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On Stability of Randomly Switched Nonlinear Systems

Debasish Chatterjee and Daniel Liberzon

Abstract—This note is concerned with stability analysis and stabilization
of randomly switched systems. These systems may be regarded as piece-
wise deterministic stochastic systems: the discrete switches are triggered
by a stochastic process which is independent of the state of the system,
and between two consecutive switching instants the dynamics are deter-
ministic. Qur results provide sufficient conditions for almost sure stability
and stability in the mean using Lyapunov-based methods when individual
subsystems are stable and a certain ‘‘slow switching” condition holds. This
slow switching condition takes the form of an asymptotic upper bound on
the probability mass function of the number of switches that occur be-
tween the initial and current time instants. This condition is shown to hold
for switching signals coming from the states of finite-dimensional contin-
uous-time Markov chains; our results, therefore, hold for Markovian jump
systems in particular. For systems with control inputs, we provide explicit
control schemes for feedback stabilization using the universal formula for
stabilization of nonlinear systems.

Index Terms—Almost sure and mean stochastic stability, random
switching, stabilization, switched systems.

I. INTRODUCTION

Randomly switched systems consist of a family of subsystems, to-
gether with a random switching signal which specifies the active sub-
system at every instant of time. Since the dynamics are governed by an
ordinary differential equation between any two successive switching
instants, these systems may be regarded as piecewise deterministic sto-
chastic systems [1]. These systems have variable structure, and can be
used as models for systems affected by random structural changes. Ap-
plications of randomly switched systems include economic and manu-
facturing systems, communication and biological systems affected by
random delays and component failures, etc. One particularly interesting
phenomenon is observed in certain sea snails “Pleurobranchea” and
“Tritonia.”! These organisms have simple neural networks and persis-
tent stimuli cause them to swim. Random changes in stimuli, e.g., scent
of random food locations or random noxious environmental conditions,
cause them to take orienting turns towards food, or avoidance turns
away from the noxious agents, respectively.

A particular class of piecewise deterministic stochastic systems has
received widespread attention, namely, Markovian jump linear systems
(MIJLS). These systems may be realized as a family of linear sub-
systems, together with a switching signal generated by the state of a
continuous-time Markov chain. Stability and stabilization (see [2] for
a detailed survey on different notions and results on stochastic sta-
bility) of MJLS have been extensively investigated, especially, under
the assumption that the parameters of the Markov chain are completely
known; see, e.g., [3]-[6] and the references therein. In particular, al-
most sure stabilization and stabilization in the mean of MJLS is dis-
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cussed in [5], where the authors also establish precise equivalences be-
tween different stability notions for MJLS.

In this note, we neither restrict ourselves to linear subsystems nor to
Markovian switching signals. Our results provide sufficient conditions
for almost sure stability of randomly switched nonlinear systems when
each subsystem is stable, and the switching is “slow” in a certain sta-
tistical sense. The slow switching condition takes the form of an upper
bound on the probability mass function of the number of switches be-
tween the initial and current time instants. This condition is shown to
hold in the case of switching signals coming from finite-dimensional
continuous-time Markov chains; consequently, our results can be ap-
plied to Markovian jump systems under appropriate conditions on the
parameters of the generator matrices of the underlying Markov chains.
Since almost sure stability implies stability in probability [7], our re-
sults also provide sufficient conditions for stability in probability of
randomly switched systems; a variant of stability in the mean is also
obtained. Based on our analysis, we propose control schemes which
achieve almost sure stabilization and stabilization in the mean for sys-
tems with control inputs, by employing the universal formula for non-
linear feedback stabilization [8].

A myriad of techniques have been employed to study stability and
stabilization of piecewise deterministic stochastic systems. Hamilton—
Jacobi-Bellman (HJB) equation-based optimal control schemes for
piecewise deterministic stochastic systems are well studied; see, e.g.,
[1] for a detailed account. Linear control systems admit analytically
solvable linear quadratic optimal design methods, and such techniques
have been effectively combined with the stochastic nature of structural
variations in [4]; stabilization schemes based on Lyapunov exponents
are studied in [5]. Game-theoretic techniques [9] in the presence of
disturbance inputs and spectral theory of Markov operators [10] have
also been employed to study these systems. Stabilization schemes
using robust control methods are investigated in [11]; see, also, the
references cited there. Stochastic hybrid systems, where the switching
signal and its transition probabilities are state dependent, are studied
in [12] and [13], using an extended definition of the infinitesimal
generator and optimal control strategies, respectively.

