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Abstract—We consider the problem of stabilizing un-
certain systems with quantization. The plant uncertainty
is dealt with by the supervisory adaptive control frame-
work, which employs switching among a finite family of
candidate controllers. For a static quantizer, we quantify
a relationship between the quantization range and the
guantization error bound that guarantees closed loop
stability. For a dynamic quantizer which can vary the
guantization parameters in real time, we show that the
closed loop is asymptotically stabilized provided that
additional conditions on the quantization range and the
guantization error bound is satisfied. This work extends
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Hayakawa et al in [5], where the authors provided a
solution using a (static) logarithmic quantizer and a
Lyapunov-based adaptive algorithm.

We are interested in the case of uncertain systems with
large uncertainty so that robust control is not sufficient,
and adaptive control is required. Adaptive control is a
classic control topic where various tools are available
(see, e.g., [17, Section I] for a literature review on
adaptive control). One of the recently developed tools
in adaptive control is theupervisory controframework
[8], which employs switching among a finite family

previous results on stabilization of known systems with

us - _ of candidate controllers. The controllers are designed
quantlzatlon to the case of uncertain systems.

using (a finite number of) nominal parameters in the
uncertainty set, and the switching is orchestrated by a
S . ~switching logic based on comparison of the estimation
Control with limited informatiorhas attracted growing grrors coming out of a multi-estimator. Benefits of this

interest in the control research community recentlyqantive control scheme include modularity in controller
largely motivated by theontrol over networlparadigm. gesign and the ability to handle large uncertainty sets;
Unlike t_he classu_:al control setting in which signals tf”‘k§ee [8] for further discussions on advantages and appli-
values in a continuum and are available at every timgytions of supervisory control. In this paper, we employ

in networked control systems, information is limitedne sypervisory control framework to deal with plant
in the sense that control and sensor signals are QUBRcertainty.

tized/digitized before being sent over a communication g5, 4 static quantizer, we want to find a relationship

channel, the information is only available at a certain rajwveen the quantization range and the quantization error
and with delay, and there is a possibility of informatiop,ng 1o guarantee closed loop stability. While it has
loss during data transmission; see, for example, [6] fgen shown [7, Proposition 6] that supervisory control
a recent survey on networked control systems.  ig ropust to measurement noise, extending this result to
Most of the work in control with limited information gyantization is not trivial because one needs to ensure
deals with known plants (see the references in [6], [18}ha the information to be quantized does not exceed the
and only recently, attempts have been made to stugyantization range. In this work, we give a condition

control of uncertain systemsvith limited information. 5 the quantizer parameters to guarantee closed loop
While there are several aspects in control with ”mitegtability.

information as outlined in the previous paragraph, deal-14 gchieve asymptotic stability, we utilize tdgnamic
ing with both plant uncertainty and limited informatiorhuantizersin [2], [12], which have the capability of
at the same time is rather challenging. As a first step, W&rying the quantization parameters in real time (in
treat limited information as quantization only. Quamizeﬁarticular, the quantizer can zoom in and zoom out while
control systems with known plants have been_consider%eping the number of alphabets fixed). In the works
for example, in [3], [4], [15], [19], [24]. In this paper,[2] [12], the authors have applied dynamic quantization
we consider the problem sfabilizing uncertain systemst, asymptotically stabilize known linear plants (see also
with quantization This problem has been studied byj 1] for performance analysis of dynamic quantization).
Contacts: linhvu@u.washington.edu, liberzon@uiuc.edu. For known linear plants, asymptotic stability can also
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uncertain systems). Compared to logarithmic quantizevghere Q is a static quantizer with the rane and the
which have infinite alphabets, a dynamic quantizer hasror boundA. From the property 1) of the quantizer,
a finite alphabet. We show that for uncertain systermge have
with quantization, asymptotic stability is achievablelwit
supe?visory control gndpdynamic qu);ntization, provided vl <vM = [Q) —y| < vA. 2)

that the quantizer satisfies a certain condition. WhilEhe parameter is known as azooming variablein-

the tools for analyzing supervisory control and dynamireasingy corresponds to zooming out and essentially
guantization have been reported separately [7], [12], thbtaining a new quantizer with larger range and quantiza-
analysis of the combination of both is far from a triviation error, whereas decreasingorresponds to zooming
extension of [7] and [12]. in and obtaining a quantizer with a smaller range but also
a smaller quantization error.

A. Notations
The notations in this paper are fairly standakds the Controller Uncertain plan
set of real numbers, | is the Euclidean norm, and||z ¢ T

is the supnorm of a signal over the intenzalC [0, co).

Recall that a continuous functian: [0, c0) — [0, 00) IS

of classK if « is strictly increasing, withn(0) = 0, Quantizer
and a(r) — oo asr — oo. A function g : [0,00) X Qv
[0,00) — [0,00) is of classKL if 3(-,t) is a function
of classK, for every fixedt, andj3(r,t) decreases to
ast — oo for every fixedr.

Fig. 1. Quantized closed-loop system

Assuming that the plant is unstable, the objective is to
asymptotically stabilize the plant while the information
We start with a setting in which the uncertain plant iavailable to the controller is Qy) instead ofy. The
linear and belongs to a known finite set of plants. Weguantized control system is depicted in Fig. 1, whére
will consider more general settings such as continuutenotes the overall controller for the plant.
uncertainty sets and nonlinear plants in later sections.
Consider an uncertain linear plantparameterized by o
a parametep, and denote by* the true but unknown A. Without quantization

Il. QUANTIZED CONTROL SYSTEM

IIl. SUPERVISORY CONTROL

parameter: We recover the supervisory (adaptive) control frame-
] work [8] for the case without quantization. In supervi-

T {x = Ap-a + Byp-u (1) sory control, there are multiple controllers, and which

y = Cprz, controller to connect to the plant is orchestrated by a

R"- is the statey € R™ is the input, and supervisor (see Fig. 2 for an illustration of the idea); for
’ more detailed background on supervisory control, see,
e.g., [14, Chapter 6] or [8] and the references therein.

wherex €
y € R™ is the output. The parametgt € R"» belongs
to a known finite seP := {p1,...,pm }, Wherem is the
cardinality of P.

Switchinds |Monitoring[t] _Multi-
logic Lo signals | Estimato

Assumption 1 (A,, B,) is stabilizable, and 4, C,) is
detectable for every € P.

