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Abstract

In this paper we describe a framework for deterministic adaptive control which involves logic-based switching among a
family of candidate controllers. We compare it with more conventional adaptive control techniques that rely on continuous
tuning, emphasizing how switching and logic can be used to overcome some of the limitations of traditional adaptive
control. The issues are discussed in a tutorial, non-technical manner and illustrated with speci7c examples.
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1. Introduction

Adaptive control is a methodology for controlling systems with large modeling uncertainties which render
robust control design tools inapplicable and thus require adaptation. By adaptation we usually mean a combi-
nation of on-line estimation and control, whereby a suitable controller is selected on the basis of the current
estimate for the uncertain process. More precisely, one chooses a parameterized family of controllers, where
the parameter varies over a continuum which corresponds to the process uncertainty range in a suitable way.
One then runs an estimation procedure, which at each instant of time provides an estimate of the unknown
process model. According to certainty equivalence, one applies a controller that is known to guarantee some
desired behavior of the process model corresponding to the current estimate (see, e.g., [19]).
This classical approach to deterministic adaptive control has some inherent limitations which have been

well recognized in the literature. Most notably, if unknown parameters enter the process model in complicated
ways, it may be very di@cult to construct a continuously parameterized family of candidate controllers.
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Estimation over a continuum may also be a challenging task. These issues become especially severe if ro-
bustness and high performance are sought. As a result, design of adaptive control algorithms involves a large
number of specialized techniques and often depends on trial and error.
In this paper we discuss an alternative approach to control of uncertain systems, which seeks to overcome

some of the above di@culties, while retaining the fundamental ideas on which adaptive control is based. The
main feature which distinguishes it from conventional adaptive control is that controller selection is carried
out by means of logic-based switching rather than continuous tuning. Switching among candidate controllers
is orchestrated by a high-level decision maker called a supervisor; hence, the name supervisory control. The
supervisor updates controller parameters when a new estimate of the process parameters becomes available,
similarly to the adaptive control paradigm, but these events occur at discrete instants of time. This results in a
hybrid closed-loop system. The idea of using switching in an adaptive context has been around for some time,
and various approaches have been developed; see, e.g., [28,10,30,21]. In the form considered here, supervisory
control originates in [35,36] and is pursued in [24,41,4,18,16,13,26,1,15,38,6,42,14].
In the supervisory control framework, it is not necessary to construct a continuously parameterized family of

controllers, since the controller selection is performed in a discrete fashion. This allows one to handle process
models that are nonlinearly parameterized over non-convex sets and also to use advanced controllers that are
not readily parameterized continuously. If the unknown process model parameters belong to a discrete set, there
is no need to embed this set in a continuum (as one would normally do in the context of adaptive control);
instead, one can switch among a discrete family of suitably chosen controllers. If the parametric uncertainty
is described by a continuum, one has the choice of working with a continuous or a discrete (perhaps even
7nite) family of controllers. In the latter case, one needs to ensure that every admissible process model is
satisfactorily controlled by at least one of these controllers; under appropriate conditions, this can always be
achieved with a 7nite controller family (see [1]).
Another important aspect of supervisory control is modularity. The principles that govern the design of

the switching logic, the estimators, and the candidate controllers are mutually independent. In other words,
the analysis of the overall system relies on certain basic properties of its individual parts, but not on the
particular ways in which these parts are implemented. As a result, one gains the advantage of being able
to use “oJ-the-shelf” control laws, rather than having to design control laws tailored to the speci7cs of
the continuously tuned adaptive algorithms. This provides greater Lexibility in applications (where there is
often pressure to utilize existing control structures) and facilitates the use of advanced controllers for di@cult
problems. Similar remarks apply to the estimation procedure. We will support these claims with examples
below.
As is well known, one reason for considering logic-based switching control, and hybrid control in general,

is that it enables one to overcome obstructions that are present in systems with continuous controllers. For
example, there are quite general classes of systems, including non-holonomic systems, which cannot be sta-
bilized by time-invariant continuous feedback because they fail to satisfy Brockett’s necessary condition [5].
Hybrid control laws provide one way of dealing with this problem. In view of this more general observation,
it is perhaps not surprising that supervisory control is capable of overcoming limitations that are characteristic
of conventional adaptive control algorithms.
The switching algorithms that seem to be the most promising are those that evaluate on-line the po-

tential performance of each candidate controller and use this to direct their search. These algorithms can
roughly be divided into two categories: those based on process estimation, using either certainty equivalence
(see, e.g., [35,39,24,41]) or model validation [22,8,47]; and those based on direct performance evaluation of
each candidate controller [45,44,23,38]. Although these algorithms originate from fundamentally diJerent ap-
proaches, they share key structures and exhibit important common properties. In this paper, we mostly address
estimator-based supervisory control based on certainty equivalence. However, many of the comments to be
made also apply to other forms of supervisory control [12]. We will not address here supervisory control
based on a sequential, or “pre-routed”, search among a set of controllers. We will also restrict our attention
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to deterministic algorithms that do not require persistency of excitation. Further discussion and references on
the diJerent approaches mentioned above can be found in [33].

