
Stability Analysis and Stabilization of Randomly Switched Systems

Debasish Chatterjee and Daniel Liberzon

Abstract. This article is concerned with stability analysis and stabilization of randomly
switched systems with control inputs. The switching signal is modeled as a jump stochas-

tic process independent of the system state; it selects, at each instant of time, the active

subsystem from among a family of deterministic systems. Three different types of switch-
ing signals are considered: the first is a jump stochastic process that satisfies a statistically

slow switching condition; the second and the third are jump stochastic processes with inde-

pendent identically distributed values at jump times together with exponential and uniform
holding times, respectively. For each of the three cases we first establish sufficient conditions

for stochastic stability of the switched system, when the subsystems do not possess control

inputs, and are not all stable. Thereafter we design feedback controllers by employing our
analysis results such that the switched control system is stable in closed loop, when sub-

systems are affine in control. Multiple Lyapunov functions and Sontag’s universal formulae

for feedback stabilization of nonlinear systems constitute the primary tools for analysis and
control design.

§ 1. Introduction

Randomly switched systems generally consist of a finite family of subsystems and a random
switching signal that specifies at each instant of time the active subsystem. The switching signal
σ is modeled as a continuous time stochastic process, which may be the state of a finite-state
Markov chain, or a more general càdlàg jump stochastic process. Since the dynamics between
two consecutive switching instants are governed by deterministic differential equations, these
systems can be regarded as piecewise deterministic stochastic systems [7]. In this article our goal
is twofold: one, to provide sufficient conditions for stochastic stability of randomly switched
systems, and two, to provide a methodology for stabilizing controller synthesis when such
systems possess control inputs.

A particular class of randomly switched systems has received widespread attention, namely,
Markovian jump linear systems (MJLS). These systems may be realized as a family of linear
subsystems, together with a switching signal generated by the state of a continuous-time Markov
chain. Stability and stabilization of MJLS have been extensively investigated, specially under
the assumption that the parameters of the Markov chain are completely known, see e.g. [3, 14,
8, 21] and the references therein. In particular, almost sure stabilization and mean stabilization
of MJLS is discussed in [8], where the authors also establish precise equivalences between
different stability notions for MJLS.
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Among the several stochastic stability notions, perhaps the most interesting is almost sure
global asymptotic stability (gas a.s.). We shall concentrate on this particular notion in this
article; however, it is also possible to obtain stability in the mean and stability in probability
with minimal extra work, which we indicate in Remark ??. gas a.s. of randomly switched
systems was investigated in our earlier article [6]. There we assumed that each (nonlinear)
subsystem was globally asymptotically stable, and σ was a general jump stochastic process
having an asymptotic bound on the probability mass function of the number of switches on
each time interval [0, t[. Unless additional structure is imposed on the switching signal, switched
systems with even one unstable subsystem cannot, in general, have the gas a.s. property; see
Remark 17. In the present article, we describe two possible scenarios where sufficient structure
in the probabilistic properties of the switching signal make it possible to include unstable
subsystems in the family. To be precise, in the first case the set of holding times of σ is assumed
to be a sequence of independent exponential variables of parameter λ, and in the second case
the set of holding times is assumed to be a sequence of independent uniform random variables
of parameter T . In addition, in both of the above cases we assume that values attained by σ
(at each switching instant) are independent and identically distributed, and are independent of
the set of holding times. It follows naturally from our results that for the switched system to
be gas a.s., the unstable subsystems must have small probability of activation; see Remarks 19
and 20.

In [6] we also established a method of designing feedback controllers to achieve gas a.s. of
closed loop switched control systems, by employing the Artstein-Sontag universal formula [23].
The control took values in R, and every subsystem was zero-input stable. In this article the
controller design scheme allows the control to take values in general subsets of Rm, (e.g.,
bounded sets, Minkowski balls, etc.,) and the subsystems are not necessarily zero-input stable.
Our control design methodology works whenever each subsystem is affine in control, a suitable
family of control-Lyapunov functions (one for each subsystem) is available, and a universal
formula for feedback stabilization is available for the set of admissible inputs.

A myriad of techniques have been employed to study stability and stabilization of piecewise
deterministic stochastic systems. HJB-based optimal control schemes for piecewise determin-
istic stochastic systems are well-studied, see e.g., [7] for a detailed account. Linear control
systems admit analytically solvable linear quadratic optimal design methods, and such tech-
niques have been effectively combined with the stochastic nature of structural variations in [14];
stabilization schemes based on Lyapunov exponents are studied in [8]. Game-theoretic tech-
niques [1] in the presence of disturbance inputs, and spectral theory of Markov operators [13]
have also been employed to study these systems. Stabilization schemes using robust control
methods are investigated in [24]; see also the references cited in it. Stochastic hybrid systems,
where the switching signal and its transition probabilities are state-dependent, are studied
in [5] and [12], using an extended definition of the infinitesimal generator and optimal control
strategies, respectively.