A (static) quantizer is a map R™ — {q1,...,qn}, : “ .| Plant |2
whereqi,...,qy € R™ are quantization points, and Q
has the following properties: 1y| < M = |Q(y) —y| <
A, and 2)|y| > M = |Q(y)| > M — A. The numbers
M and A are known aghe rangeand theerror bound
of the quantizer Q. Adynamic quantizeQ,, having an Fig. 2. The supervisory control framework
additional parameter which can be changed over time,
is defined as We present one particular design of supervisory con-

Q. (y) :=vQ(y/v), trol for linear plants, in which the controllers utilize



the multi-estimator's state (more detail below). We can « Switching logic. A switching logic produces a

also have more general forms of dynamic controllers
which do not use the multiestimator state, provided that
the multi-controller and the multi-estimator combination

(known as the injected system) satisfies certain condi-

switching signal that indicates at every time the
active controller. In this paper, we use tbeale-
independent hysteresis switching logl®]:

tions; see the general (nonlinear) setting in Section V

for detail.

« Multi-estimator : A multi-estimator is a collection
of dynamics, one for each fixed parametee P.
The multi-estimator takes in the input and pro-
duces a bank of outputg,,p € P. The multi-

estimator should have the following property: there

is p € P such that

lyp(t) — y(t)] < cee 0 ys(t0) — y(to)] (3)

for all t > tg, for all u, and for some:, > 0 and

Ae > 0. This property is known as the matching

property in supervisory control.

argmin p,(t) if 3¢ € P such that
9€P (1+h)lu’q(t) g:U'J(t*)(t)v
else,

o(t):=
o(t”)
(8)
whereh > 0 is a hysteresis constant is a design
parameter and satisfies the following condition:
In py

In(1+ h)
9
Am Ao— A ©
for some constanty (see the proof in Appendix A

for the definition ofuy/). The control signal applied
to the plant isu(t) = uq(t) = Ko(1)To()(t)-

B. With quantization

One such multi-estimator for (1) is the collection of With quantization, the multi-estimator (4) becomes

the dynamics
&p = Apxp + Bpu+ Lyp(yp — y),

peP,
Yp = Cpxp,

(4)

&p = Apzp + Bpu+ Lyp(yp, — Q,(v)),
Yp = Cpxp,

The above equation can be rewritten@gs= A,z, +

p € P. (10)

whereC, are such thatd, + L,C, is Hurwitz for Bpt+Lp(yp—y+y—Q,(y)). Due to the presence of the
everyp € P. The matching property (3) is satisfiedemy — Q,(y) in the foregoing equation, the matching

with p = p*, ¢, = 1, and\, = 1 becausey,- —y =
Cp- (zp- — x), and (4) withp = p*, and (1) implies
that (d/dt)(zp — x) = (Ap- + Lp«Cpe)(zpe — ).

« Multi-controller : A family of candidate feedback

gains {K,} is designed such that, + B,K, is
Hurwitz for everyp € P. Then thefamily of
controllersis

()

« Monitoring signals: Monitoring signalsy,,p € P

u, = Kz, peP.

are certain norms of the output estimation errors,

condition (3) becomes

lp(t) — y(£)] < cee™ T ys(t0) — y(to)]
+elly = Qu(W)llto,y Yt = to, Vu
(11)
for somec,,v. > 0, A > 0. Similarly as before, the
condition (11) is satisfied witlh = p*, c. = 1, Ac = 1,
and~, = ||Cp~L,-||. The monitoring signal generator (6)
becomes

fip = =Mty +¥yp — Q, ()% f1,(0) =0,  (12a)
tp = € + [ip. (12b)

yp — y. Here, the monitoring signals are generated

as

(6a)
(6b)

ﬁp = —Mip +|yp — y‘27 fip(0) = 0,
//Jp =&+ p‘pv
for some~,e, A > 0. The numbersy, e, and X are
design parameters and need to satisfy

0< A< A (7

V. STABILITY OF SUPERVISORY CONTROL WITH
QUANTIZATION

Denote by K(c) the class of continuous functions
from R’ to R for some/ € Z and ¢ > 0 such
that, if f € K(c), then f(z) — ¢ as|z| — 0. Let
rg = (zp,,...,7p,, )7 for some orderingpy,...,pm
of P, andk. := max,cp ||Cp||. We have the following
result concerning static quantizers (i.e. those with fixed
zooming variables).

for some constank, related to the eigenvalues of
A, + B,K,, p € P (for detail, see the proof in Theorem 1 Consider the uncertain syste(f) and the

Appendix A).

supervisory control scheme described in Section Il with



the design parameters satisfyiig) and (9). Let ¢y be depends on the bounds on initial states) that guarantees
an arbitrary time, and suppose thatg(ty)| < o and closed-loop stability. More precisely, we achieve not just
ls(to)| < o for some constants, ip > 0. Let X, > boundedness but ultimate boundedness, characterized by
0 and gy := k.(Xo + To). Suppose that the zooming33). Note that the ultimate bound in (33) can be larger
variable v is fixed. There exist than X,. This non-contraction situation would occur
« afunctionxa, € K(ky(vA/E)(VE + aivA) +  if the quantization error is large comparatively to the
QQVA) for some positive constants, a,, and~ € initial condition. For state contraction, we will need

Koo, additional constraints od/, A, and X, for smallness
. a functionyy , € K(v(vA/VE)(VE + avA) +  of quantization error.

%VA), where~, is as in(11) If there is state contraction at tim&, then one
such that if can achieve asymptotic stability by using a dynamic

guantizer, varying the zooming variableas well as the

Xaw(Zo, flo, Yo) < vM, (13) parametet in the supervisory control scheme:as gets
then V|z(to)] < Xo, all the closed-loop signals arecloser to the origin. Unlike the case of known plants [12]
bounded, and for every, > 0, 3T < oo such that where one only needs to worry about the contraction of

A < OE (G5 Vi b+ T (14) the plant state:, here one needs to take into account the
2 (W] < ¥, (o, Go) + € Zto+ L asymptotic behavior of other state variables coming from

Remark 1 To better convey the idea and not get bogge® Supervisory control scheme suchygsand |y, — y/.
down in complicated details, we do not give the explicit 2 109arithmic scalar variable, with a factorp and a
formulae forya, andya , in the theorem; see Appendieriod T is defined as follows (c.f. [3]):