In contrast to the aforementioned references, our techniques rely on
the method of multiple Lyapunov functions, discussed in the context
of stability analysis and stabilization of deterministic switched systems
in [14, ch. 3]. Our results conceptually parallel the ones on determin-
istic switched systems, which require stability of individual subsys-
tems and a slow switching condition; see, e.g., [14, ch. 3]. We employ
multiple Lyapunov functions for stability analysis and stabilizing con-
troller design, coupled with suitable assumptions to take care of the
stochastic nature of the switching signal. Recently, a method of stabi-
lization in probability of Markovian jump systems, with control and
white noise disturbance inputs for each subsystem, has been proposed
in [15], which is similar in spirit. We propose stronger results that apply
to a wider class of systems and switching signals, although our model
is simpler due to the absence of noise.

II. PRELIMINARIES

Let the Euclidean norm be denoted by || - ||, the interval [0, oo[ by
R>o, and the set of natural numbers {1,2,...} by N. Recall that a
continuous function o : Ryg — Ryo is of class K if « is strictly
increasing with «(0) = 0, of class K if in addition a(r) — oo as
r — oo; we write o € K and o € K, respectively.

We define the family of systems

&= fp(x), p€EP (1
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where the state + € R", P is a finite index set of N elements: P =
{1,...,N}, the functions f, : R® — R" are locally Lipschitz,
fp(0) = 0, and p € P. To define a switched system for the family,
we consider a piecewise constant function (continuous from the right
by convention) o : Ry — P, which specifies at every instant of
time ¢ the index o (t) = p € P of the active subsystem. The switched
system [14] for the family (1) generated by this switching signal o is

T = fo(z) x(0) = xo, t>0. ?2)
We assume that there are no jumps in the state x at the switching
instants.

Let (€2, 5, (&t)t=0,P) be a complete filtered probability space,
where (§¢)¢>o is the natural filtration (satisfying the usual conditions)
generated by a cadldg random process ¢ taking values in P. Let o
be the switching signal to the family (1), generating the randomly
switched system (2). Let the switching instants of o be denoted by
m,i = 1,2,..., and let 7o := 0 by a convention. As a conse-
quence of the hypotheses of our main result, there is no explosion
almost surely (see Remark 4 for details); therefore, the sequence
(7 )izo0 is divergent. Finally, we assume that for every compact subset
K C Ryo x R" there exists an integrable function my satisfying
sup,ep [ fp(@)|| < muy(¢) for all (¢,2) € K. Hence, almost surely,
there exists a unique solution to (2) in the sense of Carathéodory [17]
over a nontrivial time interval containing 0; existence and uniqueness
of a global solution will follow from the hypotheses of our main result.
We let 2(-) denote this solution. For 2o = 0, the solution to (2) is
identically O for every o; we will ignore this trivial case in the sequel.

We focus on the notion of stability defined in the following.

Definition 1: The system (2) is said to be globally asymptotically
stable almost surely (GAS a.s.) if the following two properties are si-
multaneously verified:

SP1) P(V= > 0 36(e) > O such that ||zo]] < 6(g) implies
sup,so le(®)]] < 2) = 13
SP2) P(Vr,e’ > 03T(r,e') > 0 such that ||xo|| < 7 implies
SUDsT(ren 2] < ') = 1.
&

III. STABILITY UNDER RANDOM SWITCHING

A. Global Asymptotic Stability Almost Surely

For a switching signal o, we denote the number of switches on the
interval ]0, ¢] by N (t). The following main result of this article pro-
vides sufficient conditions for GAS a.s. of (2).

