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STABILITY ANALYSIS OF DETERMINISTIC AND STOCHASTIC
SWITCHED SYSTEMS VIA A COMPARISON PRINCIPLE AND
MULTIPLE LYAPUNOV FUNCTIONS*

DEBASISH CHATTERJEE! AND DANIEL LIBERZONT

Abstract. This paper presents a general framework for analyzing stability of nonlinear switched
systems, by combining the method of multiple Lyapunov functions with a suitably adapted compari-
son principle in the context of stability in terms of two measures. For deterministic switched systems,
this leads to a unification of representative existing results and an improvement upon the current
scope of the method of multiple Lyapunov functions. For switched systems perturbed by white noise,
we develop new results which may be viewed as natural stochastic counterparts of the deterministic
ones. In particular, we study stability of deterministic and stochastic switched systems under average
dwell-time switching.
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1. Introduction. A family of continuous-time systems, together with a switch-
ing signal that chooses an active subsystem from the family at every instant of time,
constitute a switched system [30]. Compared to hybrid systems [44], which currently
are the focus of a large and growing interdisciplinary area of research, switched systems
enable a more abstract modeling of continuous time systems with isolated switching
events, which is suitable from a control-theoretic viewpoint. The abstraction is the
result of modeling the switching signal as a purely time-dependent function, regard-
less of the mechanism of its generation. However, results obtained in this framework
are then applicable to more specific hybrid systems; see, e.g., [18, 30] for a discussion.
This paper is concerned with stability analysis of switched systems whose continuous
dynamics are described by ordinary or stochastic differential equations.

Stability analysis by Lyapunov’s direct method, in the simplest case of a single
system, involves seeking a positive definite function of the states—called a Lyapunov
function—that decreases along solution trajectories; see, e.g., [13, 22] for details. In
case of switched systems, there are essentially two approaches to analyzing stability
using Lyapunov’s direct method; one involves investigating the existence of a common
Lyapunov function, and the other utilizes multiple Lyapunov functions; see, e.g., [30,
Chapters 2, 3] for an extensive account. The former approach is usually more chal-
lenging, although once a common Lyapunov function is found, the subsequent analysis
is simple. The latter approach is usually more amenable to applications; typically, to
check stability, one needs to allocate one Lyapunov function to each subsystem, trace
through the sequence of values of these functions at switching instants, and verify
certain monotonicity requirements on this sequence. We elaborate further on this
method below.
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The comparison principle [22, 28] helps in stability analysis by acting upon Lya-
punov’s direct method. It characterizes the time evolution of a Lyapunov function
along system trajectories in terms of the solution of a scalar differential equation—
the comparison system. The stability characteristics of the original higher dimensional
system can then be inferred from those of the comparison system.

Our purpose is to establish a framework for stability analysis of (a) deterministic
and (b) stochastic switched systems, by combining the method of multiple Lyapunov
functions with the comparison principle. Specific motivations and contributions are
elaborated below.

Deterministic switched systems. Stability analysis of deterministic switched
systems using multiple Lyapunov functions first appeared in [37] and has evolved
over a series of articles, for instance, [6, 19, 38]. The basic idea behind this method
is to utilize stability properties of individual subsystems to infer stability properties
of a switched system, thereby characterizing switching signals that ensure stability.
A typical result, e.g., [30, Theorem 3.1], involves verifying two conditions to check
global asymptotic stability of a switched system: first, each Lyapunov function is to
monotonically decay when the corresponding subsystem is active, and second, the
sequence formed by the values of each Lyapunov function at the instants when the
corresponding subsystem becomes active is to be monotonically decreasing. (Hence-
forth we shall refer to this as the fized-index monotonicity condition.) The verification
of the second condition apparently requires quantitative knowledge of system trajec-
tories. However, in situations where the switching is triggered by the state crossing
some switching surfaces, on which the values of relevant Lyapunov functions match,
the second condition follows if the first holds. Also, slow switching with a suitable
dwell-time (see, e.g., [30]) allows each Lyapunov function to decay sufficiently before
a switching occurs, thereby satisfying the second condition. A generalization of dwell-
time switching is provided by the scheme of average dwell-time switching [16], which
has proved to be a fruitful analysis tool in supervisory control; see [30, Chapter 6]
and the references therein. This scheme requires that the number of switches over an
arbitrary time interval should increase at most linearly with the length of the inter-
val but places no specific restrictions on monotonicity of Lyapunov function values
at switching instants (thereby allowing violation of the second condition above). We
know that under suitable hypotheses, average dwell-time switching guarantees global
asymptotic stability of a switched system [16], but the original proof of this result
(provided in [30, Chapter 3]) does not utilize Lyapunov functions alone. We propose
an alternative approach to stability analysis, based on the observation that a time
trace of Lyapunov functions corresponding to active subsystems, in a typical trajec-
tory of a switched system, shows impulsive behavior. Trajectories of suitable scalar
impulsive differential equations may be used to generate such traces and are thus nat-
ural choices for comparison systems (cf. [29, 42], where impulsive comparison systems
were utilized in stability analysis of impulsive differential equations). By employing
various types of impulsive differential equations as comparison systems, in our results
we relax the fixed-index sequence monotonicity condition, allowing oscillations and
overshoots in the sequence, and also letting unstable subsystems participate in the
dynamics. Additionally, our proofs retain conventional characteristics of Lyapunov’s
direct method in the context of switched systems, without resorting to independent
arguments as in the proof of the average dwell-time result [16]. We propose our results
on deterministic switched systems in section 2.
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Stochastic switched systems. There is an enormous body of literature con-
sidering effects of noise and disturbances in systems, particularly from control and
communication viewpoint; see, e.g., [7, 24, 34, 45]. The use of Lyapunov functions
in stability analysis of stochastic systems is a classical idea, discussed extensively
in [1, 11, 14, 25, 46]. The literature on stability of stochastic switched systems—
constituted by subsystems perturbed by a standard Wiener process—is much less ex-
tensive compared to that on deterministic switched systems. In recent times, modeling
and analysis of stochastic hybrid systems have appeared in, e.g., [17, 20]. Ergodic con-
trol of switched diffusion processes appears in [12]; stabilization methods that involve
arguments similar to multiple Lyapunov functions appear in [2]. Some straightfor-
ward results involving common Lyapunov functions for stochastic switched systems
may be found in [8]. We propose a framework for stochastic stability analysis by utiliz-
ing statistical estimates of Lyapunov functions at switching instants and during active
periods of each subsystem. We consider some general stability definitions, for instance,
global asymptotic stability in the mean and global asymptotic stability in probability,
and employ the method of multiple Lyapunov functions adapted to the stochastic con-
text. Much like the deterministic case, in a typical trajectory of a stochastic switched
system, a time trace of expected values of Lyapunov functions corresponding to active
subsystems shows impulsive behavior. We utilize impulsive differential equations as
comparison systems to build a general framework for stability analysis of stochastic
switched systems. This allows for very general behavior of the expected values of
Lyapunov functions corresponding to active subsystems between switching intervals.
In particular, replacing the fixed-index sequence monotonicity condition in the deter-
ministic case with a stochastic analogue involving statistical estimates of Lyapunov
functions at switching instants, we obtain a natural stochastic counterpart of [30,
Theorem 3.1]. In addition, our results provide sufficient conditions for global asymp-
totic stability in the mean under average dwell-time switching and some more specific
hypotheses. We propose our results on stochastic switched systems in section 3.

The concept of stability analysis in terms of two measures generalizes analysis of
the norm of the state vector to analysis of the behavior of more general functions of
the states; see, e.g., [29, 35]. We incorporate stability analysis in terms of two mea-
sures in the framework that we build for switched systems and gain greater flexibility
for our results.

We study representative notions of deterministic and stochastic stability for a
reasonably large class of switched systems. Naturally, not every type of stability can be
described here. However, the framework of stability analysis we propose is applicable,
as it stands, to more general stability notions, as will be indicated subsequently at
appropriate places.

Some Notations. For notational convenience and brevity, we adopt the follow-
ing conventions. For M, My, M5 subsets of Euclidean space, let C[M;, M) denote
the set of all continuous functions f : M; — Ms, and C'[M7, Ms] denote the set of all
continuously differentiable functions f : M; — My. We also use C12[M; x My, M3]
to denote the set of functions f : My x My — M3 that are continuously differentiable
once and twice in the first and second arguments, respectively. We denote by |-| the
standard Euclidean norm and by R the interval [0,00[. As usual, o between two
functions denotes their composition.

We say that a function @ € C[Rx¢,Rxo] is of class K if « is strictly increasing
with a(0) = 0, is of class K if in addition a(r) — oo as r — oo; and we write o € K
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and « € Ko, respectively. A function g € C[R%,,R>] is said to be of class KL if
B(-,t) is a function of class K for every fixed ¢ and [(r,t) — 0 as t — oo for every
fixed r; and we write 8 € L.

2. Deterministic switched systems. In this section, we study stability of
deterministic switched nonlinear nonautonomous systems. In section 2.1, we describe
a switched system and the stability notions that we study and define the comparison
systems that we employ in our analysis. We propose our comparison theorem for
deterministic switched systems in section 2.2 and illustrate it in sections 2.3 and
2.4. We discuss two other stability notions in section 2.5 that are different from
Lyapunov stability and demonstrate that their analysis can be similarly carried out
in the proposed framework.

2.1. Preliminaries.

System description and stability definitions. We consider a family of non-
linear nonautonomous systems,

(2.1) = fp(t, x), pEP,

where z € R™, P is an index set, f, € C[Rxo x R”,R"] is a vector field measurable
in the first argument and locally Lipschitz in the second (see, e.g., [41] for further
details), f,(-,0) = 0, for every p € P. Let there exist a piecewise constant function
(continuous from the right by convention) o : Ry — P, which specifies at every
time ¢ the index o(t) = p € P of the active subsystem. A switched system generated
by the family (2.1) and such a switching signal o is

(22) T = fg(t, ac), :L‘(t()) = Xy, t 2 to,

where ¢y € R>q. It is assumed that there is no jump in the state x at the switching
instants and that there is a finite number of switches on every bounded interval of
time. We denote the switching instants by 7, i = 1,2,..., 179 := {9, and the sequence
{7:}i>0 is strictly increasing. The solution of (2.2) as a function of time t, interpreted
in the sense of Carathéodory, initialized at a given pair (tg,xo), and under a given
switching signal o, is denoted by x(t).

To perform analysis in terms of two measures, we utilize functions belonging to
the class defined by

(23) I':= {h € C[R)o X RH,R>0]

inf A(t,z) =0, .
int (.2 }

We focus on the following notion of stability in terms of two measures; see,
e.g., [29] for further details on other related concepts of stability. This stability defi-
nition coincides in spirit with the class KL stability defined for differential inclusions
in the paper [43], where the authors consider autonomous systems on an extended
state space.

DEFINITION 2.1. Let I°,h € T'. The switched system (2.2) is said to be (h°,h)-
globally uniformly asymptotically stable ((h°, h)-GUAS) if there ezists a class KL func-
tion B such that for every (to, o) € Rxo x R™, the inequality

(2.4) h(t,z(t)) < B(K°(to,xo),t — to) Vit >ty

holds.
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In this paper we consider stability notions that are uniform with respect to the
initial time tg, e.g., global uniform asymptotic stability. The occurrences of “uniform”
in the sequel convey this particular sense. In contrast, in much of the existing litera-
ture “uniform” global asymptotic stability is used to signify uniformity over a class of
switching signals; see, e.g., [30]. In situations where there is uniformity in this sense,
it will be explicitly indicated at appropriate places.

Remark 2.2. Under the special case of #°(¢,x) = h(t,z) = |z|, we recover usual
global uniform asymptotic stability (GUAS), and for autonomous systems the corre-
sponding specializations lead to global asymptotic stability (GAS); see, e.g., [22] for
further details on GUAS and GAS. Other examples include stability with respect to
arbitrary “tubes” in Ry x R™ with the measures #°, h being the Hausdorff point-to-
set distances, stability of prescribed motion () measured by W (t,z) = h(t,x) =
|z(t) — 2 (t)|, and partial stability. More examples may be found in [29].