A for details (equationg61) and (65)). Note from(65) ¢(kT) if t € [kT, (k+1)T)
that ¢a ., implicitly depends orx, via gy in c;. There () = €T) i t=(k+1)T k=0,1,....
are two interpretations of the conditiofL3). 1) for a p N ’ (15)

givenM, A, andv such thatv M > k.y(vA/v/E)(v/E+
a1vA) + asvA, there exist small enoughy, 7o, andip  The following result says that using a dynamic quantizer
such that(13) holds (this follows from the property thatwith a logarithmic zooming variable, we can achieve
xap € K(key(vA/vE)(VE + aivA) + aavA)), and 2) closed-loop asymptotic stability. For the proof, see Ap-
for a givenzy, 7o, and jig, the condition(13) holds if A/  pendix B.

is large enough (sincg a , does not depend ofif).
Theorem 2 Consider the uncertain syste¢h) and the

The proof of Theorem 1 comprises four main stagegypervisory control scheme described in Section Il with

« We establish a bound on the signg] in terms of the design parameters satisfyirfg) and (9). Let ¢, be
the error boundA using the property (11) of thean arbitrary time, and suppose thétg(to)| < Zo, and
multi-estimator |s(to)| < fio for some constantsy, fip > 0. Let Xy > 0

o We then establish a bound on the state (which zng 7o := ke(Xo + Zo). There exist
is known as the state of thimjected systemsee | functionxa , € K (key(vA/VE)(VE + arvA) +
Appendix A) in terms of the error bound asvA) for some positive constanits, az, and~y €

« We show that the condition (13) oA/ and A

D
ensures that the state cannot get o_ut of the ball functiona,,, € IC(’V(VA/\/E)(\/E—F alyA))
of radiusyM (and hence, the quantizer guarantees positive constantas, as, and a;

the error bounded for all time .
o From boundedness afg, we fir)wally conclude ulti- such that if(13) holds and
mate boundedness of the plant state YA (o, Yo) < Zo, (16a)
Technical details of the proof are interesting as it com- ase + as?A? < fig, (16b)
bines the techniques in supervisory control and dynamic
guantization. For clarity of the presentation, we choose
to leave them in Appendix A. then one can finb € (0,1) and0 < T < oo such
The importance of Theorem 1 is that it provides that under the logarithmie with factor p?> and period
condition on the quantization range and the quan- T, and the logarithmic zooming variable with factor
tization error A of a static quantizer (this conditionp and periodT’, for all |x(0)] < Xy, the plant state

asvA < 7o, (16c)



|z(t)] — 0 ast — oo, and all the closed-loop signalsnonlinear dynamics in general. The control tool to deal

are bounded.

with stability of nonlinear systems is thaput-to-state

stability (ISS) framework (see, e.g., [21]).

Remark 2 As discussed in Remark 1, the conditio
(13) can always be satisfied for large enoudi or
small enoughzg, i, and g,. However, g, i, and gy
also need to be lower bounded as(ib6a) (16b) and
(16c) Neverthelessya, — 0 as {A,e} — 0 so for
a given 1y, i, and gy, (16a) (16b) and (16c) hold
if A is small enough. Compared to Theorem 1, the
extra conditiong16a) (16b), and (16c) place an upper
bound onA for given zy, i, and gy to ensure that the
signals in the supervisory control system are contracting
after a certain time. Combining this contraction property

with the zooming-in technique, we achieve asymptotic

stability. In Theorem 1, this contraction is not needed
when one is only concerned with stability, not asymptotic
stability.

Remark 3 The conditiong13) and (16) on M and A
imply a lower bound on the number of quantization
bits. Suppose that each componentzohas the same
range and is equally quantized in¥*e regions using
no quantization bits. Theng = log,[M/A]. Then the
condition (13) and (16) can be rewritten into the form

nq > logy[xa,u (%o, fio, o)/ (VA)].

Remark 4 If the bound X on the initial state is not
available, we can include a zooming-out stage at the
beginning (see [12]) so that after a certain tinig we
guarantedz(ty)| < vM. This means increasing faster
than the system can blow up (for any valuepof P)
until the quantizer no longer saturates.

V. NONLINEAR SYSTEMS
Our result for adaptive stabilization with quantization

obtained so far can be extended to a certain class of

nonlinear systems, using the result in [23]. Consider
a parameterized nonlinear uncertain pl&p*) where
p* € R™ is the true but known parameter:

e ;'U:f(a:,u,p*)
) {y = h(z,p"),

where f is Lipschitz inz,u, h is continuous inz, and
h(0,p) = 0 Vp € P. As in the previous section, for the
sake of the presentation, we assume {lfabelongs to
a finite setP.

The supervisory control framework for nonlinear
plants is similar in spirit to those for linear plants
described in Section Ill, albeit now we work with

(17)

R. Without guantization
« Multi-estimator:

The multi-estimator can be writ-
ten generally as

itp = F(zg,y,u),

Yp = Hp(zg),
where zg = (xp,,...,2p,,) IS the state of the

multi-estimator for some ordering, . .., p,, of the
setP, and the dynamics af, are

peEP (18)

‘i.p = fp(wpa y7 U),

Yp = hp(zp),
The multi-estimator should have the following prop-
erty: There exist$ € P such that for alk,

lys(t) —y(t)] < Be(lyp(to) —y(to)l, t — to) Vit > to,
(20)

pEP. (29)

for someg, € KL.
Multicontroller: A family of candidate controllers

ic = gp(zc,y,u),

up = rp(zC, y),
are designed such that the controller indexedpby
stabilizes the plant with the same index. Moreover,
rp(0,0) =0 for all p € P.
The (switched) injected system is the combination
of the multi-estimator and the multi-controller, and
is a switched system. The injected system with the
controller indexed by € P is

B — [Qp($C7HP($1E)_37p>Tp(xiC>Hp($lE)_Z7p))
“ F(ag,Hp(xg) —Jp, rp(2c, Hp(2E) — Jp))

q € P, (22)

= fp(zcE, Jp), (22)
where z¢cg = Qﬁ‘c is the state of the injected
E
system. The following is an assumption on the

injected systems (22) (see also Remark 5 below).