Our approach, in contrast to the above, parallels the one adopted in [6]. The stochastic
switching signal is decoupled from the individual dynamical systems; instead of looking at the
stochastic system as a whole, the properties of the random switching signal are decoupled from
the deterministic properties of the switched system between consecutive switching instants.
Consequently, we do not resort to infinitesimal generators for the stochastic process. The
main analysis tool is the theory of multiple Lyapunov functions [17, Chapter 3], developed
originally in the context of deterministic switched systems. The probabilistic properties of the
switching signal, when suitably coupled with the dynamics of the Lyapunov functions, enable
us to efficiently analyze the behavior of the overall switched system. Off-the-shelf universal
formulae (see [23, 18, 19, 20]) and our analysis results provide the tools for our control design
methodology.
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The paper is arranged as follows. §2 contains the definitions of randomly switched systems
and the stability notions that we study. The hypotheses on the switching signal and the
associated analysis results are stated in §3. Controller synthesis results are stated and proved
in §4. The proofs of all the results stated in §3 are collected in §5. We conclude the paper in
§6 with a brief discussion of possible directions for further investigation.

§ 2. Preliminaries

Let the Euclidean norm be denoted by ‖·‖, the interval [0,∞[ by R>0, and the set of natural
numbers {1, 2, . . .} by N. Recall that a continuous function α : R>0 −→ R>0 is of class K if
α is strictly increasing with α(0) = 0, of class K∞ if in addition α(r) → ∞ as r → ∞; we
write α ∈ K and α ∈ K∞ respectively. Let Lfh be the directional derivative of a continuously
differentiable real-valued function h defined on Rn, along a vector field f on Rn. For a, b ∈ R,
we let a ∧ b and a ∨ b stand for min{a, b} and max{a, b}, respectively.

We define the family of systems affine in control:

(1) ẋ = fp(x), p ∈ P,

where the state x ∈ Rn, P is a finite index set of N elements: P = {1, . . . ,N}, the function
fp : Rn −→ Rn is locally Lipschitz in x, fp(0) = 0, p ∈ P. A switched system for the family (1)
is generated by a switching signal—a piecewise constant function (continuous from the right by
convention), σ : R>0 −→ P, which specifies at every time t the index σ(t) ∈ P of the active
subsystem:

(2) ẋ = fσ(x), x(0) = x0, t > 0.

We assume that there are no jumps in the state x at the switching instants, and let x0 be given.
Let

(
Ω,F, (Ft)t>0,P

)
be a complete filtered probability space [22], where Ω is the sample

space, F is a sigma-algebra on Ω, P is a probability measure on the measurable space (Ω,F),
and (Ft)t>0 a right-continuous filtration with F0 containing all the P-measure 0 sets. Let
σ :=

(
σ(t)

)
t>0

be a càdlàg stochastic process, (i.e., continuous from the right and possessing
limits from the left,) taking values in P, with σ(0) completely known. Let the switching
instants of σ be denoted by τi, i ∈ N, and let τ0 := 0 by convention. As a consequence of
the hypotheses of our results, there is no explosion almost surely (see Lemma 32, Lemma 33
and Lemma 34); consequently the sequence (τi)i∈N∪{0} is almost surely divergent. Finally, we
assume that for every compact subset K ⊂ R>0 × Rn there exists an integrable function mK

satisfying supp∈P ‖fp(x)‖ 6 mK(t) for all (t, x) ∈ K. Hence almost surely there exists a unique
solution to (2) in the sense of Carathéodory [9, 10] over a nontrivial time interval containing
0; existence and uniqueness of a global solution will follow from the hypotheses of our results.
We let x(·) denote this solution. For x0 = 0, the solution to (2) is identically 0 for every σ; we
shall ignore this trivial case in the sequel.

We are interested in the following two definitions of stability of (2).

3. Definition. The system (2) is said to be globally asymptotically stable almost
surely (gas a.s.) iff the following two properties are simultaneously verified:

(AS1) ∀ ε > 0 ∃ δ(ε) > 0 such that ‖x0‖ < δ(ε) =⇒ P

(
sup
t>0

‖x(t)‖ < ε

)
= 1;

(AS2) ∀ r, ε′ > 0 ∃T (r, ε′) > 0 such that ‖x0‖ < r =⇒ P

(
sup

t>T (r,ε′)

‖x(t)‖ < ε′

)
= 1. 3

4. Definition. The system (2) is said to be globally asymptotically stable in the
mean (gas-m) iff the following two properties are simultaneously verified:

(SM1) ∀ ε > 0 ∃ δ̃(ε) > 0 such that ‖x0‖ < δ̃(ε) =⇒ supt>0 E[‖x(t)‖] < ε;

(SM2) ∀ r, ε′ > 0 ∃ T̃ (r, ε′) > 0 such that ‖x0‖ < r =⇒ supt>T (r,ε′) E[‖x(t)‖] < ε′. 3
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§ 3. Stability under Random Switching

In this section we establish sufficient conditions for gas a.s. and gas-m of the switched
system (2). We treat three cases of different assumptions on σ, and corresponding to each
assumption we present one theorem. The applicability and the differences among the theorems
are discussed in the remarks that follow; the proofs may be found in §5. We mention that
Theorem 8 was stated and proved in [6]; since it takes very little extra work, we provide some
of the details once again for completeness.