2. Supervisory control system

In this section we describe, in general terms, the basic ingredients of a supervisory control system, and
sketch the ideas involved in its analysis. Let P be the uncertain process to be controlled, with input u and
output y, possibly perturbed by a bounded disturbance input d and a bounded output noise n. We assume
that the model of P is a member of some family of admissible process models

F :=
⋃
p∈P

Fp; (1)

where P is an index set. Here, for each p, Fp denotes a family of systems “centered” around some known
nominal process model �p. Loosely speaking, the set P represents the range of parametric uncertainty, while for
each 7xed p∈P the subfamily Fp accounts for unmodeled dynamics. Several ways of specifying admissible
unmodeled dynamics around the nominal process models are discussed in [35,15].
A standard problem of interest is output regulation or set-point control of P. Typically, no single controller

is capable of solving the problem if the range of modeling uncertainty is large. We therefore consider a
parameterized family of candidate controllers {Cq : q∈Q}, where Q is an index set, and switch in real time
between the elements of this family, on the basis of observed data. This leads to a switched controller, which
we call the multi-controller and denote by C. The set Q may be diJerent from P; for example, Q might be
7nite while P is a continuum (cf. below). The understanding here is that for each p∈P there is a q∈Q
such that the control input uq produced by the candidate controller Cq would yield the desired behavior if
P were known to be a member of Fp. If Q is a 7nite set with a relatively small number of elements, the
multi-controller can be realized simply as a parallel connection of all the candidate controllers. If the number
of elements in Q is large or in7nite, the multi-controller can be implemented using the idea of state-sharing
[36], leading to a dynamical system whose (7nite) dimension is independent of the size of Q.
The supervisor consists of three subsystems (see Fig. 1):
Multi-estimator E: A dynamical system whose inputs are the input u and the output y of the process P

and whose outputs are denoted by yp, p∈P.
Monitoring signal generator M: A dynamical system whose inputs are the estimation errors

ep := yp − y; p∈P

and whose outputs 
p, p∈P are suitably de7ned integral norms 4 of the estimation errors, called monitoring
signals.
Switching logic S: A dynamical system whose inputs are the monitoring signals 
p, p∈P and whose

output is a piecewise constant switching signal �, taking values in Q, which is used to de7ne the control law
u= u�.
We now explain the basic requirements that need to be placed on the diJerent parts of the supervisory

control system. For simplicity, we 7rst consider the case when P=Q, and later explain what modi7cations are
needed to handle the general situation. Consider the switched system that describes the combined dynamics
of the process, the multi-controller, and the multi-estimator. Denoting its state by x and ignoring the noise
and disturbances, we can write this system as

ẋ = f�(x): (2)

4 One can also process the estimation errors in a more sophisticated way (see, e.g., [24,38,2]).



52 J.P. Hespanha et al. / Systems & Control Letters 49 (2003) 49–65

Fig. 1. Supervisory control system.

From the perspective of the remaining components of the system, the outputs of (2) are the estimation errors,
which can be generated by equations of the form

ep = hp(x); p∈P: (3)

The above switched system is required to have two basic properties, which are crucial for the analysis of the
overall system: the Detectability Property and the Matching Property. The former is essentially a property of
the multi-controller, whereas the latter is a property of the multi-estimator.
We begin with the multi-controller. The Detectability Property that we impose on the candidate con-

trollers is that for every 7xed q∈Q, the switched system (2)–(3) must be detectable with respect to the
corresponding estimation error eq when the value of the switching signal is frozen at q. Adapted to the
present context, the results proved in [32] imply that in the linear case the Detectability Property holds if the
controller asymptotically stabilizes the multi-estimator and the process is detectable (“certainty equivalence
stabilization theorem”), or if the controller asymptotically output-stabilizes the multi-estimator and the process
is minimum-phase (“certainty equivalence output stabilization theorem”). These conditions are useful because
they decouple the properties that need to be satis7ed by the parts of the system constructed by the designer
from the properties of the unknown process. Extensions of these results to nonlinear systems are discussed
in [16,14,27]. In particular, it is shown in [16] that detectability, de7ned in a suitable way for nonlinear
systems, is guaranteed if the process is detectable and the controller input-to-state stabilizes (in the sense
of Sontag [46]) the multi-estimator with respect to the estimation error. The design of candidate controllers
is thereby reduced to a disturbance attenuation problem well studied in the nonlinear control literature. The
paper [14] develops an integral variant of this result, and the recent work [27] contains a nonlinear version
of the certainty equivalence output stabilization theorem.
The Matching Property refers to the fact that the multi-estimator should be designed so that each particular

