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Nonlinear Observers Robust to Measurement
Disturbances in an ISS Sense

Hyungbo Shim, Senior Member, IEEE, and Daniel Liberzon, Fellow, IEEE

Abstract—This paper formulates and studies the concept of
quasi-Disturbance-to-Error Stability (qDES) which characterizes
robustness of a nonlinear observer to an output measurement
disturbance. In essence, an observer is qDES if its error dynamics
are input-to-state stable (ISS) with respect to the disturbance
as long as the plant’s input and state remain bounded. We de-
velop Lyapunov-based sufficient conditions for checking the DES
property for both full-order and reduced-order observers. We use
these conditions to show that several well-known observer designs
yield qDES observers, while some others do not. Our results also
enable the design of novel qDES observers, as we demonstrate
with examples. When combined with a state feedback law robust
to state estimation errors in the ISS sense, a qDES observer can be
used to achieve output feedback control design with robustness to
measurement disturbances. As an application of this idea, we treat
a problem of stabilization by quantized output feedback.

Index Terms—Input-to-state stability, measurement distur-
bance, nonlinear observer, quantization, robustness.

I. INTRODUCTION

ONLINEAR control theory has long been trying to cope

with situations where state measurements available for
feedback are incomplete or imprecise. By “incomplete mea-
surements” we mean measured outputs of lower dimension
than the state; by “imprecise,” state measurements corrupted by
disturbances. A common way to deal with incomplete measure-
ments is to build an observer that generates an asymptotically
convergent estimate of the full state. Many different nonlinear
observer designs are available in the literature, and several of
them will be discussed later in the paper. When the full state
is measured but is subject to a measurement disturbance, one
tries to design a feedback law that possesses some kind of
robustness to the disturbance. It has become standard practice
in the nonlinear control literature to take input-to-state stability
(1SS), introduced by Sontag in [29], as a benchmark robustness
notion. Design of control laws guaranteeing ISS with respect
to measurement disturbances is a difficult problem that has re-
ceived considerable attention; again, we postpone an overview
of the relevant results until later (see Remark 4 in Section VI-A).
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The above discussion naturally leads to the following impor-
tant question: how should one proceed in the face of both of the
indicated challenges, i.e., when only output measurements are
available and, moreover, they are affected by a measurement
disturbance? As noted in [20], one can envision a solution in
the form of a robust state feedback controller and a robust
observer, where the observer’s robustness is interpreted as ISS
from the output measurement disturbance to the state estimation
error while the controller’s robustness is understood as ISS with
respect to the state estimation error. Since a cascade connection
of two ISS systems is ISS, the resulting closed-loop system
will then be ISS with respect to the measurement disturbance.
While some results on designing ISS controllers are available as
already mentioned, surprisingly little is known about the second
component of the approach just described, namely, constructing
observers with robustness to measurement disturbances in an
ISS sense. This is the gap that the present work is intended
to fill. Our goals are actually three-fold: first, to formulate a
suitable ISS-type robustness property of the observer; second,
to derive conditions for checking this robustness property; and
third, to identify observer designs (both known and new ones)
satisfying these conditions.

Before we can describe in more detail our approach and
results and their relationships to the existing nonlinear observer
literature, we need to fix some basic terminology and notation.
We consider a general nonlinear system (“plant”)

&= f(z,u), y=h(zd )
where x € R" is the plant state, u € U C R* is the control
input taking values in a set ¢/ of admissible input vectors,
y € RP? is the measured output, and d € RY is the measurement
disturbance. We call d an additive measurement disturbance if
h(z,d) = ho(x) + d for some function hg. It is assumed that f
is locally Lipschitz and h is continuous, and the two signals
u(+) and d(-) are assumed to be locally essentially bounded
throughout the paper. A state observer for the plant (1) is a pair
consisting of a dynamical system and a static map

&= H(zy) ()
where z € R™ is the observer state, € R"™ is the estimate of
the plant state, I’ is locally Lipschitz, and H is continuous.

The quality of state estimation is measured in terms of the state
estimation error e defined as

e:=0—x=H(z h(x,d) —x. 3)
Moreover, we call the observer (2) a full-order observer when

H(z,y) = z (so that & = z, and thus, m = n), and a reduced-
order observer when m < n.!

z=F(z,9,u),

'In this paper, we do not study observers with m = n but H(z,y) # z (such
observers are rarely studied in the literature) or observers with m > n.
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Unlike in the linear case, a nonlinear observer that makes
the state estimation error e converge to 0 when d = 0 does not
automatically guarantee a graceful degradation of the quality of
state estimation for nonzero d. An example has already been
given in [27, Sec. 5], where a nonlinear full-order observer for
a stable linear plant provides global asymptotic convergence
of e to 0 when d =0, yet e can become unbounded in the
presence of an arbitrarily small additive measurement distur-
bance. Therefore, robustness of the observer to measurement
disturbances needs to be explicitly formulated and studied. The
first obvious candidate for such a robustness property is ISS
from d to e; for example, for a full-order observer this ISS
property takes the form

|2(t) — ()] < B(12(0) —2(0)],6) VY (ldllo,g) =0

“4)

with a class KL function?3 and a class K function -y, where | - |
is any vector norm, ||d|[(o,¢ := ess.supg,;|d(s)|, and V is the
binary operator taking the maximum, i.e., a V b := max{a, b}.}
Since in this context d is the disturbance and e = z — x is the
estimation error, it seems more appropriate to rename the above
property of ISS from d to e as disturbance-to-error stability
(DES), which is what we will do from now on.

While DES is certainly a desirable feature for an observer,
unfortunately it is quite a strong condition; this will be illus-
trated in Examples 1 and 2 in the next section. Also, the DES
property is not invariant under coordinate transformations (see
Section II-A). A necessary condition for the existence of a full-
order DES observer, under additive measurement disturbances,
has already been presented by Sontag and Wang [31, Prop. 23]:
it is the incremental output-to-state stability (denoted by iOSS
in [31]) of the plant (1). In addition, a sufficient condition
for the existence of a full-order DES observer was given in
[3, Prop. 6.1], which is that for some output injection
term L(-,-,-) with £(-,-,0) =0 the system & = f(z,u)+
L(z,u,y* — h(x))is incrementally input-to-state stable for any
u(+) with y* being regarded as the input. In this case, a full-order
DES observer is given simply by Z = f(z,u) + L(z,u,y —
h(z)) and & = z. The necessary condition that the plant be
incrementally OSS is already rather strong.* Design of DES
observers has been studied only for limited cases; for example,
a globally Lipschitz nonlinear system admits a full-order DES
observer if a certain LMI is satisfied [1].

In an effort to identify a robustness property that is more
reasonable than DES, in this paper we propose to work with
the relaxed notion of a quasi-DES (qDES, in short) observer;
its earlier variation was introduced in [28] under the name
“quasi-ISS observer.” The relaxation consists in the fact that
an ISS bound is imposed only as long as both the control input

2A function o : R>g — R is of class K if « is continuous, strictly
increasing, and a(0) = 0. If o is also unbounded, it is of class Koo . A function
B:R>p X R>g — Rxq is of class KL if (-, t) is of class K for each fixed
t > 0and §(r, t) is decreasing to zero as t — oo for each fixed » > 0.

3Alternatively, the sum could be used instead of the maximum to arrive at
an equivalent property, but the formulation in terms of the maximum is more
convenient in this paper.

4For example, the system 1 = 0, 2 = z123, £3 = —z12T2, and y = 3
on {(z1,x2,x3) : 1 > 0} is not OSS (and therefore, not i0SS either) but
is observable and admits a convergent state observer. Another example is
# = u and y = 22 which is not iOSS while it is OSS, and is instantaneously
observable when u # 0.

and the plant state remain bounded. We will present a formal
definition of qDES observer in Section II, followed by a few
motivating examples and a discussion of its advantage over
the DES observer—the coordinate invariant property. It is not
uncommon to utilize boundedness of the plant’s state and input
for observer synthesis and analysis. For example, a nonlinear
observer was designed in [25] based on a priori knowledge of
bounds for the plant’s state and input. In [27], robustness of a
specific observer to measurement disturbances in the ISS sense
for a special class of systems was verified whenever the plant’s
input and output are bounded a posteriori (i.e., the bounds were
not used in the design of the observer). Following a similar line
of thinking, a construction of a reduced-order qDES observer
was presented in [28], and it was later extended to quasi-ISDS
(input-to-state dynamical stability) and to large-scale systems
in [6]. Full-order gDES observers, on the other hand, remain to
be investigated.