Hereafter we shall denote the number of switches on the time interval [t, t′[ by Nσ(t, t′).
We make use of multiple Lyapunov functions (see [17, Chapter 3] for an extensive treatment

of multiple Lyapunov functions in the deterministic case), one for each subsystem. The following
assumption collects the properties we shall require from them.

5. Assumption. There exist a family of continuously differentiable real-valued functions
(Vp)p∈P on Rn, functions α1, α2 ∈ K∞, numbers µ > 1 and λp ∈ Λ ⊆ R, p ∈ P, such that
(V1) α1(‖x‖) 6 Vp(x) 6 α2(‖x‖) ∀x ∈ Rn ∀ p ∈ P;
(V2) Lfp

Vp(x) 6 −λpVp(x) ∀x ∈ Rn ∀ p ∈ P;
(V3) Vp1(x) 6 µVp2(x) ∀x ∈ Rn ∀ p1, p2 ∈ P. ♦

6. Remark. (V1) is a fairly standard hypothesis, ensuring Vp’s are each positive definite
and radially unbounded. (V2) furnishes a quantitative estimate of the degree of stability or
instability, depending on the sign of λp, of each subsystem of the family (1). The possible
values that the λp’s are allowed to take is specified by the set Λ. (To wit, if there are unstable
subsystems, we allow Λ to contain negative real numbers so that the corresponding λp’s may be
negative; if there are no unstable subsystems, Λ is a subset of the positive real numbers.) The
right-hand side of the inequality in (V2) being linear in Vp is no loss of generality, see e.g., [16,
Theorem 2.6.10] for details. (V3) certainly restricts the class of functions that the family
(Vp)p∈P can belong to; however this hypothesis is commonly employed in the deterministic
case [17, Chapter 3]. Quadratic Lyapunov functions universally utilized in the case of linear
subsystems satisfy this hypothesis. C

§ 3.1. Global asymptotic stability almost surely. We now present the results on
gas a.s. of (2) in the three different cases below.

First case. In this case σ is a general càdlàg jump stochastic process, and merely an
upper bound of its asymptotic probability distribution is known. The temporal probability
distribution of σ on P is completely unknown.

7. Assumption. The switching signal is characterized by: ∃M ∈ N ∪ {0} and λ, λ̃ > 0,

such that ∀ k > M we have P
(
Nσ(0, t) = k

)
6

(
λt
)k

k!
e−eλt. ♦

8. Theorem ([6]). Consider the system (2). Suppose that
(G1) Assumption 5 holds with Λ = {λ◦}, λ◦ > 0;
(G2) σ satisfies Assumption 7;
(G3) µ <

(
λ◦ + λ̃

)
/λ.

Then (2) is gas a.s.

9. Corollary ([6]). Suppose the hypotheses of Theorem 8 hold true, and in addition
suppose that one of the two following conditions hold:
(G1′) α1 is convex;
(G2′) α1 is continuously differentiable with a nonzero first derivative at 0.
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Then (2) is gas-m.

Second case. In this case Assumption 7 is replaced by Assumption 10 below; this imposes
additional structure on the stochastic properties of σ.

10. Assumption. The switching signal σ is characterized by:
(EH1) the sequence (Si)i∈N, Si := τi − τi−1, of holding times is an independent identically

distributed sequence of exponential-λ random variables;∗

(EH2) ∃ qp ∈ [0, 1], p ∈ P, such that ∀ i ∈ N, P
(
σ(τi) = p

∣∣(σ(τj))i−1
j=0

)
= qp;

(EH3) (Si)i∈N is independent of (σ(τi))i∈N. ♦

11. Theorem. Consider the system (2). Suppose that
(E1) Assumption 5 holds with Λ = R;
(E2) σ satisfies Assumption 10;
(E3) λp + λ > 0 ∀ p ∈ P;
(E4)

∑
p∈P

µqp

(1 + λp/λ)
< 1.

Then (2) is gas a.s.

12. Corollary. Suppose the hypotheses of Theorem 11 hold true, and in addition suppose
that one of the two following conditions hold:
(E1′) α1 is convex;
(E2′) α1 is continuously differentiable with a nonzero first derivative at 0.
Then (2) is gas-m.

Third case. In this case Assumption 10 is replaced by Assumption 13 below; this imposes
a different structure on the stochastic properties of σ compared to the second case above.

