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Abstract—We consider the problem of stabilizing un-
certain systems with quantization. The plant uncertainty
is dealt with by the supervisory adaptive control frame-
work, which employs switching among a finite family of
candidate controllers. For a static quantizer, we quantify
a relationship between the quantization range and the
quantization error bound that guarantees closed loop
stability. For a dynamic quantizer which can vary the
quantization parameters in real time, we show that the
closed loop is asymptotically stabilized provided that
additional conditions on the quantization range and the
quantization error bound is satisfied. This work extends
previous results on stabilization of known systems with
quantization to the case of uncertain systems.

I. INTRODUCTION

Control with limited informationhas attracted growing
interest in the control research community recently,
largely motivated by thecontrol over networkparadigm.
Unlike the classical control setting in which signals take
values in a continuum and are available at every time,
in networked control systems, information is limited
in the sense that control and sensor signals are quan-
tized/digitized before being sent over a communication
channel, the information is only available at a certain rate
and with delay, and there is a possibility of information
loss during data transmission; see, for example, [6] for
a recent survey on networked control systems.

Most of the work in control with limited information
deals with known plants (see the references in [6], [18]),
and only recently, attempts have been made to study
control of uncertain systemswith limited information.
While there are several aspects in control with limited
information as outlined in the previous paragraph, deal-
ing with both plant uncertainty and limited information
at the same time is rather challenging. As a first step, we
treat limited information as quantization only. Quantized
control systems with known plants have been considered,
for example, in [3], [4], [15], [19], [24]. In this paper,
we consider the problem ofstabilizing uncertain systems
with quantization. This problem has been studied by
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Hayakawa et al in [5], where the authors provided a
solution using a (static) logarithmic quantizer and a
Lyapunov-based adaptive algorithm.

We are interested in the case of uncertain systems with
large uncertainty so that robust control is not sufficient,
and adaptive control is required. Adaptive control is a
classic control topic where various tools are available
(see, e.g., [17, Section I] for a literature review on
adaptive control). One of the recently developed tools
in adaptive control is thesupervisory controlframework
[8], which employs switching among a finite family
of candidate controllers. The controllers are designed
using (a finite number of) nominal parameters in the
uncertainty set, and the switching is orchestrated by a
switching logic based on comparison of the estimation
errors coming out of a multi-estimator. Benefits of this
adaptive control scheme include modularity in controller
design and the ability to handle large uncertainty sets;
see [8] for further discussions on advantages and appli-
cations of supervisory control. In this paper, we employ
the supervisory control framework to deal with plant
uncertainty.

For a static quantizer, we want to find a relationship
between the quantization range and the quantization error
bound to guarantee closed loop stability. While it has
been shown [7, Proposition 6] that supervisory control
is robust to measurement noise, extending this result to
quantization is not trivial because one needs to ensure
that the information to be quantized does not exceed the
quantization range. In this work, we give a condition
on the quantizer parameters to guarantee closed loop
stability.

To achieve asymptotic stability, we utilize thedynamic
quantizers in [2], [12], which have the capability of
varying the quantization parameters in real time (in
particular, the quantizer can zoom in and zoom out while
keeping the number of alphabets fixed). In the works
[2], [12], the authors have applied dynamic quantization
to asymptotically stabilize known linear plants (see also
[11] for performance analysis of dynamic quantization).
For known linear plants, asymptotic stability can also
be achieved with a logarithmic quantizer [3] (which
indeed was the quantizer employed in [5] for the case of



uncertain systems). Compared to logarithmic quantizers,
which have infinite alphabets, a dynamic quantizer has
a finite alphabet. We show that for uncertain systems
with quantization, asymptotic stability is achievable with
supervisory control and dynamic quantization, provided
that the quantizer satisfies a certain condition. While
the tools for analyzing supervisory control and dynamic
quantization have been reported separately [7], [12], the
analysis of the combination of both is far from a trivial
extension of [7] and [12].

A. Notations

The notations in this paper are fairly standard:R is the
set of real numbers,| · | is the Euclidean norm, and‖·‖I
is the supnorm of a signal over the intervalI ⊆ [0,∞).
Recall that a continuous functionα : [0,∞) → [0,∞) is
of classK∞ if α is strictly increasing, withα(0) = 0,
and α(r) → ∞ as r → ∞. A function β : [0,∞) ×
[0,∞) → [0,∞) is of classKL if β(·, t) is a function
of classK∞ for every fixedt, andβ(r, t) decreases to0
as t→ ∞ for every fixedr.

II. QUANTIZED CONTROL SYSTEM

We start with a setting in which the uncertain plant is
linear and belongs to a known finite set of plants. We
will consider more general settings such as continuum
uncertainty sets and nonlinear plants in later sections.

Consider an uncertain linear plantΓ parameterized by
a parameterp, and denote byp∗ the true but unknown
parameter:

Γ :

{

ẋ = Ap∗x+Bp∗u

y = Cp∗x,
(1)

wherex ∈ R
nx is the state,u ∈ R

nu is the input, and
y ∈ R

ny is the output. The parameterp∗ ∈ R
np belongs

to a known finite setP := {p1, . . . , pm}, wherem is the
cardinality ofP.

Assumption 1 (Ap, Bp) is stabilizable, and(Ap, Cp) is
detectable for everyp ∈ P.

A (static) quantizer is a map Q: R
ny → {q1, . . . , qN},

whereq1, . . . , qN ∈ R
ny are quantization points, and Q

has the following properties: 1)|y| 6 M ⇒ |Q(y)−y| 6

∆, and 2)|y| > M ⇒ |Q(y)| > M − ∆. The numbers
M and∆ are known asthe rangeand theerror bound
of the quantizer Q. Adynamic quantizerQν , having an
additional parameterν which can be changed over time,
is defined as

Qν(y) := νQ(y/ν),

where Q is a static quantizer with the rangeM and the
error bound∆. From the property 1) of the quantizer,
we have

|y| 6 νM ⇒ |Q(y) − y| 6 ν∆. (2)

The parameterν is known as azooming variable: in-
creasingν corresponds to zooming out and essentially
obtaining a new quantizer with larger range and quantiza-
tion error, whereas decreasingν corresponds to zooming
in and obtaining a quantizer with a smaller range but also
a smaller quantization error.

Qν

Γp∗C
Uncertain plantController

Quantizer

Fig. 1. Quantized closed-loop system

Assuming that the plant is unstable, the objective is to
asymptotically stabilize the plant while the information
available to the controller is Qν(y) instead ofy. The
quantized control system is depicted in Fig. 1, whereC
denotes the overall controller for the plant.

III. SUPERVISORY CONTROL

A. Without quantization

We recover the supervisory (adaptive) control frame-
work [8] for the case without quantization. In supervi-
sory control, there are multiple controllers, and which
controller to connect to the plant is orchestrated by a
supervisor (see Fig. 2 for an illustration of the idea); for
more detailed background on supervisory control, see,
e.g., [14, Chapter 6] or [8] and the references therein.
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Fig. 2. The supervisory control framework

We present one particular design of supervisory con-
trol for linear plants, in which the controllers utilize



the multi-estimator’s state (more detail below). We can
also have more general forms of dynamic controllers
which do not use the multiestimator state, provided that
the multi-controller and the multi-estimator combination
(known as the injected system) satisfies certain condi-
tions; see the general (nonlinear) setting in Section V
for detail.

