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is considered by the example of controlling the pendulum’s energy. A feedback control law based on
the speed gradient algorithm is chosen. The main result consisting in precisely characterizing allowed
quantization error bounds and resulting energy deviation bounds is presented.
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1. Introduction

Control theory has initially been developed under idealistic
assumptions regarding information transmission in a feedback
loop. More recently, however, researchers have been increasingly
interested in the question of how much information is really
needed to perform a desired control task, or conversely, what
control objectives can be achieved with a given amount of
information. Such considerations arise from applications where
scarce communication resources, sensor limitations, or security
concerns play a role, and are also motivated by theoretical interest
in understanding the interplay between information and control.

Among the various phenomena responsible for a limited
amount of information available in a feedback loop, quantization
is one of the most basic and widely investigated. By a quantizer
we mean a function that maps a continuous real-valued system
signal into a piecewise constant one taking a finite set of values,
thereby encoding this signal using a finite alphabet. Notable early
studies of the effect of quantization on the behavior of control
systems include (Curry, 1970; Delchamps, 1990; Kalman, 1956;
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Miller, Mousa, & Michel, 1988), and a brief overview of the recent
literature can be found in Sharon and Liberzon (2012).

One approach to analysis of quantized control systems, taken
in Liberzon (2003) and elsewhere, involves modeling quantiza-
tion effects as additive errors. If the controller possesses suitable
robustness with respect to such errors, then the system perfor-
mance can be shown to degrade gracefully due to quantization. In
the context of stabilizing an equilibrium, instead of global asymp-
totic stabilization one typically obtains two nested invariant re-
gions such that all trajectories starting in the larger one converge
to the smaller one, a fact usually established by Lyapunov argu-
ments. While robustness to additive errors is automatic for lin-
ear systems and linear feedback controllers, for general nonlinear
systems the robustness requirements can be quite restrictive and
finding a controller meeting such requirements can be challenging
(Liberzon, 2003).

Pendulum dynamics is a popular and important benchmark
system in control theory. The problem of stabilizing the upright
equilibrium, as well as the problem of controlling the pendulum’s
energy to a desired level, have been widely studied and call for
innovative solutions. In particular, it is known (see, e.g., Shiriaev,
Egeland, Ludvigsen, & Fradkov, 2001) that the upright equilib-
rium cannot be globally asymptotically stabilized by continuous
feedback. See Angeli (2001), Åström and Furuta (2000), Rantzer
and Ceragioli (2001), Shiriaev et al. (2001), Teel (1996) and the
references therein for some interesting contributions to pendulum
control. More generally, the problem of energy control for Hamil-
tonian systems was first considered in Fradkov (1996). In Shiriaev
and Fradkov (2000, 2001) extended conditions for control of in-
variant sets were proposed with application to energy control of
the pendulum.
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In this paper we consider the problem of controlling the
pendulum’s energy to a desired level using quantized state
feedback. As the nominal feedback law, we choose one based on
the speed gradient method from Fradkov (1980) (which stabilizes
any energy level without quantization). As a candidate Lyapunov
function, we choose the squared difference between the current
and the desired energy levels (which decreases for the closed-
loop system without quantization). We show that in the presence
of sufficiently small state quantization errors, even though the
Lyapunov function may not always decrease, the time periods on
which itmay increase and the amount bywhich itmay increase are
suitably bounded and decreasing behavior still dominates. Using
these properties, we are able to establish that if the initial energy
level is not too far from the desired one, then it will remain not too
far from it and will eventually become close to it. While this result
may appear intuitively not surprising, our main contribution lies
in precisely characterizing allowed quantization error bounds and
resulting energy deviation bounds.

The rest of the paper is structured as follows. In Section 2 the
general problem of the pendulum’s energy control using quantized
state feedback is described. Our main result is presented in Sec-
tion 3. Section 4 is devoted to a numerical example demonstrating
the performance predicted by the main theorem.

