factor of � on every interval between these times. By Assumption 4,
we have e(t) ! 0 as t ! 1. The evolution of x is governed by (4),
and in view of the ISS property of this system with respect to e we
conclude that x converges to 0 as well.

It remains to prove that the origin is a stable equilibrium of the
closed-loop system in the sense of Lyapunov. The fact that it is an equi-
librium is clear from the conditions f(0; 0) = 0 and k(0) = 0 and from
Assumption 3 (the latter ensures that if x � 0 then x̂ � 0 because one
of the boxes is always centered at the origin). Take an arbitrary " > 0.

We need to find a � > 0 such that the solutions of (4) with initial con-
ditions inBn

1(0; �) remain inBn
1(0; ") for all time. With reference to

(5), choose two positive numbers � and � such that

�(�; 0) + 
(�) � ": (15)

Note that �(r; 0) � r for all r � 0 (just apply (5) with e � 0 and
t = t0), hence � < ". Choose a sufficiently large integer �k � 0 such
that

�
�k+1E0

(N1=n)�k
� �: (16)

In view of Assumption 1 and the fact that the origin is an equilibrium
of the unforced system (2), there exists a class K1 function � such
that all solutions of (2) satisfy k�(x(0); t)k1 � �(kx(0)k1) for all
t 2 [0; �k� ]. (Just take some function � 2 K1 satisfying �(r) �
maxkx(0)k �r;t2[0;�k� ] k�(x(0); t)k1 for all r � 0.) Choose a suf-
ficiently small � > 0 such that

�(�) < min
�

�k�1

(N1=n)�k�1
; � :

This inequality and Assumption 4 ensure that if kx(0)k1 � �, then
k0 = 0, x̂(t) = 0 for all t 2 [0; �k�), and kx(t)k1 < � for all
t 2 [0; �k� ]. Inequality (16) and our previous analysis imply that
ke(t)k1 � � for all t � �k� . By time-invariance of the system (4),
inequality (5) remains valid with t0 replaced by �k� . In view of (15),
we conclude that kx(t)k1 < " for t � �k� , and the proof is complete.

Remark 2: Instead of binary encoding functions, we could let qk ,
k � k0 be encoding functions taking N + 1 values, similar to the
functions qk, k � k0 + 1 but defined for the boxes Bn

1(0; �k). While
this would make the “zooming-out” stage slightly more complicated, it
has the advantage that the upper bound on ke(k0�)k1 would then be
divided byN1=n. This would allow us to eliminateN1=n from the for-
mula forD and obtain the bound ke(t)k1 < E0 for all t � k0� , thus
rendering � independent of N and making the relationship expressed
by Assumption 4 more transparent (although � would still implicitly
depend on the initial state through E0). Another way to achieve the
same goal is to leave the functions qk, k � k0 as they are but observe
that by virtue of Assumption 1, x(k0�+�) belongs to a bounded region
whose size is determined by E0 and which could be used to define D
and to bound ke(t)k1 for t � k0�+� . In both cases, the functions qk ,
k � k0+1 would need to be redefined appropriately. Thus, for a fixed
� , our method can be applied for sufficiently large N , while it is clear
from (9) that for a fixed N , Assumption 4 is satisfied for sufficiently
small � .

Remark 3: In Theorem 1, wewere only concernedwith the behavior
of the state x. Since the control law applied to the system for t � k0�

is a dynamic one with the (discontinuous) state x̂, it is more accurate to
refer to stability properties of the resulting composite system. Global
asymptotic stability of this overall system (appropriately defined to take
into account the constraint x̂(k0�) = 0 imposed by the construction)
can be easily deduced from the proof of Theorem 1.

IV. ALTERNATIVE ISS ASSUMPTION

The construction given earlier relies on ISS of the closed-loop
system (4) with respect to the estimation error e (Assumption 2). In
this section, we propose a different approach, which centers around
the behavior of the estimated state x̂ (and is inspired by the analysis
of supervisory control algorithms for uncertain systems described in
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[8]). In view of (10), (11), (13), and continuity of x, the evolution of x̂
for t � k0� is described by the impulsive system

_̂x = f(x̂; k(x̂)); t 6= k0� + k�; k = 1; 2; . . .

x̂(t) = x̂(t�) + �e(t); t = k0� + k�; k = 1; 2; . . .
(17)

where

�e(t) :=
e(t)� e(t�); t = k0� + k�; k = 1; 2; . . .

0; elsewhere.
(18)

The initial condition for (17) is x̂(k0�) = 0. Assuming as before that
the feedback law k(�) is locally Lipschitz with k(0) = 0, let us replace
the ISS condition appearing in Assumption 2 by the following one.