• Multi-estimator : A multi-estimator is a collection
of dynamics, one for each fixed parameterp ∈ P.
The multi-estimator takes in the inputu and pro-
duces a bank of outputsyp, p ∈ P. The multi-
estimator should have the following property: there
is p̂ ∈ P such that

|yp̂(t) − y(t)| 6 cee
−λe(t−t0)|yp̂(t0) − y(t0)| (3)

for all t > t0, for all u, and for somece > 0 and
λe > 0. This property is known as the matching
property in supervisory control.
One such multi-estimator for (1) is the collection of
the dynamics

ẋp = Apxp +Bpu+ Lp(yp − y),

yp = Cpxp,
p ∈ P, (4)

whereCp are such thatAp + LpCp is Hurwitz for
everyp ∈ P. The matching property (3) is satisfied
with p̂ = p∗, ce = 1, andλe = 1 becauseyp∗ −y =
Cp∗(xp∗ − x), and (4) withp = p∗, and (1) implies
that (d/dt)(xp∗ − x) = (Ap∗ + Lp∗Cp∗)(xp∗ − x).

• Multi-controller : A family of candidate feedback
gains {Kp} is designed such thatAp + BpKp is
Hurwitz for every p ∈ P. Then the family of
controllers is

up = Kpxp p ∈ P. (5)

• Monitoring signals: Monitoring signalsµp, p ∈ P
are certain norms of the output estimation errors,
yp − y. Here, the monitoring signals are generated
as

˙̂µp = −λµ̂p + γ|yp − y|2, µ̂p(0) = 0, (6a)

µp = ε+ µ̂p, (6b)

for someγ, ε, λ > 0. The numbersγ, ε, andλ are
design parameters and need to satisfy

0 < λ < λ0 (7)

for some constantλ0 related to the eigenvalues of
Ap + BpKp, p ∈ P (for detail, see the proof in
Appendix A).

• Switching logic: A switching logic produces a
switching signal that indicates at every time the
active controller. In this paper, we use thescale-
independent hysteresis switching logic[10]:

σ(t) :=











argmin
q∈P

µq(t) if ∃ q ∈ P such that
(1+h)µq(t)6µσ(t−)(t),

σ(t−) else,
(8)

whereh > 0 is a hysteresis constant; h is a design
parameter and satisfies the following condition:

ln(1 + h)

λm
>

lnµV

λ0 − λ
(9)

for some constantµV (see the proof in Appendix A
for the definition ofµV ). The control signal applied
to the plant isu(t) = uσ(t) := Kσ(t)xσ(t)(t).

B. With quantization

With quantization, the multi-estimator (4) becomes

ẋp = Apxp +Bpu+ Lp(yp − Qν(y)),

yp = Cpxp,
p ∈ P. (10)

The above equation can be rewritten asẋp = Apxp +
Bpu+Lp(yp−y+y−Qν(y)). Due to the presence of the
term y − Qν(y) in the foregoing equation, the matching
condition (3) becomes

|yp̂(t) − y(t)| 6 cee
−λe(t−t0)|yp̂(t0) − y(t0)|

+ γe‖y − Qν(y)‖[t0,t) ∀t > t0,∀u
(11)

for somece, γe > 0, λe > 0. Similarly as before, the
condition (11) is satisfied witĥp = p∗, ce = 1, λe = 1,
andγe = ‖Cp∗Lp∗‖. The monitoring signal generator (6)
becomes

˙̂µp = −λµ̂p + γ|yp − Qν(y)|2, µ̂p(0) = 0, (12a)

µp = ε+ µ̂p. (12b)

IV. STABILITY OF SUPERVISORY CONTROL WITH

QUANTIZATION

Denote byK(c) the class of continuous functions
from R

ℓ to R for some ℓ ∈ Z and c > 0 such
that, if f ∈ K(c), then f(z) → c as |z| → 0. Let
xE := (xp1

, . . . , xpm
)T for some orderingp1, . . . , pm

of P, andkc := maxp∈P ‖Cp‖. We have the following
result concerning static quantizers (i.e. those with fixed
zooming variablesν).

Theorem 1 Consider the uncertain system(1) and the
supervisory control scheme described in Section III with



the design parameters satisfying(7) and (9). Let t0 be
an arbitrary time, and suppose that|xE(t0)| 6 x̄0 and
|µp̂(t0)| 6 µ̄0 for some constants̄x0, µ̄0 > 0. LetX0 >
0 and ȳ0 := kc(X0 + x̄0). Suppose that the zooming
variable ν is fixed. There exist

• a functionχ∆,ν ∈ K
(

kcγ(ν∆/
√
ε)(

√
ε+ a1ν∆) +

a2ν∆
)

for some positive constantsa1, a2, andγ ∈
K∞,

• a functionψx
∆,ν ∈ K

(

γ(ν∆/
√
ε)(

√
ε + a1ν∆) +

γeν∆
)

, whereγe is as in (11)
such that if

χ∆,ν(x̄0, µ̄0, ȳ0) < νM, (13)

then ∀|x(t0)| 6 X0, all the closed-loop signals are
bounded, and for everyǫx > 0, ∃T <∞ such that

|x(t)| 6 ψx
∆,ν(µ̄0, ȳ0) + ǫx ∀t > t0 + T. (14)

Remark 1 To better convey the idea and not get bogged
down in complicated details, we do not give the explicit
formulae forχ∆,ν andψ∆,ν in the theorem; see Appendix
A for details (equations(61) and (65)). Note from(65)
that ψ∆,ν implicitly depends on̄x0 via ȳ0 in c2. There
are two interpretations of the condition(13): 1) for a
givenM,∆, andν such thatνM > kcγ(ν∆/

√
ε)(

√
ε+

a1ν∆) + a2ν∆, there exist small enough̄x0, ȳ0, and µ̄0

such that(13) holds (this follows from the property that
χ∆,ν ∈ K(kcγ(ν∆/

√
ε)(

√
ε+ a1ν∆) + a2ν∆)), and 2)

for a givenx̄0, ȳ0, andµ̄0, the condition(13) holds ifM
is large enough (sinceχ∆,ν does not depend onM ).

The proof of Theorem 1 comprises four main stages:
• We establish a bound on the signalµp̂ in terms of

the error bound∆ using the property (11) of the
multi-estimator

• We then establish a bound on the statexE (which
is known as the state of theinjected system; see
Appendix A) in terms of the error bound∆

• We show that the condition (13) onM and ∆
ensures that the statex cannot get out of the ball
of radiusνM (and hence, the quantizer guarantees
the error bounded for all time)

• From boundedness ofxE, we finally conclude ulti-
mate boundedness of the plant statex.

Technical details of the proof are interesting as it com-
bines the techniques in supervisory control and dynamic
quantization. For clarity of the presentation, we choose
to leave them in Appendix A.

The importance of Theorem 1 is that it provides a
condition on the quantization rangeM and the quan-
tization error ∆ of a static quantizer (this condition

depends on the bounds on initial states) that guarantees
closed-loop stability. More precisely, we achieve not just
boundedness but ultimate boundedness, characterized by
(33). Note that the ultimate bound in (33) can be larger
than X0. This non-contraction situation would occur
if the quantization error is large comparatively to the
initial condition. For state contraction, we will need
additional constraints onM , ∆, andX0 for smallness
of quantization error.

If there is state contraction at timeT , then one
can achieve asymptotic stability by using a dynamic
quantizer, varying the zooming variableν as well as the
parameterε in the supervisory control scheme asxE gets
closer to the origin. Unlike the case of known plants [12]
where one only needs to worry about the contraction of
the plant statex, here one needs to take into account the
asymptotic behavior of other state variables coming from
the supervisory control scheme such asµp and |yp − y|.

A logarithmic scalar variableξ with a factorρ and a
periodT is defined as follows (c.f. [3]):

ξ(t) :=

{

ξ(kT ) if t ∈ [kT, (k + 1)T )

ρξ(kT ) if t = (k + 1)T,
k = 0, 1, . . . .

(15)

The following result says that using a dynamic quantizer
with a logarithmic zooming variable, we can achieve
closed-loop asymptotic stability. For the proof, see Ap-
pendix B.