In this paper we develop a general framework for studying
qDES observers, which encompasses both the full-order and
the reduced-order case. In Section III we present a character-
ization of qDES observers in terms of Lyapunov functions.
It is inspired in part by the notion of “state-independent IOS
(input-to-output stability)” and its variations studied in [32],
[33], owing to the fact that the measurement disturbance d
and the state estimation error e can be viewed as the input
and the output, respectively, of the overall system with state
(x,z). At the same time, our analysis incorporates several
novel elements; most notably, the proposed characterization
uses a lim sup-type condition which turns out to be convenient
for gDES observer validation compared with more usual ISS
Lyapunov differential inequalities. (We used a similar idea
in [21] to obtain a new equivalent characterization of ISS
in terms of what we called “asymptotic ratio ISS Lyapunov
functions.”) The resulting qDES observer framework also rep-
resents a significant departure from the previously cited
results on robust observers. All these aspects of our formula-
tion will be further discussed and supported with examples in
Section III.

Since the qDES property is significantly less restrictive
than the DES property, it is not surprising that many known
nonlinear observer designs from the literature actually yield
gDES observers. In Section IV we derive, as corollaries of our
main framework, some readily verifiable sufficient conditions
for qDES in the case of full-order observers, and then use
these conditions to demonstrate that three well-known observer
designs—the linearized error dynamics observer from [18], the
high-gain observer from [13], and the circle criterion observer
from [4]—indeed have the qDES property. Of course, some of
the other known observers are not qDES, as we illustrate with a
reduced-order observer example in Section V. We then proceed
to show how the construction of a reduced-order qDES observer
from [28] is recovered within the proposed general framework.

Returning to our original motivation of using a robust ob-
server in conjunction with an ISS controller to achieve robust-
ness to output measurement disturbances, we expect that there
will be a price to pay for the fact that the observer is just
gDES and not DES. Indeed, additional analysis and possibly
extra assumptions will be needed to verify that the control
input and the plant state remain bounded, as otherwise the
qDES property is not useful. In Section VI, we consider the
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quantized output feedback stabilization problem which served
as the initial impetus for discussing ISS observers in [20]. In
this problem, the output quantization error plays the role of
the measurement disturbance, and it is bounded as long as the
plant’s output is bounded. This provides a very natural setting
for using an ISS controller together with a gDES observer. If
the plant’s initial condition lies in a suitable compact set and
if we have sufficiently many quantization regions so that the
quantization error is small enough, we are able to show that
the plant’s state and input remain bounded and the system
is practically stabilized. After this application example, we
conclude the paper in Section VII.

II. QUASI-DES OBSERVER

To define the notion of quasi-DES observer, we introduce the

notation

€0 = €lg=0 = H (2, h(z,0)) — z.
For full-order observers we have ey =e =2z — x since
H(z,h(z,d)) = z, but for reduced-order observers typically
eg # e.

Definition 1 (Quasi-DES Observer): We say that the system
(2) is a quasi-Disturbance-to-Error Stable (¢DES) observer for
the plant (1) if, for each K > 0, there exist a class XL function
Bk and a class KC function yx such that for almost all ¢ > 0
we have

le(t)] < Bx (lea(0)],1) V vk (lldllo.4) &)

whenever |[[ulljp,j < K and |[z[[jo,g < K, in which || - [0
is the essential supremum norm over [0,¢] (as defined right
after (4)).

It is noted that the first argument of the function Sx on
the right-hand side of (5) is the initial value not of e but of
the disturbance-free error variable eq. This is because, if e(0)
were used in S instead of eg(0), then there might exist a
particular disturbance d such that d(t) = 0 for¢ > 0 and d(0) is
non-zero such that e(0) = H(z(0), h(x(0),d(0))) — «(0) =0,
making the right-hand side of (5) zero so that we must have
e(t) = 0Vt > 0, which means that the condition would not be
realistic. Similarly, we only ask the inequality (5) to hold for
almost all ¢ because the error variable e(¢) at a particular time
t may become arbitrarily large with some large value of d(t),
even though the essential supremum ||d||jo 4 is small, and the
inequality (5) would be violated at such times.

As discussed in the Introduction, the qDES observer property
means that, as long as the plant’s input v and state x remain
bounded, the state estimation error e is robust to the disturbance
d in the ISS sense [29]. The functions [Sx and vk in (5)
quantify the convergence rate and the ISS gain, respectively.
If these functions can be chosen to be independent of K,
then the observer becomes a DES observer, without the term
“quasi,” and a DES observer is automatically a qDES observer.
If the measurement disturbance is absent (i.e., d = 0), the DES
observer becomes a so-called globally convergent observer
meaning that lim; ,. e(¢) =0 for any initial conditions as
long as the solution exists for all forward time. The qDES
observer becomes a globally convergent observer with bounded
input/state when d = 0 because the error convergence is guar-
anteed with bounded inputs and states while the initial error can
be arbitrarily large.

It should be noted that the boundedness of the plant state x(t)
and the input u(¢) is not assumed a priori, nor do their bounds
affect the design process of the observer. Definition 1 just says
that the property (5) holds whenever these bounds are fulfilled.
The following two examples are intended to motivate why for
nonlinear systems it is natural that the boundedness of x and u
becomes of importance in the discussion of robustness.

Example 1: The gain from the measurement disturbance to
the estimation error may be unbounded with respect to ||u|jo
and [|z(|p¢). To see this, consider the plant & = —x + z*u
with y = 2 + d. Obviously, 2 = —z + y?u, & = z is a globally
convergent observer when d = 0. When d # 0, the error dy-
namics become ¢ = —e + 2zud + ud® with e = z — x = eq.
This system is ISS from d to e when z(t) and u(t) are bounded,
and the ISS gain is an unbounded function of ||ul[f,, and
llz||0,5- Therefore, this observer is a qDES observer, but not
a DES observer. ///

Example 2: This example illustrates that boundedness of
u(t) required for the property (5) may be needed to guarantee a
uniform convergence rate for each K. Consider the plant

. u’

for which an observer may be given as £ = z and
: u’
z= (1+u2 —1)z—|—u.

Hence the error dynamics (with e = z — x = eg) becomes

U2
= (—— —1])e
¢ (1+u2 )

It is noted that its convergence rate depends on the size of u(t),
and the rate can become arbitrarily small with large u(t). The
convergence becomes uniform with the boundedness of u(t),
and thus, it is a qDES observer but not a DES observer (there is
no (3 function that works for all K). ///

The following example presents a globally convergent full-
order observer that is not gDES.

Example 3: Consider a plant given by

1 = —x1 + 2, y1 =21 +dy
T = X173, Y2 = T2 +do
I3 = —x1T2 + U, u = sint. (6)

It is seen that if =1 is constant, then the (x2, x3)-dynamics is a
marginally stable linear system (in fact, a harmonic oscillator)
with a periodic input. The solution x(t), as well as the input
u(t), are in fact bounded because x1(t) — 2 and the bounded
input sin ¢ does not cause resonance.’

Now, an observer of the form

= —zn1+2— (21— 1) (7a)
Zy = 2123 — y1(22 — y2) (7b)
Z3 = —z129 +u — y1(22 — y2) (7¢)

with = z is a globally convergent observer if d = 0. That is,
with e; := z; — x;, we obtain the error dynamics

él = —261
€| | wies —xiea+eq - (e3+ x3)
é3 —r1eg — w12 — ey - (e2 + x2)

es3 + I3

o -1 1 €9
)

SFor detailed analysis, see the Appendix.
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whose solution converges to zero (because z1(t) — 2 and
e1(t) — 0 as t — oo, and (8) is a stable linear system when
z1 =2and e; =0).