Assumption 20: There exist functions �̂ 2 KL and 
̂ 2 K1 such
that for every t0 � k0� and every input�e the corresponding solution
of (17) satisfies

kx̂(t)k1 � �̂(kx̂(t0)k1; t� t0)

+
̂ sup
s2[t ;t]

k�e(s)k1 8 t � t0: (19)

Using the bound sups2[t ;t] k�e(s)k1 � 2 sups2[t ;t] ke(s)k1
and the relation x = x̂� e, it is not difficult to verify that (19) implies
(5) with

�(r; t) := �̂(2r; t) 
(r) := 
̂(2r) + r + �̂(2r; 0): (20)

This leads to an alternative version of Theorem 1. Note that the stated
implication relies on the fact that e in (5) and �e in (19) are related
via (18). In general, Assumption 20 does not imply Assumption 2 for
arbitrary e, as will become clear later.

We can obtain a similar result by proceeding from Assumption 20

directly, as follows. Let L0 be the Lipschitz constant for the function f
on the region

f(x; u) : kxk1 � D
0
; kuk1 � �(D0)g

where � is given by (6) and

D
0 := 
̂(2N1=n

E0) +N
1=n

E0: (21)

Now, redefine � to be

� := e
L � � 1: (22)

Note that this number is in general smaller than the one given by (9)
using L obtained from (7) and (8) and � and 
 defined by (20). By
the same reasoning as in the proof of Theorem 1 (using Assumption 20

instead of Assumption 2 and interchanging the roles of x and x̂), we
arrive at the following result.

Theorem 2: Under Assumptions 1, 20, 3, and 4 with the new defini-
tion of� given by (22), the control law described in Section II globally
asymptotically stabilizes the system (1).

Assumption 20 expresses an ISS property for the impulsive system
with inputs (17) which apparently has not been studied in the literature.
However, employing available results for the corresponding discrete-
time system, we can obtain the following sufficient condition for this
property.

Lemma 1: Suppose that there exists a positive–definite radially un-
bounded C1 function V : n ! satisfying

@V

@x̂
f(x̂; k(x̂)) � �V (x̂) 8 x̂ (23)

and for every " > 0 there exists a continuous functionW" :
n !

such that

V (x̂+ d)� ("+ 1)V (x̂) �W"(d) 8 x̂; d: (24)

Then, Assumption 20 holds.
Proof (Sketch): We associate to the impulsive system (17) the

discrete-time system

xk+1 = '(xk) + dk+1 (25)

where '(�) is the flow of the system

_̂x = f(x̂; k(x̂)) (26)

for � units of time and di := �e(k0� + i� ), i � 1. Clearly, (23)
guarantees that (26) is globally asymptotically stable. In view of this,
we can show that the impulsive system (17) satisfies (19) if and only if
the discrete-time system (25) is ISS in the sense of [12], which in the
present context means

kxkk1 � ��(kx0k1; k) + �
 sup
1�i�k

kdik1

for some �� 2 KL and �
 2 K1. From (25) and (24), we have

V (xk+1)� V (xk) =V ('(xk) + dk+1)� V (xk)

� ("+ 1)V ('(xk))

� V (xk) +W"(dk+1):

Combining this with (23) and the definition of ', we obtain

V (xk+1)� V (xk) � (("+ 1)e�� � 1)V (xk) +W"(dk+1):

Since ("+ 1)e�� � 1 < 0 for " small enough, we can find functions
�; � 2 K1 such that

V (xk+1)� V (xk) � ��(kxkk1) + �(kdk+1k1):

According to the main result of [12], this implies that (25) is ISS. Al-
ternatively, using the exponential decay of V along solutions of (26), it
is not difficult to establish (19) directly by computing the desired func-
tions �̂ and 
̂.
It is known that a Lyapunov function V satisfying (23) can always be

found provided that the system (26) is globally asymptotically stable
(see, e.g., [22]). Thus, Lemma 1 says that Assumption 20 holds if we
can also satisfy the condition expressed by (24). It is straightforward
to check that this additional condition holds if V is quadratic or, more
generally, takes the form

V (x̂) =

m

i=1

(x̂TPix̂)
i
; Pi � 0; i = 1; . . . ;m

where m is a positive integer. It is not hard to show that both condi-
tions of Lemma 1 are satisfied if the system (26) is globally exponen-
tially stable and its right-hand side is globally Lipschitz. Indeed, [13,
Th. 4.14] guarantees the existence of a function V satisfying c1jx̂j2 �
V (x̂) � c2jx̂j

