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Abstract—We study a notion of estimation entropy for
continuous-time nonlinear systems, formulated in terms
of the number of system trajectories that approximate all
other trajectories up to an exponentially decaying error. We
also consider an alternative definition of estimation entropy,
which uses approximating functions that are not necessar-
ily trajectories of the system, and show that the two entropy
notions are equivalent. We establish an upper bound on the
estimation entropy in terms of the sum of the desired con-
vergence rate and an upper bound on the matrix measure of
the Jacobian, multiplied by the system dimension. A lower
bound on the estimation entropy is developed as well. We
then turn our attention to state estimation and model de-
tection with quantized and sampled state measurements.
We describe an iterative procedure that uses such mea-
surements to generate state estimates that converge to the
true state at the desired exponential rate. The average bit
rate utilized by this procedure matches the derived upper
bound on the estimation entropy, and no other algorithm
of this type can perform the same estimation task with bit
rates lower than the estimation entropy. Finally, we discuss
an application of the estimation procedure in determining,
from the quantized state measurements, which of two com-
peting models of a dynamical system is the true model. We
show that under a mild assumption of “exponential separa-
tion” of the candidate models, detection always happens in
finite time.

Index Terms—Estimation, nonlinear systems, quantized
systems, topological entropy.

I. INTRODUCTION

ENTROPY is a fundamental notion in the theory of dy-
namical systems. Roughly speaking, it describes the rate

at which the uncertainty about the current state of the system
grows as time evolves. One can think of this alternatively as
the exponential growth rate of the number of system trajectories
distinguishable with finite precision, or in terms of the growth
rate of the size of reachable sets. Different entropy definitions
(notably, topological and measure-theoretic ones) and relation-
ships between them are studied in detail in the book [18] and
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in many other sources, and continue to be a subject of active
research in the dynamical systems community. The concept of
entropy of course also plays a central role in thermodynamics
and in information theory (as discussed, e.g., in [10]).

In the context of control theory, if entropy describes the rate
at which uncertainty is generated by the system (when no mea-
surements are taken), then it should also correspond to the rate
at which information about the system needs to be collected
by the controller in order to induce a desired behavior (such
as invariance or stabilization). This link has not escaped the
control community, and suitable entropy definitions for con-
trol systems have been proposed and related to minimal data
rates necessary for controlling the system over a communica-
tion channel. The first such result was obtained by Nair et al.
in [27], where topological feedback entropy for discrete-time
systems was defined in terms of cardinality of open covers in
the state space. An alternative definition was proposed later by
Colonius and Kawan in [8], who instead counted the number of
“spanning” open-loop control functions. The paper [9] summa-
rized the two notions and established an equivalence between
them. Colonius subsequently extended the formulation of [8] for
continuous-time dynamics from invariance to exponential sta-
bilization in [7]. The survey [28] provides a broader overview
of control under data-rate constraints.

In this work, we are concerned with the problem of estimat-
ing the state of a continuous-time system when only quantized
and sampled measurements of continuous signals are available
to the estimator (which happens, e.g., when state measurements
are transmitted via a finite-data-rate communication channel).
We do not address control problems here, although such obser-
vation problems and control problems are known to be closely
related (through duality and the fact that state estimates can
be used to close a feedback loop; see the brief discussion at
the end of Section V). Observability over finite-data-rate chan-
nels and its connection to topological entropy has been studied,
most notably by Savkin [32] and more recently by Matveev
and Pogromsky [26]. The work [11] is also somewhat related,
although it uses a different entropy notion (measure-theoretic
entropy) and different channel model (erasure channel). Our
point of departure in this paper is a synergy of ideas from
Savkin [32] and Colonius [7]. As in [32], we focus on state
estimation rather than control. However, we follow [7] in that
we consider continuous-time dynamics and require that state
estimates converge at a prescribed exponential rate. As a result,
the entropy notion with which we work here combines some
features of the entropy notions used in [32] and [7].

0018-9286 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2383-0114
https://orcid.org/0000-0001-7082-5516


LIBERZON AND MITRA: ENTROPY AND MINIMAL BIT RATES FOR STATE ESTIMATION AND MODEL DETECTION 3331

Our first contribution is a definition of estimation entropy,
formulated in terms of the number of system trajectories that
approximate all other trajectories up to an exponentially decay-
ing error. We also consider an alternative definition of entropy,
which uses approximating functions that are not necessarily tra-
jectories of the system. We show that the two entropy notions
turn out to be equivalent (Theorem 1). We proceed to establish
an upper bound of (M + α)n/ ln 2 for the estimation entropy
of an n-dimensional nonlinear dynamical system whose Jaco-
bian matrix fx has matrix measure bounded by M , when the
desired exponential convergence rate of the estimate is α (Propo-
sition 2). When the system’s right-hand side is only Lipschitz but
not necessarily differentiable everywhere, a Lipschitz constant
L can be used in place of M (as we did in [23]); however, for dif-
ferentiable systems, the upper bound in terms of M is sharper, as
we explain below. We also develop a lower bound of (inf trfx +
αn)/ ln 2 on the estimation entropy, where the infimum is taken
over the reachable states of the system (Proposition 3). For lin-
ear systems, the upper and lower bounds can be refined so that
they coincide and give an exact expression for the estimation
entropy in terms of the eigenvalues of the system matrix.

Next, we propose an iterative procedure that uses quantized
and sampled state measurements to generate state estimates
that converge to the true state at the desired exponential rate.
The main idea in the algorithm, which borrows some elements
from [22] and earlier work cited therein, is to exponentially in-
crease the resolution of the quantizer while keeping the number
of bits sent in each round constant. This is achieved by using the
quantized state measurement at each round to compute a bound-
ing box for the state of the system for the next round. Then, at
the beginning of the next round, this bounding box is partitioned
to make a new and more precise quantized measurement of the
state. We show that the bounding box is exponentially shrinking
in time at a rate α when the average bit rate utilized by this proce-
dure matches the upper bound (M + α)n/ln 2 on the estimation
entropy (Theorem 4 and Proposition 5). We also show that no
other algorithm of this type can perform the same estimation
task with bit rates lower than the estimation entropy (Proposi-
tion 6). In other words, the “efficiency gap” of our estimation
procedure is at most as large as the gap between the estima-
tion entropy of the dynamical system and the above-mentioned
upper bound on it.

In the last part of the paper, we present an application of
the estimation procedure in solving a model detection problem.
Suppose we are given two competing candidate models of a
dynamical system, and from the quantized and sampled state
measurements, we would like to determine which one is the
true model. For example, the different models may arise from
different parameter values or they could model “nominal” and
“failure” operating modes of the system. This can be viewed
as a variant of the standard system identification or model
(in)validation problem (see, e.g., [17], [35]) except, unlike in
classical results, which rely on input/output data, here we use
quantized state measurements and do not apply a probing input
to the system.1 We demonstrate that under a mild assumption of

1For a different line of work where system identification problems are studied
using (relative) entropy notions, see [40] and the references therein.

exponential separation of the candidate models’ trajectories, a
modified version of our estimation procedure can always defini-
tively detect the true model in finite time (Theorem 7). We show
that the exponential separation property holds over a compact
set if the velocity vectors of the two models are not equal any-
where in that set. Our experiments with an implementation of
this model detection procedure on randomly generated affine
dynamical systems as well as on a nonlinear example suggest
that the algorithm always works in practice, and further illus-
trate the improvement due to using matrix measures instead of
Lipschitz constants.

Preliminary versions of the results of this paper appeared in
the conference papers [23] and [24]. The former paper used cal-
culations relying on the system’s Lipschitz constant, and the lat-
ter refined them with the help of the Jacobian’s matrix measure.
Compared to [23] and [24], this paper contains a lower bound
on the estimation entropy not previously reported; an improved
analysis of the exponential separation property; an updated and
more detailed simulation study; and complete proofs of all re-
sults. We also mention that, following up on our conference
papers [23] and [24], an extension of the estimation entropy
concept and its analysis to a class of stochastic systems was
subsequently considered in [2], while a lower bound on the esti-
mation entropy for measure-preserving maps was independently
derived in [19].

II. PRELIMINARIES

In this paper, we work with the continuous-time system

ẋ = f(x), x(0) ∈ K (1)

where x ∈ Rn is the state, f : Rn → Rn is a C1 (continuously
differentiable) function, and K ⊂ Rn is a known compact set
of initial states. Let ξ : K × [0,∞) → Rn denote the map that
generates the trajectories or solutions of (1), so that ξ(x, t) is the
solution from the initial state x evaluated at time t. According
to this notation, ξ(K, t) is the set of states reachable from K
at some time t, ξ(K, [0, T ]) is the set of states reachable from
K within some time T , ξ(K, [0,∞)) is the set of all states
reachable from K in non-negative time, and so on. We assume
that solutions are defined globally in time, i.e., the system (1) is
forward complete.2

We denote by | · | some chosen norm in Rn . In general def-
initions and results, this norm can be arbitrary, but in specific
quantized algorithm implementations, we will find it convenient
to use the ∞-norm ‖x‖∞ := max1≤i≤n |xi |; in those places,
the choice of the ∞-norm will be explicitly declared. For any
x ∈ Rn and δ > 0, B(x, δ) ⊆ Rn is the closed ball of radius δ
centered at x, that is, B(x, δ) = {y ∈ Rn : |x − y| ≤ δ}; for
the ∞-norm, this is a hypercube.