Finally, suppose that d;(t) = —z1(¢) and dx(t) = 0, which
are bounded, and that z1(0) = 1, for simplicity. (In fact, we
have the same result with any z;(0) and with any bounded d;
and do such that lim; ., d;(t) = —2 and lim;_,, d2(t) = 0.)
Then, from (7), it is seen that z1 (¢) = 1, and that

732 o 0 1 z9 0 B
HEE H R
since y1(t) = x1(t) + d1(t) = 0. Note that this system has a
resonance at the frequency of 1 rad/sec and has the input of
frequency 1 rad/sec. It is a standard exercise to check that

[(z2(t), z5(t))| — 00 as t — oo, which illustrates that (7) is not a
gDES observer since |u(t)], |z(t)], and |d(t)| are bounded. ///

€))

A. Coordinate Invariance Property

Another benefit of the qDES observer over the DES observer
is that the qDES property is coordinate-invariant. As a matter
of fact, even if one obtains a DES observer in some coor-
dinates, it may not be a DES observer in other coordinates.
This phenomenon is in fact inherited from the deficiency that
global error convergence may not be preserved when x(t) is
unbounded. Consider a global diffeomorphism & : R” — R"
which transforms the plant (1) into different coordinates, { =
®(x). Then, even though one has an observer whose estimate
C(t) converges to ((t) as t — oo, it is not guaranteed that
&(t) = @ ({(t)) converges to x(t), as seen in the following
example.

Example 4: Consider a C! increasing function ¢ : R — R
defined by

2s, |s
s2 41, S
—-s2—1, s

<1
1
—1

¢(s) =

>
<

and consider a nonlinear system whose state is z € R2. If
this system is converted by the diffeomorphism ((1,¢2) =
(¢_1($1), 3;‘2) into

G =2¢ + G,
(o= —Co

y==

then a choice of an observer might be

21:2z1+22—3(21—y), Zg = —23, C:Z

because its error dynamics in these coordinates are globally
exponentially stable. With the initial conditions {(0) = (—1,0)
and z(0) = (0, 0), the solutions are given by

Cl (t) - 7€2t7 él (t) = 7621‘/ + eita

G2(t) =0, G(t) =0

so that it is seen that the estimation errors (; (t) — (1 (t) = e,

C2(t) — C2(t) = 0 converge to zero. However, in the original

coordinates, it is seen that, for ¢ large enough to have ¢ () < —1
(as well as (1 (t) = —e? < —1)

(1) ~21(t) = 0 (L) = B (G(1) = 26! — e

so the observer is not convergent. ///

Example 4 alerts us that the DES property is coordinate-
dependent as well. On the other hand, by virtue of restricting
the state () to be bounded, the qDES property (5) is invariant
with respect to coordinate changes.

Proposition 1: The gDES property (5) is coordinate-
invariant. A

Proof: Let { = ®(x) and ¢ = ®(z), where ® is a diffeo-

morphism on R™. Let L, be a Lipschitz constant of ® on the
ball of radius r around the origin, which is non-decreasing as r
increases without loss of generality. Then, the class K function
pi (1) := Lk 4, - 7 satisfies |®(2) — ®(z)| < pr (|2 — z|) as
long as |z| < K. Similarly, consider a class K function g (r)
such that |[®1({) — & 1(¢)| < qx (|¢ — ¢|) under the condi-
tion that |z| < K (and thus, |[¢| = |®(x)| < K with some K).
Then, assuming that (5) holds in the (-coordinates, it is seen
that, for almost all ¢ > 0,

{(0) =0 = C(O)].£) Ve (Il ))
£(0)]agoy=o0 — C(0)| , ¢ ) Var (v ([ldll0,1))

<ax (51{ (PK <|§3(0)\d(0):0 - x(())\) it )
Vax (vx (Idllo,9))

which implies the property (5) for & and x. Similarly, it can be
shown from (5) in the z-coordinates that

{(t) - C(t)] < pr (ﬂK (qK (\é(o>‘d(o)_0 — g(o>|) t))
Vpr (v (Idlljoy)) foraa.t>0

which implies (5) in the (-coordinates. |

III. CHARACTERIZATION OF QDES OBSERVERS

In this section, a characterization of qDES observers in terms
of a Lyapunov-type function is given.

Theorem 1: The system (2) is a qDES observer for the plant
(1) if there exists a C! function V : R™ x R™ — R such that
the following hypotheses hold:

H1. V satisfies

ay (|H (z,h(z,0)) — z[)
< Vi(z2) < A(|a]) az (|H (2, h(x,0)) — )

Vz,x

for some class K, functions «; and « and positive non-
decreasing function A : R — R+ .
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H2. The time derivative V (z,xz,u,d) := (0V/dz)(z,z)F(z,
Wz, d),u) + (0V/0x)(z,z) f(z,u) of V along solutions
of (1) and (2) satisfies

V(Z7x,u7d) < _W(vavua d) +g(z,x,u,d)

where W :R™ xR" xU xR? =+ R>p and g:R™ x
R"™ xU xR? — R are continuous functions with the
properties that

Vz,x,u,d

W(Z,I,U,d) ZO&g (|H (Za h(I,O)) - I| ) |‘T| \ |U|) VZ,I,U,d
(10)

for some class KL function a3,

9(z,2,u,0) <0 (11)

and, for each K > 0, there exists a continuous function
Ok : Roo X R>g — R non-decreasing in the second ar-
gument such that

Vz,x,u

g(Z’ x? u? d)

W (z, 2, u,d) <Ok (|H (z,h(2,0)) — x|, |d|)

12)

forall d, x| < K, |u| < K, z with |H (z, h(2,0)) — x| #
0, and

limsup 0x(&,r) <1 Vr > 0. (13)

£—o0

H3. The set {z : |H(z, h(z,0)) — x| = £} is compact® for each
¢ >0andz.

H4. There exists a continuous function p : R” xR?—R-( such
that p(z,0) =0 and |H(z,h(x,d)) — H(z, h(z,0))| <
p(x,d) for all z, x, and d.

Remark 1: The hypothesis H1 basically says that V' is upper-
and lower-bounded in terms of eq (the upper bound also has the
factor A(]z|)). H2 is our main hypothesis, which restricts the
evolution of V' along solutions. Note that the condition (10)
is weaker than W (z,z,u,d) > o5(|H (2, h(z,0)) — z|) with
a class K function a5 (since a class L function a3 always
exists with such a53). H3 and H4 are essentially mild technical
conditions characterizing the dependence of the map H on
z. Note that H3 and H4 trivially hold if (0H)/(0z) exists
and is a constant matrix of full column rank, for example, if
H(z,y) = z (the case of full-order observer), or H(z,y) =

[y, (z—1(y))7]" where I is a certain function of y (the case
of reduced-order observer in Section V).

Proof: The goal is to construct a class KL function Sx
and a class /C function yx for each K > 0 such that (5) holds
as long as |lul|jo,q < K and [|x||jp,y) < K. For this, let us first
pick an arbitrary K > 0, and let

O (r) :=limsup Ok (&, 7). (14)

£—00

Then, Ok (r) <1 for all » >0 and K > 0 from (13), and
Ok (+) is non-decreasing because so is O (&, -) for each £ and
K. Define

(:)K(k) = 1 + %GK(]C)7

keN
5 S

SFor cases when this set is empty, we follow the convention that an empty
set is compact.

where N is the set of natural numbers. Then, {©  (k)} is a non-
decreasing sequence such that

Ok(r) < Og(k) <1, E—1<r<k (15)
because, for r € (k — 1,k], O (r) < (1/2) + (1/2)0k(r) <
(1/2) + (1/2)0k (k) = Ok (k) < 1.