Remark 2.3. The (I°,h)-GUAS property can be rephrased in traditional € — §
form as follows. The (h°, h)-GUAS property expressed by (2.4) holds if and only if the
following properties hold simultaneously:

(S1) ((k°, h)-uniform Lyapunov stability) there exists a class Ko, function § such
that for every € > 0 and ¢y € Rxg, we have °(tg,z0) < 8(e) = h(t,z(t)) <
e Vit > to;

(S2) ((P°,h)-uniform global asymptotic convergence) for every r,e > 0, there exists
a number T'(r,e) > 0 such that for every ty € Rx, we have I°(tg, z9) < r =
hit,x(t)) <e Vt=to+T(re).

A similar equivalence is established in [43, Proposition 1]; the proof of the above
can be easily constructed from the proof of this proposition, and for completeness is
provided in section A.

We introduce properties that will later be required from Lyapunov functions,
cf. [29]. Let V € C[Rxo x R",R>0]. The function V is said to be h-positive definite if
for (t,z) € Ry x R™ there exists a function oy € Koo such that aq o h(t, z) < V (¢, z),
and h°-decrescent if for (t,z) € R x R™ there exists a function as € Ko such that
V(t,x) < ag o B°(t,x). In results that follow, we shall require a family of functions
{V, | p € P} to be P-uniformly h-positive definite and i decrescent; i.e., there exist
functions a1, as € Ko such that we have

(2.5) ajoh(t,x) < Vp(t,z) < azgol(t,x) V(t,x) € Ryo xR*, VpeP.

With A° and h specialized to Euclidean norms, usual positive definiteness and decres-
cence of V, are recovered.

Remark 2.4. We point out that if P is finite, or if P is compact and suitable
continuity assumptions hold true, then (2.5) is no loss of generality.

In this section, we present our results in the absence of classical differentiability
assumptions, and the directional upper right Dini derivative is utilized. For example,
along the vector field of a member with index p of the family of systems (2.1) the
derivative of a function V,, € C[Rx¢ x R™, R3] is defined as

i 1
D};Vp(t, x) = hmlsbup - (Vo(t + e,z + efy(t,x)) — Vp(t,2));
€
for further details, see, e.g., [10]. We require that the functions V,,, p € P are locally
Lipschitz in the second argument.
Remark 2.5. For continuously differentiable functions, the upper right Dini
derivative derivative reduces to the ordinary derivative. In particular, we note that
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for V,, € C'[Rso x R",R>], the expression simplifies to

ov, 0V,

Tt ) ()

which is the total derivative of V), along solutions of the system with index p in the
family (2.1).

d
Dy Vy(t.a) = V500 = (

Comparison systems and deterministic comparison principle. Let the
switched system (2.2) be given, and for a given switching signal o, let {7;};>1 be the
sequence of switching instants. Let R™ x P 3 (x,p) — y(z,p) € R3¢ be a function
continuous in z. We consider scalar nonlinear nonautonomous impulsive differential
equations of the type

é:¢(t7£)7 t# 7,
2.6
20 {5@-) =i (§(r7) y (@(r), 0(7))) .

where ¢ € R, the field ¢ € C[RZ,,R] and the reset map 1; € C[RZ;,Rx0] are such
that ¢(-,0) = 0 and ¥;(0,-) =0, to € Rxo, 7, ¢ = 1,2,..., are the instants of the
impulses, 7o := to, the sequence {7;};>1 is identified with the sequence of switching
instants generated by o. Systems of the type (2.6) are utilized as comparison systems,
as well as various special cases—with or without impulses, time-variation, and y. In
this paper we shall not be utilizing time-varying ¢; an example of this may be found
in [9].

We denote by £(t) the solution (2.6) as a function of time, with the sequence
{Ti}izo0 specified, and initialized at (to,&o). In all cases, we shall tacitly assume the
existence of a unique solution to differential equations of the type (2.6). If there are
multiple solutions, however, the results hold true with the largest solution in place of
the (unique) solution of the comparison systems.

The GUAs property of equations of the type (2.6) is defined similarly to Defini-
tion 2.1, with A°, h specialized to the scalar norm. Formally, a system of the type (2.6),
with a given sequence {7;};>0, is said to be globally uniformly asymptotically stable
(GUAs) if there exists a function ¢ € ICL such that for every (to,&0) € Rxo x Rxq
the inequality

(2.7) 1€ < Be([Sol t —to) Vit >t

holds. The properties required from ¢ and v; in (2.6) ensure that £(-) > 0; we shall
therefore omit the absolute values on £ in the sequel.

Remark 2.6. Remark 2.3 still applies if a system of the type (2.6) replaces (2.2),
with h°, h specialized to the scalar norm.

The need to compare different Lyapunov functions at switching instants, which is
inherent in the multiple Lyapunov functions method, prompts us to have a function
y of the system states in the reset equation of a comparison system of the type (2.6).
This function will be utilized in the construction of a suitable comparison system
that will render [30, Theorem 3.1] a special case of our Theorem 2.8. For yet other
applications, y will not be required.

The following well-known comparison lemma for nonswitched deterministic sys-
tems is needed for subsequent developments in this section; see, e.g., [28] for a proof.

LEMMA 2.7. Consider the system with index p in the family (2.1). Suppose that
there ezist a function V,, € C[R>o x R",R>¢] and a comparison system

S £=¢(LE), o) =& =0, t>to,

E(to) =6 =20, i>1, t=to,
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such that ¥(t,z) € Rxo x R", the differential inequality
(25) D Vy(t,2) < 6(t, Vy (t,2)

holds. Then V,(1,z(7)) < &(7) implies V,(t,z(t)) < &(t) Vit > 7, where x(t) and
&(t) are the solutions of the system with index p in (2.1) and X, respectively.

2.2. Comparison theorem for deterministic switched systems. The fol-
lowing result establishes a general framework for testing stability of deterministic
switched systems using multiple Lyapunov functions and a comparison system.

THEOREM 2.8. Consider the switched system (2.2) with a fixed switching signal
o generating a sequence of switching instants {7;};>1, and two functions h°,h € T
Suppose that there exist functions ai,a2 € Koo, V, € C[Rsg X R",Rxg], p € P,
locally Lipschitz in the second argument, and a system % of the type (2.6), such that

(i) the family {V, | p € P} is P-uniformly h-positive definite and h°-decrescent in
the sense of (2.5);

(ii) Y (t,z) € Ryg x R™ and Vp € P, we have D};Vp(t, z) < oL, Vp(t, x));

(iii) V(to,z0) € Ryo x R", there exists & € Rxo such that Vi) (75, 2(1;)) < ()
Vi > 0, where x(t) and £(t) are the corresponding solutions of (2.2) and X,
respectively;

(iv) X is GUAS in the sense of (2.7).

Then (2.2) is (k°, h)-GUAS in the sense of Definition 2.1.

Proof. Consider the interval [ry, 7p41[, with £ an arbitrary nonnegative integer.
From hypotheses (iii) and (ii), and Lemma 2.7 applied with 7 = 74, we have

Voo (t2(t) < &) Vi€ [re,Teqa].
The above estimate in conjunction with hypothesis (iv) leads to
Voiroy (6 2(t)) < E(T) < Be(éo,t —to) YT E [T, Teqa [
In view of hypothesis (i), we have
(2.9) ay o h(t,x(t)) < Be(az o K (to, z0),t — to) Vit € [1e, Tos1].
With B(r,s) := a; ' o Be(as(r), s), the estimate in (2.9) is equivalent to
h(t,z(t)) < B(K°(to, o), t — to) YVt € [1e, Tor]-

Clearly g € KL. The arbitrariness of ¢ implies that

h(t,z(t)) < B(F°(to, x0),t — to) Vit > to.

The (B°, h)-GUAS property of (2.2) follows. d

Theorem 2.8 does not provide a direct method for analyzing stability of a given
switched system; we need to look for a suitable comparison system and check its sta-
bility properties first. We will now demonstrate how to proceed with such a scheme
of analysis and how our framework stands in relation to existing results involving
multiple Lyapunov functions. In section 2.3, we generalize [30, Theorem 3.1] in terms
of two measures, which involves verification of a fixed-index sequence monotonicity
condition to establish the (h°, h)-GUAS property of a switched system. The compar-
ison system utilized in the proof makes use of quantitative information of system
trajectories. In section 2.4 we construct comparison systems to rederive the sufficient
conditions for GUAS of switched system under average dwell-time switching given
in [30, Theorem 3.2] or [16]. Although the fixed-index sequence monotonicity con-
dition is violated, the comparison framework of Theorem 2.8 works; also we do not
require explicit information of system trajectories.
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2.3. Stability under fixed-index sequence monotonicity condition. For
this subsection, we let P be a finite set of N elements.

COROLLARY 2.9. Consider the switched system (2.2) and h°,h € T'. Sup-
pose that there exist functions ai,as € Koo, p,U € K, a positive definite, V,, €
C[Rs0 x R™,Rxq] for each p € P locally Lipschitz in the second argument, such that

(i) the family {V, | p € P} is P-uniformly h-positive definite and h°-decrescent in
the sense of (2.5);
(ii) VY (t,z) € Ryg x R™ and Vp € P, we have D]Tpr(t, z) < —aok(t,x);
(iii) for every pair of switching time (7;,7;), ¢ < j such that o(r;) = o(1;) =p € P
and o (1) # p for T; < T, < T}, the inequality
(2.10) Vo(75,2(75)) = Vp(7i, 2(7)) < =U o B(73, (7))

holds, where x(t) is the solution of (2.2) initialized at (to,xo);
(iv) ¥ (¢t,z) € Ryo x R™, we have ag o I (¢, ) < poag o h(t,x).
Then (2.2) is (h°, h)-GUAS.
Proof. We define a candidate impulsive differential comparison system of the
type (2.6):

211) . {éz —aoaz'(6), t#m

§(7i) = Vo (r) (70, 2(73))s

By its very definition, ¥ satisfies hypotheses (ii)—(iii) of Theorem 2.8. Hypothesis (i)
of Theorem 2.8 is satisfied by our hypothesis (i). To verify hypothesis (iv) of Theo-
rem 2.8, we shall first prove uniform Lyapunov stability of 3 and then prove its global
uniform asymptotic convergence, in view of Remark 2.6.

Consider the interval [rg, 71[. From hypothesis (ii) we have

Vo (o) (T1,2(71)) < Vo (ro) (70, 2(70))-
Combining with hypothesis (i), we reach
(2.12) a1 0 h(m,z(1)) < ag o K (tg, xo).
For every p € P, we have from hypothesis (i)
Vp(r1, (1)) < ag o B°(11,2(11)),
and therefore by hypothesis (iv),
Vp(m1,2(11)) < po oy oh(r, z(m)).
In view of (2.12), we get
(2.13) Vp(m1,2(m1)) < poag ol (ty, o).
Consider now the interval [71, 72[. From hypothesis (ii) we have
Vo (r) (72, 2(72)) < V() (11, 2(71)).
Combining with hypothesis (i) and applying (2.13) with p = o(72), we get

(2.14) ay 0 h(m,2(m2)) < poag ok (tg, zo).
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Now, for all p € P, we have
Vp (12, 2(12)) < ag 0 B (12, 2(72)),
so by hypothesis (iv),
Vp(12,2(12)) < poaj o h(t, z(12)).
Now (2.14) gives
Vp(12, 2(12)) < popoag ok (ty, o).

It is not difficult to see that the worst-case situation for maximum possible over-
shoot of the function V,, occurs when the switching signal ¢ visits every element of the
set P without repetition until P is exhausted. Let 7~ be the first switching instant
after all the subsystems that participate in the dynamics have become active at least
once since initialization at ¢ = tg. Define the function

pj = pPpo...op.
——

J times
From the above computations, it is easy to see that

E(750) = Va(ryu) (e, 2(750)) < pN 1 0 ag 0 1 (b0, o).
Clearly pN~! € K. Define the function

4(+) := max {QQ(-)7 poas(s),... ,,ON_1 o ag(-)} .

From (2.10) it follows that £(t) < v o I (tg, xo) Yt = to. Therefore, by hypothesis (i)
and the definition of & in (2.11),

(2.15) Et) <yoart(&)  Vit=to.