13. Assumption. The switching signal σ is characterized by:
(UH1) the sequence (Si)i∈N, Si := τi − τi−1, of holding times is an independent identically

distributed sequence of uniform-T random variables;†

(UH2) ∃ qp ∈ [0, 1], p ∈ P, such that ∀ i ∈ N, P
(
σ(τi) = p

∣∣(σ(τj))i−1
j=0

)
= qp;

(UH3) (Si)i∈N is independent of (σ(τi))i∈N. ♦

14. Theorem. Consider the system (2). Suppose that
(U1) Assumption 5 holds with Λ = R;
(U2) σ satisfies Assumption 13;

(U3)
∑
p∈P

(
µqp

(
1− e−λpT

)
λpT

)
< 1.

Then (2) is gas a.s.

15. Corollary. Suppose the hypotheses of Theorem 14 hold true, and in addition suppose
that one of the two following conditions hold:
(U1′) α1 is convex;
(U2′) α1 is continuously differentiable with a nonzero first derivative at 0.

∗Recall that a exponential-λ random variable X has the following probability distribution function:
P

`
X 6 s

´
= 1− e−λs if s > 0, and 0 otherwise; see e.g. [2] for further details.

†Recall that a uniform-T random variable Y has the following probability distribution: P
`
Y 6 s

´
= s/T if

s ∈ [0, T ], 0 if s < 0, and 1 if s > T ; see e.g. [2] for further details.
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Then (2) is gas-m.

Remarks and discussion. We now examine in detail the three cases listed above.

16. Remark. Intuitively, Assumption 7 requires that statistically the rate of switching is
not too large in the long run. More specifically, the expected number of switches on the interval
[0, t[ grows at most exponentially with t. Indeed, E[Nσ(0, t)] =

∑∞
k=0 k P

(
Nσ(0, t) = k

)
, and

this is upper bounded by S +
∑∞

k=M k P
(
Nσ(0, t) = k

)
, where S is a constant depending on M ,

which finally is in turn upper bounded by S′ + (λt)e(λ−eλ)t, where S′ is a constant depending
on M and greater than S. Assumption 7 may therefore be regarded as a statistically slow
switching condition. C

17. Remark. On the one hand, note that Assumption 7 does not put any restrictions
on the temporal probability distribution of σ on P. Consequently, if one subsystem in the
family (fp)p∈P is unstable, and the switching signal obeys Assumption 7 but activates this
subsystem for most of the time, the switched system may well become unstable. It follows
that this assumption is not strong enough for almost sure global asymptotic stability of the
switched system, unless we further stipulate that each subsystem is stable. On the other hand
both Assumption 10 and Assumption 13 require the existence of a (stationary) probability
distribution of σ on P ((EH3) and (UH3), respectively), and are therefore better equipped to
take into account instabilities of some subsystems. C

18. Remark. Theorem 8 is quite intuitively appealing; it states that if each subsystem has
sufficient stability margin, and σ switches sufficiently slowly on an average, then the switched
system is gas a.s.. By (G1) there is a uniform stability margin (in terms of the Lyapunov
functions) among the family of subsystems. (G3) links the deterministic subsystem dynamics,
furnished by the family of Lyapunov functions satisfying Assumption 5, with the properties of
the switching signal furnished by (G2). It is clear that the more stable the subsystems (larger
the λ◦), the faster can be the switching signal (larger the λ) that still renders (2) gas a.s. This
result is reminiscent of the well-known result [17, Theorem 3.2] on global asymptotic stability
of deterministic switched systems under average dwell-time switching; see [6] for a detailed
comparison. Moreover, this theorem applies to the case of σ being the state of a continuous-
time Markov chain with a given generator matrix; further details on this important case is
given in [6]. C

19. Remark. Let us examine the statement of Theorem 11 in some detail. Firstly, note
that by (E1) not all subsystems are required to be stable, i.e., for some p ∈ P, λp can be nega-
tive; then (V2) provides a measure of the rate of instability of the corresponding subsystems.
Secondly, note that condition (E3) is always satisfied if each λp > 0. However, if λp < 0 for
some p ∈ P, then (E3) furnishes a maximum instability margin of the corresponding subsystems
that can still lead to gas a.s. of (2). Intuitively, in the latter case, the process Nσ(0, t) must
switch fast enough (λ > 0 large enough) so that the unstable subsystems are not active for too
long. Potentially this fast switching may have a destabilizing effect. Indeed, it may so happen
that for a given µ, a fixed set (qp)p∈P , and a choice of functions

(
Vp

)
p∈P , (E3) and (E4) may

be impossible to satisfy simultaneously, due to a very high degree of instability of even one
subsystem for which the corresponding qp is also large. Then we need to search for a different
family of functions

(
Vp

)
p∈P for which the hypotheses hold. Thirdly, (E4) links the properties

of deterministic subsystem dynamics, furnished by the family of Lyapunov functions satisfying
Assumption 5, with the properties of the switching signal. From (E4) it is clear that larger
degrees of instability of a subsystem (smaller λp) can be compensated by a smaller probability
(smaller qp) of the switching signal activating the corresponding subsystem. C