Let ‖ · ‖ be the induced matrix norm on Rn×n corresponding
to a chosen norm | · | on Rn . Then, the matrix measure μ :
Rn×n → R is defined by

μ(A) := lim
ε↘0

‖I + εA‖ − 1
ε

2We will later impose a condition on the Jacobian of f guaranteeing that the
distance between solutions of (1) grows at most exponentially, and this implies
forward completeness.
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(see, e.g., [38]). For standard norms, there are explicit formulas
for the matrix measure; for example, for the ∞-norm, we have

μ(A) = max
i

⎧
⎨

⎩
aii +

∑

j 
=i

|aij |
⎫
⎬

⎭
. (2)

One of the basic properties of matrix measures is that for every
matrix A, we have

μ(A) ≤ ‖A‖ (3)

and we note that the left-hand side of (3) may be negative,
while the right-hand side is always positive; see also Example 1.
The role that matrix measures will play in our analysis of the
nonlinear system (1) is enabled by the following assumption,
which we impose throughout the paper, and by the well-known
fact stated in Lemma 1.

Assumption 1: The matrix measure of the Jacobian matrix

fx(x) :=
∂f

∂x
(x)

of f is uniformly bounded: for some μ̄ ∈ R, we have

μ(fx(x)) ≤ μ̄ ∀x ∈ Rn . (4)

Example 1: Consider an affine system ẋ = Ax + b in R2

with

A =
(

0 1
−2 −2

)

and b ∈ R2 arbitrary. With respect to the ∞-norm, we have
μ̄ = μ(A) = 1, whereas ‖A‖ = 4. We will use this system in
our simulation study in Section VI-C, where we will see the
advantages of using the matrix measure instead of the induced
norm.

Lemma 1: Consider the system (1) satisfying Assumption 1.
Then, for every pair of initial states x1 , x2 ∈ Rn , the corre-
sponding solutions of (1) satisfy

|ξ(x1 , t) − ξ(x2 , t)| ≤ eμ̄t |x1 − x2 |
for all t ≥ 0.

From the proof of this result (see, e.g., [3], [36]) it can be
seen that if only initial conditions in K are used, then instead of
requiring the bound (4) to hold globally over Rn , it is enough
to know that it holds for all points x reachable from K at some
time t ≥ 0, provided that K is a convex set (otherwise K must
be replaced by its convex hull). Moreover, if all solutions of (1)
starting from K remain in a bounded invariant set then μ̄ with
the indicated property always exists (by continuity of fx ).

For a bounded set S ⊆ Rn and δ > 0, a δ-cover is a finite
collection of points3 C = {xi} such that ∪xi ∈C B(xi, δ) ⊇ S.
For a hyperrectangle S ⊆ Rn and δ > 0, a δ-grid is a special
type of δ-cover of S by hypercubes centered at points along
axis-parallel lines that are 2δ apart. The boundaries of the δ-
hypercubes centered at adjacent δ-grid points overlap. For a
given set S, there are many possible ways of constructing spe-
cific δ-grids. We can choose any strategy for constructing them

3With a slight abuse of terminology, we take the elements of a cover to be the
centers of the balls covering S and not the balls themselves.

without changing the results in this paper. For example, we can
construct a special grid on, say, the unit interval. Then, when
working with a general interval I (a cross section of S in any
given dimension), we map I to the unit interval, mark the chosen
grid on it, and then map it back to I . We denote the δ-grid on S
by grid(S, δ).

By default, the base of all logarithms is 2. When we use the
natural logarithm, we write ln. We use the standard notation tr,
det, vol, diam for the trace, determinant, volume, and diameter,
respectively.

III. ESTIMATION ENTROPY

Let us select a number α ≥ 0 that defines a desired exponen-
tial convergence rate, and let T > 0 be a time horizon (which is
initially fixed but ultimately approaches ∞). For each ε > 0, we
say that a finite set of functions X̂ = {x̂1(·), . . . , x̂N (·)} from
[0, T ] to Rn is (T, ε, α,K)-approximating if for every initial
state x ∈ K, there exists some function x̂i(·) ∈ X̂ such that

|ξ(x, t) − x̂i(t)| < εe−αt ∀ t ∈ [0, T ]. (5)

Let sest(T, ε, α,K) denote the minimal cardinality of such a
(T, ε, α,K)-approximating set. We define estimation entropy
as

hest(α,K) := lim
ε↘0

lim sup
T →∞

1
T

log sest(T, ε, α,K).

It is easy to see that instead of limε↘0 , we could equivalently
write supε>0 , because sest(T, ε, α,K) grows as ε → 0 for fixed
T, α,K. Intuitively, since sest corresponds to the minimal num-
ber of functions needed to approximate the state with the desired
accuracy, hest is the average number of bits needed to identify
these approximating functions. The inner lim sup extracts the
base-2 exponential growth rate of sest with time and the outer
limit gives the worst case over ε > 0.

As a special case, further considered below, we can define
x̂i(·) to be trajectories ξ(xi, ·) of the system from different
initial states xi . Then, sest corresponds to the number of quanti-
zation points needed to identify the initial states, and hest gives
a measure of the long-term bit rate needed for communicating
sensor measurements to the estimator. We pursue this connec-
tion in more detail in Section V. We note that the norm in (5)
can be arbitrary.

A. Alternative Entropy Notion

In the above-mentioned entropy definition, the functions x̂i(·)
are arbitrary functions of time and not necessarily trajectories of
the system (1). If we insist on using system trajectories, then we
obtain the following alternative definition: a finite set of points
S = {x1 , . . . , xN } ⊂ K is (T, ε, α,K)-spanning if for every
initial state x ∈ K, there exists some point xi ∈ S such that the
corresponding solutions satisfy

|ξ(x, t) − ξ(xi, t)| < εe−αt ∀ t ∈ [0, T ]. (6)

Letting s∗est(T, ε, α,K) denote the minimal cardinality of such
a (T, ε, α,K)-spanning set, we could define estimation entropy
differently as

h∗
est(α,K) := lim

ε↘0
lim sup

T →∞
1
T

log s∗est(T, ε, α,K).
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Since every (T, ε, α,K)-spanning set gives rise to a
(T, ε, α,K)-approximating set via x̂i(t) := ξ(xi, t), and since
entropy is determined by the minimal cardinality of such a set,
it is clear that

sest(T, ε, α,K) ≤ s∗est(T, ε, α,K) ∀T, ε, α,K (7)

and therefore

hest(α,K) ≤ h∗
est(α,K) ∀α,K. (8)

Although this might not be obvious, the inequality (8) is
actually always equality, as we show next. In other words, there
is no advantage—as far as estimation entropy is concerned—in
using any approximating functions (even possibly discontinuous
ones) other than system trajectories.

Theorem 1: For every α ≥ 0 and every compact set K, we
have hest(α,K) = h∗

est(α,K).
Our proof of this result is along the lines of [18, Section 3.1.b]

(see also [32, Lemma III.1]) and relies on the notion of separated
sets, which we now introduce and which will be needed later
as well. With T , ε, α, K given as before, let us call a finite set
of points E = {x1 , . . . , xN } ⊂ K a (T, ε, α,K)-separated set
if for every pair of points x1 , x2 ∈ E, the solutions of (1) with
these points as initial states have the property that

|ξ(x1 , t) − ξ(x2 , t)| ≥ εe−αt for some t ∈ [0, T ]. (9)

Let n∗
est(T, ε, α,K) denote the maximal cardinality of such a

(T, ε, α,K)-separated set. The next two lemmas relate n∗
est to

the previously defined quantities s∗est and sest .4

Lemma 2: For all T , ε, α, K, we have

s∗est(T, ε, α,K) ≤ n∗
est(T, ε, α,K). (10)

Proof: The inequality (10) follows immediately from the
observation that every maximal (T, ε, α,K)-separated set E
is also (T, ε, α,K)-spanning; indeed, if E is not (T, ε, α,K)-
spanning, then there exists x ∈ K such that for every xi ∈ E,
the inequality (6) is violated at least for some t, but then we
can add this x to E and the separation property will still hold,
contradicting maximality. �

Lemma 3: For all T , ε, α, K, we have

n∗
est(T, 2ε, α,K) ≤ sest(T, ε, α,K).