It remains to prove uniform global asymptotic convergence of X.

We distinguish two cases.

Case 1. Switching stops in finite time. Since o eventually attains a constant
value, say, from the xth switching instant, it follows that there are no impulses after

= 7,. That is to say, the system (2.11) becomes an autonomous scalar ordinary

differential equation after ¢ = 7, with negative right-hand side for nonzero &(74).
Therefore, £(t) monotonically decreases to 0V ¢ > 7. In conjunction with (2.15) which
shows uniform Lyapunov stability of ¥, we conclude that (2.11) is GuAs. Theorem 2.8
now guarantees that (2.2) is (h°, h)-GUAS.

Case 2. Switching continues indefinitely. Consider the restatement of the in-
equality (2.10) with £(7;) as defined in (2.11)

(1) = &(mi) < =U o K (73, 2(7i))
—Uoay! o Vy(r, x(r))
—angl o &(m).

N )

The pair (7;, 7;) satisfies the condition in hypothesis (iii). Clearly, {£(7%)}{i>0|0(r,)=p}
is a positive (for nonzero xy) monotonically decreasing sequence and must attain a
limit, say, ¢ > 0. If ¢ # 0, then

E(mj) —€(r) < —Uoay'(0)
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for all (7;,7;) satisfying hypothesis (iii), which means that for some large enough j,
say, 7', £(75:) < 0. In view of (2.11) this means VU(Tj,)(Tj/,x(Tj/)) < 0, contradicting
the hypothesis. Therefore, the subsequence {£(7;)}{i>0/0(r)=p} attains the limit 0
as ¢ T oo. For all time ¢ between any two switching instants (7;, ;) satisfying hy-
pothesis (iii), there is a uniform bound on &(t) given by (2.15). For each p € P,
the subsequence {£(7;)}{i>0/0(r,)=p} attains the limiting value of 0, implying global
asymptotic convergence. Combining with Lyapunov stability proved in (2.15) above,
we conclude that ¥ is GUAS.

By Theorem 2.8 now we conclude that (2.2) is (k°, h)-GUAS. O

Remark 2.10. We note that in the above proof, ¥ makes explicit use of state
information of (2.2)—in the notation of (2.6), we use

i (§(77)  y(@(7:), 0(73)) = Vo () (73 2(7))

in the reset equation of ¥. On the other hand, {(7;7) is not utilized.

Remark 2.11. Hypothesis (iv) in Corollary 2.9 essentially is a technical require-
ment to ensure that the measure h is nontrivial. This guarantees that the different
Lyapunov functions at switching instants can be estimated from the initial condition.
For W (t,x) = h(t,z) = |z|, this property is automatic (just let p := as o a7?'), and
then Corollary 2.9 becomes identical to [30, Theorem 3.1].

2.4. Stability under average dwell-time switching. In this subsection we
rederive an existing result on global asymptotic stability under average dwell-time
switching via our Theorem 2.8. We no longer retain the assumption that P is finite.
Although we specialize to Euclidean norms and autonomous switched systems—to be
able to use the aforesaid result in situ—the analysis can be readily generalized to two
measures and nonautonomous switched systems.

Let us consider the autonomous switched system

(2.16) T = fg(.’lﬁ), Z‘(t()) = Zo, t 2 to,

where z € R", f, € C[R",R"| is locally Lipschitz for every p € P, f,(0) = 0. The
switching signal o is said to have average dwell-time 1, > 0 [16] if there exists a
positive number N, such that the number of switches N, (T, ¢) on the interval [¢, T
satisfies

Tt

(2.17) N,(T,t) < N, + VT >t >t

a

We investigate the conditions on the average dwell-time of the switching signal o
such that (2.16) is GAS. The available result is as follows. (For a detailed discussion
and proof, see, e.g., [30, Theorem 3.2].)

THEOREM 2.12 (see [16]). Consider the switched system (2.16). Let there exist
functions V,, € CH[R", R3] for every p € P, ai,a2 € K and a positive number Ao
such that

(2.18) ar([z]) < Vp(z) < ag(lz])  VpeP
and
(2.19) %(x)fp(x) < =X Vp(2) Ve R"

ox



184 DEBASISH CHATTERJEE AND DANIEL LIBERZON

Suppose also that there exists a positive constant p such that
(2.20) Vp(z) < pVy(z) Vo eR" Vp,qeP.
Then (2.16) is GAS for every switching signal o with average dwell-time 74 > h;—“

Remark 2.13. The condition (2.20) imposes a restriction on permissible Lyapimov
functions. Since this is a global result, it does not hold if, for example, some of the
Lyapunov functions are quadratic and some others are quartic. Also, in view of
interchangeability of p and ¢ in (2.20), it follows that u > 1, excluding the trivial case
of ;4 = 1, which implies that there is a common Lyapunov function for the switched
system [30].

For a fixed index p € P, the values of the Lyapunov function V,, at every switching
instant 7; with o(7;) = p form a sequence {V,,(2(75))} {j>0/0(r;)=p}- As discussed in
section 1, results like [30, Theorem 3.1] provide sufficient conditions for stability of the
switched system under the assumption that the sequences {V,(z(7}))}{j>0/o(r;)=p}
are monotonically decreasing for every p € P. But o with an average dwell-time
permits overshoots and oscillations in each of these sequences; thus [30, Theorem 3.1]
is inapplicable. We mentioned in section 1 that currently the problem is tackled
by independent arguments utilizing auxiliary functions, as in [30]; the proof does
not utilize the Lyapunov functions alone. In the framework of Theorem 2.8, we can
dispense with such auxiliary functions and easily rederive Theorem 2.12, as we now
demonstrate.

To the end of this subsection, we assume that the hypotheses of Theorem 2.12
hold.

An impulsive differential equation as a comparison system. Consider an
impulsive differential system of the type (2.6) with

Ui (6 (7)) y(a(n), o(n))) = pé(r7), i>1, p>0,
as the reset equation and

d(t,8) = —=XE, Ao > 0.

The complete system stands as

é:_AOEa t#TZﬁ
§(ri) = pé(r; ), p>0,

From (2.18) it follows that hypothesis (i) of Theorem 2.8 is satisfied with k°(t,z) =
h(t,z) = |z|. Further, from (2.19) and (2.20) together with the initial condition
in (2.21), it follows that hypotheses (ii) and (iii) of Theorem 2.8 are satisfied, respec-
tively. Now we investigate stability of X'.

Let T > 0 be arbitrary. Consider the evolution of the system (2.21) from ¢ = tg
through ¢t = T'. Let there be N, (T, tg) switches on this interval, and let v := N, (T, ),
where N, (T,t) is as defined in (2.17)

€£(to) = Vo(to) (o), i

WV
—

. t>to.

(2.21) X' {

(1) =&(m)e =) 0 <i <y,

and
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Combining with the reset equation of ¥ and iterating over 4, it follows that
(2:22) 6(T) = Eto)ue T,

Using the definition of v, (2.22) leads to

(2:23) §(T) = £(to)pocXetoeOomnn/ )T

To ensure {(T) — 0 as T 1 oo, it is sufficient to have 7, > l;—o" This guarantees
the convergence of the impulsive differential system (2.21) to zero as time increases to
infinity. Stability of ¥’ follows directly from (2.23)—the estimate £(t) < &(to)ulNoetoto
holds if 7, > 12—“ We conclude that X' is GAS, considering Remark 2.6. Therefore,
hypothesis (iv) of Theorem 2.8 is also satisfied.
Intuitively,
e the minimum rate of decay of the Lyapunov function corresponding to each
active subsystem is captured by the continuous dynamics of ¥’; and
e the maximum jump in the values of two Lyapunov functions corresponding to
two consecutively active subsystems is captured by the reset equation of ¥'.
We conclude that by Theorem 2.8 the switched system (2.16) is GAS for switching
signals with 7, > lf\‘—f
An ordinary differential equation as a comparison system. Consider the
following scalar autonomous differential equation, a special case of (2.6), for a candi-
date comparison system:

: In
(2.24) e €= <M - >\o> 3 &(to) = pMNoe* V() (20), t = to.

Ta
The solution of ¥ is
(2.25) £(t) = plve Vg(to)(mo)e_()“’_l““/“)(t_to) Vit > to.

Let average dwell-time of o be 7,, and v := N,(T,tg) be the number of switches on
[to, T[. Considering the least rate of decay for Lyapunov functions corresponding to
active subsystems, we have for an arbitrary 7" > 0,

V(e @(7]7)) € Vi (a(mi))e 0™ 0 < i<,
and

VU(Tu) (Z‘(T)) < Va(ﬂ,) (-/L‘(T))G_AO (T=7v) .
Combining with (2.20) at switching instants and iterating over 7, we reach the estimate
(2.26) Vo(r) (@(T)) < 1" V(i) (z0)e T = MN°e’\°t°Vo(to)(:Iio)e*(’\rln"/T“)T.

Clearly, Ao > lﬁ—a“ ensures global asymptotic stability of ¥”. By Theorem 2.8 with
W (t,x) = h(t,x) = |z, it follows that (2.16) is GAS for switching signals with 7, > li—f

From (2.18) it follows that hypothesis (i) of Theorem 2.8 is satisfied with /°(t, z) =
h(t,x) = |z|. Further, from the discussion above, it follows that hypotheses (ii)—(iv)
of Theorem 2.8 are also satisfied
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Intuitively,

e the initial condition of X captures the maximum possible overshoot in V,—
this corresponds to the situation when all N, switches occur very close to
t = to;

e £(-) forms an envelope of the sequence {Vg(n)(ax(n))}@o over the interval
[t()v T] .

We conclude that by Theorem 2.8 the switched system (2.16) is GAs for switching
signals with 7, > h/\l—:‘ This agrees with the assertion of Theorem 2.12.

Remark 2.14. We note that in contrast to (2.11), the comparison systems (2.21)
and (2.24) do not utilize state information in the function y directly. However (2.21)
utilizes £(7; ) in the reset equation; cf. Remark 2.10.

Remark 2.15. Tt is easy to see from (2.22) and (2.25) that for switching signals
with average dwell-time bounded away from £, we have GAS of (2.16). For instance,

Ao
for A € |0, X[ if 7, 2> /\lilf/\, then the GAs property of (2.16) follows. Under this
situation, (2.16) is GAS wuniformly over all switching signals with 7, > )\h‘f‘k. In

prevailing literature, (2.16) is said to be globally “uniformly” asymptoticaloly stable
over all such switching signals.

Our comparison-based approach enables us to work with simple scalar differential
equations which provide upper bounds of Lyapunov functions, rather than analyze
the complicated evolution of the Lyapunov functions themselves. This provides new
insights into average dwell-time switching, as is illustrated above, and moreover we
can derive new switching rules that extend average dwell-time, as the following two
remarks illustrate.

Remark 2.16. Let N,(T,t) denote the number of switches on the interval [¢, T
As another illustration of Theorem 2.8, consider the switched system (2.2), and sup-
pose that there exist functions aq, e € Koo, Vp € C[Rx0 x R", R3], p € P, and real
numbers m > 1, A\, > 0, > 1, such that

(i) the family {V,, | p € P} is P-uniformly h-positive definite and h°-decrescent in
the sense of (2.5);
(ii) V(¢t,x) € Ry x R™ and Vp € P, we have D};V},(t,x) < =XVt 2);
(iii) V(t,z) € Ryo x R™ and Vp,q € P, we have V,(t,z) < pV, (¢, ).
Let us find conditions on N, (T, tg) such that (2.2) is (k°, h)-GUAS.
Consider the impulsive differential system of the type (2.6):
— EZ*)\OEm, t?éTi, i
: - > > to.
X {E(Tz) _ /.tf(TZ—_), 1> 0, f(to) Vo(to)(x(tO))v izl t=t

A straightforward analysis leads to

pN ko) g (1)
, 1/(m=1)”
(1 + Ao (m = 1)(&(t)) ™1 (zj&f%)“ p(m=1G=1) (7, — Tz-_l)))

§(T) =

where we let Ty (7,¢0)+1 := T Since u > 1, we obtain

No(Tto)¢ (to)
&) < a -
(14 Aolm — 1)(E(to))m1(T — 1)) /Y
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A little calculation shows that if there exists € > 0 and K > 0 such that
(2.27)
( mlfl 76)

N,(T L, K (14 2o(m = 1) (az 0 1 (t,20))™ (T = to)
< —
o’( 7t0> =X ln,u n OéQOhO(thIO)

then ¥ is GUAS. Just as in the case of ¥/ and X" above, it is easy to verify that
the hypotheses of Theorem 2.8 hold with ¥ = X. It then follows by Theorem 2.8
that (2.2) is (B°, h)-GuAs. Note that unlike the case of average dwell-time, the switch-
ing law in (2.27) that guarantees (h°, h)-GUAS of (2.2) depends on the initial conditions
(to, o)-

Remark 2.17. In the context of Theorem 2.8, it is not necessary to assume that
each subsystem in the family (2.1) is (h°, h)-GUAS for the switched system (2.2) to
be (I, h)-cUAs. This is evident from hypothesis (ii), which does not require ¢ to be
negative definite in the second argument. It is possible that none of the individual
subsystems is (h°, h)-GUAS but the switched system is, provided each subsystem is
active for a small enough time.