20. Remark. Let us make some observations about the statement of Theorem 14. Once
again, like Theorem 11, note that by (U1) not all subsystems are required to be stable, i.e., for
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some p ∈ P, λp can be negative. (U3) links the properties of deterministic subsystem dynamics,
furnished by the family of Lyapunov functions satisfying Assumption 5, with the properties of
the switching signal. Also from (U3) it is clear that larger degrees of instability (larger λp) of
a subsystem can be compensated by a smaller probability (smaller qp) of the switching signal
activating the corresponding subsystem. C

21. Remark. It may appear that Theorem 11 requires a larger set of hypotheses compared
to Theorem 14; however, this is only natural. Indeed, the switching signal in the latter case is
constrained to switch at least once in T units of time, whereas no such constraint is present
on the switching signal in the former case. We observed in Remark 19 that it is necessary for
the switching signal to switch fast enough if there are unstable subsystems in the family (1),
which accounted for (E3). This fast enough switching is automatic if σ satisfies Assumption 13,
provided T is related to the instability margin of the subsystems in a particular way. (U3)
captures this relationship, for, observe that if λp is negative and large in magnitude for some
p ∈ P, the ratio

(
1− e−λpT

)
/(λpT ) is small provided T is small, and a smaller ratio is better

for gas a.s. of (2); also for a given T , large and positive λp’s (i.e., subsystems with high margins
of stability) make the aforesaid ratio small. C

22. Remark. Let us recall that (2) is said to be globally asymptotically stable in probability
(gas-p) if the following two conditions hold simultaneously.
(P1) ∀ η, ε > 0 ∃ δ(η, ε) > 0 such that ‖x0‖ < δ(η, ε) =⇒ inf

t>0
P
(
‖x(t)‖ < ε

)
> 1− η;

(P2) ∀ η, r, ε′ > 0 ∃T (η, r, ε′) > 0 such that ‖x0‖ < r =⇒ inf
t>T (η,r,ε′)

P
(
‖x(t)‖ < ε′

)
> 1− η.

The gas-p property follows from the gas-m property via a standard application of Chebyshev’s
inequality (see e.g., [11] for details), or from the gas a.s. property because clearly (P1) is a
weaker property than (AS1), and (P2) is a weaker property than (AS2). C

§ 4. Stabilization under Random Switching

In this section we provide a methodology for designing controllers that ensure almost sure
global asymptotic stability of control-affine randomly switched systems in closed loop.

Consider the affine in control switched system:

(23) ẋ = fσ(x) +
m∑

i=1

gσ,i(x)ui, x(0) = x0, t > 0,

where x ∈ Rn is the state, ui, i = 1, . . . ,m are the control inputs, fp and gp,i are smooth vector
fields on Rn, with fp(0) = 0, gp,i(0) = 0, for each p ∈ P, i ∈ {1, . . . ,m}. Let U be the set where
the control u := [u1, . . . , um]T takes its values. For the moment, we let U be a subset of Rm;
later we shall consider the case when U is a more general set, e.g. a Minkowski ball. With a
feedback control function uσ(x) = [uσ,1(x), . . . , uσ,m(x)]T, the closed loop system stands as:

(24) ẋ = fσ(x) +
m∑

i=1

gσ,i(x)uσ,i(x), x(0) = x0, t > 0.

Our objective is to choose the control function uσ so that (24) is gas a.s. Let the switching
signal σ be a stochastic process as defined in §2, and let x0 6= 0.

We now describe the controller design methodology promised in §1.
A universal formula for stabilization of control-affine nonlinear systems was first constructed

in [23], for the control taking values in U = Rm. The articles [18],[19], and [20] provide
universal formulae for bounded controls, positive controls, and controls restricted to Minkowski
balls, respectively. In view of the analysis results of §3 and the universal formulae provided in
the aforementioned articles, it is possible to synthesize controllers uσ for (23), such that the
closed loop system (24) is gas a.s. Recall that three different types of switching signals were
considered in §3; the corresponding hypotheses on them appear in Assumptions 7, 10, and 13.
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In general, we obtain one synthesis scheme for each type of U and σ; the following theorem
provides a typical illustration of such a result. A complete recipe to obtain such results is
provided in Remark 27.

25. Theorem. Consider the system (23), with U = Rm. Suppose that σ satisfies Assump-
tion 10, and there exists a family of continuously differentiable functions

(
Vp : Rn −→ R>0

)
p∈P ,

such that
(C1) (V1) of Assumption 5 holds;

(C2) (V3) of Assumption 5 holds;

(C3) ∃λp ∈ Λ = R, p ∈ P, such that ∀x ∈ Rnr{0} and ∀ p ∈ P

inf
u∈U

{
LfpVp(x)+λpVp(x)+

m∑
i=1

uiLgp,iVp(x)

}
< 0;

(C4) ((E3), (E4)) holds.
Then the feedback control

uσ(x) = [kσ,1(x), . . . , kσ,m(x)]T,

where

kp,i(x) :=

{
−Lgp,i

Vp(x) · ϕ
(
W p(x), W̃p(x)

)
if x 6= 0,

0 otherwise,
(26a)

W p(x) := Lfp
Vp(x) + λpVp(x),(26b)

W̃p(x) :=
m∑

i=1

(
Lgp,i

Vp(x)
)2

,(26c)

and

ϕ(a, b) :=

a +
√

a2 + b2

b
if b 6= 0,

0 otherwise,
(26d)

renders (24) gas a.s.