2. Problem formulation

Consider the pendulum equations

ϕ̈(t) = −
g
l
sinϕ(t) +

1
ml2

u(t), (1)

where ϕ is a deviation angle (ϕ = 0 at the lower position), u is a
controlling torque, g is a gravity acceleration,m and l are the mass
and the length of the pendulum respectively.

Assume that H(ϕ, ϕ̇) is the full energy of the pendulum, i.e.

H(ϕ, ϕ̇) =
1
2
ml2ϕ̇2

+ mgl(1 − cosϕ).

Consider the problem of energy level stabilization of system (1).
Let z = [ϕ, ϕ̇]

T , z ∈ R2. Let h (h < 2mgl) be a positive number.
Consider a set

Xh = {z : 0 < H(z) 6 h} .

Let H∗ (0 < H∗ < h) be desired energy level and the goal function
be as follows

V (z) =
1
2

(H(z) − H∗)
2 . (2)

It is required to design a feedback law

u = U(z),

providing the achievement of the control goal

lim
t→∞

V (z(t, z0)) = 0, (3)

where the initial energy level H(z0) satisfies the following
assumption:

z0 ∈ Xh, (4)

i.e. z0 belongs to energy layer between 0 and h.
The algorithmdesign is basedon the speed gradientmethod (Frad-

kov, 1980, 2007; Fradkov & Andrievsky, 2011). According to the
speed gradient method it is required to calculate the function
ω(z, u) = V̇ (z), i.e.ω(z, u) is the speed of variation of the quantity
V along the trajectories of system (1)

ω(z, u) = (H(z) − H∗) BT z u,
Fig. 1. Quantizer regions.

where B = [0, 1]T . Let us find u-derivative of ω(z, u) and write
down the control algorithm in the finite form

u = U(z) = −γ
∂ω

∂u
= −γ (H(z) − H∗) BT z, (5)

where γ > 0.
The idea of algorithm (5) can be explained as follows (Fradkov,

2005). To achieve control goal (3), it is advisable to vary u such that
V decreases. But because V does not depend on u, it is difficult to
find the direction of such decrease. Instead, one can decrease V̇ by
ensuring that V̇ < 0, which is the condition that V decreases. The
function V̇ (z) = ω(z, u) explicitly depends on u, which makes it
possible to design algorithm (5).

The following theorem, characterizing the performance of
control algorithm (5), can be directly concluded from Theorem 3.1
and Remark 3.1 in Fradkov (2007).

Theorem 1. If the initial energy layer between the levels H(z0) and
H∗ does not contain an equilibrium of the unforced system, then the
goal level H∗ will be achieved in the controlled system (1), (5) for any
γ > 0 from all initial conditions.

The fulfillment of the condition in Theorem 1 follows from (4).
Let the set Z = {zi : zi ∈ Xh, i ∈ N}


zsat be a finite subset of

Xh


zsat , where zsat ∈ R2. Consider quantizer q(z) : R2
→ Z pro-

posed in Liberzon (2003). Assume that Zi =

z ∈ R2

: q(z) = zi


are quantizer regions (Fig. 1), such that


Zi = Xh. Hence, q(z) = zi
for all z ∈ Zi, i ∈ N. When z does not belong to the union of quan-
tization regions, the quantizer saturates, i.e. q(z) = zsat if z ∉ Xh.