Proof: Let X̂ = {x̂1(·), . . . , x̂N (·)} be an arbitrary
(T, ε, α,K)-approximating set of functions, and let E =
{x1 , . . . , xN ′ } be an arbitrary (T, 2ε, α,K)-separated set of
points in K. We claim that N ′ ≤ N , which would prove the
lemma. By the approximating property of X̂ , for every x ∈ K,
there exists some x̂i(·) ∈ X̂ such that (5) holds. Suppose that
N ′ > N . Then, for at least one function x̂i(·) ∈ X̂ , we can find
(at least) two points xp, xq ∈ E such that (5) holds both with
x = xp and with x = xq . By the triangle inequality, this implies
|ξ(xp , t) − ξ(xq , t)| < 2εe−αt for all t ∈ [0, T ]. But this contra-
dicts the (T, 2ε, α,K)-separating property of E, and the claim
is established. �

4We do not define a quantity nest corresponding to separation between arbi-
trary curves (not necessarily system trajectories) as such a notion does not seem
to be useful here.

Proof of Theorem 1: Combining Lemmas 2 and 3 and (7), we
obtain for all T, ε, α,K

n∗
est(T, 2ε, α,K) ≤ sest(T, ε, α,K)

≤ s∗est(T, ε, α,K) ≤ n∗
est(T, ε, α,K).

This implies that

lim sup
T →∞

1
T

log n∗
est(T, 2ε, α,K)

≤ lim sup
T →∞

1
T

log sest(T, ε, α,K)

≤ lim sup
T →∞

1
T

log s∗est(T, ε, α,K)

≤ lim sup
T →∞

1
T

log n∗
est(T, ε, α,K) (11)

for all T, ε, α,K. We can now take the limit as ε → 0 in (11).
This limit always exists (but may be infinite) because all quan-
tities in (11) are monotonically nondecreasing as ε → 0 (so tak-
ing the limit is actually equivalent to taking the supremum over
ε > 0). In the limit, the first term and the last term in (11) become
the same; hence, all inequalities become equalities. This proves
that hest(α,K) = h∗

est(α,K), as claimed in Theorem 1. �
Remark 1: The proof of Theorem 1 shows, in addi-

tion, that the two entropy quantities appearing in the state-
ment of Theorem 1 are also equal to limε↘0 lim supT →∞
1
T log n∗

est(T, ε, α,K).
By compactness of K and by the property of continuous

dependence of solutions of (1) on initial conditions, for given
ε, α, T , there exists δ > 0 such that (6) holds whenever x and
xi satisfy |x − xi | < δ. From this, it immediately follows that
s∗est(T, ε, α,K), and hence also sest(T, ε, α,K), is finite for
every ε > 0. This does not in principle preclude h∗

est(α,K) and
hest(α,K) from being infinite (the supremum over positive ε
could still be ∞). However, we will see next that this does not
happen if the system satisfies Assumption 1.

IV. ENTROPY BOUNDS

In this section, we establish an upper bound and a lower
bound on the estimation entropy of (1). The upper bound is
independent of the choice of the initial set K. The lower bound
involves taking an infimum over the set of points reachable from
K, but can be made independent of K if the infimum is taken
over the whole Rn . Without significant loss of generality, we
assume in the sequel that K is a set of positive measure and
“regular” shape, such as a hypercube, large enough to contain
all initial conditions of interest.

A. Upper Bound

The result given below relies on the global bound μ̄
on the matrix measure of the Jacobian of f provided by
Assumption 1. While this assumption is restrictive, we note
the following points. First, as we commented after Lemma 1,
this can be replaced by a bound over the reachable set, which
automatically exists if the reachable set is bounded. Second,
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we are not assuming that μ̄ < 0, i.e., the system need not be
contractive as in [36]. (Note, however, that our upper bound is
always non-negative even if μ̄ < 0; the entropy itself is of course
always non-negative as well, by definition.) Finally, it is useful
to compare the entropy bound given here to the one established
in [23], which applies to globally Lipschitz (but not necessarily
C1) systems and looks similar but has the Lipschitz constant L
of f in place of μ̄. When f is C1 , the bound derived here is
sharper because the Lipschitz constant is equal to the induced
norm of the Jacobian and so, in light of (3), we have μ̄ ≤ L.

Proposition 2: For the system (1) satisfying Assumption 1,
the estimation entropy hest(α,K) is finite and does not exceed
(M + α)n/ln 2, where M := max{μ̄,−α}.

Proof: This proceeds along the lines of the proof in [7,
Th. 3.3] (see also [3] and the references therein for earlier re-
sults along similar lines). We fix the convergence parameters
ε > 0, α ≥ 0, the initial set K, and the time horizon T > 0,
and derive a bound on sest(T, ε, α,K). Let us consider an
open cover C of K with balls of radii εe−(M +α)T centered at
points x1 , . . . , xN (N is the cardinality of the set C). Consider
any initial state x ∈ K. By the construction of C, we know
that there exists an xi ∈ C such that |x − xi | ≤ εe−(M +α)T .
For each t ≤ T , we have |ξ(x, t) − ξ(xi, t)| ≤ |x − xi |eμ̄t ≤
εe−(M +α)T eμ̄t ≤ εe−(M +α)teM t = εe−αt , where the first in-
equality follows from Lemma 1, the second follows from the
construction of C, and the third from the definition of M .

It follows that the cover C = {x1 , . . . , xN } defines a
(T, ε, α,K)-approximating set: X̂ = {ξ(x1 , ·), . . . , ξ(xN , ·)}.
That is, sest(T, ε, α,K) is upper bounded by N , which is the
minimum cardinality of the cover of K ⊆ Rn with balls of
radii εe−(M +α)T . Let c(δ, S) denote the minimal cardinality of
a cover of a set S with balls of radius δ. Then, we can write
that sest(T, ε, α,K) ≤ c(εe−(M +α)T ,K). Next, we proceed to
compute a bound on hest as follows:

lim sup
T →∞

1
T

log sest(T, ε, α,K)

≤ lim sup
T →∞

1
T

log c(εe−(M +α)T ,K)

= (M + α) lim sup
T →∞

log c(εe−(M +α)T ,K)
T (M + α)

=
(M + α)

ln 2
lim sup

T →∞
ln c(εe−(M +α)T ,K)

ln(e(M +α)T /ε) + ln ε

=
(M + α)

ln 2
lim sup

T →∞
ln c(εe−(M +α)T ,K)

ln(e(M +α)T /ε)

[ln ε does not affect lim sup]

=
(M + α)

ln 2
lim sup

δ↘0

ln c(δ,K)
ln(1/δ)

[defining δ := εe−(M +α)T ]

≤ (M + α)n/ln 2.

The last step follows from the fact that for any K ⊆ Rn , the
quantity lim supδ↘0

ln c(δ,K )
ln(1/δ) , also called the upper box dimen-

sion of K, is no larger than (and typically equal to) n; cf., [18,

Section 3.2.f]. By taking the limit ε → 0, we obtain the result
hest(α,K) ≤ (M + α)n/ln 2. �

Remark 2: In the case when (1) is a linear system

ẋ = Ax (12)

the result of Proposition 2 can be sharpened. Namely, in this
case, one can show that the exact expression (not just an upper
bound) for the estimation entropy is

hest(α,K) =
1

ln 2

∑

Re λi (A)>−α

(Re λi(A) + α)

=
1

ln 2

∑

Re λi (A+αI )>0

Re λi(A + αI) (13)

where Re λi(A) are the real parts of the eigenvalues of A. This
follows from results that are essentially well known, although
not well documented in the literature (especially for continuous-
time systems); for discrete-time systems, this is shown in [4] as
well as in [32]. A detailed proof for the continuous-time case is
written down in [33], and its basic outline is as follows. Since the
flow is ξ(x, t) = eAtx, the volume of the reachable set at time T
from the initial set K is det(eAT )vol(K), which by Liouville’s
trace formula equals e(trA)T vol(K). The decaying factor e−αt

on the right-hand side of (5) can be canceled by multiplying
by eαt on both sides; the effect of doing this on the left-hand
side is that of replacing solutions of ẋ = Ax by solutions of ẋ =
(A + αI)x and suitably modifying the approximating functions.
Projecting onto the unstable subspace of A + αI , we can refine
the trace to be the sum of only unstable eigenvalues of this
matrix. The number of approximating functions must be at least
proportional to the above-mentioned volume (since the ε-balls
around their endpoints must have enough volume to cover the
reachable set), and after taking the logarithm, dividing by T ,
and letting T → 0, we obtain (13) as the lower bound. A similar
volume-counting argument will appear in Section IV-B. The
upper bound is obtained by reducing A to Jordan normal form
followed by an argument similar to the proof of Proposition 2
applied to each Jordan block (with the corresponding eigenvalue
replacing M ), and ends up giving the same expression (13).