Theorem 2 Consider the uncertain system(1) and the
supervisory control scheme described in Section III with
the design parameters satisfying(7) and (9). Let t0 be
an arbitrary time, and suppose that|xE(t0)| 6 x̄0, and
|µp̂(t0)| 6 µ̄0 for some constants̄x0, µ̄0 > 0. LetX0 > 0
and ȳ0 := kc(X0 + x̄0). There exist

• a functionχ∆,ν ∈ K
(

kcγ(ν∆/
√
ε)(

√
ε+ a1ν∆) +

a2ν∆
)

for some positive constantsa1, a2, andγ ∈
K∞,

• a functionψ∆,ν ∈ K
(

γ(ν∆/
√
ε)(

√
ε+ a1ν∆)

)

• positive constantsa3, a4, anda5

such that if (13) holds and

ψ∆,ν(µ̄0, ȳ0) < x̄0, (16a)

a3ε+ a4ν
2∆2 < µ̄0, (16b)

a5ν∆ < ȳ0, (16c)

then one can findρ ∈ (0, 1) and 0 < T < ∞ such
that under the logarithmicε with factor ρ2 and period
T , and the logarithmic zooming variableµ with factor
ρ and periodT , for all |x(0)| 6 X0, the plant state



|x(t)| → 0 as t → ∞, and all the closed-loop signals
are bounded.

Remark 2 As discussed in Remark 1, the condition
(13) can always be satisfied for large enoughM or
small enoughx̄0, µ̄, and ȳ0. However, x̄0, µ̄, and ȳ0

also need to be lower bounded as in(16a), (16b), and
(16c). Nevertheless,ψ∆,ν → 0 as {∆, ε} → 0 so for
a given x̄0, µ̄, and ȳ0, (16a), (16b), and (16c) hold
if ∆ is small enough. Compared to Theorem 1, the
extra conditions(16a), (16b), and (16c) place an upper
bound on∆ for given x̄0, µ̄, and ȳ0 to ensure that the
signals in the supervisory control system are contracting
after a certain time. Combining this contraction property
with the zooming-in technique, we achieve asymptotic
stability. In Theorem 1, this contraction is not needed
when one is only concerned with stability, not asymptotic
stability.

Remark 3 The conditions(13) and (16) on M and ∆
imply a lower bound on the number of quantization
bits. Suppose that each component ofx has the same
range and is equally quantized into2nQ regions using
nQ quantization bits. ThennQ = log2⌈M/∆⌉. Then the
condition (13) and (16) can be rewritten into the form
nQ > log2⌈χ∆,ν(x̄0, µ̄0, ȳ0)/(ν∆)⌉.

Remark 4 If the boundX0 on the initial state is not
available, we can include a zooming-out stage at the
beginning (see [12]) so that after a certain timet0, we
guarantee|x(t0)| < νM . This means increasingν faster
than the system can blow up (for any value ofp ∈ P)
until the quantizer no longer saturates.

V. NONLINEAR SYSTEMS

Our result for adaptive stabilization with quantization
obtained so far can be extended to a certain class of
nonlinear systems, using the result in [23]. Consider
a parameterized nonlinear uncertain plantΓ(p∗) where
p∗ ∈ R

np is the true but known parameter:

Γ(p∗) :

{

ẋ = f(x, u, p∗)

y = h(x, p∗),
(17)

wheref is Lipschitz inx, u, h is continuous inx, and
h(0, p) = 0 ∀p ∈ P. As in the previous section, for the
sake of the presentation, we assume thatp∗ belongs to
a finite setP.

The supervisory control framework for nonlinear
plants is similar in spirit to those for linear plants
described in Section III, albeit now we work with

nonlinear dynamics in general. The control tool to deal
with stability of nonlinear systems is theinput-to-state
stability (ISS) framework (see, e.g., [21]).

A. Without quantization

• Multi-estimator: The multi-estimator can be writ-
ten generally as

ẋE = F (xE, y, u),

yp = Hp(xE),
p ∈ P (18)

where xE := (xp1
, . . . , xpm

) is the state of the
multi-estimator for some orderingp1, . . . , pm of the
setP, and the dynamics ofxp are

ẋp = f̂p(xp, y, u),

yp = hp(xp),
p ∈ P. (19)

The multi-estimator should have the following prop-
erty: There existŝp ∈ P such that for allu,

|yp̂(t)−y(t)|<βe(|yp̂(t0)−y(t0)|, t− t0) ∀ t > t0,

(20)

for someβe ∈ KL.
• Multicontroller: A family of candidate controllers

ẋC = gp(xC, y, u),

up = rp(xC, y),
q ∈ P, (21)

are designed such that the controller indexed byp
stabilizes the plant with the same index. Moreover,
rp(0, 0) = 0 for all p ∈ P.
The (switched) injected system is the combination
of the multi-estimator and the multi-controller, and
is a switched system. The injected system with the
controller indexed byp ∈ P is

ẋCE =

[

gp(xC,Hp(xE)−ỹp, rp(xC,Hp(xE)−ỹp))
F (xE,Hp(xE)−ỹp, rp(xC,Hp(xE)−ỹp))

]

=: fp(xCE, ỹp), (22)

where xCE :=

(

xC

xE

)

is the state of the injected

system. The following is an assumption on the
injected systems (22) (see also Remark 5 below).

Assumption 2 There exist continuously differen-
tiable functionsVp : R

n → [0,∞), p ∈ P, class
K∞ functionsα1, α2, γ, and numbersλ0 > 0 such
that ∀ξ ∈ R

n, η ∈ R
ℓ, and∀p, q ∈ P, we have

α1(|ξ|) 6 Vp(ξ) 6 α2(|ξ|), (23)
∂Vp

∂ξ
fp(ξ, η) 6 −λ0Vp(ξ) + γ(|η|), (24)

Vp(ξ) 6 µV Vq(ξ). (25)



• Monitoring signals and switching logic:The mon-
itoring signalsµp, p ∈ P, are generated as follows:

˙̄µp = −λµ̄p + γ(|yp̂ − y|), zp(0) = 0,

µp(t) = ε+ µ̄p(t),
(26)

for someε > 0, λ ∈ (0, λ0), whereλ0 andγ are as
in (24).
The switching logic is the scale-independent hys-
teresis switching logic defined as in (8). At every
switching timeτ , we makexC(τ−) = xC(τ). The
control signal is

u(t) = rσ(t)(xC, y).

Remark 5 If every subsystem is ISS, then for everyp ∈
P there exist classK∞ functionsα1,p, α2,p, γp, numbers
λ◦,p > 0, and ISS-Lyapunov functionsVp, satisfying

α1,p(|ξ|) 6 Vp(ξ) 6 α2,p(|ξ|),
∂Vp

∂ξ
fp(ξ) 6 −λ◦,pVp(ξ) + α2γp(|η|),

∀ξ ∈ R
n, η ∈ R

ℓ; see [20], [22]. If the setP is finite,
then (23) and (24) are trivially satisfied. Also, if the set
P is compact, and suitable continuity assumptions on
{α1,p, α2,p, α2γp}p∈P and {λ◦,p}p∈P with respect top
hold, (23) and (24) follow. We shall henceforth stipulate
that our collection of ISS-Lyapunov functions{Vp}p∈P

satisfies(23) and (24).
The set of possible ISS-Lyapunov functions is re-

stricted by the condition(25). This inequality does not
hold, for example, ifVp is quadratic for one value of
p and quartic for another. Ifµ = 1, the relation (25)
implies thatV = Vp, p ∈ P is a common ISS-Lyapunov
function for the family of the subsystems. In this case,
the switched system is ISS forarbitrary switching(also
called uniformly input-to-state stable[16]).