Proof. The proof relies heavily on the construction of the universal formula in [23]. Fix
t ∈ R>0. If x 6= 0, applying the definition of ϕ, we get

Lfσ(t)Vσ(t)(x) +
m∑

i=1

kσ(t),i(x)Lgσ(t),i
Vσ(t)(x)

= Lfσ(t)Vσ(t)(x)− W̃σ(t)(x)·ϕ
(
W σ(t)(x),

(
W̃σ(t)(x)

)2)
= −λσ(t)Vσ(t)(x)−

√(
Lfσ(t)Vσ(t)(x)

)2 +
(
W̃σ(t)(x)

)2

< −λσ(t)Vσ(t)(x).

Since t is arbitrary, we conclude that the above inequality holds for all t ∈ R>0. Note that
by (C3), if for any p ∈ P, x ∈

⋂m
i=1 ker

(
Lgp,i

Vp

)
, we automatically have Lfσ(t)Vσ(t)(x) +

λσ(t)Vσ(t)(x) < 0.
The above arguments, in conjunction with (C1) and (C2) enable us to conclude that the

family (Vp)p∈P satisfies Assumption 5 for the closed loop system (24) and Λ = R. (C4) ensures
that (E3) and (E4) hold, respectively, for (24). Since σ satisfies Assumption 7, (E2) holds as
well. Hence, it follows from Theorem 11 that (24) is gas a.s. �
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27. Remark. Theorem 25 can be modified to suit a different U and a different type of σ
using the following simple recipe. First, recall from the discussion preceding Theorem 25 that
U may be any one among Rm, the nonnegative orthant of Rm, a bounded subset of Rm, and a
Minkowski ball in Rm; σ may satisfy any one of Assumptions 7, 10, and 13. Now suppose that
a U and a σ among the above possibilities is given to us. Then:

• (C1) and (C2) remain unchanged;
• the given U replaces the U = Rm in Theorem 25;
• if the given σ satisfies Assumption 7, then this assumption replaces Assumption 10, the

pair ((E3), (E4)) appearing in hypothesis (C4) is replaced by (G3), and Λ appearing
in (C3) is replaced by the set {λ◦};

• if the given σ satisfies Assumption 13, then this assumption replaces Assumption 10,
the pair ((E3), (E4)) appearing in hypothesis (C4) is replaced by (U3), and Λ appear-
ing in (C3) is replaced by the set R;

• the universal formula corresponding to the given U replaces the one given in (26). C

28. Remark. For linear systems it is possible to design controllers in a simpler fashion.
For an illustration, let σ satisfy Assumption 7. Consider the following linear version of (23):

(29) ẋ = Aσx + Bσu, x(0) = x0, t > 0,

where x ∈ Rn, u ∈ Rm, Ap ∈ Rn×n, Bp ∈ Rn×Rm. Let us try to find a control uσ(x) = Kσ(t)x,
where Kp is a (m × n) matrix for each p ∈ P, that achieves gas a.s. of (29) in closed loop.
For a square matrix A of dimension n, with eigenvalues {λi}n

i=1, let ρ1(A) := mini |<(λi)| and
ρ2(A) := maxi |<(λi)|. Suppose that there exists a set of (m × n) matrices (Kp)p∈P and a
number λ◦ > 0, such that the symmetric positive definite solution set (Mp)p∈P to the linear
matrix inequalities

(30) (Ap + BpKp)
T

Mp + Mp (Ap + BpKp) 6 −λ◦Mp

satisfies the following estimate:

(31) µ :=
maxp∈P ρ2(Mp)
minp∈P ρ1(Mp)

<
λ◦ + λ̃

λ
.

Standard and efficient computational tools for solving the linear matrix inequalities like (30)
exist, see e.g., [4]; therefore finding the set (Kp)p∈P is not difficult. It is clear that we have
found a family of Lyapunov functions

(
Vp(x) = xTMpx

)
p∈P , for which (V1) and (V3) hold

by the definitions of the Vp’s, and (V2) holds due to (30). Also, observe that Λ = {λ◦},
and (31) is nothing but (G3). It follows by Theorem 8 that the control function uσ defined
above renders (29) gas a.s. in closed loop. C

§ 5. Proofs

We present the proofs of the theorems in §3 in this section.

§ 5.1. Auxiliary results. This subsection consists of the statements and proofs of a
number of technical lemmas which will be helpful in proving the theorems of §3, which are
presented in the following subsection.