B. Lower Bound

We now derive a lower bound for the estimation entropy,
along the lines of [7, Th. 3.2], which gives a lower bound for
the control version of entropy considered in that paper. As will
be made clear by the results in Section V (see, in particular,
Proposition 6), this lower bound is also a lower bound on the bit
rate necessary for constructing state estimates that converge to
the true state of the system (1) with exponential rate α.

Proposition 3: The estimation entropy of the system (1)
satisfies

hest(α,K) ≥
(

inf
x∈ξ(K,[0,∞))

tr fx(x) + αn
)
/ ln 2.

Proof: We will derive a lower bound on the size of any span-
ning set, from which we will obtain the desired lower bound on
the estimation entropy. (An argument based on approximating
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sets is completely analogous.) Recall that for a (T, ε, α,K)-
spanning set S = {x1 , . . . , xN }, the balls B(ξ(xi, t), εe−αt)
cover ξ(K, t) for each t ≤ T . Thus, a lower bound on the small-
est size s∗est of such a spanning set is obtained by dividing the
volume of ξ(K,T ) by the volume of each of these (identical)
balls:

s∗est(T, ε, α,K) ≥ vol(ξ(K,T ))
vol(B(ξ(xi, T ), εe−αT ))

=
vol(ξ(K,T ))
(2εe−αT )n

(14)

where in the last step, we used the ∞-norm for concreteness.
Now, we proceed to obtain a lower bound on the term in the
numerator. We want to know how the volume of K propagates
with time along solutions. If we let y := ξ(x, T ), then

vol(ξ(K,T )) =
∫

ξ(K,T )
dy

and by the well-known formula for change of integration vari-
ables, this equals (we denote ∂ξ/∂x by ξx )

∫

K

|det ξx(x, T )|dx.

This can in turn be lower-bounded by

inf
x∈K

|det ξx(x, T )| · vol(K)

and now we need to know how the determinant in the previous
formula evolves with time. We have

ξ̇(x, t) = f(ξ(x, t)), ξ(x, 0) = x

or

ξ(x, t) = x +
∫ t

0
f(ξ(x, s))ds.

Taking partials with respect to x, we obtain

ξx(x, t) = I +
∫ t

0
fx(ξ(x, s))ξx(x, s)ds

(recall that f is assumed to be C1). This shows that ξx satisfies
the matrix differential equation

d

dt
ξx(x, t) = fx(ξ(x, t))ξx(x, t)

which, in view of the initial condition ξx(x, 0) = I , means that
ξx(x, t) is the state transition matrix for the linear time-varying
system

ż(t) = fx(ξ(x, t))z(t)

(known as the variational equation for (1); see, e.g., [21,
Section 4.2.4]). Applying the well-known Abel–Jacobi–
Liouville theorem (see, e.g., [5, Theorem 4.1]), we deduce that

det ξx(x, t) = e
∫ t

0 trfx (ξ(x,s))ds . (15)

Next, we write

vol(ξ(K,T )) ≥ vol(K) · inf
x∈K

e
∫ T

0 trfx (ξ(x,s))ds

= vol(K) · einf x ∈K

∫ T
0 trfx (ξ(x,s))ds

≥ vol(K) · eT ·inf x ∈ξ (K , [ 0 ,∞) ) trfx (x)

[ξ(K, [0,∞)) accounts for all ξ(x, s)]. (16)

Thus, from the inequality (14), we conclude that

s∗est(T, ε, α,K) ≥ vol(K) · eT ·inf x ∈ξ (K , [ 0 ,∞) ) trfx (x)

(2εe−αT )n
.

Taking logs and dividing by T gives

1
T

log s∗est ≥
1
T

log
(

vol(K)
2nεn

)

+
(

inf
x∈ξ(K,[0,∞))

trfx(x) + αn
)
/ ln 2.

Finally, by taking lim sup as T → ∞ and lim as ε → 0,
we obtain the stated lower bound on the estimation entropy
h∗

est(α,K) = hest(α,K). �
Note that the lower bound becomes −∞ if trfx(x) does not

have a finite lower bound over ξ(K, [0,∞)). Our lower bound is
also not very useful for conservative or dissipative systems, i.e.,
when trfx(x) ≤ 0 (at least on some parts of the state space). As
shown in [26], in a neighborhood of a hyperbolic equilibrium,
it is possible to restrict the analysis to the unstable manifold
and use essentially the same volume-counting argument as in
the proof of Proposition 3 to obtain a sharper bound. A more
advanced lower bound was recently derived in [19], although it
is also more difficult to evaluate in general.

V. ESTIMATION OVER INFINITE HORIZON

We will first describe a procedure for state estimation of the
system (1) over infinite time horizon. Next, we will show that the
output from this estimation procedure exponentially converges
to the actual state of the system. Finally, we will prove a bound
on the bit rate that is sufficient to achieve this convergence.
This is a measure of the rate at which information has to be
communicated from the sensors of the plant to the estimator.

A. Estimation Procedure

From this point on in this section, we will discuss a specific
estimation procedure based on quantized state measurements.
The norm used here will be the infinity norm ‖ · ‖∞. Accord-
ingly, the B(x, δ) balls will be the hypercubes and the grids will
be sets of hypercubes. We will treat all previous definitions and
results related to entropy in terms of the infinity norm.

The estimation procedure computes a function v : [0,∞) →
Rn and an exponentially shrinking envelope around v(t) such
that the actual state of the system ξ(x, t) is guaranteed to be
within this envelope. It has several inputs:

1) a sampling period Tp > 0,
2) a desired exponential convergence rate α ≥ 0,
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3) an initial set K and an initial partition size d0 > 0,
4) the constant M defined in Proposition 2, and
5) a subroutine for computing solutions of the differential

equation (1).
In this paper, we do not distinguish between this subroutine

for computing solutions and the actual solutions ξ(·, ·). The
procedure works in rounds i = 1, 2, ..., and each round lasts Tp

time units. In each round, a new state measurement q is obtained,
and the values of three state variables S, δ, C are updated. We
denote these updated values in the ith round as qi , δi , Si , and Ci .
Roughly, Si ⊆ Rn is a hypercubic over-approximation of the set
of reachable states, δi is the radius of the set Si , and Ci is a grid
on Si , which defines the set of possible state measurements qi+1
for the next round. If we are in a situation where the quantized
state measurements qi are being transmitted from the sensors to
the estimator via a finite-data-rate communication channel, then
the variables δi , Si , and Ci need to be generated independently
and synchronously on both sides of the channel.

The initial values of these state variables are δ0 = d0 ; S0
is a hypercube with center, say, xc and radius rc = diam(K )

2 ,
such that K ⊆ B(xc, rc); and C0 = grid(S0 , δ0e

−(M +α)Tp ).
Recall the definition of a grid cover from Section II: C0
is a specific collection of points in Rn such that S0 ⊆
∪x∈C0 B(x, δ0e

−(M +α)Tp ).
At the beginning of the ith round, the algorithm takes as input

(from the sensors) a measurement qi of the current state of the
system with respect to the cover Ci−1 computed in the previ-
ous round. The measurement qi is obtained by choosing a grid
point c ∈ Ci−1 such that the corresponding δi−1e

−(M +α)Tp -
ball B(c, δi−1e

−(M +α)Tp ) contains the current state ξ(x, iTp)
of the system. (If there are multiple grid points satisfying this
condition—and this may happen as Ci−1 is a cover with closed
sets having overlapping boundaries—then one is chosen arbi-
trarily.) Using this measurement, the algorithm computes the
following.

1) vi : [0, Tp ] → Rn , which is an approximation function for
the state over the interval spanning this round, defined as
the solution of the system (1) from qi ,

2) δi is updated as e−αTp δi−1 ,
3) Si ⊆ Rn is a set containing the state after Tp time, that

is, at the beginning of round i + 1, and
4) Ci is a δie

−(M +α)Tp -grid on Si .
Specifically, Si is computed by first evaluating the solution

vi(Tp) = ξ(qi, Tp) of the system starting from qi after time Tp ,
and then constructing the hypercube B(vi(Tp), δi). Note that for
α > 0, the size of this hypercube decays geometrically at the
rate e−αTp with each successive round. Recall Section II where
we defined grids and discussed specific ways of constructing
them; here, the specific construction is less important than the
fact that each Ci can be computed from qi by translating and
scaling Ci−1 .

Consider the beginning of the ith round for some i > 0. From
the algorithm, it follows that if the current state x is contained in
the set Si−1 computed in the last iteration, then the measurement
qi is one of the points in the cover Ci−1 computed in the last
iteration, and further, the error in the measurement |qi − x| is at

Fig. 1. Estimation procedure.

most the precision of the cover, which is δi−1e
−(M +α)Tp . This

property will be used in the analysis below.
Remark 3: Line 10 of the estimation procedure uses a sub-

routine for computing numerical solutions of the differential
equation (1) from a given quantized initial state qi over a fixed
time horizon Tp . In this paper, we assume that these computa-
tions are precise. Extending the algorithms and results to accom-
modate numerical imprecisions would proceed along the lines
of the techniques used in numerical reachability computations
(for example, in [12] and [20]). The present case, however, is
significantly simpler as the solutions have to be computed from
a single initial state and up to a fixed time horizon.