B. With quantization

In the case with quantization, the multi-estimator (19)
becomes

ẋE = F (xE,Qν(y), u),

yp = Hp(xE),
p ∈ P. (27)

The matching property (20) becomes

|yp̂(t) − y(t)| < βe(|yp̂(t0) − y(t0)|, t− t0)

+ γe(‖y − Qν(y)‖[t0,t)) ∀ t > t0
(28)

for someβe ∈ KL and γe ∈ K∞ (cf. the linear case
(11), whereβe(r, t) = cee

−λetr, andγe is a constant).

The monitoring signal generator becomes

˙̄µp = −λµ̄p + γ(|yp − Qν(y)|), zp(0) = 0,

µp(t) = ε+ µ̄p(t).
(29)

C. Stability with quantization

Recall that a plant is input-output-to-state (IOSS) (see,
e.g., [21]) if the statex of the (open-loop) plant satisfies
the following property

|x(t)| 6 β(|x(t0)|, t− t0) + γu(‖u‖[t0,t) + γy(‖y‖[t0,t)
(30)

for all t > t0 for someβ ∈ KL, γu, γy ∈ K∞. Define a
function kc ∈ K as

kc(z) := max
p∈P

sup
|x|6z

hp(x).

Define φ(t, t0, z) :=
∫ t
t0
e−λ(t−s)γ(2βe(z, s − t0))ds,

whereγ is as in (24), andβe is as in (28). The function
φ is positive definite, bounded above (byγ(2cez)/λ).
We further assume thatφ and γ have the following
properties:

φ(t, t0, z) → 0 as (t− t0) → ∞ ∀z > 0 (31a)

φ(t, t0, αz) 6 αφ(t, t0, z) ∀α ∈ [0, 1),∀z > 0 (31b)

Note that the condition (31b) is required forα ∈ [0, 1)
only, and it holds forγ other than quadratic as in the
linear setting (for example, (31b) holds forγ(z) = z3

andβe(r, t) = cee
−λerr).

The following theorems are nonlinear counterparts of
Theorem 1 and Theorem 2 for linear systems (the proofs
are in Appendix C and Appendix D).

Theorem 3 Consider the uncertain system(1) and the
supervisory control scheme described in Section V-B with
the design parameters satisfying(7) and (9). Suppose
that the plant is IOSS, and(31) holds. Let t0 be an
arbitrary time, and suppose that|xE(t0)| 6 x̄0 and
|µp̂(t0)| 6 µ̄0 for some constants̄x0, µ̄0 > 0. Let
X0 > 0 and ȳ0 =: kc(X0) + kc(x̄0). Suppose that
|yp̂(t0) − y(t0)| 6 ȳ0. There exist

• a function χ∆,ν ∈ K(γ1(γ̄0(γ0(ν∆)/ε))(ε +
γ2(ν∆))) + γ3(ν∆) for some γ1 ∈ K, and
γ̄0, γ2, γ3 ∈ K∞,

• a function ψx
∆,ν ∈ K(γ̄x(γ1(γ̄0(γ0(ν∆)/ε)(ε +

γ2(ν∆))) + γe(ν∆))) for someγ̄x ∈ K∞ where
γe is as in (28)

such that if

χ∆,ν(x̄0, µ̄0, ȳ0) < νM, (32)



then ∀|x(t0)| 6 X0, all the closed-loop signals are
bounded, and for everyǫx > 0, ∃T <∞ such that

|x(t)| 6 ψx
∆,ν(µ̄0, ȳ0) + ǫx ∀t > t0 + T. (33)

Theorem 4 Consider the uncertain system(1) and the
supervisory control scheme described in Section V-B with
the design parameters satisfying(7) and (9). Suppose
that the plant is IOSS, and(31) holds. Let t0 be an
arbitrary time, and suppose that|xE(t0)| 6 x̄0 and
|µp̂(t0)| 6 µ̄0 for some constants̄x0, µ̄0 > 0. Let
X0 > 0 and ȳ0 =: kc(X0) + kc(x̄0). Suppose that
|yp̂(t0) − y(t0)| 6 ȳ0. There exist

• a function χ∆,ν ∈ K(γ1(γ̄0(γ0(ν∆)/ε))(ε +
γ2(ν∆))) + γ3(ν∆) for some γ1 ∈ K, and
γ̄0, γ2, γ3 ∈ K∞,

• a function ψ∆,ν,ε ∈ K(γ̄1(γ̄0(γ0(ν∆)/ε))(ε +
γ2(ν∆)))) for someγ̄1 ∈ K∞

• classK∞ functionsγ4, γ5, α1, α2

such that if (32) holds and

α1(ψ∆,ν,ε(µ̄0, ȳ0)) < ρα1(x̄0), (34a)

ε+ γ4(ν∆) < ρµ̄0, (34b)

γ5(ν∆) < ρȳ0, (34c)

kεε+ γ4(kνν∆) 6 ρ(ε+ γ4(ν∆)) ∀ν,∆ (34d)

γ5(kνν∆) 6 ργ5(ν∆) ∀ν,∆ (34e)

α1(ψ∆,kνν,kεε(µ̄0, ȳ0)) 6 ρα1(ψ∆,ν,ε(µ̄0, ȳ0))) ∀ν,∆, ε
(34f)

α2(α
−1
1 (ρα1(x̄0))) 6 ρ(α2(x̄0)) (34g)

γ0(kνν∆) 6 kεε ∀ν,∆, ε (34h)

for some constantsρ, kν , kε ∈ (0, 1), then there exists
0 < T <∞ such that under the logarithmicε with factor
kε and periodT , and the logarithmic zooming variable
ν with factor kν and periodT , for all |x(0)| 6 X0,
we have|x(t)| → 0 as t → ∞, and all the closed-loop
signals are bounded.

Remark 6 Whenγ4 and γ5 are linear, then(34d) and
(34e)are true for all0 < {kε, kν} < ρ. Whenψ∆,kνν,kεε

is linear in ν, ε, then(34f) is true for all 0 < {kε, kν} <
ρ. The condition(34g) is true, for example whenα2 =
cαα1 for some constantc (which is more general than
the linear case in whichα1 andα2 are quadratic).

The condition(32)places a constraint on the quantizer
parametersM , ∆ for stability (Theorem 3). The addi-
tional conditions(34a)-(34c) place an upper bound on
the quantization error bound∆ (see also the discussion
for the linear case in Remark 2), and the conditions

(34d)-(34h) place further restriction on the structure of
the nonlinear plant in order to guarantee asymptotic
stability with dynamic quantization.

VI. CONTINUUM UNCERTAINTY SET

So far, we have assumed that the setP is finite. For
the case of continuum uncertainty sets, under a certain
robustness assumption, we can still achieve asymptotic
stability. To utilize notations in the previous sections,
denote a continuum uncertainty set byΩ ⊆ R

np and
denote byP a finite index set such that

⋃

i∈P Ωi = Ω
for someΩi, Ωi ∩ Ωj = ∅ for i 6= j. How to divideΩ
into Ωi and what the number of subsets is are interesting
research questions of their own and are not pursued here
(see [1]). For every subsetΩi, pick a nominal valuepi.
By this procedure, we obtain a finite family of nominal
plants,{P (p1), . . . , P (pm)}. The difference between the
case with a continuum uncertain setΩ and the case with
a finite uncertainty setP in Section II is that we may
not have exact matching i.e.,p∗ /∈ {p1, . . . , pm}.

A. Linear plants

Assumption 3 There exists an index̂p ∈ P such that
for the plantP (p∗) with the observer

{

˙̂xp̂ = Ap̂x̂p̂ +Bp̂u+ Lp̂(yp̂ − Qν(y))

yp̂ = Cp̂x̂p̂,
(35)

we have

|x(t) − xp̂(t)| 6 c̄ee
−λe(t−t0)|y(t0) − yp̂(t0)|

+ γe‖y − Qν(y)‖[t0,t)

(36)

for somec̄e, λe, γe > 0 for all inputs u.