Suppose that only quantized measurements q(z) of the state z
are available. Then the state feedback law (5) is non-implement-
able. Hence, instead of continuous control (5) consider quantized
feedback control law (5):

u = U(q(z)) = −γ (H(q(z)) − H∗) BTq(z), (6)

and control goal

lim sup
t→∞

|H(z(t)) − H∗| < ~1, (7)

where ~1 is some positive number.
Therefore, the problem is to find conditions of achievement of

the goal (7) with quantized state feedback control (6). Note that
assumption (4) is essential in the case of control algorithm (5) but
can be omitted with using modifications of (5). In Shiriaev et al.
(2001) it is shown that the global attractivity of the upright equi-
librium can be achieved by amodification of the speed gradient en-
ergymethod based on the idea of variable structure systems (VSS).
However, an application of such a modified algorithm to the case
of quantized measurements does not seem straightforward and is
not pursued here.
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3. Main result

Let e(z) = q(z)−z = [e1(z), e2(z)]T be a quantizer error vector.
Assume that quantizer is chosen such that

|e1(z)| 6 ∆1, |e2(z)| 6 ∆2 for all z ∈ Xh. (8)

Hence, |e(z)| 6


∆2

1 + ∆2
2 = ∆ for all z ∈ Xh.

Law (6) can be rewritten as follows:

U(q(z)) = U(z) + eu(z),

where

eu(z) = −γ


1
2
ml2(e2(z) + ϕ̇)2

+mgl (1 − cos (ϕ + e1(z))) − H∗


e2(z)

+


ml2


ϕ̇ +

1
2
e2(z)


e2(z)

+mgl(cosϕ − cos(ϕ + e1(z)))


ϕ̇


.

Note that for all z ∈ Xh

mgl (1 − cos (ϕ + e1(z))) = H(ϕ + e1(z), 0) 6 h, (9)

and

|cosϕ − cos(ϕ + e1(z))|

= 2
sin 2ϕ + e1(z)

2
sin

e1(z)
2


6 2

sin e1(z)
2

 6 2 sin
δ

2
, (10)

where δ = min{π, ∆1}.

From (8) to (10) and ϕ̇ 6


2h
ml2

, one obtains

|eu(z)| 6 γ ∆e for all z ∈ Xh, (11)

where

∆e =
1
2
ml2∆3

2 +
3l

√
2mh
2

∆2
2 + (4h − H∗)∆2 + 2g

√
2mh sin

δ

2
.

Denote for any b > a > 0 the set

V−1
[a,b] = {z ∈ Xh : a 6 V (z) 6 b} ,

and for any d > c > 0 the set

H−1
[c,d] = {z ∈ Xh : c 6 H(z) 6 d} .

It is easy to see that

V−1
[a,b] = H−1

H∗+
√
2a,H∗+

√
2b
 ∪ H−1

H∗−
√
2b,H∗−

√
2a
.

Let h∗ be a positive constant, satisfying the condition h∗ < min{H∗,
h − H∗}. Consider the following functions of scalar variable y:

f1(y) = H∗ − h∗ −
3ml2 ∆2

e

y2
,

f2(y) =
g
l


1 −


1 −

f0(y)
mgl

2

−
γ∆e

ml2


h∗

√
6

y
+ 1


,

where f0(y) = min {2mgl − H∗ − h∗, f1(y)} ,

f3(y) = 4h2
∗
− y2 −

16
√
6 γ ∆3

e

f2(y) y
,

f4(y) =
1
12

y2 arccos

1 −

f1(y)
mgl


f2(y) − ∆2

e .

The main result is the following theorem.
Theorem 2. If the following system of inequalities

0 < y < 2h∗,

f1(y) > 0, f2(y) > 0, f3(y) > 0, f4(y) > 0 (12)

is feasible with respect to y, then for any solution y = h1 of (12) and
for any given initial condition z(0) ∈ H−1

[H∗−~2,H∗+~2]
trajectories of

closed-loop system (1), (6) satisfy z(t) ∈ H−1
[H∗−h∗,H∗+h∗]

for all t > 0
and there exists T > 0 such that z(t) ∈ H−1

[H∗−~1,H∗+~1]
for all t > T ,

where

~1 =


1
4
h2
1 +

2
√
6 γ ∆3

e

h1f2(h1)
, ~2 =


h2

∗
−

2
√
6 γ ∆3

e

h1f2(h1)
,

i.e. the goal (7) is achieved for ~1 as above.