In order to analyze the accuracy of this estimation proce-
dure, we define a piecewise continuous estimation function
v : [0,∞) → Rn by v(0) := v1(0) and

v(t) = vi(t − (i − 1)Tp) ∀ t ∈ ((i − 1)Tp, iTp ], i = 1, 2, . . .
(17)

The next theorem establishes an exponentially decaying upper
bound on the error between the actual state of the system and
the computed approximating function.

Theorem 4: For any choice of the parameters α ≥ 0 and
d0 , Tp > 0, the procedure in Fig. 1 has the following prop-
erties: for i = 0, 1, 2, . . . and for any initial state x ∈ K

(a) ξ(x, t) ∈ Si for each t = iTp , and

(b) ‖ξ(x, t) − v(t)‖∞ ≤ d0e
−αt ∀ t ∈ [iTp , (i + 1)Tp).

Proof: Part (a): We fix x ∈ K and proceed to prove the
statement by induction on the iteration index i. The base
case: i = 0, that is, t = 0 and ξ(x, 0) = x. The required con-
dition follows since x ∈ K ⊆ B(xc, rc) = S0 . For the induc-
tive step, we assume that ξ(x, iTp) ∈ Si and have to show
that ξ(x, (i + 1)Tp) ∈ Si+1 . We proceed by establishing an up-
per bound on the distance between the actual trajectory of the
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system at t = (i + 1)Tp and the computed approximation v(t):

‖ξ(x, (i + 1)Tp) − v((i + 1)Tp)‖∞
= ‖ξ(ξ(x, iTp), Tp) − vi+1(Tp)‖∞

[from (17) defining v(t)]

= ‖ξ(ξ(x, iTp), Tp) − ξ(qi+1 , Tp)‖∞ (18)

[from line 10 vi+1(Tp) = ξ(qi+1 , Tp)]

≤ eM Tp ‖ξ(x, iTp) − qi+1‖∞ [from Lemma 1]. (19)

The measurement qi+1 is the input received at the beginning
of round i + 1 for the actual state ξ(x, iTp) with respect to
the cover Ci of Si . From the induction hypothesis we know
that ξ(x, iTp) ∈ Si , and therefore, qi+1 ∈ Ci . Since Ci is a
δie

−(M +α)Tp -cover of Si , it follows that

‖ξ(x, iTp) − qi+1‖∞ ≤ δie
−(M +α)Tp . (20)

We have ‖ξ(x, (i + 1)Tp) − v((i + 1)Tp)‖∞ ≤ δie
−(M +α)Tp

eM Tp = δie
−αTp = δi+1 (by definition of δi+1). Thus, it fol-

lows that ξ(x, (i + 1)Tp) ∈ B(v((i + 1)Tp), δi+1) = Si+1 .
Part (b): We fix an iteration index i ≥ 0 and an initial state

x ∈ K. If t = iTp then the result follows from part (a) because
δi = d0e

−αiTp . For any t ∈ (iTp , (i + 1)Tp), we establish an
upper bound on the distance between the actual trajectory ξ(x, t)
of the system at time t and the computed approximation v(t):

‖ξ(x, t) − v(t)‖∞ = ‖ξ(ξ(x, iTp), t − iTp) − vi+1(t − iTp)‖∞
[from (17) defining v(t)]

= ‖ξ(ξ(x, iTp), t − iTp) − ξ(qi+1 , t − iTp)‖∞
[from vi+1(t) = ξ(qi+1 , t)]

≤ ‖ξ(x, iTp) − qi+1‖∞eM (t−iTp ) [from Lemma 1]

≤ δie
−(M +α)Tp eM (t−iTp ) [from (20)]

= d0e
−αiTp e−(M +α)Tp eM (t−iTp ) [from δi = d0e

−αiTp ]

= d0e
−α(i+1)Tp eM (t−(i+1)Tp )

≤ d0e
−αt [since iTp ≤ t ≤ (i + 1)Tp ].

�
B. Bit Rate of Estimation Scheme and Its Relation to
Entropy

Now, we estimate the communication bit rate needed by the
estimation procedure in Fig. 1. As the states Si−1 and Ci−1
are maintained and updated by the algorithm in each round,
the only information that is communicated from the system to
the estimation procedure in each round is the measurement qi .
The number of bits needed for that is log(#Ci), where # stands
for the cardinality of a set. The long-term average bit rate of the
algorithm is given by

b(α, d0 , Tp) := lim sup
j→∞

1
jTp

j∑

i=1

log(#Ci−1).

We proceed to characterize this quantity from the descrip-
tion of the estimation procedure in Fig. 1. We calculate
#C0 = � diam(K )

2d0 e−(M + α )T p
�n . For each successive iteration i,

#Ci = � δi

δi e
−(M + α )T p

�n= �e(M +α)Tp �n . Thus, b(α, d0 , Tp) =
limi→∞ 1

Tp
log(#Ci) = (M + α)n/ln 2 is the bit rate utilized

by the procedure for any d0 and Tp . Since it is independent
of d0 and Tp , we write it as b(α) from now on. We state our
conclusion as follows.

Proposition 5: The average bit rate used by the estimation
procedure in Fig. 1 is (M + α)n/ln 2, where M is defined in
Proposition 2.

By Proposition 2, the bit rate (M + α)n/ln 2 used by the
algorithm is an upper bound on the entropy hest(α,K). We
now establish that no other similar algorithm can perform the
same task with a bit rate lower than the entropy hest(α,K). In
other words, the “efficiency gap” of the algorithm is at most
as large as the gap between the entropy and its upper bound
known from Proposition 2. (Incidentally, combining this result
with Proposition 5, we can arrive at an alternative proof of
Proposition 2.)

In order to state this result, we need to formalize the class
of algorithms to which it applies and to which our algorithm
also belongs. As before, assumed given are the system (1), the
associated constant M , and initial set K, as well as the desired
estimation parameters d0 (initial bound) and α (convergence
rate). We also select the sampling period Tp , which we can think
of as a design parameter in the algorithm. It is convenient to
consider an encoder (collocated with the system) and a decoder
(possibly, but not necessarily, residing at a remote location and
connected to the encoder via a communication channel.) On
the encoder side, at each step i (corresponding to time t =
(i − 1)Tp ), a codeword qi from a finite set (coding alphabet) Ci

is generated based on the state behavior history up to this time.
On the decoder side, using this codeword and the previously
received codewords, an estimate v(·) of the state over the next
sampling interval ((i − 1)Tp, iTp ] is defined. Such encoding–
decoding schemes are by now quite standard (cf., [32, Section 2]
and the references therein).

The lower bound on the bit rate in terms of entropy is proved
below for an algorithm that uses a constant number of bits at
each round; since in our estimation algorithm #C0 may be
higher than #Ci for i ≥ 1, we can think of this comparison as
being valid once the algorithm has reached “steady state.”

Proposition 6: Consider an algorithm of the above-
mentioned type such that at each step i, the set Ci has the same
number of elements: #Ci = N ∀ i (i.e., the coding alphabet is
of fixed size). If this algorithm achieves the properties listed in
Theorem 4 for an arbitrary d0 > 0, then its bit rate cannot be
smaller than hest(α,K).

Proof: This proof follows along the same lines as the proof
in [32, Statement 1, Th. III.1]. Here, the choice of norm does not
matter, so we revert to an arbitrary norm | · | on Rn . Seeking a
contradiction, suppose that an algorithm achieves the properties
listed in Theorem 4 and has a bit rate b(α) < hest(α,K). Recall
(see the proof of Lemma 3 and Remark 1) that

liberzon
Highlight
Correction: the expression on the right-hand side does not take into account extra bits due to the ceiling function, which is at most n bits per sampling period. This number of extra bits can be made arbitrarily small by increasing the sampling period, thus approaching the stated bit rate.
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hest(α,K) = lim
ε↘0

lim sup
T →∞

1
T

log n∗
est(T, 2ε, α,K)

= sup
ε>0

lim sup
T →∞

1
T

log n∗
est(T, 2ε, α,K).

Thus, for some ε > 0 small enough and some b̄ > b(α), we have

b̄ < lim sup
T →∞

1
T

log n∗
est(T, 2ε, α,K).