Let a sequence {mx (k), k € N} be such that
Or (&, k) < Ok (k)

E>mi(k) = (16)

whose existence follows from (14) and (15) with » = k. By the
fact that 05 (&, -) is non-decreasing, we have

E>mg (k) = 0k (&,r)<Ok(k), k—1<r<k, keN. (17)

By H2, this in turn implies that, for all z, =, u, d, and k € N
suchthat [z| < K, |u| < K, k—1<|d| <k,

|H (z,h(z,0)) — | > mg(k) =

g(Z,J),’U/,d) A
- L K
Wiauwd = OKE) =

V< - (1 -0k (k) W(z,z,u,d)
< —(1—(:)K(k))a3(|H(z,h(ac,()))—w| S|zl Vo |u]). (18)

On the other hand, we note that, since g is continuous and
g(z,2,u,0) <0 for any z, x, and u, there exists a continuous
function 6*(z, x, u) such that, for each z, z, and u,

g(z,x,u,(S) < (:)K(l)afS (|H (Z, h($70)) - l‘| ) |$| N |u|)
Vo] < 6% (2,2, u)

and that 6"(z,z,u) >0 for all z, x, and w such that
|H (z,h(z,0)) — | > 0. By H3, the set {z : |H(z, h(x,0)) —
x| =&} is compact (or possibly empty) for each & >0
and z. Let
n(§) :

= min min 0% (z,x,u)
|2| <K, |u|<K {z:|H(z,h(2,0))—x|=¢}

which is defined for £ such that the set over which the minimum
is being taken is nonempty. Using the continuity of h and
H, it is easy to show that the function n}- is defined on a
subinterval of [0,00) and is lower semi-continuous.” More-
over, we have nj(£) > 0 for all £ > 0 in the domain of nj.
Thus there exists a class K function ng : [0,mg(1)] = Rsg
such that nx (§) < n’ (€) wherever both functions are defined,
and ng(mg (1)) < 1. Then, by construction, g(z,z,u,d) <
Ok (Vas(|H(z, h(z,0)) — x|, |z| V |u]) for all z, z, u, and d
such that |z| < K, |u| < K, and |d| < ng(|H(z,h(x,0)) —
z|) < ng(mg(1)). This implies that

mg(1) > |H (2, h(2,0)) — 2| > ni () =
V< —(1—(:);((1)) as (|H (z,h(x,0))—z|, || V|ul). (19)

"Lower semi-continuity means that n’% () < liminf, _,¢ n’% (n) for all £.
To see why this property holds, note that ny. (&) cannot exceed the limit of the
values . (n;) for any sequence {n; } — £ because the limit of (a subsequence
of) the sequence of points (x;, u;, 2;) at which the minimum defining n7, (n;)
is achieved is included in the set over which the minimum defining n%. (€) is
being taken.
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Now, pick a class [C, function M such that

nd(r), 0<r<ng(mg(1))
MK(T) > mK(l), ng (mK(l)) <r<I1 (20)
mg(k), k—1<r<k k>2

and pick a continuous non-increasing function ¢ : R>o —
R>( such that

0<ér(r)<1—0xk), k-l<r<k keN ()
and ¢ (0) = lim,_,o+ ¢ (r). Then, from (18)—(21)
|H (2, h(2,0)) — 2| = Mg (ld]) =

V < —¢k (|d]) as (|H (2, h(z,0)) — 2|, 2| V [u])  (22)

with |z| < K and |u| < K. Since

V(z,2) > My (|d]) := A(K)az (M (|d]))
= A(fz]) ez (|H (2, h(z,0)) = 2]) > MK)az (M (|d]))
= [H(z,h(z,0)) - z[ > M (|d])

by H1, and since ¢ is non-increasing, a2 and M (and hence
also M) are of class K, and a3 is of class KL, we have from
(22) using H1 again that

V(z,x) > Mg (ld) =
V(Z,x) < —éx (Mf(l (V(Z,x))) Qs <a21 (‘i\(&;?) ,K)
= —ag (V(Za'r))

as long as |z| < K and |u| < K, where ax is continuous
positive definite. From this and the standard arguments as in,
e.g., [29], it follows that there exists a class O£ function B
such that

V (2(t), z(t)) < Br (V (2(0),2(0)) ,£) V M ([|d][j0,4)
which in turn implies, by H1, that

lea(t)] < a7 (B (A(K)az (|eo(0)]) 1))
Vot (Mg (ldlo,g)) -

Finally, using H4 and taking a class A function pg such that

p(,d)

(23)

0 >
Pr(r)z  me,

we have for almost all ¢ > 0 that
le(t)] < [H (2(1), h (x(t),d(t)))
—H (2(t), h (z(2),0))| + [eo(t)]
<px (lldlljo,q) + leo®)| < 20k (lldlljo4) V 2]eo(t)] .
(24)

Therefore, after defining
Bk (r,t) :2a1’1 (BK ()\(K)ag(r),t))
Vi (r) =2pk (r) V 2a; " (Mg (r))

the inequality (5) follows from (23) and (24). |

Example 5: In order to illustrate Theorem 1, a (reduced-
order) gDES observer is presented in this example. Consider
a plant given by

T, = —2x1 — 229, y:$1+d
. L2
== ) 25
2= +u (25)
For this plant, consider an observer given by
—z+tan"1(y) — 2
1+ y?
1=y
&y =2z —tan"!(y). (26)

The last equation implies that H(z, h(x,d)) = (z1 +d,z —
tan~!(z1 + d)), which satisfies H3 and H4 in Theorem 1. This
construction is inspired by [26] as follows. With a new variable
(¢ := x9 + tan"!(z1), we have the dynamics

—C +tant(z1)—27;
1+ 22

x —2x1—2x
_ 22+u+ 1 227
1+ 27 1+ 27

¢

(27
which are incrementally GAS [3] for any 21 and wu. There-
fore, a copy of the system works as a globally convergent
observer with bounded input/state when d = 0, which is (26).

Indeed, with € := z — (, the error dynamics in this coordinate is
given by

—(e+¢) +tan Yz +d) — 2(xy +d)
14+ (21 +d)?

—C +tan~t (1) — 221
14 a3 ’

When d = 0, it becomes ¢ = —¢/(1 + %), which shows that
€(t) = 0if [|21] (¢, is bounded.
Let the function V' of Theorem 1 be

Viz,z) = % (H (z,h(x,0)) — x)T (H (z,h(x,0)) — x)

1 1
=5 ((xl —21)* + (2 —tan ' (z) — x2)2) = 562
which satisfies HI of Theorem 1 with A\ = 1. (The function V'
is in fact (1/2)e3 because eq = H(z,h(x,0)) —x =[0,¢]".)
This in turn yields, by adding and subtracting a term,

v —e2 n —e(e+¢) +etant(z; +d) — 2¢(z1 + d)
o 14a? 1+ (1 +d)?
e+ QO+ etan~1(x1) — 2ex;
1+ a3

This suggests to take I/ and a3 as

€2 (z — tan~!(zy) — x2)2
W(z,x,u,d)zlerQ: T2
1 1
2
s
as(s,r) :m
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since /(1 +123) > as(|H(z, h(z,0)) -z, [2] V [u]) = &/
(14 (|| V |u|)?). In addition, the term inside the square brack-
ets above is taken as the function g(z,z,u,d) of Theorem 1,
which satisfies ¢(z,2,u,0) =0 of (11). We note that, with
g = ZI9 + tanfl(ozl),

g(z7 x’ u’ d)
W(z, z,u,d)
1+ 22 [—€? —e( +etan L (xy +d) — 2exy — 2ed
62 ]. =+ ((El + d)2
—e? —e( + etan~t(z1) — 2exq
1+ 2%
1+ x?

b
T @ Lt (| + 1)’

N 14 (|m2+tan’1(x1)|—|—|tan’1(m1+d)| + 2|z, | + 2|d|)

1
¢ el (2| + 2[1])
1+ 22 1422

2

S(l— 14 2>+|332|+2|931|

1+ (1| + |d]) le]
N (1+23)(|z2+tan " (z1)| +tan w1+ d)| 42|z H2|d])

le]
1 K +2K

< (1 - 2) A

L+ (K +d)) €]

N (14 K?) (|K + tan Y (K)| 4+ 7/2 + 2K + 2|d))

le]

0 ([l dl)

and this function 0 is non-decreasing in |d| and satisfies (13),
so that H2 holds. Therefore, the observer (26) is a (reduced-
order) qDES observer. ///

In the derivations of inequalities in Example 5, the upper
bounds were not tight. Thanks to the lim sup operation in (13),
we do not need these bounds to be very accurate as long as
the resulting function 0 is smaller than 1 for large |¢| and is
non-decreasing in |d|. The next example also emphasizes the
importance of the non-decreasing property of 6 with respect
to its second argument |d| in H2 of Theorem 1.