Basically, the assumption says that there is a robust
state estimator in the setP for the original plant, even
if p∗ /∈ P (note that for the casep∗ ∈ P, the assumption
is exactly the same as (11)). If the system matrices are
continuous with respect top, then the assumption above
is true if |p∗− p̂| is small enough (due to robustness and
structural stability property of LTI systems), and the set
P is finite if, for example,Ω is compact. If Assumption
3 holds, then all the reasonings and results for linear
systems in Section IV hold for a continuum uncertainty
setΩ without any modification.

B. Nonlinear plants

For nonlinear plants, Theorem 3 and Theorem 4 hold
for continuum uncertainty sets if the following assump-
tion is true.



Assumption 4 There exists an index̂p ∈ P such that
for the plantP (p∗) with the observer

{

˙̂xp̂ = f̂p(x̂p̂,Qν(y), u),

yp = hp(xp̂),
(37)

we have

|y(t) − yp̂(t)| 6 βe(|y(t0) − yp̂(t0)|, t− t0)

+ γe(‖y − Qν(y)‖[t0,t))
(38)

for someβe ∈ KL and γe ∈ K for all inputs u.

For more general continuum uncertainty setsΩ, As-
sumptions 3 and 4 above can be relaxed further to
include unmodeled dynamics resulting from parame-
ter mismatching. For example, we may want to re-
quire the estimator (35) to be robust with respect to
small unmodeled dynamics such that|x(t) − xp̂(t)| 6

c̄ee
−λe(t−t0)|y(t0) − yp̂(t0)| + γe‖y − Qν(y)‖[t0,t) +

∆u‖u‖[t0,t) + ∆x‖x̂p‖[t0,t) where∆u,∆x are such that
{∆u,∆x} → 0 as p̂ → p∗; see [9]. Another approach
is to use the so-called hierarchical hysteresis switching
logic as in [7].

VII. C ONCLUSIONS

In this paper, we treated the problem of stabilizing
uncertain systems with quantization. We used the super-
visory control framework to deal with plant uncertainty.
For a static quantizer, we provided a condition between
the quantization range and the quantization error bound
to guarantee closed loop stability. With a dynamic quan-
tizer, we provided a zooming strategy on the quantization
zooming variableν and on the parameterε of the super-
visory control scheme to achieve asymptotic stability for
the closed loop.

Future research can extend this work in several direc-
tions. One direction is to consider other types of limited
information, such as sampling, delay, or package loss,
or a combination of those with quantization. In this
direction, it may be fruitful to combine the approach in
this paper with the result in [13]. Yet another direction
could be relaxing the matching condition and treating
the case of supervisory control of uncertain plants with
unmodeled dynamics using dynamic quantization.
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APPENDIX

A. Proof of Theorem 1

Notations

Let ỹp := yp − Qν(y) be the difference between the
estimated output with indexp and the actual received
data—the quantized output Qν(y). If |x(t0)| 6 X0, then

|yp̂(t0) − y(t0)| 6 kc(X0 + x̄0) = ȳ0 (39)

in view of y = Cp∗x, yp̂ = Cp̂xp̂, and |xp̂(t0)| 6 x̄0.
Let Tmax := sup{t ∈ [t0,∞) : |y(t)| 6 νM}. At

time t0, we have|y(t0)| 6 kcX0 6 ȳ0. If νM > χ∆,ν

whereχ∆,ν is defined as in (61) below, then̄y0 < νM
becauseχ∆,ν > ȳ0 by virtue ofce > 1. This implies that
Tmax > t0.

Boundedness of a monitoring signal

From the definition ofµp in (12), we have

µp(t) = ε+ e−λ(t−t0)µ̂p(t0)

+ γ

∫ t

t0

e−λ(t−s)|ỹp(s)|2ds ∀p ∈ P.
(40)

Note that in (12), we set̂µp(0) = 0 at the starting time
t = 0. The formula (40) above uses arbitrary initial
time t0 and this is important for the analysis of dynamic
quantization later. From (2), we have

|y(s) − Qν(y(s))| 6 ν∆ ∀s ∈ [t0, Tmax). (41)

From (11), (41), and the fact̃yp(s) = yp(s)−Qν(y(s)) =
yp(s) − y(s) + y(s) − Qν(y(s)), we have

|ỹp̂(s)| 6 cee
−λe(s−t0)|yp̂(t0) − y(t0)|

+ (1 + γe)ν∆ ∀s ∈ [t0, Tmax).
(42)

From (40) and (42), in view of the inequality(a+ b)2 6

2a2 + 2b2, we get∀t ∈ [t0, Tmax),

µp̂(t) 6 ε+ e−λ(t−t0)µp(t0)

+ 2γc2ef(t− t0)|yp̂(t0) − y(t0)|2

+ (2γ(1 + γe)
2/λ)ν2∆2,

(43)

where

f(t− t0) :=

∫ t

t0

e−λ(t−s)e−2λe(s−t0)ds

=







e−2λe(t−t0) − e−λ(t−t0)

λ− 2λe
if λ 6= 2λe

e−λ(t−t0)(t− t0) if λ = 2λe.

(44)

The functionf is positive definite and bounded above
by 1. The reason we want to use the functionf instead
of bounding it by1 in (43) is becausef(t, t0) → 0 as
t− t0 → ∞ and this captures the decaying contribution
of the initial output difference|yp̂(t0) − y(t0)|.

The switched injected system

An injected systemis obtained by combining the
multi-estimator and a candidate controller. Due to
switching among the controllers, what we have is the
so-called switched injected system. For a fixed controller
uq, q ∈ P, from (5) and (10), the injected system is

ẋp = Apxp +BpKqxq + Lp(yp − Qν(y)), ∀ p ∈ P.

We can rewrite the above equation as

ẋp = (Ap + LpCp)xp + Lp,qxq + Lp(yq − Qν(y)),

whereLp,q := BpKq − LpCq. The injected system with
a controller with indexq can be written explicitly as

ẋq = (Aq +BqKq)xq + Lq(yq − Qν(y)), (45a)

ẋp = (Ap + LpCp)xp + Lp,qxq + Lp(yq − Qν(y)),

p 6= q. (45b)

The foregoing dynamics take the form

ẋE = AqxE + Bq(xq − Qν(x)), (46)

where the definitions ofAq and Bq are obvious. It is
clear that if xq − Qν(x) = 0 then xq → 0 by (45a)
and then allxp → 0 by (45b), which means thatAq is
Hurwitz (since the system is linear). Explicit formulae
for Ap andBp are

Ap = ⊗i(Ai + LiCi) +







0(j−1) Lp1,p 0n−j−1
...

0(j−1) Lpm,p 0n−j−1






,

(47a)

Bq =







Lp1

...
Lpm






, (47b)



where⊗ is the Kronecker product,pi ≡ p, and0(j) is
the ny × ny(j − 1) zero matrix.