Let d0 be equal to this ε. Next, we can find a sufficiently large
T for which

b̄ <
1
T

log n∗
est(T, 2ε, α,K) (21)

and, moreover

T

T + Tp
>

b(α)
b̄

(22)

where Tp is the sampling period in the algorithm [note that the
left-hand side of (22) tends to 1 as T → ∞, while the right-hand
side is smaller than 1]. Let � be the positive integer such that
T ∈ (� − 1)Tp, �Tp ]. Then, it is easy to see that

b(α) <
1

�Tp
log n∗

est(T, 2ε, α,K) <
1

�Tp
log n∗

est(�Tp , 2ε, α,K)

where the first inequality relies on (21) and (22) and the sec-
ond inequality follows from the fact that every (T, 2ε, α,K)-
separated set is also (�Tp , 2ε, α,K)-separated. Since the bit rate
of the algorithm is given by

b(α) =
1
Tp

log N

we obtain

N� < n∗
est(�Tp , 2ε, α,K).

The left-hand side of this inequality is the number of possi-
ble sequences of codewords {qi} that can be produced by the
algorithm over � rounds, while the right-hand side is the cardi-
nality of a maximal (�Tp , 2ε, α,K)-separated set. This means
that there must exist two different initial conditions x1 , x2 in
this (�Tp , 2ε, α,K)-separated set such that the corresponding
solutions ξ(x1 , t), ξ(x2 , t) will produce the same sequence of
qi , and hence will be approximated within εe−αt by the same
approximating function v(t):

|ξ(xi, t) − v(t)| < εe−αt ∀ t ∈ [0, �Tp ], i = 1, 2. (23)

On the other hand, by the definition of a (�Tp , 2ε, α,K)-
separated set, it must hold that

|ξ(x1 , t) − ξ(x2 , t)| ≥ 2εe−αt for some t ∈ [0, �Tp ]

which contradicts (23) in view of the triangle inequality. �
We note that the algorithm described in [32] performs a sim-

ilar estimation task (with α = 0 and in discrete time) and op-
erates at an arbitrary bit rate above the entropy. However, that
algorithm is quite abstract, since it relies on the existence of a
suitable spanning set and performs block coding over a suffi-
ciently large time window using sequences from this spanning

set. By contrast, our algorithm given in Section V-A is con-
structive in that it utilizes a specific quantization procedure and
works with an arbitrary fixed sampling period.

Remark 4: For the case of a linear system (12), the algorithm
of Section V-A can be modified so that its average bit rate equals
the entropy of the linear system given by (13). This can be
achieved by aligning the grids Ci used in the algorithm with
eigenvectors of the matrix A and replacing the constant M with
eigenvalues of A (i.e., using a different number of quantization
points for each dimension). Constructions of this type for linear
systems are well established in the literature; see, e.g., [16], [37].

Before finishing this section, we briefly mention that, with
minor changes, our state estimation algorithm can be adopted
for feedback stabilization of a control system ẋ = f(x, u), along
the lines of [22]. The main idea is as follows. Suppose that a
nominal state feedback law k(·) is given such that the system
ẋ = f(x, k(x)) is asymptotically stable. In the absence of pre-
cise state measurements, the estimates generated by the state
estimation algorithm can be used instead. Namely, at the ith
round, we would redefine vi(·) to be the solution of the system
ẋ = f(x, u) with initial state qi and control u(t) = k(vi(t)).
The rest of the procedure stays the same, and the bit rate that
it uses remains unchanged. The resulting closed-loop system
takes the form ẋ = f(x, k(x + e)), where e is the state estima-
tion error, which, as in Theorem 4, exponentially converges to
0. If this system satisfies a suitable robustness assumption with
respect to e (i.e., input-to-state stability as in [22] or its integral
version as in [29]), then we can conclude that it is asymptotically
stabilized.

VI. MODEL DETECTION

In this section, we show that the estimation algorithm in Fig. 1
can be used to distinguish two system models, provided they are
in some sense adequately different. More precisely, a slightly
modified procedure will solve this model detection problem
while at the same time performing the state estimation task in
the same way as before.

Consider two continuous-time system models:

ẋ = f1(x), x ∈ Rn , (24)

ẋ = f2(x), x ∈ Rn (25)

where the initial state is in the known compact set K ⊂ Rn and
f1 and f2 are C1 functions satisfying Assumption 1, with re-
spective constants M1 and M2 defined as in Proposition 2 (see
also the comments immediately before that proposition). We de-
note the trajectories of the systems (24) and (25) by ξ1(x, t) and
ξ2(x, t), respectively. From runtime data consisting of quantized
and sampled measurements of x as before, we are interested in
distinguishing whether the true dynamics of the system is f1 or
f2 . For example, if f1 and f2 correspond to models with differ-
ent sets of parameter values, then solutions to this problem could
be used for model parameter identification. As another example
application, consider a scenario where f1 captures the nominal
dynamics of the system and f2 models a known aberration or
failure mode. Then, a solution to the above-mentioned detection
problem can be used for failure detection. It is straightforward
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Fig. 2. Procedure for detecting models.

to generalize the solution proposed below to handle multiple
competing models.

For the purpose of obtaining a provably correct model dis-
tinguishing algorithm, we introduce the following concept.
For Ms, Ts > 0, we say that the two models are (Ms, Ts)-
exponentially separated (locally) if there exists a constant εmin >
0 such that for any ε ≤ εmin and any two states x1 , x2 ∈ Rn with
|x1 − x2 | ≤ ε, we have

|ξ1(x1 , Ts) − ξ2(x2 , Ts)| > εeMs Ts . (26)

We describe and analyze our algorithm for distinguishing mod-
els in Section VI-A, and postpone a more detailed discussion of
the exponential separation property and conditions for checking
it until Section VI-B.

A. Distinguishing Algorithm

In the above-mentioned definition of exponential separation,
the norm can be arbitrary, but in the algorithm below, we work
with the infinity norm. With some modifications, the procedure
in Fig. 1 can detect models using quantized state observations.
In Fig. 2, we show the procedure for detecting models. First
of all, before taking the measurement in each round (Tp time)
it makes an additional check. If the current state is not in the
set Si (line 8) computed from the previous round, then the
procedure immediately halts by detecting the second model. If
the current state is in Si , then it proceeds as before and records
a measurement qi of the current state as one of the points in
the cover Ci . Second, the function vi (line 13) is now computed
as a solution ξ1(qi, ·) of the system given by (24). Finally, in
computing the radius of the elements in the cover Ci (line 16),
the constant M1 of the system (24) is used.

Theorem 7: Suppose that the true system model is either (24)
or (25) and that the two models are (M1 , Tp)-exponentially
separated. Then, for any choice of the parameters α, d0 , Tp > 0,
the procedure in Fig. 2 outputs “second model” if and only if
the true model is (25).

Proof: For the “if” part, assume that the true model is the sec-
ond model, that is, given by (25). Fixing an initial state of the sys-
tem x0 , we have the true trajectory ξ2(x0 , ·). Let us also fix the
parameters Tp, d0 , α of the detection algorithm. Since the value
of the program variable δi = d0e

−αiTp decays geometrically in
each iteration (note that here we take α > 0), there exists an i∗

such that for any iteration k − 1 ≥ i∗, δk−1e
−(M 1 +α)Tp ≤ εmin.

We consider the execution of the algorithm at one such iteration
k − 1 and show that the condition in line 8 will be satisfied at
the next iteration k.

We denote the actual state of the system at the beginning of
the (k − 1)st iteration as x2 = ξ2(x0 , (k − 1)Tp). Assume that
the condition in line 8 is not satisfied, i.e., x2 ∈ Sk−1 ; other-
wise, the algorithm would have already produced the correct
“second model” output. The measurement qk of x2 obtained
in this iteration is an element of Ck−1 . Thus, ‖x2 − qk‖∞ ≤
δk−1e

−(M 1 +α)Tp ≤ εmin. By the (M1 , Tp)-separation with the
infinity norm, it follows that

‖ξ2(x2 , Tp) − ξ1(qk , Tp)‖∞ > δk−1e
−(M 1 +α)Tp eM 1 Tp

= δk−1e
−αTp = δk .

As vk (·) = ξ1(qk , ·), from the strict inequality in the pre-
vious formula, it follows that ξ2(x0 , kTp) = ξ2(x2 , Tp) /∈
B(vk (Tp), δk ) = Sk . Thus, at the beginning of the kth itera-
tion, the condition in line 8 will hold.

For the “only if” part, assume that the true model is not the
second model (25). Let us fix an initial state of the system x0 .
From the hypothesis, we know that the true model is the first
model and the true trajectory of the system is ξ1(x0 , t). From
Theorem 4, it follows that at every iteration i, the state of the
system at that round ξ1(x0 , iTp) ∈ Si . Thus, the if-condition
in line 8 is not satisfied at any iteration and consequently the
algorithm never outputs “second model.” �

Remark 5: If state measurements are transmitted by a finite-
data-rate communication channel, then the variables δi , Si , and
Ci are still generated independently and synchronously on both
sides of the channel (the encoding side and the decoding side),
with the understanding that both the encoder and the decoder
work with the first model without knowing whether it is the
correct one. Our result also applies to other scenarios where
no channel is explicitly present but the detection procedure has
access only to finite-resolution state measurements (collected,
for example, by digital sensors).