Corollary 1. For any ~̃1, ~̃2 satisfying ~̃1 < ~̃2 < h∗ there exist
sufficiently small ∆1, ∆2 such that for any given initial condition
z(0) ∈ H−1

[H∗−~̃2,H∗+~̃2]
trajectories of closed-loop system (1), (6) sat-

isfy z(t) ∈ H−1
[H∗−h∗,H∗+h∗]

for all t > 0 and there exists T > 0 such
that z(t) ∈ H−1

[H∗−~̃1,H∗+~̃1]
for all t > T .

Proof of Corollary 1. Let h1 = 2~̃1. If ∆1 → 0 and ∆2 → 0, then
∆e → 0. Hence, ~2 → h∗.

Since the negative terms in f1(h1), f2(h1) and f4(h1) vanish and
f3(h1) → 4(h2

∗
− ~̃2

1 ) > 0 if ∆e → 0 and ~2 → h∗, it is easy to see
that y = 2~̃1 is a solution of system (12).

Finally, from ~2 → h∗ one obtains H−1
[H∗−~̃2,H∗+~̃2]

⊂

H−1
[H∗−~2,H∗+~2]

. Therefore, Corollary 1 directly follows from Theo-
rem 2. �

Remark 1. Since chattering on the boundaries between the quan-
tization regions is possible, the right-hand side of the differential
equation (1), (6) is discontinuous, and its solutions are to be inter-
preted in the sense of Filippov. At the points of discontinuity, the
Filippov solutions are directed along the convex hull of initial di-
rections that are on both sides of the discontinuity. If the vector
fields (on both sides of the boundary of the quantization regions)
are directed toward the boundary, then sliding modes can occur.
(On the other hand, if the trajectory crosses the boundary, then the
solution satisfies the differential equation almost everywhere and
it is a standard Carathéodory solution.) However, this issuewill not
play a significant role in the subsequent stability analysis. The rea-
son is that, according to Filippov (see Filippov, 1988, Section 15,
page 155), we have that (a) after adding convex combinations at
the points of discontinuity of a vector field, the upper bound on V̇
that wewill establish remains valid (does not increase), and (b) the
resulting solutions are absolutely continuous and differentiable al-
most everywhere.

The proof of Theorem 2 is based on the following auxiliary state-
ment that can be proved along the lines of Lemma 1 in Polushin,
Fradkov, Putov, and Rogov (1999).

Lemma 1. Let there exist a constant α > 0, such that V̇ (z) 6 α for all
z ∈ Xh for almost all t > 0, where V̇ (z) is the time derivative of V (z)
along the trajectories of closed-loop system (1), (6). Let there exist
positive constants A, v0, v3 (0 < v0 < v3 < ∞) and continuous
functions β, ϵ : V−1

[v0,v3]
→ R+

\{0}, such that for arbitrary trajectory
z(·) of system (1), (6) if

z(t) ∈ V−1
[v0,v3]

\ Π ∀t ∈ [t1, t2] for some 0 < t1 < t2,

where
Π =


z ∈ Xh : V̇ (z) < −β(z) for almost all t > 0


, then

(a) t2 − t1 6 A, and
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(b) there exists t3 > t2, such that V (z(t3)) − V (z(t1)) 6 −ϵ(z(t1)),
and for all t ∈ (t2, t3) from z(t) ∈ V−1

[v0,v3]
it follows z(t) ∈ Π .

Suppose αA < 1
2 (v3 − v0). Denote v1 = v0 + αA, v2 = v3 − αA. If

z(0) ∈ V−1
[0,v2]

, then z(t) ∈ V−1
[0,v3]

for all t > 0 and there exists T > 0
such that z(t) ∈ V−1

[0,v1]
for all t > T .

Proof of Theorem 2. Let v0 =
1
8h

2
1, v3 =

1
2h

2
∗
. Hence, from 0 <

h1 < 2h∗ it follows that 0 < v0 < v3. By direct calculations

V̇ (z) = (H(z) − H∗) ϕ̇ (eu(z) − γ (H(z) − H∗) ϕ̇).