Theorem 2: Consider the system (2). Suppose that there exist con-
tinuously differentiable functions V), : R* — Rxo, p € P, functions
ay,as € Ko, and real numbers A\, A, Ao > 0, g > 1, such that the
following hold:

D ai(|lz])) < Vi (x) < axlz]]) Vo € R, Vp € P;
2) (9V,/0x)fp(x) < =X Vyp(x) Vo € R",Vp € P;
3) Vi, (w) < uVp, (@) Vo € R™,Vp1,p2 € P;
4) 3IM € NU {0} such that Vi > M we have P(N, () = k) <
((Xf,)kef”/ic!);
5) 1< (do + N/
Then, (2) is GAS a.s.

Before proving Theorem 2, let us make the following observations.

Remark 3: Hypothesis 2) of Theorem 2 implies that each subsystem
of the family (1) is globally asymptotically stable; the right-hand side
of the inequality being linear in V), is no loss of generality, see [18, Th.
2.6.10]. Hypothesis 3) first appeared in [19] and has almost become
a standard in deterministic switched systems literature. It restricts the
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class of applicable Lyapunov functions by requiring the existence of a
maximal global constant ratio among the functions, but it is not known
whether this hypothesis actually incurs a loss of generality. Quadratic
Lyapunov functions are universally considered for linear systems, and
in this case, the existence of a global constant y is automatically guar-
anteed. Since the left-hand side of the inequality in hypothesis 4) is a
probability measure of an event, the right-hand side may be replaced by
min{(e~**(Xt)*/k!), 1}.In the special case when A = X, this hypoth-
esis states that the number of switches N, () on [0, t[ of & is eventually
upper bounded by the probability mass function of a Poisson process
of parameter ). <

Remark 4: Suppose o satisfies hypothesis 4) of Theorem 2. Then,
the probability of an explosion, i.e., of an accumulation of infinitely
many switches over a finite time interval is zero. Indeed, if { € R3¢, the
event that there is an explosion at # = ( is given by [, 1N+ (() 2
v}. However, P((, ¢y {No(¢) 2 v}) <limujeo 30,0, P(No(Q) =
k), and using hypothesis 4), we get lim, o0 32,7, P(N+({) = k)<

lim, joe 3077 e ((X()*/K!) = 0. Since ¢ € Rxo is arbitrary, we
conclude that there is no explosion almost surely. <

The proof of Theorem 2 follows the sequence of Lemmas described
next. The idea of the proof may be briefly summarized as follows.
The property SP2) is proved first by first estimating the expected
value of V() ((t)) for an arbitrary ¢ > () via the moment generating
function of N,(t), and then proving a.s. asymptotic convergence of
(Ve (2(t)))iz0 via Tonelli’s theorem and an auxiliary Lemma that
proves asymptotic convergence of ||«(-)|| from the finiteness of a
certain nonnegative integral. We also observe that since the (finite)
family of subsystems is uniformly locally Lipschitz, the maximal
temporal growth rate of trajectories is upper bounded by a constant
in a neighborhood of 0. The SP1) property can now be established
utilizing this fact and the SP2) property that is proved first, thereby
completing the proof.

Lemma 5: Suppose that hypotheses 2) and 3) of Theorem 2 hold.
Then, we have E[V, 1 (2(t))] < E[e™ NV, o) (z0)e ! Wt >
0.

Proof: Recall that (7;);en are the switching instants of . It fol-
lows from hypothesis 2) that for ¢ € [7;, Ti+1[, we have

Vo (@(1) < Vo(ry (:L'(Ti))eil\o(tir‘l).

In conjunction with hypothesis 3), this yields

"/;(nﬂ) (#(1i1)) < 1V (1) (:L,(Ti))e*/\o(ﬂ{J*ﬂ)‘

Iterating the last inequality from ¢ = 0 to ¢ = N, (t) for an arbitrary
time ¢ > 0, we arrive at

Vo (2(1) < pNo M eV, ) (w0).