yp provides a “good” approximation to the process output y—and therefore ep is “small”—whenever the actual
process model is inside the corresponding Fp. Since the process is assumed to match one of the models in
the set (1), we should then expect at least one of the estimation errors, say ep∗ , to be small in some sense. For
example, we may require that in the absence of unmodeled dynamics, noise, and disturbances ep∗ converge
to zero exponentially fast for every control input u. It is also desirable to have an explicit characterization
of ep∗ in the presence of unmodeled dynamics, noise, and disturbances. For linear systems, a multi-estimator
satisfying such requirements can be obtained as explained in [35]. In that paper, it is also shown how the
multi-estimator can be constructed in a state-shared fashion (so that it is 7nite-dimensional even if P is
in7nite), using standard results from realization theory. Multi-estimators with similar properties can also be
designed for some useful classes of nonlinear systems, as discussed in [16]. State-sharing is always possible
if the parameters enter the process model “separably” (but not necessarily linearly).
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The index � of the controller in the feedback loop is determined by the switching logic, whose inputs
are produced by the monitoring signal generator. In accordance with certainty equivalence, the value of � at
each instant of time should coincide with the index of the smallest monitoring signal. In this way, supervisory
control selects the candidate controller that corresponds to an estimator error that has been small for some time
(in an integral sense). To prevent chattering, one approximates this mechanism by introducing a dwell-time
[35] or hysteresis [11,16,15,26]. As discussed in these references, diJerent versions of the latter approach can
be applied to nonlinear systems with P 7nite or in7nite and Q being equal to P or a 7nite subset of P; an
overview of various switching logics is given in [26]. Two properties need to be satis7ed by the switching
logic and the monitoring signal generator: the Non-Destabilization Property and the Small Error Gain Property.
Recall that, in view of the Detectability Property, for every :xed value of � system (2)–(3) is detectable with

respect to the corresponding estimation error e�. The switching signal � is said to have the Non-Destabilization
Property if it preserves the detectability, i.e., if the switched system (2)–(3) is detectable with respect to the
output e�. The Non-Destabilization Property trivially holds if the switching stops in 7nite time (which is the
case if the scale-independent hysteresis switching logic of [11] or its variants proposed in [15,26] are applied
in the absence of noise, disturbances, and unmodeled dynamics). In the linear case, a standard output injection
argument shows that detectability is not destroyed by switching if the switching is su@ciently slow (so as not
to destabilize the injected switched system). According to the results of [17], it actually su@ces to require that
the switching be slow on the average. However, it should be noted that the Non-Destabilization Property does
not necessarily amount to a slow switching condition; for example, the switching can be fast if the systems
being switched are in some sense “close” to each other. For another fast switching result that exploits the
structure of linear multi-controllers and multi-estimators, see [35, Section 8].
The Small Error Gain Property calls for a bound on e� in terms of the smallest of the signals ep, p∈P.

For example, if P is a 7nite set and the monitoring signals are de7ned as 
p(t) =
∫ t
0 e

2
p(s) ds, then the

scale-independent hysteresis switching logic of [12] guarantees that for every p∈P,∫ t

0
e2�(s) ds6C

∫ t

0
e2p(s) ds; (4)

where C is a constant (which depends on the number of controllers and the hysteresis parameter) and the
integral on the left is to be interpreted as the sum of integrals over intervals on which � is constant. If ep∗

decays exponentially as discussed earlier, then (4) guarantees that the signal e� is in L2. At the heart of
the switching logic, there is a conLict between the desire to switch to the smallest estimation error to satisfy
the Small Error Gain Property and the concern that too much switching may violate the Non-Destabilization
Property.
It is now easy to see how the above properties of the various blocks of the supervisory control system can

be put together to analyze its behavior. Because of the Matching Property, there exists some p∗ ∈P for which
ep∗ is small (e.g., converges to zero exponentially fast as above). The Small Error Gain Property implies that
e� is small. The Detectability Property and the Non-Destabilization Property then guarantee that the state x
is small as well. Proceeding in this fashion, it is possible to analyze stability and robustness of supervisory
control algorithms for quite general classes of uncertain systems [35,36,17,15].
Often, it is not convenient 5 to take the process index set P to be equal to the controller index set Q. When

these sets are diJerent, we need to have a controller assignment map � : P → Q. Let us say that a piecewise
constant signal � taking values in P is �-consistent if �(�) ≡ � and the set of discontinuities of � is a subset
of the set of discontinuities of �. The Detectability Property and the Non-Destabilization Property need to
be strengthened to guarantee that the switched system (2)–(3) is detectable with respect to the output e�, for
every �-consistent signal �. The Small Error Gain Property can then be relaxed as follows: there must exist a
�-consistent signal � such that e� is bounded in terms of the smallest of the signals ep, p∈P (for example,

5 The reasons for this will be explained shortly and have precisely to do with overcoming limitations of adaptive control.
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in the sense of the L2 norm as before). The above analysis goes through with suitable minor modi7cations;
see [26] for details.
Not surprisingly, the four properties that were just introduced for supervisory control have direct counterparts

in classical adaptive control. The Detectability Property was 7rst recognized in the context of adaptive control
in [31], where it was called tunability. The Matching Property is usually implicit in the derivation of the error
model equations, where one assumes that, for a speci7c value of the parameter, the output estimate matches
the true output. Both the Small Error Gain Property and the Non-Destabilization Property are pertinent to
the tuning algorithms, being typically stated in terms of the smallness (most often in the L2 sense) of the
estimation error and the derivative of the parameters estimate, respectively.