Assumption 2 There exist continuously differen-
tiable functionsV,, : R® — [0,00), p € P, class
K+ functionsaq, as,y, and numbers\y > 0 such
that V¢ € R”,n € RY, andVp, q € P, we have

a1 (I€]) < V() < an(e]). (23)
aa—‘g’fp@,n) <NV A, (@4
Vo(€) < i Vi(©). (25)



« Monitoring signals and switching logic: The mon- ~ The monitoring signal generator becomes
itoring signalsu,,, p € P, are generated as follows: N _
g signaisiy, p g tp = =Aip +v(lyp — Qu(¥)]),  2(0) =0,

. _ 29
fip = —=Aip +(lyp —yl),  2(0) =0, (26) Lp(t) = € + fip(t). (29)
pp(t) = € + fip(t), C. Stability with quantization
for somes >0, A € (0, Ao), wherex, andy are as  Recall that a plant is input-output-to-state (I0SS) (see,
in (24). e.g., [21)) if the state: of the (open-loop) plant satisfies

The switching logic is the scale-independent hyshe following property

teresis switching logic defined as in (8). At every

switching timer, we makezc(r~) = z¢(r). The [2(®)] < B(z(to)],t —to) + Yulllwllfe,e) + vy Yllfo,0)
control signal is (30)

S ,
u(t) = To(t) (zc, y). for aI_I t >ty for somep € KL, vy, vy € K. Define a
functionk, € K as
Remark 5 _If every subsystgm is ISS, then for every ko(2) := max sup hy().

P there exist clas¥’.. functionsay p, as 5, vp, NUMbers PEP |4|<z

Xop > 0, and ISS-Lyapunov functions,, satisfyin ]
P yap b ying Define ¢(t,tg,2) = ftto e M=9)3(26,(2,5 — tg))ds,

a1p([€]) < Vp(§) < azp((€]), where~ is as in (24), and3, is as in (28). The function

oV, ¢ is positive definite, bounded above (by2c.z)/)).
a—gfp(f) < AopV(§) + o), We further assume thap and v have the following

Ve € Ry € RE see [20], [22]. If the setP is finite, PrOPETties:

then (23) and (24) are trivially satisfied. Also, if the set o(t,tg,z) = 0as(t—ty) »ooVz>0 (31a)

P is compact, and suitable continuit'y assumptions ONy (¢ to, az) < agl(t,to,z) Va €[0,1),¥z >0 (31b)

{onp, 22p, 27}, cp @NA {Aop}, . With respect top N _ _

hold, (23) and (24) follow. We shall henceforth stipulateNote that the condition (31b) is required farc [0, 1)

that our collection of 1SS-Lyapunov functiof¥), },cp only, and it holds fory other than quadratic as in the

satisfies(23) and (24). linear setting (for example, (31b) holds foz) = 23
The set of possible 1SS-Lyapunov functions is rand Be(r,t) = cce™*<r).

stricted by the conditiorf25). This inequality does not The following theorems are nonlinear counterparts of

hold, for example, i}, is quadratic for one value of Theorem 1 and Theorem 2 for linear systems (the proofs

p and quartic for another. If, = 1, the relation(25) are in Appendix C and Appendix D).

implies thatV = V},, p € P is a common ISS-Lyapunov

function for the family of the subsystems. In this casEheorem 3 Consider the uncertain syste(t) and the

the switched system is ISS farbitrary switching(also Supervisory control scheme described in Section V-B with

called uniformly input-to-state stablfL6]). the design parameters satisfyir{@) and (9). Suppose
o that the plant is 10SS, an@31) holds. Lett, be an
B. With quantization arbitrary time, and suppose thatg(t)| < Z, and
In the case with quantization, the multi-estimator (19):;(to)| < fio for some constantg,, iy > 0. Let
becomes Xo > 0 and gg =: ko(Xo) + ke(Zo). Suppose that
ip = F(zg,Q,(y),u), ‘yﬁ(to) — y(to)‘ < go. There exist
() peP. (27)  + a function xa, € Kn(Fo(n(rA)/e)(e +
Yp PRTED v (vA))) + v3(vA) for some~y; € K, and
The matching property (20) becomes 50,72,73 € Koo,
() — ()] < Bo(lys(to) — y(to)], t — ¢t « a function YA, € Kz (v1(F0(yo(vA) /e)(e +
l95() = y(®)] < Belyp(to) = (o)l 0) 2 (VA))) + 7.(vA))) for someq, € K. where
+78(Hy - sz(y)H[to,t)) vt 25208) Ye is as in (28)
such that if

for somefs. € KL andv, € K (cf. the linear case o
(11), whereB,(r,t) = c.e~*r, and~, is a constant). X2 (%o, fio, §o) < vM, (32)



then V|z(ty)|] < Xp, all the closed-loop signals are(34d)(34h) place further restriction on the structure of
bounded, and for every, > 0, 37" < oo such that the nonlinear plant in order to guarantee asymptotic
o stability with dynamic quantization.
[2(t)| < YA (o Yo) + e VEZto+T.  (33)
VI. CONTINUUM UNCERTAINTY SET
Theorem 4 Consider the uncertain systefh) and the So far, we have assumed that the Beis finite. For
supervisory control scheme described in Section V-B Wiy, .ase of continuum uncertainty sets, under a certain
the design parameters satisfyig) and (9). Suppose | stness assumption, we can still achieve asymptotic
that the plant is 10SS, ang31) holds. Letty be an gpility. To utilize notations in the previous sections,
arbitrary time, and suppose thaug(fo)| < o and gengte a continuum uncertainty set By C R™ and
|up(to)] < pio for some constantsry, fip > 0. L€t gengte pyp a finite index set such thay,.p % = Q
Xo > 0 and go = ko(Xo) + ke(Zo). Suppose that fo someq,, 0, N, = 0 for i # j. How to divide
[95(t0) — y(to)| < o. There exist into Q; and what the number of subsets is are interesting
« a function xa, € K(m((w(A)/e))(e + research questions of their own and are not pursued here
12(vA))) + y3(vA) for somey; € K, and (see [1]). For every subs€l;, pick a nominal value;.

