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Abstract— This paper addresses the problem of stabilizing
a nonlinear system by means of quantized output feedback.
A framework is presented in which the control input is
generated by an observer-based feedback controller acting
on quantized output measurements. A stabilization result
is established under the assumption that this observer-
based controller possesses robustness with respect to output
measurement errors in an input-to-state stability (ISS) sense.
Designing such observers and controllers is a largely open
problem, some partial results on which are discussed. The
main goal of the paper is to encourage further work on this
important topic.

Keywords: Input-to-state stability, nonlinear system, observer
design, output feedback, quantized control.

I. INTRODUCTION

The problem studied in this paper is that of stabi-
lizing, in an asymptotic or weaker sense, a nonlinear
system using quantized measurements of its output. This
problem arises, for example, in the presence of a finite-
capacity communication channel between the sensor and
the actuator. In this setting, the quantizer models the
encoding/decoding scheme used to transmit data along
such a channel. Transmitting the output (i.e., a partial
measurement of the system state) rather than the full state
is not only a necessity in limited-sensing scenarios, but
may also be a choice of the designer since this relieves the
communication burden. The price to pay, however, is that
the missing state information needs to be recovered on
the decoder side. Any observer that is employed for this
purpose must possess sufficient robustness to the errors
affecting the output due to quantization.

For linear systems, these issues are addressed in some
detail in the previous work by the author [1], [2], [3],
[4]. The linear case is relatively straightforward since
standard linear observer designs are automatically robust
with respect to additive errors at the output, and it
can be shown that the resulting overall state estimation
error is a product of the output quantization error and
a quantity that characterizes observability of the system.
For nonlinear systems, the problem is much more difficult
and no parallel results have been obtained. Stabilization
of nonlinear systems via quantized output feedback has
recently been studied in [5], [6]. However, the setting in
these papers is different from ours in that the observer
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is implemented on the encoder side, i.e., the full state
is estimated before being encoded and transmitted. This
formulation bypasses the issue of observer robustness to
errors altogether, and is also arguably less relevant in
applications because it requires the sensor to have local
access to extensive computational resources.

In Section II of this paper, we present a general
framework for quantized output feedback stabilization of
nonlinear systems guided by the above considerations.
The input-to-state stability (ISS) methodology, introduced
by Sontag in [7] and by now well established in the
nonlinear systems literature, is used to characterize the
robustness property required from the feedback controller
and the observer. Assuming that this ISS robustness prop-
erty holds, we present a general result which guarantees
the existence of two nested invariant regions such that
all trajectories of the quantized output feedback system
starting in the larger region enter the smaller one. We
then show how, combining this property with the idea of
dynamic quantization from [1], [2], [4], (global) asymp-
totic stability of the closed-loop system can be achieved.
For linear systems, the ISS assumption is automatically
satisfied by any stabilizing output feedback design, and
the earlier results from [2], [4] are recovered as a special
case.

Rather than seeing it as a goal in itself, we consider
the above result primarily as a motivation for pursuing
the design of controllers and observers with ISS robust-
ness properties that render this result applicable. In fact,
quantization is just one possible reason for corrupted
output measurements, and there are other contexts in
which these design problems remain relevant (cf., for
example, deterministic Kalman filtering discussed in [8,
p. 375]). These problems are essentially open, although
some constructions that work in certain special cases are
available. These partial results are discussed in Section III,
and it is hoped that the present paper will stimulate further
work on these topics.

II. QUANTIZED OUTPUT FEEDBACK STABILIZATION

We consider a general nonlinear system (plant)

ẋ = f(x, u)

y = h(x)
(1)

where x ∈ R
n is the plant state, u ∈ R

m is the
control input, y ∈ R

p is the measured output, and f



and h are sufficiently regular functions with h(0) = 0.
By an output quantizer we mean a piecewise constant
function q : R

p → Q, where Q is a finite subset of R
p.