Since the initial condition is deterministic, taking expectations on both
sides of the previous inequality, we get

E [Voto (2(0)] < E [ 0] 7 Voo (o)

which proves the claim. |
Lemma 6: Suppose that hypothesis 4) of Theorem 2 holds. Then,
3S > 0 such that the moment generating function EfesN(] of N, (t)

satisfies E[e*Ne (0] < § + oA Nt yg > 0,
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Proof: Using hypothesis 4), for s > 0, a little computation leads

to
E |:esl\"o(t)i| — ZeskP (-Z\To-(f) — k)
k=0
M-—1 oo Nk —’)\\/t
< S P =h+ Y et O
k=0 k=M -
<S+ O(eﬁfi)t
where § := SVt e™™ > 0. Clearly, E[e*Y ()] is well defined for
t>0.

Lemma 7: If ay € K and [ on ([l2(t)[])dt < oo as., then
lim; . z(t) = 0 as.

Sketch of Proof: Suppose that «1 (||«(t)]]) does not converge to 0
on a set of positive probability. Then, for every event in this set, there
is some £ > 0 such that after any time 7" there exists a time at which
|<(-)|] will be larger than =. ||«(-)|| always stays above & after that,
in which case the integral cannot be finite, or there exists a time s at
which ||z(s)|| = . Since f, is locally Lipschitz for every p € P and
P is a finite set, we know that ||#(+)|| cannot converge to O faster than a
certain exponential function of time ¢ ™" “(t=%) 'where L is the uniform
Lipschitz constant for { f, } pe on the £-ball around 0. Since a; € K,
ay (||(8)]]) is lower bounded by o (ce~“(*~*)). However, since the
integral [ vy (||(t)]|)dt < oo, we can find a time T after which the
tail of the integral is less than # for an arbitrary preassigned n > 0.
Picking n = f:o o1 (ee”(=2))d¢, we reach a contradiction. ]

Lemma 8: The system (2) has the following property: for every £ >
0, there exists L. > 0 such that ||z(#)|| < ||zo]le”s" V¢ > 0 as long
as |[z(t)]| < =.

This is a standard calculation that employs the locally Lipschitz con-
dition on the set of vector fields { f, },eP.

Proof of Theorem 2: To prove that (2) is GAS a.s., we need to
verify the SP1) and SP2) properties in Definition 1.

From Lemmas 5 and 6, it follows that [~ E[V, () (x(t))]dt < oo,
and by Tonelli’s theorem, we have

oo oo

/. E[Vo(x(t)]dt =E /V,(t) (x(t))dt| < oo.

0 0

By hypothesis 1), we get [ oy ([|«(#)|])dt < oo a.s., and Lemma 7
shows that lim¢—. . ||2(¢)|| = 0 a.s., which proves SP2)

Now, we verify SP1). Fix ¢ > 0. We know from the SP2) prop-
erty proved previously that almost surely there exists T(1,&) > 0
such that ||ao|| < 1 implies sup; s, ¢, . l(¥)|| < . Select §(¢) =
min{ee <712 11 By Lemma 8, ||0|| < §(<) implies

e < llwolle”" < 8(e)e™ T <o wtel0,T(1,2)].

Further, the SP2) property guarantees that with the previous choice of
6 and xo, we have sup, 57, .) [|2(f)]| < ¢ on a set of full measure.
Thus, ||2]] < &(¢) implies sup, s, [|l2(¢)]| < ¢ a.s. Since ¢ is arbitrary,
the SP1) property of (2) follows.
We conclude that (2) is GAS a.s. |
Remark 9: Besides GAS a.s., global asymptotic stability in the mean
is another important stability concept. The system (2) is said to be glob-
ally asymptotically stable in the mean (GAS-M) if the following two
properties are simultaneously verified: B
SM1) V= > 0 38(s) > 0 such that ||zo]] < &(¢) implies
sup, o Ellle(t)[] <
SM2) Vr,e’ > 0 3T(r,e’) > 0 such that ||zo]] < 7 implies
sup,s 7, ooy Ellle(1)[] < '
We have seen that the hypotheses of Theorem 2 imply that
limy o E[a1(J|z(2)]])] = 0. If o is convex, then this immediately
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gives lim;_.o E[||«(¢)||]] = 0 via Jensen’s inequality,2 which is SM2).
Lemmas 5 and 6 show thatsup, , E[ev1 (||2(#)|D)] < e ([|zo]])(S+1),
which under the assumption that «; is convex, implies SM1). In prac-
tice, the Lyapunov functions are usually taken to be polynomial powers
of the state # and «; is convex. Otherwise, a property analogous to
GAS-M still holds, with oy (||z(¢)]|) replacing ||=(¢)|| everywhere,
and therefore, depends on ;. <