• Estimate V̇ .

Since


γ

2 (H(z) − H∗) ϕ̇ −


1
2γ eu(z)

2
=

γ

2 (H(z) − H∗)
2 ϕ̇2

−

(H(z) − H∗) ϕ̇ eu(z) +
1
2γ e

2
u(z) > 0,

V̇ (z) 6 −γ (H(z) − H∗)
2 ϕ̇2

+
γ

2
(H(z) − H∗)

2 ϕ̇2

+
1
2γ

e2u(z) 6 −
γ

2
(H(z) − H∗)

2 ϕ̇2
+

1
2γ

e2u(z)

6
γ∆2

e

2
. (13)

Let α =
γ∆2

e
2 . Therefore, V̇ 6 α for all z ∈ Xh for almost all t > 0.

• Let the function β(z) = const =
α
2 . Prove that for arbitrary

trajectory z(t) if z(t) ∈ V−1
[v0,v3]

and V̇ > −
α
2 for all t ∈ [t1, t2]

for some t1 < t2, then there exists A > 0 such that t2 − t1 6 A.
From V (z) ∈ [v0, v3] it follows that |H(z) − H∗| ∈

 1
2h1, h∗


.

Since −
γ

2 (H(z) − H∗)
2 ϕ̇2

+
γ

2 ∆2
e > V̇ (z) > −

γ∆2
e

4 ,

(H(z) − H∗)
2 ϕ̇2 6

3∆2
e

2
.

Hence,

|ϕ̇| 6
∆e

√
6

h1
. (14)

Estimate |ϕ̈|.

|ϕ̈| =

gl sinϕ −
1

ml2
(U(z) + eu(z))


>

g
l

|sinϕ| −
1

ml2
|U(z) + eu(z)|. (15)

Since
|U(z) + eu(z)| 6 |U(z)| + |eu(z)|

6 γ |H(z) − H∗| · |ϕ̇| + γ ∆e

6 γ h∗

∆e
√
6

h1
+ γ ∆e = γ ∆e


h∗

√
6

h1
+ 1


,

|ϕ̈| >
g
l

|sinϕ| −
γ ∆e

ml2


h∗

√
6

h1
+ 1


.

Now let us estimate |sinϕ|. From (14) and |H(z) − H∗| ∈
 1
2h1, h∗


one obtains (see Fig. 2)

|sinϕ| > |sinϕmin|,

where ϕmin is such that

P(ϕmin) = min

2mgl − H∗ − h∗,

H∗ − h∗ −
3ml2 ∆2

e

h2
1

= f1(h1)


= f0(h1),
Fig. 2. Sinus estimation. From the symmetry it is sufficient to consider the first
quadrant of the phase plane, i.e. Z+ = {z : ϕ > 0, ϕ̇ > 0}. Red areas denote the
set Z+


z : |ϕ̇| 6 ∆e

√
6

h1


z : |H(z) − H∗| ∈

 1
2 h1, h∗


.. (For interpretation

of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 3. Strip Γ .

and P(ϕ) = mgl(1−cosϕ) is the potential energy. Hence, |sinϕ| >
1 −


1 −

f0(h1)
mgl

2
and

|ϕ̈| >
g
l


1 −


1 −

f0(h1)

mgl

2

−
γ ∆e

ml2


h∗

√
6

h1
+ 1


= f2(h1).

Therefore, A =
2
√
6∆e

h1f2(h1)
, and inequality αA < 1

2 (v3 − v0) is fulfilled
if and only if f3(h1) > 0.

• Let us prove that there exist t3 > t2 and ϵ > 0 such that

V (z(t3)) − V (z(t1)) 6 −ϵ(z(t1))

and from z(t) ∈ V−1
[v0,v3]

it follows V̇ (t) < −
α
2 for almost all

t ∈ (t2, t3).