Following [2], [4], we assume that there exist positive
numbers M and ∆ (which we call the range and the
error bound of the quantizer, respectively) such that the
following condition holds:

|y| ≤ M ⇒ |q(y) − y| ≤ ∆. (2)

As a “nominal” controller (i.e., the controller we would
apply in the absence of quantization), we take a dynamic
(observer-based) output feedback law of the form

ż = g(z, u, y)

u = k(z)
(3)

where z ∈ R
k is the controller state. Assuming that

only quantized measurements q(y) of the plant output y

are available to the controller, we consider the “certainty
equivalence” quantized output feedback law based on (3),
namely,

ż = g(z, u, q(y))

u = k(z)
(4)

It is convenient to introduce the notation

e := q(y) − y (5)

for the output quantization error. Then, the closed-loop
system that results from interconnecting (1) and (4) can
be written as

ẋ = f(x, k(z))

ż = g(z, k(z), h(x) + e)
(6)

Note that in this system, e models the output quantization
error but may in general also model other measurement
disturbances which affect the output y of (1) before it
is passed to the observer-based controller (3). Our main
assumption states that the controller (3) should guarantee
robustness with respect to such disturbances in the input-
to-state stability (ISS) sense.

Assumption 1. The system (6) is ISS with respect to e.

According to the results of [7], [9]—to which we
also refer the reader for background on ISS and related
terminology—Assumption 1 is equivalent to the existence
of a C1 function V : R

n × R
k → R such that for some

class K∞ functions α1, α2, α3, ρ and for all x ∈ R
n,

z ∈ R
k, e ∈ R

p we have

α1(|(x, z)|) ≤ V (x, z) ≤ α2(|(x, z)|)

and

|(x, z)| ≥ ρ(|e|)

⇓ (7)
∂V

∂x
f(x, k(z)) +

∂V

∂z
g(z, k(z), h(x) + e) ≤ −α3(|(x, z)|)

Here and below, (x, z) is a shorthand for the concatenated
state vector (xT , zT )T .

Take κ to be some class K∞ function with the property
that

κ(r) ≥ max
|x|≤r

|h(x)| ∀ r ≥ 0.

Then we have

|h(x)| ≤ κ(|x|) ∀x. (8)

We are ready to state the following result.

Proposition 1 Assume that M is large enough compared
to ∆ so that

α1 ◦ κ−1(M) > α2 ◦ ρ(∆). (9)

Then the sets

R1 := {(x, z) : V (x, z) ≤ α1 ◦ κ−1(M)}

and
R2 := {(x, z) : V (x, z) ≤ α2 ◦ ρ(∆)}

are invariant regions for the system (5), (6). Moreover, all
solutions that start in the set R1 enter the smaller set R2

in finite time. An upper bound on this time is

T =
α1 ◦ κ−1(M) − α2 ◦ ρ(∆)

α3 ◦ ρ(∆)
.

Proof: . Whenever |y| = |h(x)| ≤ M , in view of (2)
the quantization error e given by (5) satisfies |e| ≤ ∆.

Using (7) and (8), we obtain the following formula for
the derivative of V along solutions of the system (6):

ρ(∆) ≤ |(x, z)| ≤ κ−1(M) ⇒ V̇ ≤ −α3(|(x, z)|).
(10)

All the claims easily follow from this (cf. [2], [4] where
similar results are derived for the cases of state quantiza-
tion and input quantization).