3. Modular design

One of the key features of supervisory control is that no speci7c structure is imposed on the multi-controller
or on the multi-estimator, as long as they possess the properties described in the previous section. We proceed
by presenting a few examples that utilize candidate controllers and estimators which—for diJerent reasons—
cannot be used by traditional forms of adaptive control. Speci7cally, Example 1 illustrates the use of advanced
nonlinear controllers; Example 2 illustrates the use of hybrid controllers; Example 3 studies a process given
by a PDE whose associated approximate nominal models are not parameterizable; and Example 4 illustrates
the use of advanced estimators. It is interesting to note that the constructions proposed for all the examples
are based on non-adaptive designs, and yet can be used in the context of supervisory control without any
signi7cant changes.

Example 1. Consider the two-dimensional system

ẋ1 = p∗
1x

3
1 + p∗

2x2; ẋ2 = u; (5)

where u denotes the control input and p∗ := {p∗
1 ; p∗

2} is an uncertain parameter taking values in a subset
P of [− 1; 1]× ([− 1; 1]\{0}). The state of (5) is assumed to be available for measurement, and the control
objective is to drive x1 to a known constant set-point r. The system (5) is feedback linearizable for every
possible value of p∈P. However, for p∗

1 ¡ 0 the nonlinear term p∗
1x

3
1 actually provides desirable damping

and should not be canceled. Feedback linearization should then be avoided for negative values of p∗
1 . Another

option is to use pointwise min-norm candidate control laws (see [9]). These are feedback laws of the smallest
pointwise magnitude that yield the Detectability Property (as veri7ed by a suitable Lyapunov function). Such
control laws possess desirable robustness and performance properties associated with inverse optimality. Both
the feedback linearization and the pointwise min-norm control designs can be applied in the supervisory
control context.
Since in this example the entire state is available for measurement, it is not di@cult to construct a

multi-estimator with the property that the estimation error ep∗ converges to zero exponentially fast for every
control input, so that the Matching Property is satis7ed. Moreover, this can be done using state-sharing, so
that the multi-estimator and the monitoring signal generator are 7nite-dimensional dynamical systems even if
the parametric uncertainty set P is in7nite. This issue will be addressed with more detail in the examples in
the next section. The details of the design and analysis for this example are provided in [11]. Figs. 2(a) and
(b) show a simulation of the supervised system with the feedback linearizing and pointwise min-norm control
laws, respectively, and with the scale-independent hysteresis switching logic. For the design of the controllers
and estimators, the parameter set P was taken to be

P := {−1;−0:9;−0:8; : : : ;−0:1; 0; 0:1; 0:2; : : : ; 0:9; 1} × {−1; 1}:
To demonstrate the robustness of the closed-loop system, in the simulations, the values of the actual parameters
p∗
1 and p∗

2 are not exactly in P. In the simulations shown in Fig. 2, deviations of up to 1% were allowed.
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Fig. 2. Supervisory control simulation for Example 1 with (a) feedback linearization candidate control laws and (b) pointwise min-norm
candidate control laws.

Fig. 3. The wheeled mobile robot for Example 2.

Moreover, the values of p∗
1 and p∗

2 were changing with time. Comparing Figs. 2(a) and (b), one observes
that when p∗

1 ¡ 0, the pointwise min-norm control laws result in control signals about 10 times smaller than
those produced by feedback linearizing control laws, without sacri7cing the performance.

Example 2. The next example addresses the problem of parking the wheeled mobile robot of the unicycle
type, shown in Fig. 3. Here x1, x2 are the coordinates of the point in the middle of the rear axle, and �
denotes the angle that the vehicle makes with the x1-axis. The kinematics of the robot can be modeled by
the equations

ẋ1 = p∗
1u1 cos �; ẋ2 = p∗

1u1 sin �; �̇= p∗
2u2;

where p∗
1 and p∗

2 are positive parameters determined by the radius of the rear wheels and the distance between
them, and u1 and u2 are the control inputs (the forward and the angular velocity, respectively). The case we are
interested in is when the actual values of p∗

1 and p∗
2 are unknown, so that the parameter vector p∗={p∗

1 ; p
∗
2}

belongs to some subset P =P1 ×P2 of (0;∞)× (0;∞). Without loss of generality, by parking the vehicle
we mean making x1, x2, and � tend to zero by applying state feedback.
What makes this problem especially interesting is that for every set of values for the parameters, the

corresponding system is non-holonomic and so cannot be stabilized by any time-invariant continuous state
feedback law. Thus, even in the non-adaptive situation the problem of parking the vehicle is a challenging
one. This brings us outside the scope of most of the available adaptive control algorithms, despite the fact that
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Fig. 4. Parking the robot in Example 2.