Consider a strip

Γ =

(ϕ, ϕ̇) : ϕ ∈ (ϕ(t2), ϕ′

0); |ϕ′

0| = ϕ0, signϕ′

0

= −signϕ(t2)

,

where ϕ0 is such that P(ϕ0) = H∗ − h∗ −
3ml2 ∆2

e
h21

= f1(h1) and

0 < ϕ0 < π , i.e.

ϕ0 = arccos

1 −

f1(h1)

mgl


.

By definition of t2 (time instant, when the trajectory enters
V−1

[v0,v3]
∩ Π from V−1

[v0,v3]
\Π ) we have d|ϕ̇(t2)|

dt > 0, hence,
sign ϕ̈(t2) = sign ϕ̇(t2). From f3(h1) > 0 it follows that g
l sinϕ(t2)

 >

 u(t2)+e(t2)
ml2

. Then sign ϕ̈(t2) = −signϕ(t2).
Therefore, sign ϕ̇(t2) = −signϕ(t2). By definition of ϕ0 it follows
that |ϕ̇| > ∆e

√
6

h1
on the strip Γ (see Fig. 3). Thus,

V̇ (t) 6 −
γ

2
(H(z) − H∗)

2 ϕ̇2
+

γ∆2
e

2
6 −

γ∆2
e

4
= −

α

2
.

Now let t3 be the first time instant t > t2 when the trajectory
z(t) reaches the line ϕ(t) = ϕ′

0, and let us estimate V (t3) − V (t1).
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Fig. 4. The dependence of minimum possible ~1 on ∆e and h∗ . (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

From (13)

V (t3) − V (t2) 6 −
γ

2

 t3

t2
(H(z) − H∗)

2 ϕ̇2dt + α (t3 − t2)

6 −
1
8
γ h2

1

 t3

t ′2


ϕ̇2

−
4∆2

e

h2
1


dt

6 −
1
8
γ h2

1

 t3

t ′2


ϕ̇2

−
2
3
ϕ̇2

dt = −

1
24

γ h2
1

 t3

t ′2

ϕ̇2dt,

where t ′2 is such that ϕ(t ′2) = signϕ(t2) · min {|ϕ(t2)|, ϕ0} and
t2 6 t ′2. From Cauchy–Schwarz inequality one has t3

t ′2

ϕ̇2dt >
1

t3 − t ′2

 t3

t ′2

ϕ̇ dt

2

.

Hence,

V (t3) − V (t2) 6 −
1
24

γ h2
1

1
t3 − t ′2

 t3

t ′2

ϕ̇ dt

2

= −
1
24

γ h2
1

1
t3 − t ′2


ϕ(t3) − ϕ(t ′2)

2
6 −

1
6
γ h2

1
1

t3 − t ′2
ϕ2
0 .

Since

t3 − t ′2 6

ϕ(t3) − ϕ(t ′2)


|ϕ̇|
6

2ϕ0 h1

∆e
√
6

,

V (t3) − V (t2) 6 −
1

2
√
6
γ h1ϕ0∆e.

Denote ϵ(z) = const =
1

2
√
6
γ h1ϕ0∆e − αA. Therefore, if

f4(h1) > 0, then

V (t3) − V (t1) 6 −ϵ < 0.

Thus, all conditions of Lemma 1 are fulfilled. The statement of
Theorem 1 follows. �

4. Numerical example

Consider system (1), (6) with the following parameters: m =

1, l = 1, g = 9.8, h = 2mgl − 0.01 = 19.59,H∗ = 9.6.
In Theorem 2 the initial parameter h∗ is such that z(t) ∈

H−1
[H∗−h∗,H∗+h∗]

for all t > 0. Moreover, for small ∆e the value of
~2 is close to h∗, i.e. one can say that h∗ mainly plays the role of
an initial condition parameter. Let γ = 0.1. The colored areas on
Figs. 4 and 5 show those h∗ and∆e for which system of inequalities
(12) is feasible. Furthermore, the color scales on Figs. 4 and 5 pro-
Fig. 5. The dependence of maximum possible ~2 on ∆e and h∗ . (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6. The dependence of minimum possible ~1 on ∆e and γ .