Recall that the random variable Nσ(t, t′) gives the number of switches of σ on the interval
[t, t′[, and (τi)i∈N is the set of switching instants. We define Nσ(0, 0) = 0. The extended real-
valued random variable ζ := supν∈N τν is the explosion time [22] of the process (Nσ(0, t))t∈R>0 .
If ζ = ∞, then the process (Nσ(0, t))t∈R>0 is said to have no explosions; we shall also say that
under this condition σ has no explosions.

32. Lemma. Suppose σ satisfies Assumption 7. Then Nσ(0, t) −→∞ a.s. only if t −→∞;
i.e., almost surely σ has no explosion.
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Proof. Suppose σ satisfies Assumption 7. If t′ ∈ R>0, the event that there is an explosion
at t = t′ is given by

⋂
ν∈N

{
Nσ(0, t′) > ν

}
. But

P

(⋂
ν∈N

{
Nσ(0, t′) > ν

})
6 lim sup

ν→∞
P

( ∞⋃
k=ν

{
Nσ(0, t′) = k

})

6 lim sup
ν→∞

∞∑
k=ν

P
(
Nσ(0, t′) = k

)
,

and from the hypothesis of our assumption we get

lim sup
ν→∞

∞∑
k=ν

P
(
Nσ(0, t′) = k

)
6 lim sup

ν→∞

∞∑
k=ν

e−eλt′ (λt′)k

k!
.

Since
∑∞

k=ν(λt′)k/k! is the tail of eλt′ , it vanishes as ν −→∞. We conclude that since t′ ∈ R>0

is arbitrary, almost surely σ has no explosion. �

33. Lemma. Suppose σ satisfies Assumption 10. Then Nσ(0, t) −→ ∞ a.s. if and only if
t −→∞.

Proof. To see sufficiency, consider the event{
∃ t′ ∈ R>0 such that ∀ t > t′ Nσ(0, t) = Nσ(0, t′)

}
.

But this event is equal to{
∀ ν ∈ N SNσ(0,t′)+1 > ν

}
=
⋂
ν∈N

{
SNσ(0,t′)+1 > ν

}
.

In the light of (EH1), the probability of this event can be estimated as

P

(⋂
ν∈N

{
SNσ(0,t′)+1 > ν

})
6 lim sup

ν→∞
P

( ∞⋃
k=ν

{
SNσ(0,t′)+1 > ν

})

6 lim sup
ν→∞

∞∑
k=ν

P
(
SNσ(0,t′)+1 > ν

)
= lim sup

ν→∞

∞∑
k=ν

e−λk = 0.

Therefore, almost surely Nσ(0, t) −→ ∞ as t −→ ∞. Conversely, to see necessity, consider the
event of an explosion, i.e.,{

∃ t′ ∈ R>0 such that ∀ ν ∈ N Nσ(0, t′) > ν
}
.

But in view of (EH1) and (EH2) the probability of this event can be estimated as

P

(⋂
ν∈N

{
Nσ(0, t′) > ν

})
6 P

(
∃M ∈ N such that ∀ i > M Si < 1

)
6
∏

i>M

P
(
Si < 1

)
= 0.

Since t′ is arbitrary, it follows that almost surely σ has no explosion. �

34. Lemma. Suppose σ satisfies Assumption 13. Then Nσ(0, t) −→ ∞ a.s. if and only if
t −→∞.
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Proof. The proof mimics the proof of Lemma 33; for completeness we provide it below.
To see sufficiency, consider the event{

∃ t′ ∈ R>0 such that ∀ t > t′ Nσ(0, t) = Nσ(0, t′)
}
.

But this event is equal to{
∀ ν ∈ N SNσ(0,t′)+1 > ν

}
=
⋂
ν∈N

{
SNσ(0,t′)+1 > ν

}
.

In the light of (UH1), ∃ ν ∈ N such that T < ν; therefore the probability of this event can be
estimated as

P

(⋂
ν∈N

{
SNσ(0,t′)+1 > ν

})
6 lim sup

ν→∞
P

( ∞⋃
k=ν

{
SNσ(0,t′)+1 > ν

})

6 lim sup
ν→∞

∞∑
k=ν

P
(
SNσ(0,t′)+1 > ν

)
= 0

Therefore, almost surely Nσ(0, t) −→ ∞ as t −→ ∞. Conversely, to see necessity, consider the
event of an explosion, i.e.,{

∃ t′ ∈ R>0 such that ∀ ν ∈ N Nσ(0, t′) > ν
}
.

But in view of (UH1) and (UH2) the probability of this event can be estimated as

P

(⋂
ν∈N

{
Nσ(0, t′) > ν

})
6 P

(
∃M ∈ N such that ∀ i > M Si < T/2

)
6
∏

i>M

P
(
Si < T/2

)
=
∏

i>M

(
1
2

)i

= 0.