For instance, consider the switched system (2.16) and suppose that switching is
such that the number of switches N, (T, to) on the interval [to, T is given by

Tt

a

(2.28) N, (T, to) >

,Nm

where N,, 6, > 0. Such switching signals were called “reverse average dwell-time
switching signals” in [15]. Let there exist functions a1, s € Koo, Vp, € CHR™, R3],
p € P, and real numbers p' € ]0,1[ and A, > 0, such that

(i) the estimate (2.18) holds;

(ii) vap( ) < AVp(z) Yz eR", VpeP;

(i) Voo (7)) < 'V, () Vi1

(iv) (5,1 < —In /Ao
Then (2.16) is ¢As. Indeed, consider the comparison system

= - = )\o 5 t iy
(229) > {E(T) :gulf(,:é),r f(to) = Va(to)(t07x0)7 121, t>ty.

It is easy to see that hypothesis (i) with °(t,x) = h(t,z) = |z|, and hypotheses (ii)
and (iii) of Theorem 2.8 are satisfied. Following the constructions for ¥’ in (2.21)
above, it is not difficult to show that the solution of ¥ is given by

(2.30) E(T) = (1) Vi(ag) ((to) JePertm# 8)(Tt0),

where T > t,. Clearly, from (2.30) it follows that 3 is GAS if Ao +Inp//8, < 0. In
other words, if the condition (iv) above holds, hypothesis (iv) of Theorem 2.8 is also
satisfied; Theorem 2.8 now guarantees that (2.16) is Gas. However, this situation is
admittedly restrictive; the condition (iii) above holds only under special situations.
Remark 2.18. Consider a hybrid system described by a partition of its continuous
state space into regions via fixed switching surfaces (guards) and fixed continuous dy-
namics in each region [30, 44]. Every trajectory of such a hybrid system corresponding
to a fixed initial condition can be realized as a trajectory of the switched system (2.2),
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for a suitable time-dependent switching signal o. For hybrid system trajectories cor-
responding to different initial conditions, the resulting switching signals are in general
different, and stability properties of the corresponding switched system realizations
are different. Therefore, we cannot conclude stability of the hybrid system from sta-
bility of the associated switched system. However, it is possible to conclude stability
of the hybrid system from the switched system provided we have uniform stability
with respect to a suitable class of switching signals—mnamely, the class of switching
signals obtained from the hybrid system by varying its initial condition.

We have stated our Theorem 2.8 for a fixed switching signal o; no uniformity with
respect to o is claimed. However, we have noted in Remark 2.15 that under specific
hypotheses, we do have uniform stability over the class of switching signals with suf-
ficiently large average dwell-time. It turns out that in supervisory control algorithms
based on state-dependent hysteresis switching (utilizing guards with memory), the
switching signal is effectively constrained to precisely such a class, thereby ensuring
uniform stability; see, e.g., [30] and the references therein. Identification of other use-
ful classes of switching signals for which we can conclude stability for hybrid systems
in this way remains to be studied.

2.5. Remarks on other stability notions. Although not covered by the re-
sults presented so far, the comparison framework of Theorem 2.8 is general enough
to describe various other stability behavior. The classical comparison principle has
been successfully applied to describe strict stability, total stability, practical stability,
and finite time stability, among others. The idea has also been applied in the con-
text of partial, impulsive, stochastic, and functional differential equations and integral
equations; see [29] for further details. In this subsection we study two other notions
of stability of switched systems in our framework of Theorem 2.8, namely, uniform
practical stability and finite time stability.

Practical stability. We briefly study one representative notion of practical sta-
bility, defined below; see, e.g., [27] for other definitions and details.

DEFINITION 2.19. Let #°,h € T and the pair (A, A), A € |0, A[ be given. The
system (2.2) is said to be (h°, h)-uniformly practically stable with respect to (A, A) if
for every ty € Ry, the property

(2.31) 1 (tg,z0) < A = h(t,z(t) <A Yt >t

holds for all solutions of (2.2).

With R°, h specialized to Euclidean norms, we recover usual uniform practical
stability.

Remark 2.20. Uniform practical stability of impulsive differential equations of
the type (2.6), for a given sequence {7;};>0, is identical to Definition 2.19, with °, h
specialized to absolute values.

The following result, which we state without proof, provides sufficient conditions
for (h°, h) uniform practical stability of the switched system (2.2) with respect to a
given pair (A, A); see [9] for a proof. In section 3.5 we state and prove a stochastic
version of this result. We define the “open tube” (or cylinder) of radius r > 0 in terms
of a measure h € T" to be the set

B(h,r) = {(t,z) € Ryg x R" | h(t,x) < r}.

PROPOSITION 2.21. Consider the switched system (2.2) with a given o, I°,h € T,
and let the pair (A, A), X €0, A[ be given. Suppose that there exist functions ay,as €
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Koo, Vp € C[B(h,A) N ((Rzo x RM\B(I°, X)), Rxo] for each p € P locally Lipschitz
in the second argument, and a system X of the type (2.6), such that
(i) the family {V, | p € P} is P-uniformly h-positive definite and h°-decrescent in
the sense of (2.5);
(i) V(t,z) € B(h,A) N ((Rso x R")\B(K*,A)) and Vp € P, we have D}:V},(t,x) <
o(t, Vp(t, x));
(iii) Vioir)(mi, (1)) < &(m) Vi >0, where x(t) and £(t) are solutions of (2.2) and
Y, respectively;
(iv) X is uniformly practically stable with respect to (aa(M), aq(A)).
Then (2.2) is (K°, h)-uniformly practically stable with respect to (A, A).

Finite time stability. We provide sufficient conditions for finite time stability
in case of autonomous switched systems only. The definition of finite-time stability in
terms of two measures is proposed in Definition 2.22; for further details on finite-time
stability with Euclidean norms, see [3].

For autonomous switched systems, we specialize the class of functions I in (2.3)
to the corresponding autonomous version I'y, := {h € C[R™,Rx¢] | inf; h(z) = 0}. For
simplicity, we only consider special cases of h° and h below.

DEFINITION 2.22. Let i°,h € T, such that ker B° = kerh = {0} and I°,h are
positive definite, radially unbounded. The switched system (2.16) is said to be (K, h)-
finite time stable if for every e > 0 the following two properties hold simultaneously:

o The finite time convergence property holds; i.e., there exists a function T :
R™\ {0} — Rsq called the settling time function such that for every zy €
R™\ {0}, z(t) is defined on the interval [0,T (zo)[ with x(¢t) € R™\ {0} and
limyy7(ze) 2(t) = 0, where x(t) is the solution of (2.16) with initial condition
Zo-.

o Lyapunov stability holds; i.e., there exists a function 6 € Ko such that
R (xg) < 6(e) = houz(t)<e Vte|0,T(xo)

With R°, h specialized to Euclidean norms, we recover finite time stability in the
sense of [3].

Remark 2.23. Finite time stability of impulsive differential equations of the
type (2.6) is identical to Definition 2.22, with h°, h specialized to absolute values.

PROPOSITION 2.24. Consider the switched system (2.2) with a given o, and
W,h € I'y. Suppose that there exist functions oy, € Ko, locally Lipschitz V), €
C[R™,Rxg] for each p € P and a system ¥ of the type (2.6), such that

(i) Yz € R™ and Vp € P, we have ay o h(z) < Vy(z) < ag o K2 (z);
(ii) Yz € R" and Vp € P, we have D}Tpr(x) < o(t, Vp(x));
(iii) Yoo € R", there exists §o € Ry such that Vi) (i, x(7;)) < §(13) Vi > 0,
where x(t) and £(t) are the corresponding solutions of (2.16) and X, respectively;
(iv) X is finite time stable.
Then (2.16) is finite time stable.
The proof of this Proposition is not difficult and is omitted.

3. Stochastic switched systems. In this section, we study stability of stochas-
tic switched nonlinear nonautonomous systems of the Ito type. In section 3.1, we de-
scribe a stochastic switched system and define the notions of stability that we study.
We propose our comparison theorem for stochastic switched systems in section 3.2
and illustrate it in sections 3.3 and 3.4. We discuss two other stability notions in
section 3.5 and demonstrate that their analysis can be similarly carried out in the
framework of the proposed results.
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3.1. Preliminaries.

System description and stability definitions. Let © := (Q, F,P) be a com-
plete probability space, where 2 is the sample space, F is the Borel o-algebra on €2,
and P is a probability measure on the measurable space (2, F).

We consider a family of nonlinear nonautonomous It6 systems,

(3.1) dz = f(t,z)dt + G,(t, x)dw, pEP,

where z € R”, P is an index set, f, € C[Ryo x R",R"] is a vector field, G, €
C[Rxp x R™,R™"*™] is a diffusion rate matrix function, f,(-,0) = 0 and Gp(-,0) =0
for every p € P, w is an m-dimensional normalized Wiener process defined on the
probability space €2, and dz is a stochastic differential of z. We assume that f,
and G, are smooth enough to ensure existence and uniqueness of the corresponding
solution process; for precise conditions see, e.g., [36]. A switched system generated by
the family (3.1) and a switching signal o, defined similarly to section 2.1, is

(3.2) dz = f,(t,z)dt + G, (t, z)dw, x(tg) = xg, = to,

where tg € R>p. It is assumed, just as in section 2.1, that there is no jump in the
state x at the switching instants, and there is a finite number of switches on every
bounded interval of time. We denote the switching instants by 7;, ¢ = 1,2,..., with
To := to, and the sequence {7;};>¢ is strictly increasing. The solution process of (3.2)
as a function of time t, initialized at a given pair (to, xo), and under a given switching
signal o, is denoted by z(t). In what follows, expected values at the (deterministic)
initial condition are to be identified with their actual values; see also Remark 3.3.

Let ||, := (E[|2|])"/9 denote the gth mean of a random variable 2 defined on
Q. We will have occasion to use Jensen’s inequality: if ¢ € C[R™ /R] is concave
and z is a random variable on €2, then E[p(z)] < ¢(E[z]). Also, we need Cheby-
shev’s inequality: for € > 0, 1 € C[R"™, Rx¢], # a random variable on 2, we have
Pli(x) > ¢] < El(x)] /e,

Consider the system with index p in the family (3.1). Let V € C12[Rx x R™, Rx].
By Ito’s formula we have the stochastic differential of V' as

dV(t,z) = L,V (t, z)dt + Vi (t, 2)Gp(t, z)dw(t),
where

(3.3) LV (tx) = Vi(t,z) + Vy(t, x) fp(t, z) + %tr (Vm(t, z)G,(t, x)Gg(t, :E))

is the infinitesimal generator for the system with index p in (3.1) acting on the function
V, and Vi, V,, V.. denote the partial differentials of V (¢, x) with respect to ¢, x, and
twice with respect to x, respectively, and tr denotes the trace of a matrix; see, e.g., [14].

We focus on the following two general notions of stochastic stability in terms of
two measures, which belong to the set I' in (2.3).