The above result is especially useful in situations where
the quantization can be dynamic, in the sense that the
parameters of the quantizer can be changed on-line by the
control designer (cf. [1], [2], [4]). This is possible in many
applications, the only hard constraint typically being the
number of quantization levels (i.e., the cardinality of
Q). Such a dynamic quantizer can be formalized by
introducing the one-parameter family of quantizers

qµ(x) := µq
(x

µ

)

, µ > 0

where µ is an adjustable parameter which can be viewed
as a “zoom” variable. For each fixed value of µ, the
range of the quantizer qµ is Mµ and the error bound
is ∆µ. Increasing µ corresponds to “zooming out” while
decreasing µ corresponds to “zooming in.” Substituting qµ

(for a fixed µ) instead of q in the foregoing developments,
we obtain a counterpart of Proposition 1 in which M

and ∆ are multiplied by µ wherever they appear, and
accordingly the regions R1, R2 and the time T depend
on µ. In particular, if initially

(x(t0), z(t0)) ∈ R1(µ(t0)) (11)



then at time t1 := t0 +T (µ(t0)) we have (x(t1), z(t1)) ∈
R2(µ(t0)). “Zooming in” on this smaller invariant region
by means of setting

µ(t1) :=
1

M
κ ◦ α−1

1 ◦ α2 ◦ ρ(∆µ(t0))

we have (x(t1), z(t1)) ∈ R1(µ(t1)). At the time t2 :=
t1 +T (µ(t1)), this procedure can be repeated. Of course,
we need to be sure that the sequence µ(t0), µ(t1), µ(t2),
. . . is indeed decreasing to 0. This is guaranteed if we
strengthen (9) to

α1 ◦ κ−1(Mµ) > α2 ◦ ρ(∆µ) ∀µ ∈ (0, µ(t0)] (12)

Then, proceeding iteratively in this way, we recover
asymptotic stability1 of the closed-loop system. If the
inequality in (12) only holds for µ ∈ (ε, µ(t0)] for some
ε > 0, then convergence to the set R2(ε) is obtained.

To achieve global asymptotic stability, we first need to
generate an upper bound on the state of (6). Since z is
available to the control designer, we only need to have a
bound on |x(t̄)| for some t̄. The basic idea is to “zoom
out” to obtain a bound on |y| from the quantized measure-
ments qµ(y), and then invoke an appropriate observability
assumption to generate a bound on |x|. Throughout this
“zooming-out” stage, the control is set to 0. Assume that
the unforced system

ẋ = f(x, 0) (13)

is forward complete (i.e., has globally defined solutions).
Assume also that the quantizer satisfies, in addition to (2),
the condition

|z| > M ⇒ |q(z)| > M − ∆. (14)

Suppose that we can increase µ (in a piecewise constant
fashion) fast enough to dominate the rate of growth of
|x(t)| along (13). (A generic procedure for doing this
is described in [2], [10]; in practice, this requires some
information about the growth of reachable sets of the sys-
tem (13).) Then, we will eventually encounter an interval,
say [t̄, t̄+τ ], on which we have |qµ(y(t))| ≤ (M−∆)µ(t)
and hence, by (14), |y(t)| ≤ Mµ(t) ≤ Mµ(t̄+τ). We can
use this to obtain a bound on |x(t̄)| if the system (13) is
small-time2 norm-observable in the sense of [11], namely,
if there exists a function γ ∈ K∞ such that

|x(t̄ + τ)| ≤ γ(‖y‖[t̄,t̄+τ ]). (15)

Then we have |x(t̄+τ)| ≤ γ(Mµ(t̄+τ)), and the previous
closed-loop “zooming-in” stage can now be commenced
at time t̄ + τ after resetting µ to a sufficiently large
value so that (11) holds with t̄ + τ in place of t0. We
refer the reader to [11] for equivalent characterizations
and Lyapunov-based sufficient conditions for the above

1This argument only shows asymptotic convergence. Stability of the
origin in the sense of Lyapunov can be proved as in [2], [10], as long
as we assume that q(y) = 0 on a neighborhood of 0 in R

p.
2The quantifier small-time refers to the fact that a γ for which (15)

holds exists for every τ . On the other hand, if (15) can only hold for a
specific value of τ (large-time norm-observability [11]), then we need
to carry out the “zooming-out” stage until we have a bound on |y(t)|
over an interval of this length τ .

norm-observability property. (See also the discussion of
norm-estimators in [12].)