SinceAp are Hurwitz for allp, there exists a family of
quadratic Lyapunov functionsVp(xE) = xT

E
PpxE, P

T
p =

Pp > 0 such that

a|xE|2 6 Vp(xE) 6 a|xE|2 (48a)

∂Vp(xE)

∂x
(ApxE + Bpỹp) 6 −λ0Vp(xE) + γ|x̃p|2

(48b)

for some constantsa, a, λ0, γ0 > 0 (the existence of such
common constants for the family of Lyapunov functions
is guaranteed sinceP is finite). There exists a number
µV > 1 such that

Vq(x) 6 µV Vp(x) ∀x ∈ R
n,∀p, q ∈ P. (49)

We can always pickµV = a/a but there may be other
smallerµV satisfying (49) (for example,µV = 1 if Vp

are the same for allp even thougha/a > 1).
1) The switching signalσ: The hysteresis switching

lemma (see, e.g., [7, Lemma 1] with the scaled signals
µ̄p(t) = eλtµp(t), which are nondecreasing) give

Nσ(t, t0) 6 N0 +
t− t0
τa

, (50)

whereNσ(t, t0) is the number of switches in(t0, t),

N0 := 1 +m+
m

ln(1 + h)
ln(µq(t)/ε) (51a)

τa := ln(1 + h)/(mλ). (51b)

From (39), (43), and (51a), we obtain

N0 6 1 +m+
m

ln(1 + h)
×

ln((ε + µ̄0 + 2γc2e ȳ
2
0 + 2(γ(1 + γe)

2/λ)ν2∆2)/ε).

Since N0 is bounded, the switching signalσ on the
interval (t0, Tmax) is an average dwell-time switching
signal with the average dwell-timeτa .

2) The exponentially weighted integral norm ofỹσ:
Also, from the hysteresis switching lemma, we have

Nσ(t,t0)
∑

k=0

µ̄σ(tk)(tk+1)−µ̄σ(tk)(tk)

6 m((1 + h)µ̄ℓ(t) − min
p∈P

µ̄p(t0)),

(52)

where tk are the switching times in(t0, t). From (40),
we get µ̄p(t) = εeλt + eλt0µp(t0) +

∫ t
t0
eλsγ|ỹp(s)|2ds.

We then have

Nσ(t,t0)
∑

k=0

µ̄σ(tk)(tk+1) − µ̄σ(tk)(tk)

=

Nσ(t,t0)
∑

k=0

∫ tk+1

t0

eλsγ|ỹσ(tk)(s)|2ds−
∫ tk

t0

eλsγ|ỹσ(tk)(s)|2ds

+ eλtk+1µσ(tk)(t0) − eλtkµσ(tk)(t0)

>

Nσ(t,t0)
∑

k=0

∫ tk+1

t0

eλsγ|ỹσ(tk)(s)|2ds−
∫ tk

t0

eλsγ|ỹσ(tk)(s)|2ds

=

Nσ(t,t0)
∑

k=0

∫ tk+1

tk

eλsγ|ỹσ(tk)(s)|2ds = γ

∫ t

t0

eλs|ỹσ(s)|2ds.

Dividing both sides of the foregoing inequality byγeλt

and then combining with (52), we obtain the following
inequality for the exponentially weighted integral norm
of ỹσ:

∫ t

t0

e−λ(t−τ)|ỹσ(τ)|2dτ 6
m(1 + h)

γ
µq(t) ∀q ∈ P.

(53)

Since the subsystems of the switched injected system are
stable, we have [7, Corollary 4]

|xE(t)|2 6 (a/a)µ1+N0

V |xE(t0)|2e−λ(t−t0)

+
1

a
µ1+N0

V γ

∫ t

t0

e−λ(t−τ)|ỹσ(τ)|2dτ ∀t ∈ [t0, Tmax)

(54)

for all q ∈ P if

0 < λ < λ0 (55)

and

ln(1 + h)

λm
>

lnµV

λ0 − λ
. (56)

Suppose thath is chosen such that (56) holds so we
have (54). From (43) and (54), we get

|xE(t)|2 6c1|xE(t0)|2e−λ(t−t0)+c2ε+c2e
−λ(t−t0)µp(t0)

+ 2c2γc
2
ef(t− t0)|yp̂(t0) − y(t0)|2 (57)

+ (2c2γ(1 + γe)
2/λ)ν2∆2 ∀t ∈ [t0, Tmax),

(58)

wherec1 := µ1+N0

V a/a andc2 := µ1+N0

V m(1 + h)/a.



A condition onM and ∆

From (57), we have

|xE(t)|2 6 c1x̄
2
0 + c2ε+ c2µ̄0 + 2c2γc

2
eȳ

2
0

+ (2c2γ(1 + γe)
2/λ)ν2∆2 =: x̄2 ∀t ∈ [t0, Tmax).

(59)

Becausey = yp̂ + y − yp̂, we have

|y(t)| 6 ‖Cp∗‖|xE(t)|+|yp̂ − y| 6 kcx̄+ceȳ0+γeν∆
(60)

in view of |xp̂ − x| 6 ceȳ0 + γeν∆ from (11). Let

χ∆,ν := kcx̄+ ceȳ0 + γeν∆

= kc

(

c1x̄
2
0 + c2ε+ c2µ̄0 + 2c2γc

2
e ȳ

2
0

+ (2c2γ(1 + γe)
2/λ)ν2∆2

)1/2)

+ ceȳ0 + γeν∆.

(61)

Note thatc1, c2 actually depend on∆ andν as follows:

c1 = (a/a)µ1+m
V ×

(

1+
µ̄0

ε
+2γc2e

ȳ2
0

ε
+2

γ(1 + γe)
2

λ
∆2 ν

2

ε

)

m ln µV
ln(1+h)

=: c1(∆, ν, ε)

(62)

andc2 = c1m(1+h)/(γa). BecauseνM > χ∆,ν by the
hypothesis of the theorem, from (60) and (61), we have
|y(t)| < νM ∀t ∈ [t0, Tmax). From the definition of
Tmax, we must haveTmax = ∞.

If {µ̄0, ȳ0, x̄0} → 0, thenc2 converges to a constant of
the formb20(1+b1ν

2∆2/ε)κ for some constantsb0, b1. In
view of the inequality

√
a2 + b2 < (a+ b) for a, b > 0,

we have that as{µ̄0, ȳ0, x̄0} → 0, χ∆,M converges to
kcb0(1 + b1ν

2∆2/ε)κ/2(
√
ε + a1ν∆) + a2ν∆ for some

positive constantsa1, a2. The functionγ in the theorem
is γ(z) = b0(1 + b1z

2)κ/2.

Ultimate boundedness of the plant state

We have|xp−x| 6 |xp|+|x| 6 |xE|+|x| for all p, so if
|x(t0)| 6 X0, then|yp̂(t0)− y(t0)| 6 kc(X0 + x̄0) = ȳ0.
Let

c2ε+ (2c2γ(1 + γe)
2/λ)ν2∆2 =: x2. (63)

The inequality (57) tells us that whenever|xE(t)|2 > x2,
xE will decrease tox asymptotically (recall thatf(t −
t0) → 0 as t − t0 → ∞). Let ǫ0 > 0. From (57), we
have that

|xE(t)|2 6 x2 + ǫ0 ∀t > t0 + T1, (64)

whereT1 is such that

c1x̄
2
0e

−λT1 + c2e
−λT1 µ̄0 + 2c2γc

2
ef(T1)ȳ

2
0 6 ǫ0.

There also existsT2 such that

ceȳ0e
−λeT2 6 ǫ0.

Let T := max{T1, T2}. The inequality (64) implies that
|xp̂(t)| 6 (x2 + ǫ0)

1/2 for all t > t0 + T . Since|xp̂(t)−
x(t)| 6 ceȳ0e

−λe(t−t0) + γeν∆, it follows that |x(t)| 6

ǫ0 + γeν∆ + (x2 + ǫ0)
1/2 for all t > t0 + T ; note that

for every ǫx > 0, there always existsǫ0 > 0 such that
ǫ0 + (x2 + ǫ0)

1/2 = x+ ǫx. Sincex is bounded andxp

are bounded for allp, it follows thatµp are also bounded
for all p. The ultimate bound onx in the theorem is

ψ∆,ν := γeν∆+(c2ε+(2c2γ(1 + γe)
2/λ)ν2∆2)1/2.