Remark 6: The definition of exponential separation does not
imply that the value of the upper bound εmin is known, and short
of that we cannot conclude for sure at any given time that the
true model is the first model even if the state measurements
conform with the constructed bound Si in every round up to
that time. However, if we know such an upper bound εmin for
which the models are (M1 , Tp)-exponentially separated, then
the model detection algorithm can be made to decisively halt
with the output “first model.” For this, the following conditional
statement should be inserted after line 10:

else if δie
−M 1 Tp < εmin

output “first model”; break;
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This branch is executed by the algorithm at the ith round
only if we had δi−1e

−(M 1 +α)Tp ≤ εmin at the (i − 1)st round
and the measured state was in Sj for each of the preceding
rounds j < i. At this point, the algorithm can soundly infer
“first model” because, according to the proof of Theorem 7, the
second model would have already triggered line 8 in the current
round or one of the earlier rounds.

Remark 7: It is possible to run two versions of the detection
algorithm, one with each of the candidate models, in parallel.
While this may speed up detection in practice, in the worst
case the two versions would take the same amount of time to
reach a decision. This would also double the data rate without
guaranteeing faster model detection. We, thus, opted for an
approach which, while “asymmetric,” works with the minimal
needed data rate.

B. Exponential Separation Property

We now examine more closely the (Ms, Ts)-exponential sep-
aration property expressed by the inequality (26). As defined,
it must hold for all x1 , x2 ∈ Rn within the distance of εmin

from each other, and as such, it may be difficult to check. How-
ever, inspecting the “if” part of the proof of Theorem 7, we
see that the exponential separation property is required only for
those pairs x1 , x2 where one of the points (x2 in the proof)
lies on a trajectory of the true system model (in the proof, it
is the second model): x2 = ξ2(x0 , t) for some initial state x0
and some time t. Moreover, in practice, we would not run the
detection algorithm for infinitely long, so we can take this time
t to be bounded. This implies that it is sufficient for our pur-
poses that the exponential separation property hold with the
additional quantification that x2 belong to some compact set D
(large enough to contain the reachable set ξ2(K, [0, T ]) for some
sufficiently large T > 0). In what follows, we call this relaxed
property (Ms, Ts)-exponential separation over D. We do not
place an explicit constraint on x1 but, by definition, exponential
separation over D only involves x1 within distance εmin from
D. We now write down a simple condition for checking this
modified exponential separation property.

Proposition 8: Let D ⊂ Rn be compact and suppose that the
two models (24), (25) satisfy

f1(x) 
= f2(x) ∀x ∈ D. (27)

Then, the two models are (Ms, Ts)-exponentially separated over
D for small enough Ts and arbitrary Ms .

Proof: Since f1 and f2 are continuous and D is compact,
(27) implies that there exists vmin > 0 such that

|f1(x) − f2(x)| ≥ vmin ∀x ∈ D. (28)

(We can think of vmin as the minimal separation speed between
trajectories of the two systems starting from the same state.)
Fix arbitrary x1 , x2 with x2 ∈ D and note that, by the triangle
inequality, we have

|ξ1(x2 , t) − ξ2(x2 , t)| ≤ |ξ1(x2 , t) − ξ1(x1 , t)|
+ |ξ1(x1 , t) − ξ2(x2 , t)|

or, equivalently

|ξ1(x1 , t) − ξ2(x2 , t)| ≥ |ξ1(x2 , t) − ξ2(x2 , t)|
− |ξ1(x1 , t) − ξ1(x2 , t)|. (29)

Since, by (28) applied with x = x2 ,
∣
∣
∣
d

dt

(
ξ1(x2 , t) − ξ2(x2 , t)

)∣
∣
t=0

∣
∣
∣ = |f1(x2) − f2(x2)| ≥ vmin

and since ξ1(x2 , 0) − ξ2(x2 , 0) = 0, we can use the first-order
Taylor expansion with respect to t to lower-bound the first term
on the right-hand side of (29) as

|ξ1(x2 , t) − ξ2(x2 , t)| ≥ vmint − o(t) (30)

where, by definition, the term o(t) has the property that for each
δ > 0 there exists τ > 0 such that |o(t)| ≤ δt for all t ∈ [0, τ ].
A priori τ depends not just on δ but also on x2 ; however, in view
of compactness of D and continuous dependence of solutions
on initial conditions, by taking the minimum of τ over x2 , we
can find τ > 0 that depends on δ only.

As for the second term on the right-hand side of (29),
Lemma 1 applied to the first model gives us the upper bound

|ξ1(x1 , t) − ξ1(x2 , t)| ≤ eμ̄1 t |x1 − x2 |
for μ̄1 satisfying (4) with f = f1 . We can rewrite this as

|ξ1(x1 , t) − ξ1(x2 , t)| ≤ (1 + μ̄1t + o(t))|x1 − x2 | (31)

where the term o(t) again has the property that for each δ > 0,
there exists τ > 0 [which we can take, with no loss of generality,
to be the same as τ for the o(t) term appearing in (30)] such that
|o(t)| ≤ δt for all t ∈ [0, τ ].

Now, suppose that |x1 − x2 | ≤ ε for some ε > 0. Plugging
the bounds (30) and (31) into (29), we obtain

|ξ1(x1 , t) − ξ2(x2 , t)| ≥ vmint − o(t) − (1 + μ̄1t + o(t))ε.

Thus, by the above-mentioned properties of the two o(t) terms,
for every δ > 0, there is τ > 0 such that

|ξ1(x1 , t) − ξ2(x2 , t)| ≥ (vmin − δ − μ̄1ε − δε)t − ε

∀ t ∈ [0, τ ].

Let a(ε, δ) := vmin − δ − μ̄1ε − δε. Picking δ < vmin and ε
small enough, we can ensure that a(ε, δ) > 0. It is easy to see
that for every M > 0 and every t > 0, we have at − ε > εeM t

if ε > 0 is small enough. From this, the claimed (Ms, Ts)-
exponential separation property follows. Indeed, for an arbi-
trary Ms > 0, we can pick δ < vmin , find a corresponding τ ,
choose Ts ∈ [0, τ ], and then find εmin small enough so that, first,
a(εmin, δ) > 0 and, second, aTs − εmin > εmine

Ms Ts (thereby
ensuring that aTs − ε > εeMs Ts for all ε ≤ εmin). �

We conclude from Proposition 8 that if the condition (27)
holds over a compact domain D, then the detection algorithm
in Fig. 2 will work as desired if we pick a sufficiently small
sampling period Tp and as long as the state trajectory of the
true model remains in D. We also believe that this situation is
“generic” in the sense that we expect it to happen for typical pairs
of systems and typical initial conditions in D; for example, for
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affine systems, this claim can be made precise and is confirmed
by numerical experiments, as discussed below.

C. Experimental Evaluation of Detection Algorithm

Our implementation of the detection algorithm in Fig. 2 is
available online.5 In this section, we describe some of the ex-
periments we have performed in evaluating the algorithms on
affine and general nonlinear models.

All sets in Rn , including the initial set K and Si , are n-
dimensional hyperrectangles and they are represented either by
two corner points or by a center point and a radius. The choice
of this representation has implications on the efficiency of the
algorithms. It enables the implementation of all the necessary
operations such as testing membership in S, computing a grid
on S, and quantizing a point with respect to a grid, in time
that is linear in the number of dimensions n. Specifically, the
grid(S, δ) function computes n lists of points in R where the
ith list is generated by uniformly partitioning the ith dimen-
sion of S into intervals of length 2δ. This list representation
of grid(S, δ) is adequate for quantizing a state with respect to
it. The detection algorithm has to compute solutions ξ1(·, ·) of
the system (24) over [0, Tp ]. Moreover, in order to simulate the
algorithm, we have to compute the actual trajectories ξ2(·, ·) of
the system (25). Our implementation uses numerical ordinary
differential equation solvers for both. (For affine systems, an
analytical formula for the solutions is also available.)