Y05 72,78 € Ko, By this procedure, we obtain a finite family of nominal
o a function Yaue € KM (o(w(A)/e))(e + plants,{P(p1),..., P(pn)}. The difference between the
"12(vA)))) for somey; € Ko case with a continuum uncertain $etand the case with
o ClassK functionsyy,vs, @1, @ a finite uncertainty seP in Section Il is that we may
such that if (32) holds and not have exact matching i.enf ¢ {p1,...,pm}-
@1 (YA, (B0, 9o)) < par(Zo), (34a) A. Linear plants
e+ v (VA) < pig, (34b) Assumption 3 There exists an indeg € P such that
v5(vA) < pijo, (34c) for the plantP(p*) with the observer
kee +(krA) < ple+a(vA)) Vv, A (34d) 2p = Aptp + Byu+ Ly(yp — Q,(v)) (35)
75(kVVA) < p’y5(VA) Vv, A (346) Yp = Cf,(%f,,
A1 (YA kv ke (F0,50)) < PO (YA (Fo G0)) Vi B e
(34f)
IR o —z5(t)] < G Ne(tmt0) — s
@y (o (70))) < p(@a2(F0)) (34g) |(t) — @5(1)] < Cee ly(to) — yp(to)| (36)
Yo(kyvA) < ke Vv, Aje (34h) +elly — Qu(¥)lljt.0)

.. for somec,, A 0 for all inputs w.
for some constantg, k,,, k. € (0,1), then there exists Cor Aer e > puts u

0 < T < oo such that under the logarithmicwith factor ~ Basically, the assumption says that there is a robust

k. and periodT’, and the logarithmic zooming variablestate estimator in the s@ for the original plant, even

v with factor k, and period T, for all |z(0)] < Xo, if p* ¢ P (note that for the casg’ € P, the assumption

we have|z(t)| — 0 ast — oo, and all the closed-loop is exactly the same as (11)). If the system matrices are

signals are bounded. continuous with respect tp, then the assumption above
is true if |p* — p| is small enough (due to robustness and

Remark 6 Wheny, and 5 are linear, then(34d) and  structural stability property of LTI systems), and the set

(34e)are true for all0 < {k,k,} < p. Whempa i,k P is finite if, for examplef) is compact. If Assumption

is linear inv, ¢, then(34f) is true for all0 < {k.,k,} < 3 holds, then all the reasonings and results for linear

p. The condition(34g) is true, for example whefi; = systems in Section IV hold for a continuum uncertainty

coay for some constant (which is more general than set) without any modification.

the linear case in whiclw; and @, are quadratic).

The condition(32) places a constraint on the quantize®- Nonlinear plants

parameters)M, A for stability (Theorem 3). The addi- For nonlinear plants, Theorem 3 and Theorem 4 hold

tional conditions(34a)(34c) place an upper bound onfor continuum uncertainty sets if the following assump-

the quantization error bound\ (see also the discussiontion is true.

for the linear case in Remark 2), and the conditions



Assumption 4 There exists an index € P such that
for the plantP(p*) with the observer

(3]

{@, = folip, Qu(y), u), (37) “

Yp = hp(2p),

we have ?
y®) = 5Ol < Aellylto) = yptoll t ~to) a0y

+Ye(ly — Qu(W)ljto,))
for someg, € KL and~, € K for all inputs u.

For more general continuum uncertainty s@{sAs- [7]
sumptions 3 and 4 above can be relaxed further to
include unmodeled dynamics resulting from parameig;
ter mismatching. For example, we may want to re-
quire the estimator (35) to be robust with respect to
small unmodeled dynamics such that{t) — z;(t)| <
Cee M)y (to) — yp(to)l + velly — QW)llioy +
Ayllullgy,e) + Azll@plli,,) WhereA,, A, are such that
{A,, A} — 0 asp — p*; see [9]. Another approachl10]
is to use the so-called hierarchical hysteresis switching
logic as in [7]. [11]

VIlI. CONCLUSIONS

In this paper, we treated the problem of stabilizing2]
uncertain systems with quantization. We used the supﬁ%—]
visory control framework to deal with plant uncertainty.
For a static quantizer, we provided a condition between
the quantization range and the quantization error boulidl
to guarantee closed loop stability. With a dynamic quar-
tizer, we provided a zooming strategy on the quantizatign
zooming variables and on the parameterof the super-
visory control scheme to achieve asymptotic stability fdt6]
the closed loop.

Future research can extend this work in several direc-
tions. One direction is to consider other types of limited7)
information, such as sampling, delay, or package loss,
or a combination of those with quantization. In thi&®l
direction, it may be fruitful to combine the approach in
this paper with the result in [13]. Yet another directiofg
could be relaxing the matching condition and treating
the case of supervisory control of uncertain plants with
unmodeled dynamics using dynamic quantization. [20]
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APPENDIX

A. Proof of Theorem 1

Notations

Systems with finite com-

where

t
ft—tg) := / o~ Mt=3) o =2X(s—t0) g g
to

o2\ (t—t0) _ o= A(t—to)

— € .
Y if A#£ 2\

e A=) (1 — 1) if A = 2),.

(44)

The function f is positive definite and bounded above
by 1. The reason we want to use the functiprinstead
of bounding it by1 in (43) is because(¢,tg) — 0 as

Let g, := y, — Q,(y) be the difference between the, _;  _, ; and this captures the decaying contribution
estimated output with index and the actual receivedyt the initial output differencey(to) — y(to)|.

data—the quantized output, Q). If |z(t9)| < Xo, then

lys(to) — y(to)| < ke(Xo + Zo) = Yo (39)

in view of y = Cp-x, yp = Cpxp, and|z;(to)| < Zo.

Let Thar = sup{t € [to,00) : |y(t)] < vM}. At
time ¢y, we have|y(tp)| < keXo < 7o. If vM > xa,
wherexa , is defined as in (61) below, thep < vM
because(a ., > 7o by virtue ofc, > 1. This implies that
Tinaz > to-

Boundedness of a monitoring signal
From the definition ofx, in (12), we have

iy 1)

t
+ / e A=) |5,(5)|2ds Vp e P.
to

pp(t) =e+e
(40)

Note that in (12), we set,(0) = 0 at the starting time

The switched injected system

An injected systenis obtained by combining the
multi-estimator and a candidate controller. Due to
switching among the controllers, what we have is the
so-called switched injected system. For a fixed controller
uq, ¢ € P, from (5) and (10), the injected system is

&p = Apxrp + BpKgxg + Ly(yp, — Q,(y)), VpeP.
We can rewrite the above equation as
&y = (Ap + LpCp)xp + Lp gzq + Lp(yq — Qu(y)),

where L, , := B,K, — L,C,. The injected system with
a controller with index; can be written explicitly as
tq = (Ag + BeKq)zg + Le(ys — Qu(v)), (45a)
ip = (Ap + LpCp)xp + Lpgtq + Lp(ys — Qu(¥)),
p#q (45b)

t = 0. The formula (40) above uses arbitrary initial _ _
time ¢, and this is important for the analysis of dynamid he foregoing dynamics take the form

guantization later. From (2), we have
|y(8) - sz(y(s))| < vA Vs e [t(]»Tmax)'

From (11), (41), and the fagt,(s) = y,(s)—Q, (y(s))
yp(s) — y(s) +y(s) — Q,(y(s)), we have

(41)