2, rV (x̂)f(x̂; k(x̂)) � �c3jx̂j
2, and jrV (x̂)j �

c4jx̂j, where ci > 0, i = 1; 2; 3; 4. The mean value theorem gives

V (x̂+ d)� ("+ 1)V (x̂) =V (x̂+ d)� V (x̂)� "V (x̂)

=rV (z)d� "V (x̂)

where z is a point on the line segment between x̂ and x̂+ d. Therefore

jV (x̂+ d)� ("+ 1)V (x̂)j � c4jx̂jjdj + c4jdj
2 � "c1jx̂j

2
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which is bounded for each d uniformly over x̂, and so

W"(r) := sup
x̂;d:jdj�r

fV (x̂+ d)� ("+ 1)V (x̂)g

is well defined. In particular, we conclude that Assumption 20 holds if
(26) is a linear asymptotically stable system (in this case we can also
explicitly solve (17) and confirm this fact directly). There exist other
conditions guaranteeing that the hypotheses of Lemma 1 are satisfied,
which are reported in [9].

On the other hand, these conditions are not sufficient for Assump-
tion 2 to hold. For example, let the right-hand side of (1) be f(x; u) :=
�x � x2 + xu and consider the feedback law k(x) := x. Then the
system (26) is _̂x = �x̂ and so Assumption 20 holds in view of the pre-
vious remarks. On the other hand, the system (4) is _x = �x+xewhich
is not ISS (just note that e � 2 produces unbounded solutions), so As-
sumption 2 is not satisfied. In fact, constructive sufficient conditions
for ISS with respect to measurement errors for general nonlinear sys-
tems are lacking. This makes Assumption 20 more attractive because it
is easier to test. We note, however, that Assumption 2 does not seem to
imply Assumption 20.

V. CONCLUDING REMARKS

We studied the problem of stabilizing a nonlinear system using sam-
pled encoded measurements of its state. The result and the method of
proof presented here are extensions of those described in [16] for the
case of linear systems. Our sufficient condition for global asymptotic
stabilizability involves a relationship between the number of values
taken by the encoder and the sampling frequency, and relies on input-to-
state stabilizability with respect to measurement errors. The stabilizing
control law that we constructed takes the form of a “certainty equiv-
alence” discontinuous dynamic feedback. Similar techniques can be
used for the case when control signals rather than state measurements
are encoded (so that measurement errors are replaced by actuator er-
rors), and also in situations where the sampling interval and the number
of values taken by the encoder may vary with time (as long as a suitable
relationship between them is satisfied “on the average”).

The limited information feedback control strategy proposed in this
note is not intended for practical implementation. Our main goal was to
identify the difficulties associated with extending relevant existing re-
sults from linear to nonlinear systems, as well as possible tools that can
be used to overcome them. Compared with the analysis given in [16],
the key complications in the nonlinear context are that the propagation
of the estimation error is not as straightforward to characterize and that
a suitable form of robustness with respect to this error is needed from
the controller. Our control scheme is not claimed to be optimal in any
sense. Known results for linear systems suggest that to obtain neces-
sary and sufficient conditions for nonlinear stabilizability, additional
structure must be imposed on the system. For some classes of systems
(e.g., piecewise linear systems) it may be possible to characterize the
propagation of the estimation error more succinctly, thus reducing the
conservatism of the condition expressed by Assumption 4.

An alternative analysis method presented in Section IV provides ad-
ditional insight into the issue of robustness required from the controller.
It involves an input-to-state stability property for impulsive systems,
which has independent interest and is under current investigation [9].
We also mention two related results recently obtained by C. De Persis
on the basis of the method presented in this note. First, exploiting the
exponential decay of e(t) and the results of [2], one can replace ISS in
Assumption 2 by the weaker integral-ISS property plus an additional
technical condition on the corresponding nonlinear gain [19]. Second,
if one assumes only that the control law globally asymptotically stabi-
lizes the system in the absence of measurement errors, then asymptotic
stabilization with encoded state feedback can still be achieved at the

expense of increasing the sampling rate according to the size of the ini-
tial condition [20].
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Adaptive Control of a Class of Slowly Time Varying
Systems With Modeling Uncertainties

Barış Fidan, Youping Zhang, and Petros A. Ioannou

Abstract—In a recent work, a new linear adaptive controller based on
certainty-equivalence and backstepping design, which promises a level of
transient and asymptotic performance comparable to that of the tuning
functions adaptive backstepping controller without using high order non-
linearities, was proposed for linear time invariant systems. The proposal
was supplemented with robustness and performance analysis in the pres-
ence of modeling uncertainties. In this note, the same idea is used to develop
a new linear adaptive controller for slowly time varying systems with mod-
eling uncertainties. The new adaptive control scheme guarantees robust-
ness with respect to modeling errors via normalizing damping, parameter
projection, and static normalization. Use of normalizing damping is essen-
tial in protecting the “linearity” of the system, which plays a key role in
reaching the stability and robustness results.