DEFINITION 3.1. Let I°,h € T'. The stochastic switched system (3.2) is said to be
(k°, h)-globally uniformly asymptotically stable in the mean ((h°, h)-GUAS-M) if there
exists a function § € ICL such that for every (to,zo) € R>o x R", the inequality

(34) E[h(t, x(t))] < ﬁ(ho(to,l‘o),t — to) Vit 2 to

holds.
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DEFINITION 3.2. The stochastic switched system (3.2) is said to be (k°, h)-globally
uniformly asymptotically stable in probability ((k°, h)-GUAS-P) if for every n € ]0, 1],
there exists a function 8 € KL such that for every (to,xo) € Rxo x R™, the inequality

(3.5) P|h(t, z(t)) = B (to, x0), t — to)] <n Vit

holds.

Remark 3.3. We have stated our stability definitions in terms of deterministic
initial condition. However, the results of this section hold true for the general case
of stochastic initial condition as well. For instance, if we consider replacing k°(to, xo)
with E[A°(to, zo)] or h°(to, E[xg]) in either (3.4) or (3.5), all the results hold true, with
minor straightforward modifications in the proofs.

Remark 3.4. The (h°, h)-GUAS-M property is equivalent to the simultaneous ver-
ification of the following properties:

(SM1) there exists a class Ko function § such that for every € > 0, ty € Ry, we
have K (tg, zo) < 6(e) = E[h(t,z(t))] <e Vit = to;

(SM2) for every r,e > 0, there exists a number T'(r,e) > 0 such that for every
to € Rxo, we have i°(tg,x0) <1 = E[h(t,z(t))] <e Vit =to+T(re).

The proof follows directly from the proof of the equivalence in Remark 2.3 presented

in Appendix A, with E[h(¢, 2(¢))] replacing h(t, z(t)).

The (h°, h)-GUAS-P property is equivalent to the simultaneous verification of the
following properties:

(WP1) for every 1’ € ]0, 1], there exists a function § € Ko, such that for every e > 0,
to € R>o, we have 1°(to,x0) < 6(¢) = P[h(t,z(t)) > €] <n' Vi >tp; and

(WP2) for every 0 €]0,1[, r,e’ > 0, there exists a number T'(r,e) > 0 such that for
every tg € Rxo, we have I°(tg, zo) <7 = Plh(t,z(t)) =€l <n” Vi =
to +T(r,e).

Establishing this equivalence takes some more work; an outline may be found at the

end of Appendix B.

Remark 3.5. We recover a notion essentially equivalent to global uniform asymp-
totic stability in the qth mean (GUAS-M,) from Definition 3.1 with /°(¢,z) = h(t,z) =
|z|9, ¢ > 1; see, e.g., [14]. With the same k° and h, Definition 3.2 yields global uniform
asymptotic stability in probability (GUAS-P) in the sense of [23].

Remark 3.6. The (h°, h)-GUAS-P property of (3.2) follows from its (h°, h)-GUAS-
M property. To see this, pick n € ]0,1[ and let there exist a function § € KL such
that (3.4) is satisfied. Consider a second function 3 € KL such that 3(r,s) > B(r,s)/n
for all (r,s) € R;O. Utilizing Chebyshev’s inequality, we now have for every t > tg

_Elhtta(0)]

P [h(t» z(t)) = B(ho(toa o), t — to)] < ﬁ(ho (t07 x0),t —tg)

(K (to, x0),t — to)
(1 (to, 7o) £ —t0)

U

<
g

which is the (h°, h)-GUAS-P property.

Comparison systems and stochastic comparison principle. We utilize the
comparison system (2.6); see section 2.1 for the definitions. We need the following
stochastic version of the comparison principle; see, e.g., [26] for a proof, where the
authors also consider stochastic comparison systems.
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LEMMA 3.7. Consider the stochastic system with index p in the family (3.1).
Suppose that there exist a function V € CH2[Rso x R™,Rxo] and a comparison system

% 5: ¢(t,£), g(tO) = 50 = 0, t > 1o,

where ¢ is concave in the second argument, such that for all (t,x) € Rxo x R", the
differential inequality

LV (t,2) < $(t, V(t,2)

is valid. Then E[V (7,z(7))] < &(7) implies E[V (¢, z(t))] < £(t) VYt = 7, where z(t)
and &(t) are the solution process of the system with index p in (3.1) and the solution
of X3, respectively.

3.2. Comparison theorem for stochastic switched systems. The follow-
ing result establishes a general framework for testing stability of stochastic switched
systems using multiple Lyapunov functions and a comparison system.

THEOREM 3.8. Consider the stochastic switched system (3.2) with a fized switch-
ing signal o generating a sequence of switching instants {7;}i>1 and two functions
1, h € T. Suppose that there exist functions a1, as € Koo, Vp € CH2[R5g x R™, Rx]
for each p € P, and a system ¥ of the type (2.6), such that

(1) a1 is convex, and ¢ is concave in the second argument;
(ii) the family {V, | p € P} is P-uniformly h-positive definite and h°-decrescent in
the sense of (2.5);
(i) V(t,z) € Ryo x R™ and Vp € P, the estimate £,V,(t,z) < ¢(t, Vp(t,x)) holds;
(iv) ¥ (to,z0) € Rxo x R™, there exists & € Rxq such that E[Vg(ﬂ.)(n, x(Tl))} < &(1)
for all © = 0, where x(t) and £(t) are the solution process of (3.2) and the
solution of 3, respectively, for these initial conditions;
(v) X is GUAS in the sense of (2.7).
Then (3.2) is (h°, h)-GUAS-M in the sense of Definition 3.1.

Proof. Consider the interval |1, 7p41[, with £ an arbitrary nonnegative integer.

Combining hypotheses (iv), (iii), and (i), and Lemma 3.7 with 7 = 74, we have

E[Vo(r (t,(t)] <E(F) Vi€ [, moqal.
The above estimate, in conjunction with hypothesis (v) and (2.7), yields
(3.6) E[Vo(r) (8, 2(t))] < Be(&o,t — to) YVt € [1e, Tos1]-

The function «; being convex by hypothesis (i), taking expectations and using Jensen’s
inequality in (2.5) and considering (3.6), we reach the estimate

(3.7) a1 o E[(t, z(1))] < Be(fo,t —to) VI E [1e, Teqal.
The arbitrariness of £ in (3.7) leads to
Elh(t,z(t))] < B(K(to, x0), t —to) Vit = to,
where 3(r,s) := aj' o fB¢(az(r),s). The function 3 being of class KL, it follows
that (3.2) is (h°, h)-GUAS-M. 0

The following obvious Corollary, which we merely state, follows almost immedi-
ately from Theorem 3.8 in the light of Remark 3.6.
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COROLLARY 3.9. Suppose that the hypotheses of Theorem 3.8 hold true. Then
(3.2) is (h°, h)-GUAS-P in the sense of (3.5).

Remark 3.10. The hypothesis on convexity of o in Corollary 3.9 actually is not
necessary for (h°, h)-GUAS-P of (3.2). In Theorem 3.24 we will prove a stronger prop-
erty without this convexity assumption, which will imply the (h°, h)-GUAS-P property
of (3.2). For the moment, however, we shall work with (h°, h)-GUAS-M.

Theorem 3.8, like its deterministic counterpart Theorem 2.8, does not provide a
direct method for analyzing stability of a given stochastic switched system. We will
now demonstrate how to proceed with such a scheme of analysis and propose a few
more specific results. In section 3.3 we provide sufficient conditions for (A°, h)-GUAS-M
under a fixed-index sequence monotonicity condition. The comparison system utilized
in the proof of this result utilizes quantitative information of system trajectories. In
section 3.4 we provide sufficient conditions for GUAS-M, of a stochastic switched sys-
tem under average dwell-time switching, where the fixed-index sequence monotonicity
assumption imposed in section 3.3 is violated. We construct two comparison systems
that do not require quantitative information of system trajectories.

3.3. Stochastic stability under fixed-index sequence monotonicity con-
dition. For this subsection we let P be a finite set with N elements. The following
result provides a stochastic version of Corollary 2.9.

COROLLARY 3.11. Consider the stochastic switched system (3.2) and h°,h € T.
Suppose there exist functions o, aq, g, p,U € Koo, V,, € CL2[R3 x R™, R0 for each
p € P, such that

(i) a1, ao 012_1 and U o a2_1 are convex, and p is concave;
(ii) the family {V, | p € P} is P-uniformly h-positive definite and F°-decrescent in
the sense of (2.5);
(iii) V(t,z) € Ryo x R™ and Vp € P, we have Z,V,(t,x) < —ao I°(t,x);
(iv) for every pair of switching times (7;,7;), @ < j such that o(1;) = o(1;) = p and
o(ti) # p for 7, < T, < Tj, the inequality

(3-8) Vo (75, 2(75))] — E[Vo(7i, 2(73))] < —E[U 0 B (73, 2(7:))]

holds, where x(t) is the solution process of (3.2) initialized at (to,xo);
(v) V(t,z) € Ryo x R™, we have ag o K°(t,2) < poay o h(t,z).
Then (3.2) is (h°, h)-GUAS-M.
Proof. We define a candidate impulsive differential comparison system of the
type (2.6):

(3.9) i>0, t>t.

oF {g__aoa;@ T
€)= EVagey (i (7))

By its very definition, ¥ satisfies hypotheses (iii)—(iv) of Theorem 3.8. Hypotheses (i)-
(ii) of Theorem 3.8 are satisfied by our hypotheses (i)—(ii). To verify hypothesis (v)
of Theorem 3.8, we shall first prove Lyapunov stability of ¥ and then prove its global
asymptotic convergence, in view of Remark 2.6.

Consider the time interval |79, 71[. From hypothesis (iii), we have

E[Vo (ro) (71, 2(71))] < E[Vi (20 (70, 20)] -
Combining with hypothesis (ii), using Jensen’s inequality we reach

(310) E[Oq(h(ThiL'(Tl)))] < Qg O ho(to,.’l,'()).
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For every p € P, we have from hypothesis (i)

E[Vp(m1,2(71))] < Elag 0 h(71,2(71))]
and therefore by hypothesis (v),
(3.11) E[Vo (71, 2(m1))] < E[poay o h(my, z(m1))]

In view of hypothesis (ii), we apply Jensen’s inequality to (3.11) and use hypothesis (ii)
to get

(3.12) E[V,(71,2(11))] < p(E[ay 0 h(71,2(71))]) < poag o K (to, z0).
Consider now the interval |11, 72]. From hypothesis (iii) we have
E[Vo () (T2, 2(72))] < E[Vip(ry) (11, 2(11))] -
Combining with hypothesis (ii) and applying (3.12) with p = o(72), we get
(3.13) E[ay o h(72, z(2))] < poag o I (ty, o).
For all p € P, we have
E[Vy (72, 2(72))] < Elag 0 B (72, 2(72))]
so by hypothesis (iv) and Jensen’s inequality we get
E[Vi (72, 2(72))] < p(Elen © h(72, 2(72))]).
Now (3.12) gives
E[Vp(72,2(12))] < popoasoh’(ty,zo).

It is not difficult to see that the worst-case situation for maximum possible over-
shoot of the function E[V,] occurs when the switching signal o visits every element
of the set P without repetition until P is exhausted. Let 7~ be the first switching
instant after all the subsystems that participate in the dynamics have become active
at least once since initialization at t = tg. From the above computations, it is easy to
see that, with

pli=po...op,

j times
the estimate
&(Tj+) < PN o ag o B (tg, o),
is valid. Define the function
() = max{as(-),poaz(-),....p" toas()}.

From the above arguments and (3.8), it follows that £(¢) < v o K°(tg, zp). In view of
the definition of £, and hypothesis (ii), this leads to

(3.14) () <voarl(&%)  Vt=t.

It remains to prove uniform global asymptotic convergence of X.
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We distinguish two cases.

Case 1. Switching stops in finite time. Since o eventually becomes constant from
the kth switching instant, it follows that there are no impulses after ¢ = 7,,. Therefore,
the system (3.9) becomes an autonomous scalar ordinary differential equation after ¢t =
Tx, With negative right-hand side for nonzero (7, ). It follows that £(¢) monotonically
decreases to 0 for all ¢ > 7,. From (3.14) uniform Lyapunov stability of ¥ follows.
Thus, (3.9) is GUAS. Theorem 3.8 now guarantees that (3.2) is (h°, h)-GUAS-M.