Example 6: Let us consider a full-order observer so that
H(z,y)=zand e=z—1x =e. With sat(s) := sign(s) min{]s|,
1}, suppose that V= Wiz, z,u,d)+9(z,x,u,d) with g(z, x,
u,d) =sat(|d(z—z)|)e (==1-D (3 — )2 and W (2, z,u,d) =
(2 — x)? so that

g(z7 x? u’ d)

Waa e ~ stldleole 0D = v (Jegl,|d).

(28)

The function ¥k is continuous and nonnegative, and satisfies
the condition (13) since

limsup vx(&,r)=0<1

£—00

Yr>0, K >0

but is not non-decreasing in its second argument. In fact, ¥
takes the value of 1 on the curve {(d, eg) : |d||eg| = 1} in the
(d, eo)-plane, and is less than 1 away from this curve, and
therefore, there is no function O > ¥ that satisfies (13) and
is non-decreasing in the second argument. Note that it is not
possible to find a class K function Mg such that
leol = Mk (ld]) = V<0

as required in the proof of Theorem 1. Indeed, for an arbitrary
class C function M, let d* > 0 be the solution to My (d*) =
1/d* (which always exists). Then, for any d with 0 < |d| < d*,
there is an eq such that |eg] > Mk (|d|) and |d||eg| = 1. With
such eg and d, we have g/W = 1in (28), and thus V = 0. ///

IV. FULL-ORDER gDES OBSERVERS

Now we use Theorem 1 to derive more easily verifiable
sufficient conditions that guarantee qDES property in the case
of full-order observers. If f in (1) and F' in (2) are continuously
differentiable, then a globally convergent observer can always
be written as

2=F(z,y,u) = f(z,u) + L(z,y,u), T=H(z,y) ==z

(29)

where £ : R" x R x Y — R™ is C! and L(z,y,u) becomes
the zero vector whenever h(z,0) = y. (See [31, Lemma 21] or
[23] for a proof of this fact.) Then, with d = 0, the problem
of designing a globally convergent full-order observer can be
thought of as a search for a function V' (z, e) (withe = z — x =
eo) and a vector L£(z, h(x,0), u) such that

ay (le]) < V(x,e) < az(le]) (30)
and the time derivative of V along (1) and é = f(e + z,u) —
f(z,u) + L(e+ x,h(x,0),u) satisfies

ov

ov
%(x,e)f(x,u) + %(:Cae) [f(e er,u) - f(x,u)]

ov
+ %(x,e)ﬁ(e—i—x, h(z,0),u) < —as(le])

(3D
for all e, x, and u, where a1 and «vs are class I, functions and
ag is a class K function.

Corollary 1: With a given L for which (31) holds, the system
(29) is a full-order gDES observer for (1) if, for each K > 0,
there is a nonnegative continuous function G’ : R>¢ x R>g —
R that is non-decreasing in its second argument and satisfies

oV
%(m,e)ﬁ (e—l—x,h(x,d),u)
— %—Z(z,e)ﬁ (e + x,h(z,0),u) < Gk (le],|d]) (32)
lim sup M <1 Vr >0 (33)
£—00 043(5)

foralle, d, |z| < K,and |u| < K.
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Proof: With d # 0, the time derivative of V (x, e) is given,
similarly to (31), by

e
Ox

z,e)f(z,u) + a7‘/(33,6) [fle+z,u) —

- fla.w)

+ a—v(m, e)L(e+ x, h(z,d),u).
Oe

By adding and subtracting (9V/9¢)(x,e)L(e + z, h(x,0),u)
on the right-hand side of this formula, and using (31), we can
verify the hypotheses H1-H4 of Theorem 1. Indeed, H3 and
H4 hold since H(z,h(z,0)) =z (see Remark 1) while HI
holds by (30) with e = z — 2 and A = 1. H2 holds with W (z,
z,u,d) = a5(lz — z|), g(z, 2, u, d) = (OV/0e)(x, z — x)L(z,
h(z,d),u) — (0V/0e)(x,z — x)L(z, h(x,0),u) (the left-hand
side of (32)), and O (lel, |d)) = G (lel, [d]) /o5 (e]).
Corollary 2: With a given £ for which (31) holds and h
being C*, the system (29) is a full-order gDES observer for

(1) if the following conditions are satisfied:

1) (0L/0y)(z,y,u) is independent of z.
2) For each K > 0, there is a function ax such that
|(0V/0e)(z,e)| < ak(|e]) forall e and |z| < K, and

ag(§)
DRI a5(6) oY
Proof: Note that
L(z,h(z,d),u) — L(z,h(z,0),u)
1
/g—j z, h(x, sd), )gg(a: sd)ds - d =: ¢(x,u,d)
0

in which ¢ does not depend on z and is continuous. Let

G = . 0)]. 35
K(§7T) aK(g) \m\SK,ﬁi}%,\é\gr |(]5(.T,u, )| ( )
Then, the assumptions of Corollary 1 hold. |

Remark 2: A condition of the type (34), for the special case
when Gk in (32) decomposes into a product of an e-dependent
and an e-independent term as in (35), appeared in [28] (see
Section V as well), and a similar condition was used in the
context of ISS controller design in [30].

We now illustrate that several of the nonlinear observers in
the literature are already qDES observers, even though this
property has not been explored, to the authors’ knowledge.
Thanks to Corollary 1 and Corollary 2, verification of the qDES
observer property becomes quite a simple task as seen in the
following. Note that, since the qDES property is coordinate
invariant, we can verify it in any convenient coordinates.

A. Linearized Error Dynamics

The observer presented in [18] is based on the technique of
“linearized error dynamics.” Here we just illustrate its qDES
property in a particular coordinate system where the plant (1) is
written as

it=Az+ f(Cx,u), y=Czx+d

where (A, C') is a detectable matrix pair. With a matrix L such
that A — LC' is Hurwitz, the observer is given by

which corresponds to (29) with L(z,y,u) = f(y,u) —
f(Cz,u)+ L(y — Cz). Then, with ¢ = z — x, the error dy-
namics can be written as

=(A-LC)e+ Ld+ f(Cx+d,u) — f(Czx,u).

With V = e Pe, where P > (s the solution to P(A — LC) +
(A— LC)"P = —1I, we have

V =—lel* +2e"PLd +2¢" P (f(Cx + d,u) — f(Cz,u)).
Hence, taking a5 (Je]) := |e|? and choosing G as

Gk (lel,[dl) := 2le] || PL]||d]

+ 2le||| P max f(Cx+d,u) — f(Cx,u)| (36)
el 2| <K, Ju|<K,[6]<][d] 1A ) ( )
where || - || denotes the maximum singular value of a matrix,

the inequality (32) is verified by the construction of Gk, and
(33) follows by limsup,_,,, Gk (§,7)/a3(§) = 0 for all r >
0. Then, Corollary 1 ensures the qDES property. Note that the
maximum in (36) need not be actually computed to verify the
assumptions of Corollary 1.