Index Terms—Backstepping, robust adaptive control, time-varying sys-
tems.

I. INTRODUCTION

In a recent work, a new “linear” adaptive controller which combines
beneficial features of the two dominant approaches of adaptive control,
the certainty equivalence approach [1], [2] and the backstepping ap-
proach [3] was proposed [4], [5] for linear-time invariant (LTI) plants.
The new design promises a high level of transient and asymptotic per-
formance comparable to that of the tuning functions adaptive backstep-
ping controller [3] with a simple “linear” certainty equivalence adaptive
structure that avoids high order nonlinearities that may lead to poor ro-
bustness and localization of stability in the presence of high frequency
unmodeled dynamics [6], [7]. The proposed design is supplemented
with robustness and performance analysis in the presence of modeling
uncertainties. In this note, the same idea is used to develop a new linear
adaptive controller for linear time varying (LTV) systems. As in the LTI
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case, the “linearity” of the controller, parameter projection, and static
normalization are the main features that are used to provide stability
and robustness beside computable performance bounds provided by the
backstepping algorithm.
Considering the works on adaptive control of slowly time varying

plants in the literature, the main contribution of our work is providing
computable bounds for systematic improvement of the transient per-
formance with or without adaptation of the parameter estimates while
keeping the system stable and robust against modeling errors. Most
of the previous works on adaptive control of LTV plants are based on
the certainty equivalence approach that combines a controller structure
with a robust adaptive law [8]–[10]. These controllers can not guar-
antee good transient behavior in general [11]. Our controller, on the
other hand, provides improved transient performance beside guaran-
teeing stability and robustness. Another major difference of our work
from most of the previous ones is direct involvement of unmodeled dy-
namics and external disturbances in the problem definition. Hence, our
controller is designed directly for a class of LTV plants with modeling
errors.

II. NOTATION

The following notation is used throughout the note, unless otherwise
stated. We denote j � j as the Euclidean norm for vectors, and k � k
as matrix Frobenius norm. Unless specifically declared otherwise, x̂
denotes the estimate of x, and ~x = x� x̂ denotes the estimation error.
We denote In as an n � n identity matrix, 0m�n as an m � n zero
matrix, 0n as then�1 zeromatrix. For a squarematrixA, theminimum
andmaximum eigenvalues ofA are denoted by�min(A) and �max(A),
respectively.

�S(�) denotes the set fx: [0;1) ! <n j x 2

L2e;
t+T

t
xT (� )x(�)d� � �T + c1; 8t; T � 0g for a given constant

� � 0, where c1 � 0 is a finite constant. The set S(�) for a given
constant � � 0, the norms/measures kxk1; kxkp; p � 1; k(x)tk2� ,
MSE(x) for a function x : [0;1) ! < are defined as in [1]. For an
exponentially stable linear time varying differential operator H(s; t)
[8], if H(s � (�=2); t) is exponentially stable as well, i.e., if the
corresponding impulse response(transition matrix) h(t; � ) satisfies
kh(t; � )k � �he

�
 (t��); 8t; � for some positive constants �h; 
h,
we define the equation shown at the bottom of the next page. For
� = 0, we simply use k(H)tk2 and k(H)tk1 instead of k(H)tk2�
and k(H)tk1�.

III. PLANT MODEL AND PARAMETERIZATION

The plant under consideration is the following single-input–single-
output (SISO) LTV system:

_x(t) = a(t)
In�1
0Tn�1

x(t) + bp�(t)c
T
p�(t)x�(t) + b(t)u(t)

(1)

_x�(t) = A�(t)x�(t) + b�(t)u(t) (2)

y(t) = x1(t) + cT� (t)x�(t) + d(t) (3)

where y 2 < is the plant output; u 2 < is the control input; x =
[x1; . . . ; xn]

T ; x� = [x�1; . . . ; x�n ]T are the states of the modeled
part of the plant and unmodeled plant dynamics, respectively; a(t) =
[an�1(t); . . . ; a0(t)]

T 2 <n; b(t) = [0T��1; bm(t); . . . ; b0(t)]
T 2

<n are unknown plant parameter vectors; � = n�m > 0 is the relative
degree of the nominal plant; A�(t) 2 <

n �n ; b�(t) 2 <
n ; c�(t) 2

<n ; bp�(t) 2 <n; cp�(t) 2 <n are unknown parameter matrices
for the unmodeled dynamics; d 2 < is the output disturbance.
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