the unknown parameters enter the model linearly. 6 When one considers hybrid control laws, this obstruction
disappears. For the case of a known p∗, the system can be stabilized by a variety of hybrid control laws,
such as the simple switching control law given in [13] which makes every trajectory approach the origin
after at most one switch. In the presence of parametric modeling uncertainty, it is thus natural to proceed
with the supervisory control design, using switching candidate controllers and a supervisor that orchestrates
the switching among them. In this example, switching occurs at two levels with distinct purposes: at the
lower level, each candidate controller utilizes switching to overcome the smooth non-stabilizability of the
non-holonomic process, and at the higher level, the supervisor switches to deal with the process’ parametric
uncertainty. As shown in [13], it is indeed possible to solve the problem in this way, which illustrates once
again the Lexibility of supervisory control in incorporating advanced control techniques developed in the
non-adaptive control literature.
The full details of design and analysis are given in [13]. The switching logic that we used is a suitable

version of the scale-independent hysteresis switching logic from [11]. If the set P is 7nite, all signals in the
resulting supervisory control system remain bounded, the switching stops in 7nite time, and the state converges
to zero. If P is in7nite, the analysis breaks down because the switching can no longer be guaranteed to stop
and stability results for the case of persistent switching in nonlinear systems are lacking. However, simulations
indicate that the system still displays the desired behavior. A typical trajectory for the case P=[0:1; 2]×[0:1; 3]
is depicted in Fig. 4. A parking movie generated with MATLAB/Simulink which illustrates the corresponding
motion of the robot is available from the web [25].

Example 3. Consider the Lexible manipulator shown in Fig. 5. For small bending, this system can be modeled
by the following PDE:

Ty(x; t) +
EI
�

y′′′′(x; t) =−x T�(t); (6)

with boundary conditions

y(0; t) = y′(0; t) = 0; y′′(L; t) = y′′′(L; t) +
mt

�
y′′′′(L; t) = 0; T (t) = IH T�(t)− EIy′′(0; t);

where E denotes elasticity of the beam, I the inertia of a transversal slice, IH the axis’ inertia, L the beam’s
length, � the beam’s mass density, and mt the load mass at the tip of the manipulator. Four measurements are

6 Notable exceptions include the work reported in [7,20].
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Fig. 5. Flexible manipulator for Example 3.

Fig. 6. Supervisory control of a Lexible manipulator in Example 3: (a) set-point, tip position, and control signal; (b) tip mass and position
of the strain gauge; and (c) index of the candidate controller in use.

used for control: the base angle �(t), the base angular velocity �̇(t), the tip position ytip(t) := L�(t)+y(L; t),
and the bending y′′(xsg; t) measured by a strain gauge attached to the Lexible bar at position xsg. The actuator
is a direct drive motor that applies the torque T (t) at the base. The control objective is to drive the tip
position to a pre-speci7ed set-point r. Two parameters are assumed unknown: the value of the load mass mt ,
assumed to be in the range [0; 0:1 kg], and the exact position xsg of the strain gauge, assumed to be in the
range [40 cm; 60 cm].
The PDE (6) can be solved by expanding the solution into the series y(x; t) =

∑∞
k=1 !k(x)qk(t), where

the !k(x) are the eigenfunctions of the beam and the time-varying coe@cients qk(t) are the solutions of
an in7nite-dimensional system of ODEs. This series is truncated for the design of the candidate controllers,
resulting in a nominal 7nite-dimensional model y(x; t) ≈ ∑N

k=1 !k(x)qk(t). The ignored terms are treated as
unmodeled dynamics. The main di@culty in designing an adaptive controller for (6) is that it is not possible
to explicitly write a 7nite-dimensional nominal model in terms of the unknown parameters. With supervisory
control this is not a problem, since we can work with a 7nite grid P ⊂ [0; 0:1 kg]× [40 cm; 60 cm] and still
cover the entire parameter space by considering appropriately large families Fp around each nominal process
model. For each nominal model, one controller can then be designed using standard methods. Fig. 6 shows
a simulation of the closed-loop system that utilized 18 candidate controllers designed using the LQR/LQE
techniques. As in Example 1, the unknown parameters (mt and xsg) were taken to be time-varying.

Example 4. The behavior of an induction motor in the so-called current-fed operation mode is described by
a third-order model which expresses the rotor Lux #∈R2 and the stator currents u∈R2 in a reference frame
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rotating at the rotor angular speed ! as

#̇=−R#+ Ru; !̇= &− &L; &= u′J#; (7)

where &∈R is the generated torque; R is the rotor resistance, taking values in an interval [Rm; RM ], with Rm

a positive number; &L is the load torque taking values in another interval [&Lm; &LM ]; and

J :=

[
0 −1

1 0

]
:

The only measured output is !.
Let p := {R; &L} be the vector of unknown parameters, taking values in P := [Rm; RM ] × [&Lm; &LM ]. A

multi-estimator for (7) can be constructed using the equations

#̇R =−R#R + Ru; R∈ [Rm; RM ]; (8)

!̇p = uTJ#R − &L − (1 + |u|2)(!p − !); p= {R; &L}∈P: (9)