Fig. 7. The dependence of maximum possible ~2 on ∆e and γ .

vide the values of minimum possible ~1 andmaximum possible ~2
respectively.

From Fig. 4 one can see that with increasing h∗ the attraction
domain H−1

[H∗−~1,H∗+~1]
also increases. Therefore, it is important to

prioritize between the accuracy of convergence and the width of
initial area.

Let h∗ = 8. We show the influence of the control gain γ on
the initial and attraction domains. The colored areas on Figs. 6 and
7 show those γ and ∆e for which system of inequalities (12) is
feasible.

Note that from Theorem 2 one obtains that ∆e < 6.5, however,
for any large γ there exists a small enough ∆e such that system
(12) is feasible.
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Fig. 8. Quantizer regions.

Fig. 9. Phase portrait. ∆1 = 0.001, ∆2 = 0.002 (∆e = 0.199), γ = 4.

From Fig. 6 one can see that for given ∆e the attraction domain
H−1

[H∗−~1,H∗+~1]
is smaller for smaller γ .

Now consider a quantizer q(z) such that

Zi =

ϕk < ϕ < ϕk + τϕ, ϕ̇s < ϕ̇ < ϕ̇s + τϕ̇


Xh

and zi =

ϕk +

τϕ

2 , ϕ̇s +
τϕ̇

2


(see Fig. 8), where τϕ = 0.002, τϕ̇ =

0.004.
Then ∆1 = 0.001, ∆2 = 0.002 (hence, ∆e = 0.199). For

∆e = 0.199 system (12) is feasible for 0 < γ 6 11.5. Fig. 9
illustrates the phase portrait for γ = 4, where using Theorem 2
one obtains that ~1 = 1.9, ~2 = 7.96, i.e. for any given initial
condition z(0) ∈ H−1

[1.64, 17.56] trajectories of closed-loop system (1),
(6) satisfy z(t) ∈ H−1

[1.6, 17.6] for all t > 0 and there exists T > 0 such
that z(t) ∈ H−1

[7.7, 11.5] for all t > T .
Better results can be obtained for smaller γ (although the

convergence time T will increase). For example ~1 = 0.259, ~2 =

7.9999 for γ = 0.1, i.e. for any given initial condition z(0) ∈

H−1
[1.6001, 17.5999] trajectories of closed-loop system (1), (6) satisfy

z(t) ∈ H−1
[1.6, 17.6] for all t > 0 and there exists T > 0 such that

z(t) ∈ H−1
[9.341, 9.859] for all t > T (see Fig. 10).

5. Epilogue

The problem of partial nonlinear control using quantized state
feedback was considered by the example of controlling the pen-
dulum’s energy, which contains all the difficulties that are typical
for nonlinear partial stable systems. As the nominal feedback law,
a control based on the speed gradient methodwas chosen. Themain
contribution lies in precisely characterizing allowed quantization
error bounds and resulting energy deviation bounds.

Numerical example shows that one can choose a smaller gain γ
to decrease the attraction domain, although convergence time in
this case has increased.
Fig. 10. Phase portrait. ∆e = 0.199, γ = 0.1.

Next steps in this research are the extension of the results to
the case of systems with more than one degree of freedom (possi-
bly with friction or noise) and to the presence of time delays in
addition to quantization. Note that we have already considered
time delays in cart–pendulum systems (see Ananyevskiy, Seiful-
laev, Nikitin, & Fradkov, 2014) and obtained some experimental
results for a cart–pendulum system. Therefore, another task is to
demonstrate our results by further experiments. Estimation of the
convergence time is also interesting.
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