15(5)] < cee™ Ty, (k) — y(to)]

(42)
+ (1 +v)vA Vs € [to, Tmaz)-

From (40) and (42), in view of the inequality, + b)? <
2a? + 2b%, we getvt € [to, Traz ),

pp(t) < e+ e M) (1)
+ 2y f(t — to)|ys(to) — y(to)|?
+ (29(1 + ’ye)z/)\)yzAz,

(43)

w.IE = Aqu + Bq(wq - Ql/(x))7

where the definitions oA, and B, are obvious. It is
clear that ifz, — Q,(z) = 0 thenz, — 0 by (45a)
and then allz, — 0 by (45b), which means tha,, is
Hurwitz (since the system is linear). Explicit formulae
for A, andB, are

(46)

O(j—l) Lpl,p On—J—l
A, =®;(4; + L Cy) + : )
0g-1) Lpnp On—jm
(47a)
Lpl
Bo=1: [, (47b)
Ly,



where® is the Kronecker producy; = p, and0;, is We then have
the n, x ny(j — 1) zero matrix.

SinceA,, are Hurwitz for allp, there exists a family of M) _ ; _ ;
quadratic Lyapunov functiont,(zg) = zf Pyzg, B} = Z Fo(t) (tk+1) = Ho(,) ()
P, > 0 such that
N, (t to) tk+1 t
alzg|? < Vp(zg) < alzg)? (48a) Z / Y| Go(r,) () ds— /t Y| Go(r,) () ds
OV, (zg) fo ’
gw (Apze + Bpip) < —AoVp(zE) + ’7|5L'p| + €>‘t"+1,ug(tk)(to) — et No(tk)(to)

(48b) No (t,to)

trhtt
] > AS |~ 2 7o AS |~ 2
for some constanis, @, \g, 0 > 0 (the existence of such ~ Z;) /to ¢ o e (5)°ds /toe Mo (3)ds
common constants for the family of Lyapunov functions N (t.t0)
is guaranteed sinc® is finite). There exists a number ’ b1 b et 9
ds = ds.
5 1 such that o, s =1 [ o)y

Vo(w) < pyVp(w) Vo € R™,¥p,q € P. (49) Dividing both sides of the foregoing inequality by

We can always picky, = @/a but there may be other@nd then combining with (52), we obtain the following
smaller - satisfying (49) (for exampley, = 1 if V, inequality for the exponentially weighted integral norm
are the same for ajpp even thougtu/a > 1). of o'

1) The switching signab: The hysteresis switching . L+h
lemma (see, e.g., [7, Lemma 1] with the scaled signals/ e N |G (1) [2dr < Muq(t) Vg € P.
fip(t) = eMu,(t), which are nondecreasing) give to v (53)

t—1t
NO’(t7t0) < N0+ 07

(50) Since the subsystems of the switched injected system are
stable, we have [7, Corollary 4]

Ta
where N, (¢, 1) is the number of switches ifty, ),
ler () < (@/@)uy ™ lag (to)Pe 1)

No=1+m+ ﬁ n(pg(t)/e)  (51a) e s
— In(1 + h)/(mA). s1) oMV O'Y/to 7o (r)Pdr 9t € [to. Tonas)
From (39), (43), and (51a), we obtain &4
N0<1+m+1n(1njrh)>< forall g € P if
In((= + fio + 29257 + 207(1 +7)° /AW A%)fe). fsAsh 59
Since N, is bounded, the switching signal on the and
e hain ueage dweline sutcring TR o

2) The exponentially weighted integral norm @f: Am Ao = A

Also, from the hysteresis switching lemma, we have  syppose that is chosen such that (56) holds so we
N, (tt0) have (54). From (43) and (54), we get

_o t __cr k t _ — _ _
H (tk)( k1)~ i (t )( k) \@E(UP écllwuﬂ(to)!% At t0)+c25+026 A(t to),up(t())

< m((1+ h)fig(t) — min iy (o)), + 2e97¢2 f (t — to) lyp(to) — y(to) [ (57)
" (52) + (2e27(1 +70)? /AP A? Vi € [to, Tinas),
(58)

wheret; are the switching times ifty,¢). From (40),
we getfi,(t) = e + eMop,(to) + fti e*v|Gp(s)[2ds.  wherec; := ,uHNOa/a andcy := ,uHN" (1+h)/a.



A condition onM and A
From (57), we have

l2E(t)? < 128 + coe + cafip + 2coyC R

+ (2e07(1 + 7e)2 /N VPA? = 7% VYt € [to, Trmae)-
(59)

Becausey = y; + vy — yp, We have

Y@ < 1Cp- llze @) +yp — y| < keZ+cegotrerA

(60)
in view of |z; — z| < ¢c.go + 7erA from (11). Let
XAy = ke + ceyjo + ’YeVA
=k 613_32 + cog + copig + 202702372
C( 0 ed0 (61)

+ (2e27(1+70)2 /247
+ ceYo + VeV A.
Note thatc, ¢, actually depend oA andv as follows:

e = (@/a)ubt ™ x
i 2 A ) o
<1+@+2ycz@+ﬂ%y_> (62)
13 13 g

=:c1(A,v,¢)
andcy = cym(1+h)/(va). BecauserM > xa , by the

There also existds such that
Ceg()e_)\CT2 < €.

Let T := max{T1,T>}. The inequality (64) implies that
lz5(t)] < (22 +€0)'/? for all t > to+T. Since|zp(t) —
z(t)] < eefoe (1) 4~ wA, it follows that |z(t)] <
€0 + VeV A + (22 + €0)'/? for all t > to + T, note that
for everye, > 0, there always existg, > 0 such that
€0 + (2% 4+ €)"/? = z + ¢,. Sincex is bounded and:,
are bounded for ajp, it follows thaty,, are also bounded
for all p. The ultimate bound on in the theorem is

YA = VeV A+ (c2e+(2c27(1 + ’ye)z/)\)uzAz)l/z.
(65)
As {@o,J0,T0} — 0, ca — a%(l + a1V2A2/€)H.
Hencea , converges taizag(14a1v2A2 /e)*/2 (/e +
asvA) + asvA for some constantsas,ay,as as
{0,790, T} — 0.

B. Proof of Theorem 2

Let

YA, = 2% = coe + (2c07(1 +7)? /N2 A%, (66a)
pi= e+ (29(1+7e)? A2 A%, (66b)
Y= (1+7)vA, (66¢)

hypothesis of the theorem, from (60) and (61), we have _
ly(t)| < vM Vit € [to, Tymaz). From the definition of whereas, a4, andas in the theorem aresz := 1, a4 =

Tinaz, We must havel,, ., = oc.