With #R and !p so de7ned, one can show that if the actual value of the unknown parameter vector is
p∗ := {R∗; &∗L}, then #R∗ and !p∗ converge exponentially fast to # and !, respectively, for every input
signal u and thus the Matching Property holds. Note that (9) can be regarded as a linear time-varying system
with inputs uTJ#R + )(1 + |u|2)! and −&L. Thus, the same estimate !p could also be generated by the
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Fig. 7. Simultaneous change of rotor resistance and load torque in Example 4.
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two-dimensional system


̇ =−)(1 + |u|2)
 + uTJ#R + )(1 + |u|2)!; �̇=−)(1 + |u|2)�− 1;

!p = 
 + &L�; &L ∈ [&Lm; &LM ]:

We are therefore able to state-share the multi-estimator with respect to the unknown parameter &L, i.e.,
the above two-dimensional system handles the entire range [&Lm; &LM ]. However, state-sharing with respect
to R does not seem possible, and so instead of (8) we can only implement a 7nite number of equations
corresponding to a suitable 7nite subset of the interval [Rm; RM ].
Fig. 7 shows a simulation where the above multi-estimator is used. This simulation uses oJ-the-shelf

:eld-oriented candidate controllers. Field-oriented control is the de facto industry standard for high-performance
application induction motors. In its indirect formulation, this is a nonlinear dynamic output feedback controller
with a cascaded structure, where the inner loop control consists of a rotation and the outer loop is typically
de7ned via a PI regulator around the velocity error. The reader is referred to [6] for the numerical values
used for the parameters. In the simulation shown in Fig. 7, we considered a situation where both the rotor
resistance and the load torque change. The rotor resistance changes from its initial value R = 6 to R = 8 at
t = 60 and the load torque changes from its initial value &L = 2 to &L = 3 at t = 20 and changes again to
&L = 4 at t = 40. One can observe that tracking as well as correct estimation of the rotor resistance and the
load torque are achieved with only brief bursting at the instants when the parameters change.

4. Admissible classes of process models

Another important feature of supervisory control is its Lexibility in dealing with fairly general process
model classes of form (1). In this section we explain some of the limitations of traditional adaptive control
in this area and illustrate how supervisory control can be used to overcome them.

4.1. Process model parameterizations

For simplicity, let us assume that for each p∈P, the family Fp consists of a single nominal process
model �p. This case is often called “exact matching” and corresponds to the absence of unmodeled dynamics.
In deterministic adaptive control, severe constraints are imposed on the parameterization map p → �p. The

reason for this is that continuous tuning based on gradient descent-like methods is very fragile with respect to
this map. To gain insight into this issue, consider the following standard parameter estimation problem. Two
signals y : [0;∞) → Rm and z : [0;∞) → Rk are related by the equation

y(t) = F(p∗; z(t)); (10)

where p∗ is an unknown parameter taking values in P and F is a function from P×Rk to Rm. A standard
way to estimate p∗ is to solve the optimization problem

min
p∈P

∫ ∞

0
‖y(t)− F(p; z(t))‖2 dt:

Adaptive control attempts to perform this minimization on-line by moving the current estimate p̂ of p∗ in
the direction of steepest descent of ‖y(t)− F(p̂; z(t))‖2 (for frozen time), namely,

˙̂p=− @
@p̂

‖y − F(p̂; z)‖2
2

= (y − F(p̂; z))′
@F
@p̂

(p̂; z): (11)

This approach is validated by a Lyapunov-like argument based on the partial Lyapunov function

V (p̂) := 1
2 ‖p∗ − p̂‖2:
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Since p∗ is assumed constant, along trajectories of (11) we have

V̇ =−(y − F(p̂; z))′
@F
@p̂

(p̂; z)(p∗ − p̂):

If F(p̂; z) is linear in p̂, we conclude from (10) that y − F(p̂; z) = @F=@p̂(p̂; z)(p∗ − p̂) and therefore

V̇ =−‖y − F(p̂; z)‖2:
This means that p̂ approaches p∗ as long as y does not match F(p̂; z). However, the decrease of V along
trajectories is very much dependent on the linearity of F with respect to p. Indeed, even if F depends on
p in a very regular way, e.g., if it is quadratic (and hence convex) in p, it may happen that V no longer
decreases. For example, if y, z, and p are scalars and

F(p; z) = (p+ z)2; (12)

we obtain

V̇ =−2(p̂+ z)(p̂+ p∗ + 2z)(p∗ − p̂)2;

which is positive for p̂ between −z and −p∗ − 2z.
In adaptive control, limitations are imposed not only on the form of the parameterization map p → �p, but

also on the shape of its domain P. The set P is invariably required to be convex (and is usually taken to
be a ball or a hypercube). The reason for this can also be seen from the above discussion. If the set P is
non-convex, the parameter estimate can get trapped in a local minimum, at which the steepest descent vector
points outside P. The problem of how to address non-convex parameter sets has been a major stumbling
block in adaptive control. Although it is uncommon to 7nd physical parameters (such as masses, damping
coe@cients, etc.) that take values in a non-convex set, the need to make the parameterization p → �p
linear often leads to reparameterizations that arti7cially introduce non-convexity. We will say more about
reparameterizations later.
In supervisory control, we have a much greater Lexibility in selecting a parameter estimate p̂, because we

are no longer forced to continuously tune this variable and can instead directly choose for p̂, e.g., the value
that minimizes some integral norm of ep̂ := y − F(p̂; z). In the context of the above parameter estimation
problem, this corresponds to setting, from time to time,

p̂(t) = arg min
p∈P

∫ t

0
‖y(t)− F(p; z(t))‖2 dt: (13)