Remark 10: With a slight modification in the hypotheses of The-
orem 2, we can employ standard results in martingale theory to con-
clude almost sure global asymptotic convergence of z(-). Indeed, if
the condition 4) is strengthened to the conditional version P(N, (1) —
No(s) = k|Fs) < e M=I(X(t — )%/ forall k € NU {0},
0 < s < t < oo, then a calculation in the spirit of Lemma 5 shows
that (V,(¢)(«(t)))r>0 is a supermartingale. Lemma 5 also shows that
limy . E[V,(4)(2(¢))] = 0, which implies that the aforesaid process
is a potential. A standard result in martingale theory (e.g., [16, p. 18,
Problem 3.16]) now implies that the process (V) (x(t)))i>0 con-
verges to 0 a.s. Considering hypothesis 1) of Theorem 2, we conclude
that (||=(¢)]])+>0 converges to 0 a.s. q

B. Markovian Jump Systems

We note that hypothesis 4) of Theorem 2 stipulates that V¢ € Rxo
the tail of the probability mass function of the random variable N, () is
majorized (i.e., stochastically dominated) by the probability mass func-
tion of a “maximally” switching jump-stochastic process. This hypoth-
esis can be verified, in particular, if ¢ is the state of a continuous-time
Markov chain, with a given generator matrix () = [¢;;]nx~ and a given
initial probability distribution 7° (recall that IV is the number of ele-
ments of 7); we denote this by ¢ ~ (7°, (). Lemma 11 and Corollary
12 make this statement precise.

Let us recall some basic facts about continuous-time Markov chains;
see, e.g., [21] for further details. Associated with the Markov chain
o ~ (7°,Q) is the Kolmogorov forward equation

P(t)=P(t)Q P(0)=Inxn, t20

where Inxn is the N-dimensional identity matrix; the probability

(row) vector at any time ¢ > 0 is given by w(¢) = w°P(¢). We need

the following two facts.

MC1) The generator matrix () = [g:j]nx~ satisfies (¢;; > 0¢ # 7),
and (3, cpyq;y i = —¢is) fori, j € P.

MC2) P(o(t+h) = jlo(t) = i) = éi; +qi;h+o(h) forh > 0, and
d;; is the Kronecker delta. This is known as the infinitesimal
description of a continuous-time Markov chain.

We define

7 := max {|qi:||i € P}, ¢:= max{qli,j € P}. 3)

Lemma 11: Suppose that ¢ ~ (7°,()) is a Markov chain. Then,
Vt € Ry, we have P(N, () = k) < e™7(qt)* /k! VE € N U {0}.
Proof: Fort € Rxo and & € N U {0}, define n(t) :=
P[N,(t) = k]. For h > 0 sufficiently small, V& € NU {0}

ne(t+h)= i P(No(t+h)—N,(t)=i) P (N, (t)=k—4). (4
=0
By the infinitesimal description of a Markov chain MC2)
P(N,(t+1h)— N,(t)=0) <1—gh+o(h) (5)
and
P(No(t+h)— No(t) =1) < gh + o(h). (6)
2We recall Jensen’s inequality [20, p. 80]: if X is an integrable real-valued

random variable on (£2, §, P), and if ¢ : R — R is a convex function, then

o(E[IX]) < E[s(|X])].
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For all natural numbers & > 2, MC2) shows that
P(No(t+h)— No(t) = k) = o(h). @)
Using (5)—(7), we continue the calculation in (4)
Ne(t+h) < (1=gh+o(h))ne(t)+(G@h+o(h))ne—1(t)+o(h)

which leads to

ne(t+ 1) — ()
h =

— @) + T () + O(h).