(2v(1 4+ 7.)?/A), andas := (1 + ). Leteyg > 0 be a

If {70, 5o, Zo} — 0, thenc, converges to a constant offlumber such that

the formbZ(1+b12A2 /¢)* for some constants, b; . In
view of the inequalityva? + b < (a + b) for a,b > 0,

we have that adf, yo, Zo} — 0, xa,m converges to

kebo(1 + b2 A%/e)*/2(\/e + a1vA) + asvA for some
positive constants;, az. The functiony in the theorem
is v(2) = bo(1 + by2%)"/2.
Ultimate boundedness of the plant state

We havelz,—z| < |zp|+]|z| < |zg|+|x| for all p, so if
|z(to)| < Xo, then|ys(to) — y(to)| < ke(Xo+Zo) = Fo-
Let

c2e + (2e07(1 4 7e)? /A2 A? =: 22,

The inequality (57) tells us that whenever (¢)|? > z2,

xg Will decrease tar asymptotically (recall thayf (¢ —

tg) — 0 ast — tg — o0). Leteg > 0. From (57), we
have that

(63)

lzE(t)? <2’ +e VE=to+Th, (64)
whereT; is such that

a1z2e ™M 4 cpe ™ g + 2e0v2 F(T) T2 < €o.

(z(1+¢))? p(1+e) y(1+eo)
"o Yo

bt

p = max {
(67)

Suche always exists sinceg > x. (v, A), fig > p, and
Yo > y. Let Ty, T», T3 be such that

=2
)

azde ™ oo™ fig+2e0yc? f(T) 72 = (€ + 2¢0)2?
(68a)

ceoe e = €0y (68b)

e Mo g + 2y f(T3)75 + (29(1 + 7e) 2/ N2 A? = eopu.
(68c)

Let T := max{T1,T>,75}. Then from (57) and (68a),
we have

lze(t)| < (1 +e0)x < pTo VE=to+ T,

where the last inequality follows from (67). From (43),
(68a), and (67), we have;(t) < (1 + e)p < p*fio.
Similarly, [y;(t) —y(t)| < (1+€o0)y < po ¥Vt = to+T.

Consider the logarithmie with factor p? and period
T and the logarithmices with factor p and periodl’. By



the construction op andT, afterT time, all the bounds ~(2a) +~(2b) for all a,b > 0. Therefore, from (70) and
on xg, fip, 5(t) — y(t)| are reduced by a factor(70), we obtain

of p. From (62), becausgy, v are reduced by a factor —\(t—to X _

of p, and iy and e are reduced by a factor of?, the Hp(t) < E+_e Ty (t0) + (8 0.y (to) — y(to)])
formula for ¢; is unchanged. Thus; is unchanged, and +7(27(vA)) /A,
also,cy is unchanged. Thera ., in (61) is reduced by

a factor ofp. Therefore, the inequality M > xa, still where¢ is as in (31).
holds for allt > T + t, even after we change ande.
Similarly, the inequalitiesty > z, jig > p, andgjo >y
remain true for alt > 7. Because;, ¢, are unchanged,
from (85), we have thaf}, T», T3 do not change ifjy,

(71)

The switching signal

The properties of the switching signalis the same
as in the the proof in Appendix A. From (51a) and (71),

To, v, z, andy are reduced by a factgrand i, u, and we get

¢ are reduced by a factg. This implies that at time No<1l4+m+ _m

2T, we can repeat reducingande in the same manner, ln(1_+ h)

and so on. It follows that In((e + fio + (Ho) +7(27e(vA))/A),
where ¢(7o) = supysy, ¢(t,to, 7). Since Ny is

k _
lep(RT) < p"l2e(0)] k=1,2,.... bounded,s is an average dwell-time switching signal

on the intervallty, 1)z )-

As k , we have 0, which implies that i
- g — P In view of (53), we also have

|z5(t)| — 0 ast — oo. Also, |z5(kT) — z(kT)| < p*7o ,
and so|z;(kT) — x(kT)] — 0 ask — oco. Because / A=) (1~ dr <
. o <m(l+h t) VqeP.
v =15 — (x5 — ), we will have|z(t)] — 0 ast — oo, J;, V(|Go (1)) < m(1+ h)pg(t) Vg €P
(72)
C. Proof of Theorem 3 The switched injected system
Let Thnar = sup{t € [to,00) : |y(t)| < vM}. We Under Assumption 2, every subsystem of the switched
have [y(to)| < max,ep sup|,<x, hp(2) < 7o. We also injected system is ISS with respectgp— Q,(y) = 7.
have jo < xam,a in view of the definition of ;A It has been proved [23, Lemma 4.2] that under average
as in (79). By the hypothesis of the theorem, we hadsvell-time switching, the switched injected system has

ly(to)| < vM, and hencel 4. > to. an exponentially-weighted ISS property with respect to
If ‘x(t())‘ < X, then ?jp:
B _ — g - —)\(t—to)
[95(t0) — y(to)| < Ke(0) + ke(Xo) = Go. Fllrea(tl) < eren(jzcalio)le
—“At—to) (|5
Boundedness of a monitoring signal te /t0 ¢ V(gp(s))ds ¥t € [t0, Tinaz)
From the definition ofw, in (29), we have (73)
) for someay, @, Ve € Koo, andey = py N0 if
N’P(t) =&+ et Np(tO) 111(1 + h) In oy 24
“A(t—s) h\ S (74)
+ [ e Y(lyp(s) — Qu(y(s)))ds  Vp e P. m 0
to (69) From (73) and (72), we get
@ (Jwce(t))) <@ (Jrce (to))e ™) + copg (1)
From |y(s) — Q,(y(s))| < vA Vs € [to, Timaz), (11), (75)
(41), and the fanp(S) jvé/p(?t_ Q. (y(s)) = yp(s) — for all ¢ € [ty, Tynaz), Wherec, := cym(1 + h). From
y(s) +u(s) — Qu(y(s)), we g (71) and (75), we have
()] < Bellyplio) ~ylio)l s ~10) +3er8) o @laca(t)) < Tallacalto))e N + e
Vs € [t(), Tma:c)7 + CZe_A(t_tO)luﬁ(tO) + CZ(b(tJ to, gO)
where7, is the classK,, function defined ag.(s) : + 2V (29e(vA)) /A Vit € [to, Tinaa)-

s+7.(s). For a classC,, function~y, we havey(a+b) < (76)



A condition onM and A
Let
T :=a; ' (@(Zo) + coe + cafio
+c20(30) + 27(27e (VA))/N).
Note thatc;, co actually depend o\, M, v as follows:

(77)

o1 =py " (1+ = o, ¢(yo)/€ 78)

+ vm(m))/ue)) WO =z e (A, v,€)

andcy = (m(1 + h)c;. We have|zcr(t)| < z for all
t € [to, Trmaz)- In view of y = y,« + (y — y,+) and (28),
we have

ly(t)] < ke(Z) + Be(T0,0) + ve(vA).
Define

kf'c(j) + 5e(370, 0) + ’Ve(VA)'
By the assumption (32) of the theorema, < vM.