Affine models: We generate pairs of random affine dynamical
systems sys1: ẋ = A1x + b1 , sys2: ẋ = A2x + b2 , and then
sys1 is used as the input model for the algorithm, while sys2
is used as the true model of the system. With this set-up, we
performed several experiments. The detection algorithm worked
in all experiments (unless we deliberately chose A2 = A1 and
b2 = b1). Illustrations of executions of the detection algorithm
are shown in Fig. 3 (top) with α = 0.5, d0 = 1, Tp = 1, n = 2
and the sys1 and sys2 parameters given by

A1 =
(

0 1
−2 −2

)

, b1 =
(

1
−1

)

,

A2 =
(−0.008 1.08

−2.01 −2

)

, b2 =
(

1.5
−1

)

where we note that the matrix A1 is taken from Example 1.
The detection time depends on several factors. As is expected
from the algorithm, it increases with smaller values of α and
Tp . For the same system model sys1, using the matrix measure
constant M instead of the Lipschitz constant L (as done in [23])
in the detection algorithm can lead to faster detection if M <
L. For example, in the above-mentioned set-up, M = 1 and
detection occurs after four rounds, whereas L = 4 and detection
when using L occurs after six rounds. We note that according
to Theorem 4 of this paper and [23, Th. 3], the rate at which the
bounding sets Si are decreasing is independent of this choice.
The quantization errors and the bit rate, however, do depend
on this choice of M versus L. According to Proposition 5 of
this paper and [23, Proposition 4], the bit rates needed are (M +
α)/ ln 2 and (L + α)/ ln 2, respectively, and therefore, for small

5From https://bitbucket.org/mitras/detection.

Fig. 3. Top: A sample execution of the detection algorithm on the two-
dimensional system. The dashed lines (−−) show the trajectories of
the actual system sys2, and the solid lines show the estimates v(t)
computed by the detection algorithm. The rectangles show decaying
envelope of Si and quantization grids. Eventually, the actual state (red
dot) falls outside of Si , triggering detection. Bottom: A sample execution
on a six-dimensional system. State components of the actual system
sys2 (−−), computed estimates v(t) (solid lines), and decaying enve-
lope Si (vertical bars). Detection occurs as at least one state component
leaves Si .

α, the bandwidth requirements when using M are almost four
times smaller.

The observation that the detection algorithm is always able in
practice to distinguish between two randomly generated affine
systems is explained by the fact, alluded to earlier, that the
condition (27) of Proposition 8 is “generically true” for such
systems. For f1(x) = A1x + b1 and f2(x) = A2x + b2 , (27)
fails at x satisfying

(A1 − A2)x = b2 − b1 . (32)

If the entries of the matrices A1 and A2 are picked at random
according to a reasonable (i.e., absolutely continuous) proba-
bility distribution, then with probability 1, the matrix A1 − A2
will have full rank (indeed, the equation det(A1 − A2) = 0
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identifies a set of measure 0 in the space of the matrix entries).
Therefore, there will be a unique x ∈ Rn satisfying (32). As
long as we do not pick an initial state x0 from which the true
model’s trajectory passes through this x (the set of such points
x0 in Rn is again of measure 0), the detection algorithm will
work (see the discussion immediately preceding Proposition 8).

We further experimented with the true affine system sys2
modified with a disturbance term: ẋ = A2x + b2 + k2ω2 , where
k2 is a constant and ω2 is either a time-varying signal like sin t
or a random noise term taking values in [−1, 1]. Keeping all the
other parameters the same, we observed that, on the average,
the detection time decreases with larger k2 values (for k2 =
1, 0.5, 0.05, 0.005, 0.0005, the detection took on the average
3, 5, 9, 13, 18 rounds, respectively). We also experimented with
a complementary scenario in which the true model is changed
to sys1 but is also affected by a noise term unknown to the
algorithm. As expected, the true behavior of the noisy system
deviates from the nominal behavior and the algorithm eventually
decides, incorrectly, that the true model is sys2. Thus, it can be
said that the algorithm has robustness to noise affecting the true
model when that model is sys2 but not when it is sys1.

Nonlinear models: As mentioned earlier, our implementation
can handle arbitrary nonlinear models. In this section, we dis-
cuss several experiments we performed using the Van der Pol
oscillator model, which is given by the system equations

ẋ1 = x2 ,

ẋ2 = p(1 − x2
1)x2 − x1 (33)

where x1 is the position coordinate and p is a scalar parameter
describing the nonlinearity and the strength of the damping.
We consider two scenarios with different true system (sys2)
models. In scenario 1, the true system dynamics (sys2) is given
by (33) with p = 0.5; in scenario 2, sys2 has p = 2; both lead
to a limit cycling behavior with different phase portraits (see,
for example, [31]).

For each of these scenarios, we execute the detection algo-
rithm with different internal models (sys1) that have differ-
ent values of the parameter p. The resulting pairs of systems
satisfy the exponential separation criterion of Proposition 8 al-
most everywhere. We compute an upper bound μ̄ on the matrix
measure of the Jacobian of sys1 as follows: first, we derive
a symbolic expression for the matrix measure using (2), and
then maximize it over the reachable set of the system. We
note that this step can be performed automatically for gen-
eral models described using standard nonlinear functions. We
estimated a bounding box containing the reachable states of
sys1 using simulations; for more precise estimates, one could
use a nonlinear reachability analysis tool [1], [6], [15]. The
resulting parameters used for our experiments are as follows:
For scenario 1: p = 0.5, α = Tp = 0.5, μ̄ = 3.5; for scenario 2:
p = 2, α = 0.5, Tp = 0.1, μ̄ = 13. The detection times (in terms
of the number of iterations i∗) for different sys1 models with
different values of the parameter p are shown in Table I. The
actual number of iterations is less important than the general
observation that, as expected, the detection takes longer as the

TABLE I
DETECTION TIMES FOR VAN DER POL SYSTEMS (p = 0.5, 2) WITH

DIFFERENT SYS1 MODELS

Scenario 1 (p = 0.5) Scenario 2 (p = 2)

p in sys1 i∗ p in sys1 i∗

2 6 3 26
0.55 17 2.5 69
0.45 17 1.5 62
0.51 23 2.1 73
0.49 21 1.9 73
0.501 32 1.99 100
0.499 32 2.01 100

Fig. 4. Sample execution of the detection algorithm for the Van der
Pol oscillator. The dashed lines (−−) show the trajectories of the actual
system sys2, and the solid lines show the estimates v(t) computed by
the detection algorithm. The rectangles show decaying envelope of Si

and quantization grids. Eventually, the actual state (red dot) falls outside
of Si (vanishingly small in this plot), triggering detection.

models become closer. Fig. 4 illustrates a typical run of the
algorithm.

To summarize this section, our experiments show that the
proposed algorithm succeeds in performing state estimation
and model detection for nonlinear systems. True dynamics of
the system is often affected by unknown parameters or distur-
bances that are unknown to the detection algorithm. In such
cases, the algorithm does the reasonable thing, in that it gives
exponentially converging state estimates up to a certain time
beyond which it detects that the internal model (sys1) has di-
verged from the true model (sys2). We also empirically observe
that this detection time is inversely related to the differences in
the models. A more careful analysis of the detection time and
some of the above-mentioned empirical conclusions will be the
subject of future research.

VII. CONCLUSION AND FUTURE DIRECTIONS

We introduced two different notions of estimation entropy
and established their equivalence. We derived an upper bound of
O((M + α)n) for the estimation entropy of an n-dimensional
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nonlinear dynamical system with Jacobian fx whose matrix
measure does not exceed M , where the desired exponential
convergence rate of the estimate is α. We also established a
lower bound of O(inf trfx + αn) on the estimation entropy,
where the inf is taken over the reachable states of the system.
We developed a procedure for generating exponentially con-
verging state estimates using an average bit rate that matches
the upper bound on the entropy, and showed that no other sim-
ilar state estimation algorithm can work with bit rates lower
than the entropy. We presented an application of the estima-
tion procedure in solving a model detection problem where we
have to identify one model from a pair of candidate models
using quantized measurements. We showed that under a mild
assumption of exponential separation—which we expect to hold
almost surely for randomly chosen model pairs—the algorithm
can always detect the true model in finite time. The exponen-
tial separation condition was stated in terms of solutions of the
candidate models and this concept may be of independent in-
terest. We presented a sufficient condition for exponential sep-
aration in terms of the models’ vector fields over a compact
set.

There are several avenues for future work. Ramifications of
Theorem 1 remain to be understood. Computations based on ma-
trix measure bounds can be refined and more general contraction
metrics can be exploited (some relevant results that can be lever-
aged for these purposes include [3], [13], [14], [25], [26], [30],
and [36]). In particular, the approach of [26] works with ε-balls
with respect to the norm

√
xT Px where the matrix P satisfies

inequalities in the spirit of Lyapunov’s direct method; while
not constructive in general, this approach can lead to sharper
entropy estimates for special classes of systems, although the
improvement is not always significant (see the simulation stud-
ies in [26, Section 7]). The procedures in [13] and [14] will
be more useful for computing accurate, possibly locally opti-
mal, state estimates at run time, than for obtaining better offline
entropy estimates. The exponential separation property and suf-
ficient conditions for it deserve further exploration. The model
detection algorithm warrants a more detailed study of its per-
formance (e.g., estimating the number of steps until detection);
considering larger families of models and incorporating distur-
bances, delays, packet losses, etc., are other natural research
directions. Entropy for switched and hybrid systems and its role
in state estimation and model detection as well as control of
such systems is a subject of ongoing work (see [33], [34], and
[39] for some recent results).
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