Taking limits with 2 | 0, the following differential inequality is ob-
tained:

Ne(t) < —gqne(t) + que—1 (%), n(0) =0 vk € N.
(We have identical differential inequalities starting with £ > ( and
h < 0 sufficiently small.) A similar analysis yields

no(t) < —gno(t),  m0(0)=1.
In matrix notation, the set of differential inequalities involving 7y, k €
N U {0}, stands as

o -7 0 0 -7 T[n 170(0) 1
n 7 -¢ 0 | |m 11(0) 0
b |S|10 7 -7

g —q - s n200) | = |o (8

where the “<” is interpreted componentwise. Clearly, 1o (t) < e~ %,
t > 0, satisfies the first differential inequality. We claim that

m(t) <e (@) /K Vt>=0  VkEN )
is a solution to (8). Indeed, for & = 1, we have i1 < Gno — 1 <
ge™ 9" — gn1, which leads to

t

et () < ety (0) + ﬁ/ ds

0

hence, nie? < (gt) (in view of 71(0) = 0), yielding 1 (t) <
(7t)e™, ¢ > 0. Having verified the claim for & = 1, an induction
argument shows that for arbitrary j

t

N - .
e i (1) < e”'njia(0) +§/ (qj') ds
i

hence, nj1e?" < (gt)’T' /(5 + 1! (in view of n;41(0) = 0),
yielding 7;41(t) < (@) ' /(G + 1), t > 0. In view of the
definition of 7 (), the thesis of the Lemma follows. [ |

Corollary 12: Consider the system (2), and let § and g be defined
by (3). Suppose that & ~ (7w°, Q) is a Markov chain, and that there
exist continuously differentiable functions V,, : R" — Rx>o,p € P,
functions o1, s € Ko, and a real number ;¢ > 1, such that the
following hold:

D ar(fJz]]) € Vp(z) < ax(||z|]) V& € R, Vp € P;

2) (OVp/0x)fp(x) < =XoVp(x) Ve € R™,Vp € P;

3) Vou(x) < pVp,(2) Vo € R", Vp1,p2 € P;

4 < (X+9)/q.
Then, (2) is GAS a.s.

Proof: 1t follows directly from Lemma 11 and Theorem 2 with

M = 0 in hypothesis 4).
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IV. STABILIZATION OF RANDOMLY SWITCHED CONTROL SYSTEMS

In this section, we establish a method for designing controllers that
ensure almost sure global asymptotic stability of control-affine ran-
domly switched systems in the closed loop. The method may be viewed
as an application of our results in Section III. We assume that at each
instant of time ¢, the state o (t) € P of the random switching signal is
perfectly known to the controller.

Consider the affine in control switched system

b= fol2)+ Y goilw)ui, 2(0) = o, t>0  (10)
=1

where » € R” is the state, u;, i = 1,...,m, are the control inputs,
u; € R, fp, and g,,; are smooth vector fields on R"”, with f,(0) = 0
and g,,;(0) = 0, foreach p € P,i € {1,..., m}. With a feedback
control function %, () = [te.1(2), ..., U m(x)]T, the closed loop
system stands as

* = fo(x)+ Zgg‘i(‘r)ﬁg,i(‘r), z(0) = wo, t>0. (11)
=1

Our objective is to select the control function @, so that (11) is GAS
a.s. Let the switching signal o be a stochastic process as defined in
Section II, and let #:p # 0.

A universal formula for stabilization of control-affine nonlinear sys-
tems was first constructed in [8], for the control taking values in R™.

Theorem 13: Consider the system (10). Suppose that o satisfies hy-
pothesis 4) of Theorem 2, and there exists a family of continuously
differentiable functions V,, : R" — Rxo, p € P, such that the fol-
lowing hold:

C1) hypothesis 1) of Theorem 2 holds;

C2) hypothesis 3) of Theorem 2 holds;

C3) IXo > OsuchthatVe € R™ \ {0} andVp € P

inf {prﬂ)(,r) + AoVp(2) + Zu,;Lgp_in(,r)} < 0;

uER™ ;
=1
C4) Ve > 0386 > 0 such that if z(# 0) satisfies ||z|| < &, then
Ju € R™, ||u|| < =, such that Vp € P
Li, Vo Y wi- Ly, ¥y < =XV
=1