(65)

As {µ̄0, ȳ0, x̄0} → 0, c2 → a2
0(1 + a1ν

2∆2/ε)κ.
Hence,ψ∆,ν converges toa3a0(1+a1ν

2∆2/ε)κ/2(
√
ε+

a4ν∆) + a5ν∆ for some constantsa3, a4, a5 as
{µ̄0, ȳ0, x̄0} → 0.

B. Proof of Theorem 2

Let

ψ∆,ν := x2 = c2ε+ (2c2γ(1 + γe)
2/λ)ν2∆2, (66a)

µ := ε+ (2γ(1 + γe)
2/λ)ν2∆2, (66b)

y := (1 + γe)ν∆, (66c)

wherea3, a4, anda5 in the theorem area3 := 1, a4 =
(2γ(1 + γe)

2/λ), anda5 := (1 + γe). Let ǫ0 > 0 be a
number such that

ρ := max

{

(x(1 + ǫ0))
2

x̄2
0

,
µ(1 + ǫ0)

µ̄0
,
y(1 + ǫ0)

ȳ0

}

< 1.

(67)

Suchǫ0 always exists sincēx0 > χx(ν,∆), µ̄0 > µ, and
ȳ0 > y. Let T1, T2, T3 be such that

c1x̄
2
0e

−λT1 +c2e
−λT1 µ̄0+2c2γc

2
ef(T1)ȳ

2
0 = (ǫ20 + 2ǫ0)x

2

(68a)

ceȳ0e
−λeT2 = ǫ0y (68b)

e−λT3 µ̄0 + 2γc2ef(T3)ȳ
2
0 + (2γ(1 + γe)

2/λ)ν2∆2 = ǫ0µ.

(68c)

Let T := max{T1, T2, T3}. Then from (57) and (68a),
we have

|xE(t)| 6 (1 + ǫ0)x 6 ρx̄0 ∀t > t0 + T,

where the last inequality follows from (67). From (43),
(68a), and (67), we haveµp̂(t) 6 (1 + ǫ0)µ 6 ρ2µ̄0.
Similarly, |yp̂(t)−y(t)| 6 (1+ǫ0)y 6 ρȳ0 ∀t > t0+T .

Consider the logarithmicε with factor ρ2 and period
T and the logarithmicν with factor ρ and periodT . By



the construction ofρ andT , afterT time, all the bounds
on xE, µp̂, and |yp̂(t) − y(t)| are reduced by a factor
of ρ. From (62), becausēy0, ν are reduced by a factor
of ρ, and µ̄0 and ε are reduced by a factor ofρ2, the
formula for c1 is unchanged. Thus,c1 is unchanged, and
also,c2 is unchanged. Thenχ∆,ν in (61) is reduced by
a factor ofρ. Therefore, the inequalityνM > χ∆,ν still
holds for all t > T + t0 even after we changeν and ε.
Similarly, the inequalities̄x0 > x, µ̄0 > µ, and ȳ0 > y
remain true for allt > T . Becausec1, c2 are unchanged,
from (85), we have thatT1, T2, T3 do not change if̄y0,
x̄0, ν, x, andy are reduced by a factorρ and µ̄, µ, and
ε are reduced by a factorρ2. This implies that at time
2T , we can repeat reducingν andε in the same manner,
and so on. It follows that

|xE(kT )| 6 ρk|xE(0)| k = 1, 2, . . . .

As k → ∞, we have|xE| → 0, which implies that
|xp̂(t)| → 0 as t→ ∞. Also, |xp̂(kT ) − x(kT )| 6 ρkȳ0

and so|xp̂(kT ) − x(kT )| → 0 as k → ∞. Because
x = xp̂ − (xp̂ − x), we will have|x(t)| → 0 as t→ ∞.

C. Proof of Theorem 3

Let Tmax := sup{t ∈ [t0,∞) : |y(t)| < νM}. We
have |y(t0)| 6 maxp∈P sup|z|6X0

hp(z) < ȳ0. We also
have ȳ0 < χM,∆ in view of the definition ofχM,∆

as in (79). By the hypothesis of the theorem, we have
|y(t0)| < νM , and hence,Tmax > t0.

If |x(t0)| 6 X0, then

|yp̂(t0) − y(t0)| 6 kc(x̄0) + kc(X0) = ȳ0.

Boundedness of a monitoring signal

From the definition ofµp in (29), we have

µp(t) = ε+ e−λ(t−t0)µp(t0)

+

∫ t

t0

e−λ(t−s)γ(|yp(s) − Qν(y(s))|)ds ∀p ∈ P.
(69)

From |y(s) − Qν(y(s))| 6 ν∆ ∀s ∈ [t0, Tmax), (11),
(41), and the fact̃yp(s) = yp(s) − Qν(y(s)) = yp(s) −
y(s) + y(s) − Qν(y(s)), we get

|ỹp̂(s)| 6 βe(|yp̂(t0) − y(t0)|, s − t0) + γ̄e(ν∆)

∀s ∈ [t0, Tmax),
(70)

where γ̄e is the classK∞ function defined as̄γe(s) :=
s+γe(s). For a classK∞ functionγ, we haveγ(a+b) 6

γ(2a) + γ(2b) for all a, b > 0. Therefore, from (70) and
(70), we obtain

µp̂(t) 6 ε+ e−λ(t−t0)µp(t0) + φ(t, t0, |yp̂(t0) − y(t0)|)
+ γ(2γ̄e(ν∆))/λ,

(71)

whereφ is as in (31).

The switching signal

The properties of the switching signalσ is the same
as in the the proof in Appendix A. From (51a) and (71),
we get

N0 6 1 +m+
m

ln(1 + h)
×

ln((ε + µ̄0 + φ̄(ȳ0) + γ(2γ̄e(ν∆))/λ),

where φ̄(ȳ0) := supt>t0 φ(t, t0, ȳ0). Since N0 is
bounded,σ is an average dwell-time switching signal
on the interval[t0, Tmax).

In view of (53), we also have
∫ t

t0

e−λ(t−τ)γ(|ỹσ(τ)|)dτ 6 m(1 + h)µq(t) ∀q ∈ P.
(72)

The switched injected system

Under Assumption 2, every subsystem of the switched
injected system is ISS with respect toyp − Qν(y) = ỹp.
It has been proved [23, Lemma 4.2] that under average
dwell-time switching, the switched injected system has
an exponentially-weighted ISS property with respect to
ỹp:

α1(|xCE(t)|) 6 c1α2(|xCE(t0)|)e−λ(t−t0)

+ c1

∫ t

t0

e−λ(t−t0)γ(|ỹp(s)|)ds ∀t ∈ [t0, Tmax)

(73)

for someα1, α2, γc ∈ K∞, andc1 = µ1+N0

V if

ln(1 + h)

λm
>

lnµV

λ0 − λ
. (74)

From (73) and (72), we get

α1(|xCE(t)|)6c1α2(|xCE(t0)|)e−λ(t−t0) + c2µq(t)
(75)

for all t ∈ [t0, Tmax), wherec2 := c1m(1 + h). From
(71) and (75), we have

α1(|xCE(t)|) 6 α2(|xCE(t0)|)e−λ(t−t0) + c2ε

+ c2e
−λ(t−t0)µp̂(t0) + c2φ(t, t0, ȳ0)

+ c2γ(2γ̄e(ν∆))/λ ∀t ∈ [t0, Tmax).
(76)



A condition onM and ∆

Let

x̄ := α−1
1

(

α2(x̄0) + c2ε+ c2µ̄0

+ c2φ̄(ȳ0) + c2γ(2γ̄e(ν∆))/λ
)

.
(77)

Note thatc1, c2 actually depend on∆,M, ν as follows:

c1 = µ1+m
V

(

1 +
µ̄0

ε
+ φ̄(ȳ0)/ε

+ γ(2γ̄e(ν∆))/(λε)
)

m ln µV
ln(1+h) =: c1(∆, ν, ε)

(78)

and c2 = (m(1 + h)c1. We have|xCE(t)| 6 x̄ for all
t ∈ [t0, Tmax). In view of y = yp⋆ + (y− yp⋆) and (28),
we have

|y(t)| 6 kc(x̄) + βe(ȳ0, 0) + γe(ν∆).