When the minimum is achieved at multiple points, any one of them can be used for p̂. Note that (13) can
produce very rapidly varying and possibly discontinuous estimates. In the context of certainty equivalence,
this could lead to very rapid changes in the controller and even chattering. To prevent this, one introduces
dwell-time or hysteresis (cf. Section 2).
The integrals on the right-hand side of (13) correspond to the monitoring signals 
p, so the above expression

can be rewritten as

p̂(t) = arg min
p∈P


p(t): (14)

Thus, it is possible to relax the assumption that the family of process models be linearly parameterized over a
convex set, which is required by standard adaptive control techniques. 7 Computational issues associated with

7 We note that in the context of continuously tuned adaptive control, there have also been research eJorts directed at removing the
linearity assumption; see, e.g., [3].
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the on-line optimization (13)–(14) still need attention; they can be handled in one of the following ways:

(1) In some cases, a closed-form solution can be found. This typically occurs when the unknown parameters
enter the nominal process model in a polynomial fashion. For example, in the case of (12) it is straight-
forward to show that the optimization simply amounts to computing the roots of a cubic polynomial.
Similarly, in the context of Example 2 one needs to 7nd the roots of a polynomial of degree 5. See also
Example 5 below where we provide some supporting calculations.

(2) Numerical optimization can be performed when a closed-form solution is not available. In this case,
convexity of the parameter set is usually needed. In general, the computational time required by the
optimization will determine the maximum rate at which switching can occur. This can be taken directly
into account with the dwell-time switching logic (see [35]).

(3) The set P can be partitioned into a 7nite number of subsets, so that on each subset the optimization
problem is convex and therefore computationally tractable. (This was in fact one of the motivations for
the introduction of the hysteresis switching logic in [29], which was later used in supervisory control.)
The hierarchical hysteresis switching logic developed in [26] relies on such a partition. The minimization
is carried out on two levels: 7rst, the smallest monitoring signal is taken in each of the subsets that form
the partition, and then these signals are compared with each other. The work on combining switching and
tuning, i.e., switching among adaptive controllers, is also relevant in this regard (see, e.g., [39]).

(4) In many cases, one can take the parameter set P to be 7nite and absorb the remaining parameter val-
ues into unmodeled dynamics, so that the optimization problem is reduced to comparing a 7nite num-
ber of monitoring signals (see [1] for a detailed discussion of this issue). This additional Lexibility
is an advantage that logic-based switching algorithms have over continuously tuned adaptive control
techniques.

It should be emphasized that in supervisory control, computational issues of the kind mentioned above only
arise with respect to the parameterization of the nominal process models p → �p. The parameterization of the
candidate controllers q → Cq, on the other hand, does not require any special care.

Example 5. Following [35], we consider the family of SISO linear time-invariant processes with transfer
functions

�p :=
s− 1

6 (p+ 2)

s3 + ps2 − 2
9p(p+ 2)s

; p∈P := [− 1; 1]: (15)

It is possible to construct a state-shared multi-estimator of the form

ż =

[
A 0

0 A

]
z +

[
b

0

]
y +

[
0

b

]
u;

yp = [ a1 (a2 + 2
9p(p+ 2)) (a3 − p) ( 16 (p+ 2)) 1 0 ]; p∈P; (16)

where A∈R3×3, b∈R3×1 are in the controllable canonical form and A is stable with characteristic polynomial
s3 + a3s2 + a2s+ a1. The nonlinear term p(p+2), which propagated from the original parameterization of �p
to (16), prevents the use of conventional adaptive control techniques. However, supervisory control has no
di@culties in dealing with this example. As in most linear problems, we can use quadratic monitoring signals

p, p∈P with an exponential forgetting factor, namely,


p(t) =
∫ t

o
e−2#(t−&)‖ep(&)‖2 d&; #¿ 0: (17)
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Straightforward calculations show that these signals can be realized as


p(t) = w5(t)p4 + w4(t)p3 + w3(t)p2 + w2(t)p+ w1(t);

where the wi are generated by appropriate diJerential equations. Since for each 7xed time t, 
p is a polynomial
in p, the value of p that minimizes 
p(t) is either a real root of @
p=@p(t) or one of the two boundary
points of P, so the minimization is straightforward. The use of the negative exponential in (17) provides a
forgetting factor, which is desirable for processes whose unknown parameters drift slowly.

A reader familiar with adaptive control would probably argue that reparameterization can be used to cir-
cumvent the di@culty in this example. However, there is a strong reason against doing this, as we explain
below.