Case 2. Switching continues indefinitely. Consider the restatement of the in-
equality (3.8) with £(7;) as in (3.9)

&(r5) — &(r) < —E[U o K (73, 3(7;))] = —E[U o aytoago K (13, 2(7;))]

<
< —Uoay' (Elag o b (m,2(mi))])

where we have utilized Jensen’s inequality and convexity of U o a; ' in hypothesis (i).
The infinite sequence {£(7:)} {i>0|o(r;)=p} is Monotonically nonincreasing and therefore
must attain a limit, say, ¢ > 0. Taking limits as ¢ T co on both sides of (3.8), we have

c—c< — l%m Uoay! (Elag o 12 (1, z(1:))]),
o(ri)=p

which leads to

1%111 Elaz o h°(7i, (7:))] = 0.
o(7i)=p

Considering hypothesis (ii) and the reset equation in (3.9), we have

(3.15) hTrn &(ry) = _lTim E[Vo(r) (15, 2(7))] = 0.
o(ri)=p o (ri)=p

Combining (3.14) and (3.15), we conclude that (3.9) is GUAS.
By Theorem 3.8, there exists a function § € KL such that

E[n(t, z(2))] < B(K(to,z0),t —t0) Vi >to,

and we conclude that (3.2) is (h°, h)-GUAS-M. ad
Remark 3.12. We note that in the above proof, ¥ makes explicit use of state
information of (3.2)—in the notation of (2.6), we use

Vi (€ (1) y(@(1i), 0(1:))) = E Vi) (73, (7))

in the reset equation. However, {(7; ) is not utilized; cf. Remark 2.10.

Remark 3.13. For Euclidean norms, the function p € Ko always exists if the
function as oozl_1 is concave (cf. Remark 2.11). Also, if ay, as, p, and U are quadratic,
as is typically the case for linear systems, hypothesis (i) is always satisfied.

Remark 3.14. It readily follows that for autonomous switched stochastic systems
and k°, h specialized to Euclidean norms, Corollary 3.11 gives global asymptotic stabil-
ity in the mean. Corollary 3.9 then implies global asymptotic stability in probability,
which is derived in [8] without the aid of the comparison framework.
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3.4. Stochastic stability under average dwell-time switching. In this sub-
section we investigate conditions on the average dwell-time 7, of a switching signal
such that (3.2) has the GUAS-My property. We no longer retain the assumption that
P is finite. We specialize to Euclidean norms for simplicity and propose the following
result, which may be regarded as a stochastic counterpart of Theorem 2.12. A gen-
eralization of Theorem 3.15 to two measures and nonautonomous stochastic switched
systems is readily done.

Let us consider the autonomous stochastic switched system

(3.16) dz = f,(z)dt + G, (z)dw, x(tg) = xo, t = to,

where z € R", f, € C[R",R"], G, € C[R",R"*™], f,(0) = 0, G,(0) = 0 for every
p € P, w is an m-dimensional Wiener process on the probability space Q. We
assume that f, and G}, are smooth enough to ensure existence and uniqueness of the
corresponding solution processes for every p € P; see, e.g., [36] for precise conditions.

We need the definition of average dwell-time from (2.17) for the following result.

THEOREM 3.15. Consider the switched system (3.2). Suppose that there exist
functions a1, a2 € Koo, V,, € CHR™,Rx0] for each p € P, and a positive number Ao
such that

(3.17) ar(|z]?) < Vp(z) < o(lz|?) Ve eR"

with oy conver, ¢ > 1, and

(3.18) 2, Vp(x) < =X Vp(2) Vo eR"

Suppose also that there exists a positive constant j such that for each t € Ry,

(3.19) Vi, (2) < pVp, () VzeR", Vpi,p2€P.
Then (3.2) is GUAS-Mq for every switching signal o with average dwell-time 7, > 1;‘—0“
For a single system, (3.18) is a condition that implies global exponential stability
in the gth mean [14], under an additional condition of a;(r) = k;r, i = 1,2. Theo-
rem 3.15 is particularly simple for autonomous linear stochastic switched systems as
we now show.
Consider a stochastic switched autonomous linear system

(3.20) dr = A, zdt + B,zdwy, z(0) =z, t=0,

where o(t) € P,z € R", A, B, € R™™", w is a scalar normalized Wiener process. For
quadratic Lyapunov functions V,(x) = J:TPpa:, where P,, p € P is a positive definite
symmetric matrix, with the aid of (3.3) the condition (3.18) simplifies to

(3.21) AYP,+ P,A, + B,P,B) + X\ P, <0,

which is a linear matrix inequality. To get the quadratic Lyapunov functions V, it
is necessary to solve (3.21) for each p € P; see [5] for related methods of solution
of such linear matrix inequalities, and see [14] for a discussion on quadratic Lya-
punov functions in stability analysis of stochastic linear systems. Note that (3.19) is
automatically satisfied if we can find such V,, = 2 Pz, with P, satisfying (3.21).

We provide two different proofs of Theorem 3.15 to illustrate the versatility of
our comparison framework.
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An impulsive differential equation as a comparison system.
Proof. Consider an impulsive differential system of the type (2.6) with

Vi (E(m7) s y(a(m),o(m)) = p(r), i=1, p>0,
as the reset equation, and
d(t, &) = =&, Ao > 0.

Note that concavity of ¢ with respect to £ is trivially satisfied. The complete system
stands as

/. é::_)‘of7 t#Tia - .
(3.22) X' () = pé(r), pu>0 £(to) = Vd(to)(xo)a 121, t2=to.

This system ¥/ is the same as (2.21). From (3.17) it follows that hypothesis (ii) of
Theorem 3.8 is satisfied with #°(¢,2) = h(t,z) = |z|?. Further, from (3.18) and (3.19)
together with the initial condition in (3.22), it follows that hypotheses (iii) and (iv)
of Theorem 3.8 are satisfied, respectively.

Intuitively,

e the minimum rate of decay of the expected values of Lyapunov functions
corresponding to each active subsystem is captured by the vector field of ¥';
and

e the maximum jump in the values of two Lyapunov functions corresponding
to two consecutively active subsystems is captured by the reset equation of
¥/ (since from (3.19) it follows that E[V,, (z(7;))] < pE[Vp, (z(7;7))] for every
1> 1, as in section 2.4, u > 1).

As in section 2.4, with 7, > l;—“ the GUAS property of ¥’ follows, which verifies
hypothesis (v) of Theorem 3.8. In view of Remark 3.5, by Theorem 3.8 we conclude
that (3.2) is GUAS-M,,. d

An ordinary differential equation as a comparison system.
Proof. Consider the following scalar autonomous system as a candidate compari-
son system:

. In
(323) E/I : g = <’u - >‘O> ga g(tO) = /“LNOe/\OtOVU(tO)(xO)v t = tOv

Ta

Note that concavity of the vector field of 3" with respect to £ is trivially satisfied. Let
the average dwell-time of o be 7, and let v := N, (T, ty). Considering the least rate
of decay of the expected values of Lyapunov functions corresponding to each active
subsystem given by (3.18), we have for an arbitrary T > 0,

E[VG(TI)('/L‘(Tlll))} < E[VG(TI)('/L‘(TI))} e_)\O(n*—l_ﬂ)v 0<i< v,
and
E[Vo(r)(@(T))] < E[Vy(ry(a(r,))] e T =),
Combining with the reset equation, we have

E[Vg(n)(ac(T))] < MVVa(to)(xo)e_’\"(T—to),
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The solution £ of (3.23) is identical to (2.25). From (3.17) it follows that hypothe-
sis (ii) of Theorem 3.8 is satisfied with h°(¢,x) = h(t,x) = |z|?. Further, from (3.18)
and (3.19) together with the initial condition in (3.23), it follows that hypotheses (iii)
and (iv) of Theorem 3.8 are satisfied, respectively.

Intuitively,

e the initial condition of X captures the maximum possible overshoot in E[V,]—
this corresponds to the situation when all N, switches occur very close to
t = to;
e &(+) forms an envelope of the sequence {E[V,(,,)(z(7:))] }Z.2 , over the interval
[to, T
As in section 2.4, A\, > h;—“ ensures global uniform asymptotic stability of ¥”; this
verifies Theorem 3.8 hypothesis (v). It follows that by Theorem 3.8, (3.2) is GUAS-M,
for switching signals with 7, > li—f in view of Remark 3.5. O

Remark 3.16. We note that in contrast to (3.9), the comparison systems (3.22)
and (3.23) do not utilize state information in the form of the function y directly; cf.
Remark 3.12.

Remark 3.17. From the solutions of (3.22) and (3.23) it is clear that for 7, > IK—“,
GUAS of ¥/ and X are ensured, which in turn imply that (2.2) is GUAS-M,. In other
words, the GUAS-M, property of (3.2) is “uniform” over all switching signals with
Tq > IK—“ We therefore say that (3.2) is globally “uniformly” asymptotically stable in
the qthomean over all such switching signals; see also Remark 2.15.

Remark 3.18. What we stated in Remark 2.17 for deterministic switched sys-
tems carries over to the stochastic case quite easily; it is not difficult to show that
in the context of Theorem 3.8, under suitable hypotheses each subsystem may be
exponentially unstable while the switched system (3.2) remains (h°, h)-GUAS-M,.

Namely, consider the stochastic switched system (3.2), and suppose that o is such
that N, (t,to) obeys (2.28) for some Ny, 6, > 0. Let there exist functions oy, as € Ko,
V, € C'[R",R>0], p € P, and real numbers z' € ]0,1[ and A\ > 0, such that

(i) the estimate (3.17) holds;

(i) Vo € Ryo x R™ and Vp € P, we have Z,V,(x) < Ao Vp(2);
(i) E[Vo(r (@(ri))] < WE[Vyomy (@ )] Viz 13

(iv) 6q < —Inp'/Ao.
Then (3.2) is GUAS-M,.

It may be verified that the comparison system ¥ in (2.29) is a suitable comparison
system under the above hypotheses, and the assertion follows from Theorem 3.8.

Remark 3.19. We mentioned in Remark 2.18 that for a system with state-
dependent switching, in general we cannot conclude stability for more than one initial
condition from the associated switched system (2.2). The situation is more compli-
cated in the case of a hybrid system with continuous dynamics perturbed by a Wiener
process; now the switching signals o corresponding to different trajectories are differ-
ent even for a fixed initial condition, making direct analysis of such a system difficult.
The switched system (3.2) provides for simpler stability analysis for a fixed initial
condition, but once again we cannot conclude stability of the hybrid system under
variations in initial conditions from stability of the switched system. Theorem 3.8 is
stated without any claim of uniformity with respect to initial conditions. However,
in Theorem 3.15 we obtained uniform stability of a switched system perturbed by a
Wiener process over the class of o defined by a suitable average dwell-time, without
taking into account an underlying hybrid system. This class of signals is potentially
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useful for hybrid systems where variations in the initial condition preserve average
dwell-time switching; see [39] for some results in this direction.

3.5. Remarks on other stability notions. In this subsection we study two
notions of stochastic stability of switched systems, different from the ones considered
so far, and utilize the framework of Theorem 3.8.

Stochastic practical stability. Stochastic practical stability is concerned with
practical stability of systems perturbed by a Wiener process with respect to prespeci-
fied domains in the state space. We briefly study a representative notion of stochastic
practical stability below; see [40] for a version of the definition for nonswitched systems
and with 1°(t,x) = h(t,z) = |z|?.

DEFINITION 3.20. Let °,h € T' and the pair (A, A), X\ € |0, A[ be given. The
stochastic switched system (3.2) is said to be (h°,h)-uniformly practically stable in
the mean with respect to (X, A) if for every to € Rxq, the property

(3.24) 1 (to, w0) < A = E[h(t,z(t))] < A Yt >t

holds for all solution processes.