B. High-Gain Observer
The observer from [13] is applicable to the plant given by

1 =22 + fi(z1,u), y=x1+d
By = w3 + fo(w1,20,u)
i'nfl :xn"i_fnfl(xlv"wxnflau)

Tn :fn($=u)

where f; is globally Lipschitz in (z1, . . ., ;) with its Lipschitz
constant independent of v € U. The observer has the form

2 29 fi(z1,u)
p— E + N

Zn 0

=
Il
N

: +L(y—21),
fn(z,u)

where the injection gain L is designed by a nested high-gain
technique (see [13]). In fact, it is shown in [13] that, with e =
z —x and V(e) = e' Pe, where P is a certain positive definite
matrix, we have

V < —ae' Pe, a>0
when there is no disturbance (d = 0). Hence, (31) holds with
a5 (le]) = aAmin(P)|e|?, where Ayin(+) stands for the smallest
eigenvalue of a matrix. And, the injection term L(z,y,u) is
L(y — 1) so that 9L/0y = L which is obviously indepen-
dent of z. Since |0V /0e| = 2||P|||e| =: ax(|e|) satisfies (34),
Corollary 2 verifies the gDES property.
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C. Circle Criterion Observer

The circle criterion observer [4] is designed for a system
given by

= Az + sz%(hzx) + f(Cz,u), y=Cx+d 37

=1

where b; is the i-th column of a matrix B € R"*", h; is the i-th
row of amatrix H € R"™", and ~; : R — R is a non-decreasing
function, 7 = 1, ..., r. Assume that there exist L € R"*P, M €
R™P and A = diag(\1,. .., A.) > 0 such that the system
1n=(A— LC)n— Bu, v=AH+MC)n (38)
with input v and output v is strictly positive real (SPR), or,
equivalently, there exist P > 0, L, M, and A > 0 such that

(A—LC)'P+P(A-LC)< —al, B'P+A(H+MC)=0

with some v > (. Then, the observer given in [4] is

i=Az—L(Cz—y)+Y_ bivi (hiz+mi(Cz —y)) + f(y, )
i=1
(39
in which m; is the i-th row of M.
With V = e’ Pe, we get

V < —ale|*+2¢"PLd + 2¢" P (f(Cx + d,u)— f(Cx,u))

+2¢" P " bi (vi(hi(e+a)+m; (Cle+a)—(Cx + d))
=1

Since Pb; = —\;(h; +m;C)T, the inequality becomes

V < —ale]?+ [2e" PLd+2¢" P (f(Cx+d,u)—f(Cz,u))]

— Z 2)\i€T(hi + miC)T

=1
X (7 ((hi+m;C)e—m;d+h;x) — v;(hix)) .
(40)

Here, we present a technical lemma (whose proof is in the
Appendix).

Lemma 1: For any non-decreasing function (-) and any

given numbers a, b, and ¢
a(y(@=b+c)=v(c)) =0  iffa > [b].

With the lemma, we conclude that the summation in (40) is
nonnegative when d = 0. (This is seen with a = (h; + m;C)e,
b=m;d =0, and ¢ = h;z.) Therefore, let W(z,x,u,d) =
ale|? and take g(z,z,u,d) as the remaining terms in (40).
Then, it is seen that (11) of H2 in Theorem 1 holds (possibly
with strict inequality). On the other hand, since the terms inside
the brackets in (40) are the same as in Section IV-A, let us take
Go,x (lel, |d|) as the function Gk in (36), which dominates
the terms in the brackets. For the terms in the summation of

(40), we claim that there exist nonnegative functions G; k (|d|),

i =1,...,r such that

—2Xie" (hi +miC)" (i ((hi +miC)e — m;d + hix)
—vi(hix)) < Gy (|d])  (41)

foralle, |x| < K, |0| < |d|, and all 7. Indeed, applying Lemma 1
with a = (h; + m;C)e, b =m;0, and ¢ = h;x, it is seen
that the left-hand side of (41) becomes nonpositive if |(h; +
m;C)e| > |m;d|. Hence, with

Gix (|d])

—2\ia (vi(a—b+hix)—vi(hiz)),0

— Imax max
lal<[bI<|m;||d]
le| <K

(41) follows. Finally, let Gg(le|,|d|) := Go k(le],|d]) +
>oi_1 Gi k(|d]). Then (13) follows since

Gk (lel.|d])

e =0<1 VK >0,d.

lim sup
le|—o0

All conditions H1, H2, H3, and H4 in Theorem 1 are verified,
hence the qDES property is ensured.

V. REDUCED-ORDER qDES OBSERVERS

We have seen in the previous section that a few observer
designs automatically yield gDES observers. On the other hand,
the following example shows that this is not the case for
the so-called immersion and invariance (I&I) observer design
[15], [16].

Example 7: Consider a plant given by

a'clz(l—Qe””f)xl—i—u, y=ux1+d
To = (;v%—l)xg—i—u
where u € U := [—1, 1], and a reduced-order observer

i =F(z,y,u) = (y* —1)z+u

& =H(zy) = m (42)

z

This observer serves as a globally convergent reduced-order
observer when d = 0, which can be verified with

1
V(z,e) = (1— 2e:”§> 2, €:=2z— Zo.

Indeed, the function V' satisfies that 0.5/e|? < V(x,¢) < |e|?
for all x and €, and

V= [(1 + uzy)e " — 2} e

in which the bracket term is less than or equal to (1 + 1/3) /2 — 2
for all 21 and u € Y. (The maximum of f,(x1):=(1+

uzy)e ™1 occurs at x} = (—1+ 1+ 2u2)/(2u) for any
weU. Then, fo(x1)<fulzt)=1+VI+2u2)/2 e ™" <
(14 +/3)/2 for any x; and u € U.) Hence, ¢(t) exponentially
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converges to zero and lim;_, . (2(¢) — x(¢)) = 0. The reduced-
order observer (42) in fact is inspired by [27, Remark 4], and
satisfies all the conditions of [16, Proposition 1] so that it can
be classified as an 1&I observer.

However, this observer does not have the qDES property.
We first note that z(t), as well as u(t), is bounded. This can
be easily seen from d|z1 |/dt < —(2¢el™11* — 1)|z1] + |u| except
when x; = 0, and so, limsup,_,, |#1(¢)| < 1. Then, from the
xo-dynamics, it is seen that |x5(t)| is also bounded. Now sup-
pose that d(t) = —z1(t) + 2, which is a bounded disturbance.
Then, we have 2 = 3z + u, and z(¢) may diverge while u(t) is
bounded. This shows that (42) is not a ¢DES observer. ///

Motivated by the observation in Example 7 that the function
V' is dependent not only on the error variable € but also on the
plant state x explicitly, we present a sufficient condition for
a reduced-order observer to be a gDES observer based on a
state-independent error Lyapunov function. For this, let us first
suppose that the plant (1) has a linear output as in

.| E| | filw,mo,u) |
v [962] B {f2($1,$27u)} = f(@,u)
y=x1+d (43)
where 1 € RP, x5 € R”7P, and d € R”. When the system (1)
is not in the form (43), it may be converted into (43) by a diffeo-
morphism ®(z). This is indeed possible if the output map has
the form h(z,d) = ho(x) + d (i.e., the disturbance is additive)
where hq is C! with locally Lipschitz partial derivatives and
if hy admits a complementary map ¢ : R™ — R"™P with the
same regularity as hgy so that ®(z) = [ho(x)T,gi)(:c)T}T is a
desired diffeomorphism converting (1) into (43) with a locally
Lipschitz right-hand side. Thanks to Proposition 1, the qDES
property is preserved under such a coordinate change.
Assumption 1: There exist a C'' function [ : RP — R™P
whose partial derivatives are locally Lipschitz, a C'' function
V :R"™P = R, and class K functions ay, az, a3, and ay
such that for all e € R"™P, y; € RP, xyo € R" P, andu € U

oV

a(e)) sV(e) <az(lel), |5

<e>\ <o) @b

%(6) ([f2(X1,6 + X2, u) + a%ll(Xl)fl(Xhé + X27u)}

- [fQ(X17X27u) + ;}fl(xl)fl(XMsz)D

< a3 (1) (45)
. ay(§)
limsup Zete) = o

Under Assumption 1, a reduced-order qDES observer can
be constructed (based on the design of [15], [26]) as in the
following result, which appeared in [28] and is reproduced here
for completeness.