We remark that the framework just described encom-
passes, as a special case, the linear results developed
in [2, Section 5] and [4, Section 5.3.5]. Suppose that we
have an LTI plant which is stabilizable and observable.
Then we can use a dynamic output feedback law based
on the standard Luenberger observer, and Assumption 1
is satisfied. This is because for linear systems, internal
asymptotic stability implies ISS, and a quadratic ISS-
Lyapunov function V can be explicitly obtained from the
Lyapunov equation. The functions α1, α2, and α3 are then
all quadratic, while ρ and κ are linear. Their expressions
are easily computed; see [2], [4]. We also have that the
time T is independent of µ and that (9) automatically
implies (12). The values of µ during the “zooming-
in” stage form a decreasing geometric sequence. The
“zooming-out” procedure also becomes much more trans-
parent; in particular, the norm-observability property (15)
is established constructively by inverting the observability
Gramian.

III. DISCUSSION

The problem motivated by the developments of Sec-
tion II is to characterize classes of nonlinear systems for
which one can design an output feedback controller (3)
satisfying Assumption 1. One way to achieve the desired
ISS property is to first obtain a static state feedback
u = k(x) that provides ISS with respect to measurement
errors, and then to augment it with a full-order observer
which generates an estimate z of the state x with the
estimation error satisfying an ISS contraction property
with respect to e. Namely, we can ask for the following
two properties:

1) The system

ẋ = f(x, k(z)) = f(x, k(x + z − x))

satisfies

|x(t)| ≤ β1(|x(0)|, t) + γ1

(

‖x − z‖[0,t]

)

(16)

for some β1 ∈ KL and γ1 ∈ K∞. (Here ‖ · ‖[0,t]

stands for the (essential) supremum norm of a signal
restricted to the interval [0, t].)

2) The system (6) satisfies

|x(t) − z(t)| ≤ β2(|x(0) − z(0)|, t) + γ2

(

‖e‖[0,t]

)

(17)
for some β2 ∈ KL and γ2 ∈ K∞.

If Properties 1 and 2 hold, then Assumption 1 is
satisfied. Indeed, a cascade argument along the lines
of [13] shows that (16) and (17) together imply
∣

∣

∣

∣

(

x(t)
x(t) − z(t)

)∣

∣

∣

∣

≤ β

(∣

∣

∣

∣

(

x(0)
x(0) − z(0)

)∣

∣

∣

∣

, t

)

+γ
(

‖e‖[0,t]

)

for some β ∈ KL and γ ∈ K∞, and this is nothing
but ISS of the overall closed-loop system (6) modulo
the change of coordinates from (x, z) to (x, x − z). This



observation is useful in that it decouples Assumption 1
into two properties which express the requirements on
the controller design and observer design, respectively.
In what follows, we discuss each of these two properties
separately in some more detail.

A. ISS controller design

Property 1 states that the static state feedback u =
k(x) should render the x-subsystem ISS with respect to
measurement errors, i.e., the system ẋ = f(x, k(x + d))
should be ISS with respect to d. In our case, d is the
difference between the observer state and the plant state,
but for the purposes of control design it can be viewed
as a general measurement disturbance.

The existence of feedback laws providing ISS with
respect to measurement errors is studied in several ref-
erences. It was demonstrated by way of counterexamples
in [14] and later in [15] that not every stabilizable nonlin-
ear system, even affine in controls, is input-to-state stabi-
lizable with respect to measurement errors by means of
time-invariant feedback. In [16] and [17, Chapter 6], time-
invariant feedback laws guaranteeing ISS with respect to
measurement errors were designed for the class of single-
input plants in strict feedback form, via backstepping
and “flattened” Lyapunov functions. In that work, the
function g(x) multiplying the control was assumed to be
sign-definite and known. For the case when the sign of
g(x) is unknown, a time-varying feedback solution was
developed for one-dimensional systems and then extended
to feedback passive systems of any dimension in [18].
In [15], time-varying feedback was designed to handle
affine systems for which g(x) is allowed to have zero
crossings, but only in one dimension. In [19], small-gain
techniques were applied to a class of systems with un-
known parameters and unmodeled dynamics. In the recent
paper [20], a hybrid control solution was developed for
systems possessing an output function whose dynamics
take the form considered in [18] and with respect to which
the system is minimum phase (in a suitable sense); this
class covers the counterexample from [14] but not the one
from [15].