The following result provides sufficient conditions for (k°, h)-uniform practical
stability of (3.2) in the mean with respect to a given pair (A, A).
PROPOSITION 3.21. Consider the stochastic switched system (3.2) with a given

o, °,h € T, and let the pair (X, A), X\ € ]0, A[ be given. Suppose that there exist

functions ai,az € Koo, V, € CH2[B(h, A) N (Rso x R")\B(K, ), Rxo] for each
p € P, and a system X of the type (2.6), such that
(1) a1 is convex, and ¢ is concave in the second argument;

(ii) the family {V, | p € P} is P-uniformly h-positive definite and h°-decrescent in
the sense of (2.5);

(iii) V(t,z) € B(h,A) N (Rso x R)\B(K*,\)) and Vp € P, we have Z,V,(t,x) <
(b(t’ Vp(t’ '7;));

(iv) V(to, o) € Rxo x R™, there exists & € Rxq such that E[V, (i, 2(7;))] < &(m)
for all i > 0, where x(t) and &(t) are the solution process of (3.2) and the
solution of X3, respectively, for these initial conditions;

(v) X is uniformly practically stable with respect to (ag(X), ag(A)).

Then (3.2) is (k°, h)-uniformly practically stable in the mean with respect to (X, A).

Proof. In view of Remark 2.20, the uniform practical stability of ¥ with respect
to (a2(A), a1(A)) implies that for every tg € Rxo,

(325) 50 < Ct2(>\) — f(t) < O[l(A) Vi >ty

Select and arbitrary = such that k°(to, o) < A, and pick £y = ag o k°(tg, o) and an
arbitrary nonnegative integer £. From hypothesis (iv) and Lemma 3.7 at time 7 = 7,
we have

(3.26) E[Va(Tz)(Tg,x(Tg))} 30 Yt € [To, Tog1[.

Combining (3.26) with (3.25) over the time interval [rp, 7s41[, and using hypothe-
sis (iii), we have

(3.27) E[ay o h(t,z(t))] < aq(A) Vit € [1e, Tog1].
Since a1 is convex by hypothesis (i), by Jensen’s inequality in (3.27), we reach

(3.28) a1 (E[h(t, z(¢))]) < a1(A) YVt € [1e, Tega]
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The inequality (3.28), together with the arbitrariness of ¢, indicate that (3.24) holds.
The (B°, h)-uniform practical stability in the mean of (3.2) with respect to (A, A)
follows. d

Strong global uniform asymptotic stability in probability. We present a
stronger version of global asymptotic stability in probability below; see, e.g., [33] for
a version of the definition for nonswitched systems and Euclidean norms.

DEFINITION 3.22. Let I°,h € T'. The stochastic switched system (3.2) is said
to be (R°, h)-strongly globally uniformly asymptotically stable in probability ((h°, h)-
SQUAS-P) if for every n € ]0,1[, there exists a function § € KL such that for every
(to,z0) € Rxg x R™, the inequality

(3.29) P|sup h(t, z(t)) = B(K (to, xo),t —to)| <n
t>to

holds.
LEMMA 3.23. The (K°,h)-SGUAS-P property is equivalent to the simultaneous
verification of the following two properties:

(SP1) for every n’ €]0,1], there exists a function § € Ko such that for every e > 0
and to € Ry, we have

(3.30) R (to,zo) < 6(e) = P LSBF h(t,z(t)) > 5] <n';

(SP2) for every n” €10,1], r,e’ > 0, there exists a number T(T, e') > 0 such that for
every to € Rxo, we have

(3.31) ho(to,l'()) <r = P

sup  h(t,z(t) =<' <n".
t>to+T(r,e’)

A proof of this result is provided in Appendix B.

It is clear that the (h°, h)-SGUAS-P property is stronger than the (h°, h)-GUAS-P
property. However, the same hypotheses as those of Corollary 3.9 ensure this stronger
property, as we prove below. In fact, the hypotheses can be slightly weaker—we can
do away with the convexity assumption of «; in Theorem 3.8.

THEOREM 3.24. Suppose the hypotheses of Theorem 3.8 hold true, with o1 not
necessarily convexr. Then (3.2) is (h°, h)-SGUAS-P.

Proof. In view of Lemma 3.23 it suffices to prove (SP1)—(SP2). We first prove
(SP1). Let ' €]0,1[ and € > 0 be given. Since ¥ is GUAS by hypothesis (v), in view
of Remark 2.6 there exists a function é6; € K such that for every ¢y € R, we have

o <be(n'an(e)) = &) <nonle)  Vi=to.
Let 6(-) := ay' o &(n'ai(-)), where we have suppressed the dependence of § on
7', which is implied. Choose an arbitrary xo such that h°(tg,z9) < 6(¢) and let
& = ag o K (to, zp). Then from hypotheses (iii), (iv) and Lemma 3.7, it follows that
(3.32) E[Vo (t,z(t)] <&@1) <nai(e) V=t

Claim 1. We have Plsup,, h(t,z(t)) = €] <n'.
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Indeed, let 7. be the first exit time of z(t) from B(h,e), ie., 7. := inf {t >
to | h(t,x(t)) = e} < oo. Therefore, from (3.32), we have
(3.33) E[Vo(ront) (e Aty a(7e AE))] <1 ou(e) Vit > 1.
Fix an arbitrary t' > to. We have from (3.33),
(3.34)  n'ar(e) > E[Vo(rne (e At 2(7e AY))] = E[Lir <o Vioir (e, 2(7))]

where 17, is the indicator function. From hypothesis (ii) and the definition of 7., it
follows that

(3.35) E[l{r.<onVor) (7o 2(72))] = E[1(r<pryoq o h(7e, 2(72))] = Plre < t]an(e).

Combining (3.34) and (3.35) we get n’ai(e) > aq(e)P[r. < t'], and considering the
definition of 7., this leads to

P[ sup h(t,z(t)) > 8] <.

te(to,t’]

Since t' > ty is arbitrary, we have

P [sup h(t,x(t)) = 5} <17,
t>to
whence Claim 1 is verified. The (SP1) property (3.30) of (3.2) follows.

We now sketch the proof of (SP2), which is very similar to the proof of (SP1).
Let n” €]0,1[ and r,&’ > 0 be given. Since ¥ is GUAS by hypothesis (v), in view of
Remark 2.6 there exists a number T'(az2(r),n"”a1(e’)) > 0 such that for every to € Rxg
we have

& < as(r) = £(t) <n"ay(e) Vit >ty +T(az(r),n"ar(e).

Choose z( such that B°(tg,z¢) < r and let & := ag o k°(to, o). Then from hypothe-
ses (iii), (iv) and Lemma 3.7, it follows that

(3.36) (Vo (t2(t)] <€) <nau(e) Vit >t +T(aa(r),n"as(e")).

Claim 2. We have P sup ht,z(t)) =&"| <n".
t2to+T (a2 (r),n" a1(e'))

Indeed, defining 7o/ := inf {t > to+T(c2(r),n"a1(¢")) | h(t, z(t)) = &'} < oo, and
following the steps of the above proof of (SP1) with 7/ replacing 7., for an arbitrary
t" >ty + T(aa(r),n"a1(e’)), we obtain

0 o1 (") > E[Vioir ey (Ter A (e AN))] 2 E[Lir, <oy V(e (Ter, (7)) ] -
This leads to n” a1 (') > Plrer < '] aq(g'). Since t” is arbitrary, by the definition of
Ter We get

Pl sup  h(tz(t) =< | <9,
t>to+T(r,e’)

where f(n g') = T(az(r),n"a1(e")), suppressing the dependence on n”, which is
implied. This verifies Claim 2, and hence the (SP2) property (3.31) of (3.2).
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We conclude that (3.2) is (h°, h)-SGUAS-P. |

Since (k°, h)-SGUAS-P implies (h°, h)-GUAS-P, we obtain the (h°, h)-GUAS-P prop-
erty of (3.2) without the necessity of a; being convex; cf. Remark 3.10. See also [23]
for a proof of the GUAS-P property of a single stochastic system without the convexity
assumption on a;.

4. Conclusion. We have established a general framework for stability analy-
sis of deterministic and stochastic switched systems. In section 2 we have unified
representative existing results on deterministic switched systems and provided illus-
trations of how we can improve upon the scope of applicability of Lyapunov’s second
method to switched systems. In section 3 we have established new results on stability
of stochastic switched systems. We have carried out analysis in terms of two mea-
sures and demonstrated how our framework applies to various stability notions. To
conclude, we make the following comments with an eye toward possible future work.

In this paper we have considered disturbances in the form of a Wiener process
affecting the states of a switched system, and we have not paid attention to the
mechanism of switching signal generation. A common way to generate a switching
signal, which has received a lot of attention in recent literature, is via a Markov chain
with state space P; see, e.g., [2, 4, 21]. In situations where both Markovian switching
and a Wiener process are present, we have to keep in mind two different probability
spaces in general: one that generates the disturbances, and the other which governs
the Markovian switching. Some results on stability analysis of piecewise deterministic
systems with Markovian switching are under development by the authors and will be
presented separately.

Although we have utilized only scalar Lyapunov functions in this paper, there
can be a parallel development utilizing vector Lyapunov functions. For details on this
method, see, e.g., [32] and also [29] for an extensive development and discussion on
vector Lyapunov functions used in conjunction with analysis using two measures.

A suitably modified version of the comparison framework can be used for systems
with inputs also; details for the case of input-to-state stability of switched systems
will be reported elsewhere.

Appendix A. Equivalence of definitions of (h°, h)-GUAS.
Proof of the claim in Remark 2.3. Sufficiency. Assume that the (S1) property
holds. With a fixed ¢ > 0 we have

R (to,z0) < 6(g) = h(t,z(t)) <e Vit =to,

and the above implication holds uniformly over t3. Defining the function ¢ € K
such that ¢(-) := 6~1(-), it follows that

(A1) h(t,z(t)) < ¢ o h’(to, xo) Vit > to,

since € > 0 is arbitrary.
Now we assume that the (S2) property holds.
A straightforward generalization of [31, Lemma 3.1] leads to the existence of a
family of mappings {7} },~¢ with the properties
e for every fixed r > 0, T, € C[Rs, R+ ] is surjective and strictly decreasing,
and
e for every fixed € > 0, T(¢) is strictly increasing with r and lim,joc 77 (¢) = o0,
such that #°(to, zo) < r implies h(t,z(t)) <e Vit =to+ T-(¢).
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Let ¥,.(:) := T.71(:), r €]0,00[. Then v, € C[R=g,Rx0] is surjective and strictly
decreasing. We write ¢,.(0) = oo, considering limy ¢ 9, (t) = oo.

Claim. For K (to, zo) < r we have h(t,z(t)) < 1,(t) for t > 1.

Proof. Tt follows from the definition of 7. that for an arbitrary r,e > 0,

W (to,x0) <r = h(t,z(t)) <e Vit = to+ ().

Since t — tg = Ty o ¢, (t — o), for t > to, we have h(t,z(t)) < ¥, (t — tp). Combining
this and ¢,(0) = oo, the validity of the claim follows.
For arbitrary s,t € Rxq, let

Blont) = min { o), _int_,(0)}.

r€ ]s,00(
By definition of ¢ and the above claim, for every (to, o) € Rxo x R,
h(t,z(t)) < Y(F(to, o), t —to) YVt = to.

The function ¢ need not be of class KL, so we majorize it as follows. By definition,
(-, t) is a nondecreasing function and for some fixed s, ¥(s,t) — 0 as t T co. Define

(1+s)(1+t—to)

~ S+1i
D5, 8) ::/ D, )dv +

It is straightforward to prove that
e (s,t) is increasing with s for every ¢ € R,
e (s,t) decreases to 0 as ¢ T oo for every fixed s € Rxg, and
o Y(s,t) = (s, ).

Then defining B(s,t) := \/@(s)i(s,t), it follows that for an arbitrary (to,zo) €
R>0 X Rn,

h(t,z(t)) < \/(gp o 1°(to, o)) (Y(F (to, o), t — to)) < B(K (to, z0),t —to) YVt > to.