Corollary 3: Under Assumption 1, the system

2= faly,z = l(y),u) + %(y)ﬁ (y,2 = U(y),u)
1=y

Ty =2z —1(y) (47)

where z € R™ 7P is the observer state, is a reduced-order gDES
observer for (43).

Proof: Define (¢ := x5 + l(x1). Then, the plant (43) is
globally converted into

&y = f1(21,¢ — l(w1),u)

E = o (w0, € = Ua1)ou) + %@oﬁ (21, ¢ — (1), )

=: f(xthu)

y=x,+d (48)

where the shortcut notation f is introduced for convenience.
With f, the dynamics of the observer (47) can be simply written
as 2 = f(y, 2 ).

Let €:=2—C. Since H(zy)=[y",(z—1(y)7]", the
conditions H3 and H4 in Theorem 1 hold (see Remark 1).
Moreover, since H(z,z1) —x = [0, eT]T, the function V' (e)
in Assumption 1 can play the role of V'(z, z) in Theorem 1 and
satisfies H1 with «y and «as of (44). The time derivative of V'
along (47) and (48) is

.oV _ _
V= E(E) (f(y,e + ¢ u) — f(9517<au))
v
e

= 0 (79600 - Far o)

(6) (.f(ya €+ Ca U) - f(ya C? u))

The first term on the right-hand side, which corresponds to —W
of Theorem 1, is less than or equal to —as5(|e]) by (45). (Indeed,
the inequality (45) can be rewritten as

V() (e xo,) — Fxas v ) < 05 (e

which holds for all independent variables €, u, 1, and Xo.
Hence, y and ( in the previous equation can be considered as
X1 and 2, respectively. This is in fact true thanks to the state-
independence of the function V'.) Now treating the second term,
which vanishes when d = 0, as the function g of Theorem 1, we
obtain that

< et | 10 = Far. o)
= Z;l E:EB (a]<K UK, 6| <r [P+ 0,22 + 1), w)
— f(xy, 20 + l(xl),u)|
=0k (|e],r)
for all e #£0, |z| < K, |u] < K, and |d| <r. Then H2 of
Theorem 1 holds by (46). |

Remark 3: Assumption 1 automatically holds if, for (43)
with d = 0, there exists a globally convergent full-order ob-
server £ = F(z,y,u), & = z that admits a quadratic positive
definite error Lyapunov function

71 €1 T P1 PQT €1 L .
V(€1762)2|:e2:| |:P2 Py es €=z — Ty, 1= 1,2
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such that

Ve [61]T[P1 P;HFl(Zvﬂfl,U)—fl(%U)
ey Py P || Fy(z,x1,u)— fo(x,u)

2
:|S_a

€1

€2
with « > 0. Since F;(z,21,u) = fi(x1, z2,u), i = 1,2 when
z1 = x1 (by an argument similar to the one showing that £ in
(29) becomes zero when the estimated output equals the actual

output of the plant; see the paragraph below (29)), the above
inequality can be rewritten when e; = 0 as

V‘elzo :e;P2 (fl(l‘l,Zg,’U/) - fl(mlax%u))
+ 6;P3 (f2($1722,u) - f2(x17$27u))
= e Py [(fa(1, 22,u) — fa(x1,22,u))

+ Py ' Py (fi(21, 22, u) — fi(z1, 22,u)) ] < —afes|?

in which P; is positive definite since V is positive definite.
This inequality implies Assumption 1 with € = ea, V(e) =
(1/2)e" Pse, x = x, and [(w1) = Py Py, The utility of this
observation lies in the fact that most nonlinear observer de-
signs in the literature are based on quadratic error Lyapunov
functions.

Example 8: Let us demonstrate a construction of a reduced-
order gDES observer via Corollary 3. Consider the system

T :x1+2x2+4x§+2u
To :x§+u

y=z1+d (49)
which is taken from [7]. This system is already in the form
(43), and Assumption 1 is satisfied with V (€) = €2/2, [(x1) =
—(1/4)x1, and a3(s) = (1/2)s%. Indeed, the left-hand side of
(45) becomes

€ ({(e +x2)® +u— % (x1 + 2(e + x2) + 4(e + X2)3+2u)}

1 1
- {X%-ﬁ-u— 1 (X1 +2x2 +4xg+2u)}) = —562
which verifies the claim. Therefore, the reduced-order qDES
observer (47) becomes

(50)

It is interesting to note that the system (49) admits a full-
order qDES observer as well. This is because, as pointed out
in [7], there is a circle criterion observer for system (49), and,
as discussed in Section I'V-C, it is automatically qDES. Indeed,
with the data

A= Ll) (2)],3 m,ﬂ[o,u, C=[,0], fﬁf‘]

and (s) = s3, the system (49) is written as (37). Then, with
L=1[2,1]T, M = -3, and A = 1, it can be verified that the
system (38) is SPR, and thus, the circle criterion observer (39)
is a full-order qDES observer. ///

VI. APPLICATION: QUANTIZED
OUuTPUT FEEDBACK CONTROL

A. ISS Controller Plus Observer Set-Up

Consider again the plant (1) and the observer (2) which we
assume to be qDES. For simplicity, we confine ourselves in
this section to the full-order observer case (see [28] for related
developments in the reduced-order observer case). So, here we
assume that & = z and the state estimation erroris e =z —x =e¢g.

Next, suppose that a “nominal” controller (i.e., a controller
that we would apply if the state © were directly available for
control) is given in the form of a static feedback u = k(z).
This naturally leads us to define a dynamic output feedback
controller by the law

u=k(z) =k(z+e)

together with the observer dynamics (2). We impose the follow-
ing assumption on the feedback law k.

Assumption 2: The system & = f(z, k(x + ¢)) is input-to-
state stable (ISS) with respect to the input e, i.e., its solutions
satisfy

()] < B (12(0)]. 1) v 4 (lello,g) (51)
for a class ICL function B and a class X function 4.

In other words, our state feedback law should provide ISS
with respect to a state measurement error, which in our case is
the observer’s state estimation error.

Remark 4: The existence of feedback laws providing ISS
with respect to measurement errors is studied in several ref-
erences. As was demonstrated by way of counterexamples in
[10] and later in [8], not every stabilizable nonlinear system,
even affine in controls, is input-to-state stabilizable with re-
spect to measurement errors by means of static feedback. In
[9] and [11, Chapter 6], static feedback laws guaranteeing
ISS with respect to measurement errors were designed for
the class of single-input plants in strict feedback form, via
backstepping and “flattened” Lyapunov functions. In that work,
the function g(x) multiplying the control was assumed to be
sign-definite and known. For the case when the sign of g(x)
is unknown, a time-varying feedback solution was developed
for one-dimensional systems and then extended to feedback
passive systems of any dimension in [12]. In [8], a time-varying
feedback was designed to handle affine systems for which g(z)
is allowed to have zero crossings, but only in one dimension. In
[14], small-gain techniques were applied to a class of systems
with unknown parameters and unmodeled dynamics. In [24], a
hybrid control solution was developed for systems possessing
an output function whose dynamics take the form considered in
[12] and with respect to which the system is minimum phase
(in a suitable sense); this class covers the counterexample from
[10] but not the one from [8]. The papers [7] and [5] identified a
class of static state feedbacks guaranteeing ISS with respect to
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measurement errors, which consist of inverse optimal feedbacks
with certain additional structure.

For instance, we know from [7] that for the system (49) from
Example 8 the state feedback law

k(x) = —x1 — 29 — T

fulfills Assumption 2. Since we showed at the end of Example 8
that (49) also admits a full-order qDES observer, this system
provides an example where suitable observer and controller
both exist. Also, for the system (25) from Example 5 it can be
shown that the feedback law k(x) = — 2 fulfills Assumption 2;
however, for that system we only have a reduced-order qDES
observer.