4.2. Loss of stabilizability

In the above discussion, we were concerned with the restrictions imposed on the classes of admissible
process models by the estimation procedure. Of course, even if the estimation issues are resolved, additional
conditions are needed to ensure that control objectives can be met. To apply the certainty equivalence stabi-
lization theorem from [32], one must have a stabilizing controller for each estimated nominal model. Although
it may seem quite reasonable to require that every candidate nominal model be stabilizable, this requirement
is often at odds with the linearity and convexity properties mentioned earlier. In fact, to ensure the proper-
ties needed for continuous tuning, one often needs to “overparameterize” the candidate nominal models, thus
introducing loss of stabilizability. This can be avoided with supervisory control.
To illustrate this point, let us revisit Example 5. One could obtain a linear parameterization of (15) by

introducing a 7ctitious parameter, say q := p2, and then considering a new two-dimensional convex parameter
set WP. However, the smallest such set turns out to be WP={(p; q) : p26 q6 1; p∈P}, and for (p; q)=(0; 1=2)
the corresponding transfer function

s− 1
6 (p+ 2)

s3 + ps2 − 2
9 (q+ 2p)s

has an unstable pole-zero cancellation. It turns out that any other linear reparameterization that utilizes a con-
vex parameter set has similar problems. This is because, as p ranges over P, the three parameter-dependent
coe@cients of the transfer function (15) form a curve in R3 whose convex hull contains points correspond-
ing to unstable pole-zero cancellations [35]. It follows that for this example, every linear reparameteriza-
tion that utilizes a convex parameter set WP will necessarily introduce new transfer functions with unstable
pole-zero cancellations. These correspond to processes not stabilizable by linear output feedback, which pre-
vents the use of the certainty equivalence stabilization theorem. This is known as the loss of stabilizability
problem.
In the context of adaptive control, the above di@culty is usually overcome by introducing additional as-

sumptions on the family of process models or by using techniques such as parameter projection and persistent
excitation (see [19, Section 7.6]). However, with supervisory control one can avoid these measures altogether
by working with families of process models that are nonlinearly parameterized over non-convex sets, instead of
using reparameterizations that may lead to unstable pole-zero cancellations and consequent loss of stabilizabil-
ity. As we explained earlier, logic-based switching in the supervisory control framework provides signi7cant
Lexibility in addressing these issues. It is also important to emphasize that even when a reparameterization
does not introduce unstable pole-zero cancellations, it enlarges the parameter set, thereby introducing “arti7cial
uncertainty” which typically leads to performance degradation.
Another technique that uses switching and logic was proposed in [40,43] for dealing with the loss of

stabilizability problem directly. The key observation is that one can 7nd candidate controllers for which the
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Detectability Property holds, even when not all nominal models are stabilizable. This is because the certainty
equivalence stabilization theorem provides a condition for detectability that is su@cient but not necessary. 8

In [40,43] it is shown how to 7nd candidate controllers that guarantee detectability when the value of the
parameter estimate p̂ corresponds to a nominal model that is not stabilizable. A single controller is in general
not su@cient, and therefore cyclic switching among several controllers is needed. In the above example
featuring a reparameterization, a switching cycle would be executed every time the parameter estimate hits
the singular value (0; 12 ). As explained in [34], the same technique can also be applied in the supervisory
control context.

5. Conclusions

In this paper we described the basic features of the supervisory control framework for uncertain systems,
which relies on logic-based switching among a family of candidate controllers. We demonstrated that it allows
one to overcome fundamental di@culties associated with more standard continuously tuned adaptive control
algorithms. Speci7cally, these di@culties include a limited ability to use oJ-the-shelf, non-adaptive designs
and severe constraints imposed on the classes of admissible process models.
Adding to all the bene7ts of supervisory control discussed above, it is actually our belief that one of the

most important ones is the high performance of this type of adaptation algorithms in terms of both transient
and steady-state behavior. A precise comparison of the performance of supervisory and traditional adaptive
control methods is beyond the scope of this paper. However, in view of the quantitative results obtained
so far (see especially [37]), the remarkably good performance of supervisory control in simulations and
applications (see the examples given in this paper), and recent advances in the theory of hybrid systems,
a quantitative performance-based theory of adaptive control based on switching and logic may be within
reach.
It should be mentioned that, when state-sharing is not possible, supervisory control can lead to high-

dimensional controllers (as in Example 4). In these cases, one should certainly think twice before using
supervisory control and only take this route if a simpler robust controller with acceptable performance cannot
be found. However, it is important to note that when state-sharing fails, adaptation based on continuous
tuning is generally not applicable because the unknown parameters enter the nominal model in a nonlinear
fashion.
Finally, it should be added that many problems remain open in this area. These include: establishing

tight bounds on the closed-loop performance of supervised systems; proving stability for the supervision of
nonlinear systems with in7nite parametric uncertainty and/or unmodeled dynamics; developing methodologies
for “gridding” the process and/or controller parameter spaces when state-sharing is not possible; avoiding
switching to candidate controllers that may not stabilize the process (even if these controllers are only kept
in the loop for a short period of time); etc. Promising results on the last two topics can be found in [1,2],
respectively.
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