Define

χ∆,ν := kc(x̄) + βe(ȳ0, 0) + γe(ν∆). (79)

By the assumption (32) of the theorem,χ∆,ν < νM .
From the definition ofTmax, it follows that we have
Tmax = ∞.

If {µ̄0, ȳ0, x̄0} → 0, c1 andc2 converge to a constant
of the forma0(1+γ0(ν∆)/ε)κ for some positive constant
a0 andγ0 ∈ K∞. From the formulae ofχM,∆, c1, and
c2, it follows that

χM,∆ → γ1(γ̄0(γ0(ν∆)/ε))(ε + γ2(ν∆))) + γ3(ν∆)
(80)

as{µ̄0, ȳ0, x̄0} → 0 for someγ1 ∈ K andγ2, γ3 ∈ K∞,
and γ̄0(z) := a0(1 + z)κ.

Ultimate boundedness

Let

x := α−1
1 (c2ε+ c2γ(2γ̄e(ν∆))/λ). (81)

Let ǫ0 > 0 and letT1 be such that

α2(x̄0)e
−λT1 + c2ε+ c2e

−λT1 µ̄0 + c2φ(t0 + T1, t0, ȳ0)

+γ(2γe(ν∆))/λ 6 α1(x+ ǫ0).
(82)

The lefthand side of the foregoing equation is strictly
decreasing inT1 to the value of the righthand side.
Therefore, there is a unique such0 < T1 <∞ (existence
follows from the fact that the lefthand side is greater
than the righthand side atT1 = 0). There also exists
T2, 0 < T2 < ∞ such thatβe(ȳ0, T2) 6 ǫ0. Let
T3 := max{T1, T2}. From (76) and (82),|xp̂(t)| 6 x+ǫ0
for all t > t0 + T . Then |yp̂(t)| 6 kc(x + ǫ0).
Because|yp̂(t) − y(t)| 6 βe(ȳ0, t − t0) + γe(ν∆) in
view of (28), it follows that |y(t)| 6 ǫ0 + γe(ν∆) +

kc(x + ǫ0) =: y(ǫ0) for all t > t0 + T . We also
have |up(t)| 6 maxp∈P sup|z1|6x+ǫ0,|z2|6y rp(z1, z2) =:

u(ǫ0) ∀t > t0 + T . From (30), we get|x(t)| 6

β(|x(T )|, t−t0−T )+γu(u(ǫ0))+γy(y(ǫ0)) ∀t > t0+T2.
Let T3, 0 < T3 <∞, be such thatβ(x+ǫ0, T3) = ǫ0 and
T := max{T1, T2, T3}. Then |x(t)| 6 ǫ0 + γu(u(ǫ0)) +
γy(y(ǫ0)) ∀t > t0 + T. Define

ψ
∆,ν

:= γu(u(0)) + γy(y(0)). (83)

For every ǫx > 0, there existsǫ0 > 0 such that
ǫ0 + γu(u(ǫ0)) + γy(y(ǫ0)) = ψ

∆,ν
+ ǫx. Therefore,

for every ǫx > 0, there exists0 < T < ∞ such that
|x(t)| 6 ψ

∆,ν
+ ǫx ∀t > t0 + T. In view of (80),

we have thatkc(x) → γ1(γ̄0(γ0(ν∆)/ε))(ε + γ2(ν∆)))
as {µ̄0, ȳ0, x̄0} → 0, whereγ0, γ1, γ2 are as in (80). It
follows thatψ

∆,ν
can always be bounded by a function

ψx
∆,ν of the form γ̄x(γ1(γ̄0(γ0(ν∆)/ε)(ε + γ2(ν∆))) +
γe(ν∆)) for someγ̄x ∈ K∞.

D. Proof of Theorem 4

Let

µ := ε+ γ(2γ̄e(ν∆))/λ, (84a)

y := γ̄e(ν∆). (84b)

The functionγ4 and γ5 in the theorem areγ4(z) :=
γ(2γ̄e(z))/λ and γ5 = γ̄e. The functionψ∆,ν,ε in the
theorem isx as in (81). LetT1, T2, T3 be such that

c1α2(x̄0)e
−λT1 + c2e

−λT1 µ̄0 + 2c2φ(t0 + T1, t0, ȳ0)

6 ρα1(x̄0) − α1(x)
(85a)

φ(t0 + T1, t0, ρȳ0) 6 ρφ(t0 + T1, t0, ȳ0) (85b)

βe(ȳ0, T2) 6 ρȳ0 − y (85c)

e−λT3 µ̄0 + φ(t0 + T3, t0, ȳ0) 6 ρµ̄0 − µ. (85d)

The existence of such0 < T1 < ∞ follows from the
hypothesis (34a), and0 < T3 < ∞ follows from the
hypothesis (34c).

Let T := max{T1, T2, T3}. Then we have

α1(|xCE(t)|) 6 ρα1(x̄0), (86)

µp̂(t) 6 ρµ̄0, (87)

|yp̂(t) − y(t)| 6 ρȳ0 ∀t > t0 + T. (88)

Suppose that at timeT , we reduceν by factorkν and
ε by factor kε. From (78), because of (34h), we have
that c1 does not increase at timeT1 i.e. c1(T1) 6 c1(t0).
Then also,c2(T1) 6 c2(t0). From (85c),

|yp̂(T ) − y(T )| 6 ρȳ0, (89)



in view of T > T2. From (34d) and (34f),

α1(|xCE(T )|) 6 ρα1(|xCE(t0)|). (90)

From (34g), (34d), (34e), (85b), (31b), and (89), the
lefthand side of (85a) is reduced by a factor of at least
ρ at time T . From (90), the righthand side of (85a) is
reduced by a factor of at mostρ when we replacēx0

by α−1
1 (ρα1(x̄0)). Thus, (85a) holds true at timeT . The

inequality (85b) also holds true at timeT because of
(31b). The inequality (85c) holds true when we replace
ȳ0 by ρȳ0 because of (34e) and (89). The inequality (85d)
holds true when we replacēµ0 by ρµ̄0 because of (34d)
and (85b). Thus, at timeT , all the sub-equations in (85)
hold true when we replace the old boundsx̄0, µ̄0, and
ȳ0 by the new bounds which are of factorρ of the old
bounds. It follows that we can repeat the procedure at
time 2T by reducingν by factorkν andε by factorkε,
and so on. We then have

|xCE(t0 + kT )| 6 ρkx̄0 k = 1, 2, . . . .

This implies that|xCE(t)| → 0 as t → ∞. Hence,
|xp(t)| → 0 as t → ∞ for all p, and so|yp(t)| → 0
as t → ∞ for all p. Also, |yp̂(kT ) − y(kT )| 6 ρkȳ0,
and so|yp̂(t) − y(t)| → 0 as t → ∞. We then have
|y(t)| → 0 ast→ ∞. We also have|up| → 0 ast→ ∞
for all p becauseup is a function ofxC and y and the
control signal is zero whenxC = 0, y = 0. From the
IOSS property (30), we have that|x(t)| → 0 ast→ ∞.
From bounded ofxCE, it is clear thatxE and xC are
bounded. From boundedness ofyp−Q(y) (which follows
from boundedness ofyp andy), µp are bounded for all
p ∈ P.