The proof of sufficiency is complete.
Necessity.
e To see (S1), consider the inequality (2.4) at the initial condition. We recover
a class Ko function 3(-,0) =: v(-) relating h° and h as h(t,x) < vy o B (¢, x)
for all (t,z) € R>o x R™. Now for € > 0, consider 6(-) = y~1(-).
o To see (S2), consider r,e¢ > 0 given and the existence of T' follows from the
property of the class KL function .
The proof of necessity is complete. ]

Appendix B. Equivalence of definitions of (h°, h)-SGUAS-P.

Proof of Lemma 3.23. First we show that (h°, h)-sGUAs-p implies (SP1)-(SP2).

We note that by the (h°, h)-SGUAS-P property, there exists a function 8 € L such
that (3.29) holds. Let n’,n” € 10,1, r,e,&’ > 0 and ty € Rso be given. We choose
n=mn"An". From the deterministic equivalence claimed in Remark 2.3, we have two
numbers §(¢) > 0 and T'(r,&’) > 0 such that from the condition sup,, h(t,z(t)) <

B(K (thIO) —tg) we get
(i) B°(to, o) < 6(e) == sup;»y, h(t, z(t)) < ¢, and
(i) 1°(to,x0) <1 = SUPt>t0+T(r,e) h(t,z(t)) <.



204 DEBASISH CHATTERJEE AND DANIEL LIBERZON

Choose g € R™ such that h°(tg,x0) < 6(¢) A r. Define the sets

Q) == {h(t,z(t)) < e},

(B-1) Qf = {ht,z(t) <} u{t<to+T(re)}.

Note that the set {t < to+ T(r,e )} merely ensures that the probability mea-
sure of the set {h(t,z(t)) < £’} is meaningful only after ¢t > to + T'(r,&’), which
is what we need. In the light of (i)—(ii) and the definitions in (B.1), we know
that (3.29) implies that P[>y, (N QY)] > 1 —n. But by our choice of n, this
means that P[N>y, (Q; N Q)] > (1—-7')V(1—n"). Therefore, P[Ni>, Q] > 1—7" and
P[Ne>,Q7] = 1 — 7", which are the properties (SP1) and (SP2) in (3.30) and (3.31),
respectively.

Now we show that (SP1)—(SP2) implies (h°, h)-SGUAS-P.

Let n €]0,1[, 7,6, > 0 and to € R5( be given. We choose ' =" =n/2. From
(SP1)—(SP2), we get two numbers §(¢) > 0 and T'(r,e’) > 0. Choose zy such that
R (to, o) < 6(e)Ar. Using the definitions of Q) and 2} in (B.1), from (3.30) and (3.31)
we have P[N;>4,Q] > 1 —n/2, and P[Ni>4, /] > 1 —n/2. We know that for A, B C Q2
such that P[A] > 1—n/2 and P[B] > 1—1n/2, we have P[A N B] > 1—n. (This follows
from the simple observation that 1 > P[AU B] = P[A] + P[B] — P[AN B].) It follows
that P[Ny>e, (2 N Q)] > 1 —n, which is just

P [{sup h(t,z(t)) < 5} ﬂ { sup  h(t,z(t)) < s’}] >1-n.

t>to t>to+T(r,e’)

In view of Remark 2.3 and (i)—(ii) above, since r, €, &’ > 0 were arbitrary, it follows that
there exists a function 3 € KL such that P[sup,s, h(t, z(t)) < B(K (to, z0),t — to)] =
1 —mn, which is the (h°, h)-SGUAS-P property (3.29). |

We remark that with little alteration of the above proof we obtain the equivalence
of the definitions of (h°, h)-GUAS-P claimed in Remark 3.4. Indeed, for arbitrary fixed
t > to, we need to eliminate the intersections of the sets 2} and Q) over t > ¢ in the
equations above to establish the equivalence for time ¢. Since ¢ is an arbitrary choice,
we can conclude the validity of the result for every ¢ > .

Acknowledgments. We are indebted to S. P. Meyn for sharing with us his vision
and discernment on stochastic stability. We thank A. D. Teel and V. Lakshmikantham
for providing valuable insights on stability analysis in terms of two measures at various
junctures.

REFERENCES

[1] L. ARNOLD, Stochastic Differential Equations: Theory and Applications, Krieger, Melbourne,
FL, 1992.

[2] S. BATTILOTTI AND A. D. SANTIS, Dwell time controllers for stochastic systems with switching
Markov chain, Automatica, 41 (2005), pp. 923-934.

[3] S. P. BHAT AND D. S. BERNSTEIN, Finite-time stability of continuous autonomous systems,
SIAM J. Control Optim., 38 (2000), pp. 751-766.

[4] P. BoLZERN, P. COLANERI, AND G. D. NIicoLAO, On almost sure stability of discrete-time
Markov jump linear systems, in Proceedings of the 43rd Conference on Decision and Con-
trol, 2004, pp. 3204-3208.

[5] S. Boyp, L. E. GHAoul, E. FERON, AND V. BALAKRISHNAN, Linear Matriz Inequalities in
System and Control Theory, STAM Stud. Appl. Math. 15, STAM, Philadelphia, 1994.

[6] M. S. BRANICKY, Multiple Lyapunov functions and other analysis tools for switched and hybrid
systems, IEEE Trans. Automat. Control, 43 (1998), pp. 475-482.



(33]
(34]

(35]

i =2

STABILITY ANALYSIS OF SWITCHED SYSTEMS 205

R. W. BROCKETT, Lecture Notes on Stochastic Control, Harvard University, Cambridge, MA,
1995.

D. CHATTERJEE AND D. LIBERZON, On stability of stochastic switched systems, in Proceedings
of 43rd Conference on Decision and Control, vol. 4, 2004, pp. 4125-4127.

D. CHATTERJEE, Stability Analysis of Deterministic and Stochastic Switched Systems via a
Comparison Principle and Multiple Lyapunov Functions, Master’s thesis, University of
Illinois, Urbana, IL, 2004.

F. H. CLARKE, Optimization and Nonsmooth Analysis, Classics in Appl. Math. 5, 2nd ed.,
STAM, Philadelphia, 1990.

P. FLORCHINGER, Lyapunov-like techniques for stochastic stability, SIAM J. Control Optim.,
33 (1995), pp. 1151-1169.

M. K. GHOSH, A. ARAPOSTATHIS, AND S. I. MARCUS, Ergodic control of switching diffusions,
SIAM J. Control Optim., 35 (1997), pp. 1952-1988.

W. HAHN, Stability of Motion, Springer-Verlag, Berlin, 1967.

R. Z. HASMINSKII, Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, Gronin-
gen, The Netherlands, 1980.

J. P. HESPANHA, D. LIBERZON, AND A. R. TEEL, On input-to-state stability of impulsive sys-
tems, in Proceedings of the 44th Conference on Decision and Control, 2005, pp. 3992-3997.

J. P. HESPANHA AND A. S. MORSE, Stability of switched systems with average dwell-time, in
Proceedings of the 38th IEEE Conference on Decision and Control, vol. 3, 1999, pp. 2655—
2660.

J. P. HESPANHA, A model for stochastic hybrid systems with application to communication
networks, Nonlinear Analysis Special Issue on Hybrid Systems, 62 (2005), pp. 1353-1383.

J. P. HESPANHA, Uniform stability of switched linear systems: Extensions of LaSalle’s invari-
ance principle, IEEE Trans. Automat. Control, 49 (2004), pp. 470-482.

L. Hou, A. N. MIcHEL, AND H. YE, Stability analysis of switched systems, in Proceedings of
the 35th IEEE Conference on Decision and Control, vol. 2, 1996, pp. 1208-1212.

J. Hu, J. LYGEROS, AND S. SASTRY, Towards a theory of stochastic hybrid systems, Lecture
Notes in Comput. Sci. 1790, Springer-Verlag, 2000, pp. 160-173.

Y. Ji AND H. J. CHIZECK, Controllability, stabilizability, and continuous-time Markovian jump
linear quadratic control, IEEE Trans. Automat. Control, 35 (1990), pp. 777-788.

H. K. KHALIL, Nonlinear Systems, 3rd ed., Prentice—Hall, Englewood Cliffs, NJ, 2002.

M. KRrsTI¢C AND H. DENG, Stabilization of Nonlinear Uncertain Systems, Springer-Verlag,
Berlin, 1998.

P. R. KuMAR AND P. VARAIYA, Stochastic Systems: Estimation, Identification, and Adaptive
Control, Prentice—Hall, Englewood Cliffs, 1985.

H. J. KUSHNER, Stochastic Stability and Control, Academic Press, New York, 1967.

G. S. LADDE AND V. LAKSHMIKANTHAM, Random Differential Inequalities, Academic Press,
New York, 1980.

V. LAKSHMIKANTHAM, S. LEELA, AND A. A. MARTYNYUK, Practical Stability of Nonlinear
Systems, World Scientific, Singapore, 1990.

V. LAKSHMIKANTHAM AND S. LEELA, Differential and Integral Inequalities: Theory and Appli-
cation, Vol. 1, Academic Press, New York, 1969.

V. LAKSHMIKANTHAM AND X. Liu, Stability Analysis in Terms of Two Measures, World Scien-
tific, Singapore, 1995.

D. LIBERZON, Switching in Systems and Control, Birkhduser, Boston, 2003.

Y. LiN, E. D. SONTAG, AND Y. WANG, A smooth converse Lyapunov theorem for robust stability,
SIAM J. Control Optim., 34 (1996), pp. 124-160.

V. M. MATROSOV, Vector Lyapunov functions method in the analysis of dynamical properties
of nonlinear differential equations, Trends in Theory and Practice of Nonlinear Differential
Equations, Lecture Notes in Pure and Appl. Math. 90, Marcel Dekker, New York, 1984,
pp. 357-374.

Y. N. MERENKOV, Stability-like properties of stochastic differential equations, Differential Equa-
tions, 39 (2003), pp. 1703-1712.

S. P. MEYN AND R. L. TWEEDIE, Markov Chains and Stochastic Stability, Springer-Verlag,
Berlin, 1993.

A. A. MOVCHAN, Stability of processes with respect to two metrics, Prikl. Mat. Mekh., 24
(1960), pp. 988-1001.

B. K. OKSENDAL, Stochastic Differential Equations, 5th ed., Springer-Verlag, Berlin, 1998.

P. PELETIES AND R. A. DECARLO, Asymptotic stability of m-switched systems using Lyapunov-
ltke functions, in Proceedings of the American Control Conference, 1991, pp. 1679-1684.



206

(38]
39]
[40]
41]
[42]

[43]

DEBASISH CHATTERJEE AND DANIEL LIBERZON

S. PETTERSSON AND B. LENNARTSON, Stability and robustness for hybrid systems, in Proceed-
ings of the 35th IEEE Conference on Decision and Control, vol. 2, 1996, pp. 1202—1207.

M. PrANDINI, J. P. HESPANHA, AND M. CAMPI, Hysteresis-based switching control of stochastic
linear systems, in Proceedings of the 2003 European Control Conference, 2003.

S. SATHANANTHAN AND L. H. KEEL, Optimal practical stabilization and controllability of sys-
tems with Markovian jumps, Nonlinear Anal., 54 (2003), pp. 1011-1027.

E. D. SoNTAG, Mathematical Control Theory: Deterministic Finite Dimensional Systems,
2nd ed., Springer-Verlag, Berlin, 1998.

J. SUN, Y. ZHANG, AND Q. Wu, Less conservative conditions for asymptotic stability of im-
plusive control systems, IEEE Trans. Automat. Control, 48 (2003), pp. 829-831.

A. D. TEEL AND L. PrRALY, A smooth Lyapunov function from a class-KCL estimate involving
two positive semidefinite functions, ESAIM. Control Optim. Calculus Variations, 5 (2000),
pp. 313-367.

A. VAN DER SCHAFT AND H. SCHUMACHER, An Introduction to Hybrid Dynamical Systems,
Springer-Verlag, Berlin, 1999.

E. WoNG AND B. HAJEK, Stochastic Processes in Engineering Systems, 2nd ed., Springer-
Verlag, Berlin, 1985.

M. ZAKAl, A Lyapunov criterion for the existence of stationary probability distributions for
systems perturbed by noise, STAM J. Control, 7 (1969), pp. 390-397.