XAy ‘= (79)

kc(g + 60)

=: y(eo) for all t > to + T. We also
have |u,(t)| <

MaXpep SUP|z, | < teo,| 2ol <y Tp (215 22) =

u(eg) Vt > to + T. From (30), we get|z(t)] <

B(lz(T)[, t—to—T)+vu(uleo)) +7y(y(eo)) Vt = to+T.
Let 75, 0 < T3 < oo, be such thaB(z+e€, T3) = ¢y and
T :=max{T1,T>,T3}. Then|z(t)| < eo + Yu(uleo)) +
Yy (y(€o)) Vt = to + T. Define

U = 7(0)) + 7 (5(0)).

For everye, > 0, there existsey > 0 such that
€0 + Tu(u(c0) + % (y(e0)) = ¥, + € Therefore,
for everye, > 0, there existd) < T" < oo such that
lx(t)] < ¢A + e, Vt = tg + T. In view of (80),
we have thati.(z) — 7 (Fo(10(vA)/e)) (€ +12(vA)))

as {fio, Yo, To} — 0, where~g, 1,72 are as in (80). It
follows thati, ~can always be bounded by a function

Y}, of the form ¥ (11 (’Y()(’Y()(VA)/E)(E + 72(vA))) +
'ye(le)) for some®, € K

(83)

From the definition ofT},,,, it follows that we have D- Proof of Theorem 4

Trnaz = OO.

If {fo,70,Zo} — 0, c1 andce converge to a constant
of the formag (1++o(rA) /)" for some positive constant

ap andyy € K. From the formulae ofys A, c1, and
cs, it follows that

xara = 1(o(0A)/e))(e +72(vA))) +73(vA)
(80)

as{fio, Yo, To} — 0 for somevy; € K and~z,v3 € Koo,
andyp(z) := ap(1 + 2)".
Ultimate boundedness

Let

z =7 (g + 27 (27(vA))/A). (81)

Let ¢p > 0 and letT; be such that
M coe + coe ™M i + eap(to + T, to, Gio)

+7(27(VA)) /A <@ (z + €o).
(82)

Qa2 ((Eo)e

The lefthand side of the foregoing equation is strictly
decreasing inT; to the value of the righthand side.
Therefore, there is a unique sueh 7 < oo (existence
follows from the fact that the lefthand side is greater
than the righthand side &t = 0). There also exists

T, 0 < T < oo such thatf.(go,T2) < €. Let
Ty := max{T1,T>}. From (76) and (82)x;(t)| < z+¢€o
for all t > to + T. Then |y;(t)] < ke(z + ).
Becausely;(t) — y(t)| < Be(Po,t — to) + Ye(rA) in
view of (28), it follows that|y(t)| < eo + Y.(VA) +

Let

(84a)
(84b)

=& +7(29(vA))/A,
= Ye(VA).
The functiony, and ~5 in the theorem arey(z) :=

Y(2%(2))/A and~s = 4.. The functioniya , . in the
theorem isz as in (81). Letl},T5, T3 be such that

< =

c1@a(Zo)e M + eae™ M fig + 2¢28(t0 + T, o, Jo)
< pay (Tg) — oy (z)
(85a)
d(to + T1,t0, o) < pd(to + T1,t0,%0) (85h)
Be(Fo, T2) < pYo — y (85¢)
e g + ¢(to + T3, to, 5o) < pfio — . (85d)

The existence of such < T} < oo follows from the
hypothesis (34a), and < 73 < oo follows from the
hypothesis (34c).

Let T := max{Ty,T»,T5}. Then we have

ai(|rce(t)|) < pai(Zo), (86)
wp(t) < piio, (87)
lyp(t) — y(t)| < pgo Yt =to+T. (88)

Suppose that at tim&, we reduce’ by factork, and
¢ by factor k.. From (78), because of (34h), we have
thatc; does not increase at tin#g i.e. ¢ (71) < c¢1(to).
Then alsoes(T1) < ca(tp). From (85¢),

lyp(T) — y(T)| (89)

< pYo,



in view of T' > T5,. From (34d) and (34f),
a(lzce(T)|) < par(|zce(to)l)- (90)

From (349), (34d), (34e), (85b), (31b), and (89), the
lefthand side of (85a) is reduced by a factor of at least
p at timeT. From (90), the righthand side of (85a) is
reduced by a factor of at mogt when we replacer,

by @; ! (pai(zo)). Thus, (85a) holds true at tiniE. The
inequality (85b) also holds true at tiniE because of
(31b). The inequality (85c) holds true when we replace
7o by p7o because of (34e) and (89). The inequality (85d)
holds true when we replage, by pjig because of (34d)
and (85b). Thus, at tim&, all the sub-equations in (85)
hold true when we replace the old bountg 9, and

7o by the new bounds which are of factprof the old
bounds. It follows that we can repeat the procedure at
time 27" by reducingv by factork, ande by factor k.,
and so on. We then have

|zcr(to + kT)| < pkio k=1,2,....

This implies that|zcg(t)] — 0 ast¢ — oo. Hence,
|z,(t)] — 0 ast — oo for all p, and soly,(t)] — 0

ast — oo for all p. Also, |y(kT) — y(kT)| < p*9o,

and soly;(t) — y(t)] — 0 ast — oo. We then have
ly(t)| — 0 ast — co. We also haveu,| — 0 ast — oo

for all p becausey, is a function ofz¢c andy and the
control signal is zero wherc = 0,y = 0. From the
IOSS property (30), we have that(t)| — 0 ast — co.

From bounded ofrcg, it is clear thatzg and z¢ are
bounded. From boundednessgf-Q(y) (which follows

from boundedness af, andy), 1, are bounded for all
pEP.