C5) hypothesis 5) of Theorem 2 holds.
Then, the feedback control

Uy () = [ko,i (). .., k(,,m(x)]T

where
kpi(x) = =Ly Vp(a)- (Wp(w),m(i)) (122)
W) :=Lys, Vp(x) + Ao Vp (), (12b)
Wy(x) =Y (Ly,, Vol2))” (12¢)
=1
and
a++/a2+b2 .
plab)y:=4 — 5 ifb#0, (12d)
), otherwise

renders (11) GAS a.s.
Proof: The proof relies on the construction of the universal for-
mulain [8]. Fix t € Rxo.If  # 0, applying the definition ofy, we get

L, Ve (@) + D ko(w),i(@) Loy, Vo ()
=1

—~ S o~ 2
=Ly, Vo () =Wy (2) - 9 (va(t) (z). (‘”Va(t) (w)) >
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Fig. 1. Portion of a typical execution of o defined in Section V, and the corre-
sponding evolution of (13). (a) States of o against time. (b) Portion of the state
trajectory.

) _ 2 —~ ) 2
= —AoVor(w) — \/ (Lfau%(t)(x)) + (Wam(l’))
< A Vo ().

Since t is arbitrary, we conclude that the previous inequality
holds for all ¥+ € Ryo. Note that by C3), if for any p € P,
x € VL, ker(Lg, ;Vp), we automatically have Ly, Vo (x) +
Ao V(o () < 0.C4) is the small control property, ensuring continuity
of the control function at O for each fixed index p; this guarantees the
existence of a unique local solution to the switched system.

The previous arguments, in conjunction with C1) and C2), enable us
to conclude that the family (V) ,e» satisfies hypotheses 1)-3) of The-
orem 2 for the closed-loop system (11). C5) ensures that hypothesis 5)
of Theorem 2 holds for (11). Since ¢ satisfies hypothesis 4) of Theorem
2, it follows from Theorem 2 applied to (11), that (11) is GAS a.s. W

9p,i

V. NUMERICAL EXAMPLE

In this section, we study an illustrative example. Let P = {1,2},
x = [a1, .’lfQ]T € R?, and let the two subsystems be given by

3
—5T1+ X2

—2x — 28
2 fz(;t):|: ’ 1 ’ $1:| .
(21 + @2)sin g — 3as T1 — X2

Let o generate the switched system

fi(z)=

= fo(x), z(0) = zo, t>0 (13)
where ¢ is a jump stochastic process specified in terms of the holding
times Sy := Tr4+1 — 7% as follows: the sequence (Sk)keNu{O} is an
independent sequence of exponential random variables of parameter
A = 0.2. An easy calculation shows that o satisfies hypothesis 4) of
Theorem 2 with X\ = X\ = .

Consider the following two candidate Lyapunov functions:
. 1 . 1
Vi(e) = 3(o +48) Va(e) = 2ot + a3

corresponding to the previous subsystems f; and f>. Clearly, Vi < 2754
and Vo < Vi therefore, V; < 2V for i, j € P, which means 1 = 2.
A quick calculation shows that

Ly Vi(z) < =Vi(z) LgVo(z) < —Va(w)
which means Ao = 1. It follows easily that hypothesis 5) of Theorem
2 holds and, hence, the system (13) is GAS a.s. A typical execution
fragment of (13), initialized at (15, 15), is given in Fig. 1.
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VI. CONCLUSION AND FURTHER WORK

We have provided sufficient conditions for almost sure stability of
randomly switched systems, together with control strategies for almost
sure stabilization for systems with control inputs. It may be possible to
improve upon the proposed results by utilizing the jump destinations
of the switching signal, and in the case of Markov chains, its graph and
the associated transition probability matrix. Stabilization of randomly
switched systems with control inputs without perfect knowledge of &
is a nontrivial and important issue. Input-to-state stability properties,
existence and uniqueness of invariant measures, and other asymptotic
properties of randomly switched systems are interesting avenues for
future research. Results on these will be reported elsewhere.
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