It can be seen from the above discussion that, de-
spite significant efforts, results on designing controllers
to achieve ISS with respect to measurement errors are
available only for fairly restricted classes of systems. In
quantized control of nonlinear systems, this ISS property
appears to be fundamental, and thus further progress in
this area hinges upon extending the ISS controller design
to broader classes of systems. In fact, ISS with respect
to measurement errors is a standing assumption in the
results on quantized state feedback developed in [2], [10],
[4]. So-called “relaxations” of this assumption, discussed
in [21] and [22], replace ISS by just global asymptotic
stability under the zero error (0-GAS) and compensate for
this by working on a bounded region and arranging for the
quantization error to be sufficiently small. However, this
amounts to not really relaxing ISS but just (implicitly)
using the fact that for suitably small errors on a given

bounded region, ISS automatically follows from 0-GAS.
(This can be shown via a small-gain argument as in [21] or
via Lyapunov analysis as in [22].) In other words, ISS still
plays a crucial role. On the other hand, it is not a problem
to allow the state feedback law to be time-varying and/or
hybrid, as in some of the design results mentioned earlier.

B. ISS observer design

We now turn to Property 2. The ISS-like contraction
condition (17) means that the z-subsystem is a full-order
state observer for the x-subsystem in the sense of [12,
Definition 20]; in particular, if e ≡ 0, then the estimate z

asymptotically converges to the true state x. (The control
is set to u = k(z) throughout this discussion.)

The design of observers with this ISS property has
apparently not been pursued in the literature. We need to
investigate for what classes of systems such an observer
can be constructed. One (quite restricted) class of systems
for which this is possible is given by

ẋ = Ax + g(u, y)

y = Cx
(18)

where (A, C) is a detectable pair and g is a globally
Lipschitz function. It is not hard to show that the observer

ż = (A + LC)z + g(u, y + e) − L(y + e)

guarantees (17) provided that A+LC is a Hurwitz matrix.
Intersecting the class of systems (18) with the class of
single-input systems in strict feedback form, we arrive
at a nonempty but severely restricted class of nonlinear
systems for which Assumption 1 can be satisfied. Note
that in the context of Proposition 1, which works with a
bounded invariant region, the global Lipschitzness of g

can be relaxed to local Lipschitzness.

Another possibility, suggested to us by Murat Arcak,
is to relax the requirement (17) by allowing an additional
ISS gain from the state x to the observer error x − z:

|x(t) − z(t)| ≤ β2(|x(0) − z(0)|, t)

+ γ2

(

‖e‖[0,t]

)

+ γ3

(

‖x‖[0,t]

) (19)

where γ3 ∈ K∞. While the admissible class of observers
is potentially broadened by passing to (19), the class
of control laws u = k(z) must be further restricted to
preserve closed-loop ISS. Namely, the ISS gain γ1 from
the observer error x − z to x must be small enough
to compensate the ISS gain γ3 of the observer, so that
the two gains satisfy the small-gain condition. Then,
Assumption 1 can be verified using the ISS small-gain
theorem of [23] (this includes the cascade argument based
on (17) as a special case). Such an approach was taken
in [24], but in a context different from ours (robustness
was sought with respect to unmodeled dynamics rather
than output measurement errors). Further work is needed
to see whether other observer design methodologies (e.g.,
high-gain observers [25]) might be helpful for achieving
the ISS property.
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