The overall closed-loop system consisting of the plant, the
observer, and the control law is

&= f(x,k(2))

2=F(z,h(x,d),k(2)). (52)
Combining the ISS property (51) of the controller with the
qDES property (5) of the observer (recall that here e = e) and
applying a standard ISS cascade argument (cf. [29]), we can
show that the closed-loop system is quasi-ISS® in the sense that,
for each K > 0,

x(t) = z(0) _

<
Lo < (|[20]]¢) v e 01a
as long as ||z oy < K and [|k(2)] 0.y < K, where Bk is a
class CL function and 7 is a class K function. (The cascade
argument establishes this quasi-ISS property in the (z,e)-
coordinates, and hence the same property holds in the (z, z) =

(z,z + e)-coordinates, albeit with different Sx and Jx func-
tions.) We note for future use the obvious fact that

(53)

0,1)

Bk(s,0)>s  Vs>0. (54)

B. Quantizer as Disturbance Generator

By an output quantizer we mean a piecewise constant func-
tion ¢ : RP — Q, where Q is a finite subset of R?. Consider
now a plant with state dynamics as in (1) but with quantized
output measurements

&= f(z,u), y=qlho(z))

where hg : R™ — RP is a continuous map. If we introduce the
quantization error

d:=q(ho(x)) — ho(x)
then the output of this plant can be written as
y = ho(z) +d=: h(z,d)

and this fits into our set-up (1) with an additive measurement
disturbance. As in [19] and [20], we assume that there exist

8The terminology of quasi-ISS is used differently in [2].

positive numbers M and A (called the quantizer’s range and
error bound) such that the following condition holds:

ho(x)| <M = |d|<A. (55)
Since the quantizer saturates outside a bounded region in the
output space (the ball of radius M around the origin), we must
work on this bounded region and the qDES formulation will
turn out to be adequate.

Suppose, as in Section VI-A, that we are given a full-order
observer in the form (2) which is gDES, and a static control law
k(-) which fulfills Assumption 2 (ISS with respect to the state
estimation error). As we showed earlier, the closed-loop system
(52) then possesses the quasi-ISS property expressed by (53).
Assume for simplicity that hy(0) = 0 and k£(0) = 0. Take x,, to
be some class /C., function such that

lho(2)| < &y (J2]) V. (56)

Similarly, take &, to be some class /C., function such that

k() < ru(lzl)  Vz. (57)

Let

K :=k,* (M) V k, (/Q;l(M))

, (58)

We are now ready to state the following result, which provides
an ultimate bound on the solutions of the closed-loop system
starting in a suitable region. (A similar result but for the
reduced-order observer case appeared in [28].)

Proposition 2: With B and 4 coming from (53), M and
A as in (55), ky and k, coming from (56) and (57), and K
defined in (58), assume that

Vi (D) < K, (M). (59)

Suppose that the initial condition of the closed-loop system (52)

satisfies
(0)
6] <= <6°>
where Ey > 0 is such that
Bk (Eo,0) = k' (M). (61)
Then the corresponding solution satisfies
. x(t) _
lim su < A). 62
|| 2 || <t (©2

Proof: Note first of all that Fy indeed exists and satisfies
Eo < k' (M) (63)

by virtue of (61) and (54). As long as the inequality

x(t) -1

<
156][ =0
remains true, we have the following:

* |z(t)] < k(M) < K by (58);

* Ju(t)| < Kulky, ' (M)) < K by (57) and (58) again;
o |d(t)] < A by (55) because |ho(z)| < M by (56).
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The time

T::sup{tEO:

][ <man) <=

is well defined thanks to (60) and (63). For ¢ € [0, T, we have
from the above calculations that

[z <o ([z00])0) v mee
< Br(Eo,0) V r, (M) =k, (M)

(64)

by virtue of (53) and (59)—(61). If T" were finite, this would be a
contradiction, hence T' = oo and the above analysis is valid for
all time. Since [ is a class JCL function, for every € > 0 there
exists a time 7T'(¢) such that

, t) <e€

o (][]

which in view of the first inequality in (64) gives

Yt > T(e)

x(t) _
< > .
HZ(t)H_e\/’yK(A) vt > T(e)
This proves (62). |

Remark 5: For the ultimate bound (62) to guarantee contrac-
tion, we need to know that yx (A) < Ep. In light of (61) this is
equivalent to

Bk (TK(A),0) < r,!

which is a strengthening of (59). Note that ¥, depends on K
which in turn depends on M, i.e., M affects both sides of the
inequality (65). With a fixed M, we can always satisfy (65) by
making A small enough. In other words, (65) basically says that
we must have sufficiently many quantization regions so that the
quantizer’s error bound is small enough. The same comments
apply to the condition (59).

The above result is especially useful in situations where the
quantization can be dynamic, in the sense that the parameters
of the quantizer can be changed on-line by the control designer
[19]. We can then improve on the ultimate bound (62) by using a
“zooming” strategy. In the context of observer-based quantized
output feedback, this idea is developed in more detail in [20] for
full-order DES observers and in [28] for reduced-order qDES
observers; the case of full-order qDES observers considered
here can be treated similarly.

(M) (65)

VII. CONCLUSION

We proposed and studied the notion of a qDES observer,
which captures robustness of a nonlinear observer to output
measurement disturbances. We developed a general frame-
work for studying both full-order and reduced-order qDES
observers, based on Lyapunov functions. Three well-known
observer designs (the linearized error dynamics, high-gain, and
circle criterion observers) were shown to already possess the
qDES property, and novel qDES observers for several systems
were constructed. Our results were illustrated on numerous
examples. As an application, we presented and analyzed a
quantized output feedback control design that relies on an ISS
state feedback controller and a qDES observer. Future work will

focus on identifying interesting classes of nonlinear systems to
which our gDES observer methodology can be applied. In the
context of observer-based output feedback control, it would be
useful to relax the qDES property by allowing an additional
gain from the plant’s state (or output) to the state estimation
error; cf. [20, Section 3.2] and [22, Section 5.3.1].

APPENDIX

Detailed Discussion About Example 3: Boundedness of the
solution z(t) to (6) is seen as follows. First, from (6), we have
x1(t) = 2+ (21(0) — 2)e~" which is bounded. Let a(t, s) :=
[Yay(r)dr = 2(t — s) + (e7* — e *)(21(0) — 2). Then, the
state-transition matrix of

2=l (2]
is obtained by

| cos(a(t,s)) sin(a(t,s))
Blt ) := [—smm(t, 5)) cos(a@»s))} '

Hence, with 7 := [z, 23] ", we have, from (6),

() = B(t,0)Z(0) + /td)(t,f) Lif”} dr

0

¢
B(t,0)7(0 +/[sma
cos (a(t, T
0

Then, boundedness of Z(t) follows since ®(t, 0), fot sin(a(t, 7))
sin 7dr, and f(f cos(«(t, 7)) sin 7dr are bounded; for example,
[ sin(a(t, 7)) sin 7d7 =sin(2t — e’t(;vl(O)
e "(x1(0)—2)) sin 7dT —cos(2t —e (21 (0)

e 7(21(0) — 2)) sin 7dr is bounded.

To show that lim;_,, e(t) = 0, we refer to (8), from which
lim; o e1(t) = 0 is straightforward. For es and eg, it is ob-
served that

-1 1
-2 0

4] ol
Lo 0 [2] )

From [17, Example 9.6], the system

=l o]+ [ WL

is an exponentially stable linear system after the time when
x1(t) becomes positive. Moreover, we know that e (¢) con-
verges to zero while x5 (t) and x3(t) are bounded. Thus, e5(t)
and e3(t) converge to zero.

Proof of Lemma 1: If a >0 then inequality |a| > |b]
implies @ > |b| and so @ — b > 0. Since + is non-decreasing,
the claim follows. When a < 0, it follows from |a| > |b| that
—a > |b| so that a — b < 0 and the claim again follows.

sm T
sm T

fot cos(27—
fo sin(27 —
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