Since t′ is arbitrary, it follows that almost surely σ has no explosion. �

35. Lemma. Consider the system (2). Suppose that Assumption 5 holds, and that σ satisfies
one of Assumptions 7, or 10, or 13. Then for ν ∈ N, almost all ω ∈ Ω, and t ∈ [τν(ω), τν+1(ω)[,
we have

Vσ(t,ω)(x(t, ω)) 6 µνVσ(0)(x0) ·

(
ν∏

i=1

e−λσ(τi−1,ω)Si(ω)

)
· e−λσ(t,ω)(t−τν(ω)).

Proof. Since σ satisfies at least one of Assumptions 7, or 10, or 13, it follows from
Lemma 32, or 33, or 34, respectively, that the sequence (τi)i∈N is almost surely monotoni-
cally increasing (and divergent). Therefore, for almost all ω ∈ Ω, at time t ∈ [τi(ω), τi+1(ω)[
we can write using (V2)

Vσ(t,ω)(x(t, ω)) 6 Vσ(τi,ω)(x(τi, ω))e−λσ(τi,ω)(t−τi(ω)).

In view of (V3), at t = τi+1(ω) we have

Vσ(τi+1,ω)(x(τi+1, ω)) 6 µ · Vσ(τi,ω)(x(τi, ω)) · e−λσ(τi,ω)Si+1(ω).

Fix ν ∈ N. Iterating this inequality from i = 0 through i = ν − 1, we get

Vσ(τν ,ω)(x(τν , ω)) 6 µνVσ(0)(x0)
ν−1∏
i=0

e−λσ(τi,ω)Si+1(ω),

and for t ∈ [τν(ω), τν+1(ω)[,

Vσ(τν ,ω)(x(t, ω)) 6 µνVσ(0)(x0) ·

(
ν−1∏
i=0

e−λσ(τi,ω)Si+1(ω)

)
· e−λσ(τν ,ω)(t−τν(ω)).
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Since σ(t, ω) = σ(τν , ω), the thesis follows. �

36. Lemma. Consider the system (2). Suppose that Assumption 5 holds, and for every
nonnegative monotonically increasing divergent sequence (si)i∈N, lim supi→∞ E

[
Vσ(si)(x(si))

]
=

0. Then Vσ(t)(x(t)) −→ 0 as t −→∞ almost surely.

Proof. If the claim is false, there exists a set Ω′ ⊂ Ω with P
(
Ω′) > 0, such that ∀ω ∈ Ω′,

Vσ(t,ω)(x(t, ω)) 6−→ 0; that is to say,

(37) ∀ω ∈ Ω′ ∃ η > 0 ∀ t′ > 0 ∃ t > t′ Vσ(t,ω)(x(t, ω)) > η.

Fix ω ∈ Ω′. By (37), there exists s′1 > 0 such that Vσ(s′1,ω)(x(s′1, ω)) > η. Similarly, by (37)
there exists s′2 > s′1 +1 such that Vσ(s′2,ω)(x(s′2, ω)) > η. Now suppose that s′j has been chosen.
Then by (37) there exists s′j+1 > s′j +1 such that Vσ(s′j+1,ω)(x(s′j+1, ω)) > η. Continuing in this
way, we construct a nonnegative, monotonically increasing, divergent sequence (s′i)i∈N, such
that ∀ i ∈ N, Vσ(s′i,ω)(x(s′i, ω)) > η. It is clear that

Ω′ =
⋃
`∈N

⋂
i∈N

{
Vσ(s′i)

(x(s′i)) >
1
`

}
.

A trivial monotonicity argument shows

P

(⋂
i∈N

{
Vσ(s′i)

(x(s′i)) > η
})

6 lim sup
i→∞

P
(
Vσ(s′i)

(x(s′i)) > η
)
.(38)

Employing Chebyshev’s inequality,‡ we have

∀ i ∈ N P
(
Vσ(s′i)

(x(s′i)) > η
)

6 E
[
Vσ(s′i)

(x(s′i))
]
/η,

which leads to

(39) lim sup
i→∞

P
(
Vσ(s′i)

(x(s′i)) > η
)

6 lim sup
i→∞

E
[
Vσ(s′i)

(x(s′i))
]

η
.

In view of (39) and (38),

P

(⋂
i∈N

{
Vσ(s′i)

(x(s′i)) > η
})

6 lim sup
i→∞

E
[
Vσ(s′i)

(x(s′i))
]

η
= 0.(40)

To compute the probability measure of the set Ω′, corresponding to each ` ∈ N we construct, if
possible, a sequence (s′i)i∈N with η = 1/`, as outlined above. (Since by assumption P

(
Ω′) > 0,

the set of such sequences is, in particular, nonempty.) Using (40) it follows that

P
(
Ω′) 6

∑
`∈N

P

(⋂
i∈N

{
Vσ(s′i)

(x(s′i)) >
1
`

})
= 0.

This contradicts our assumption that P
(
Ω′) > 0. Therefore, for almost all sample paths,

limt→∞ Vσ(t)(x(t)) = 0. �

41. Lemma. Suppose that hypothesis (G1) of Theorem 8 holds. Then ∃S > 0 such that the
moment generating function E

[
esNσ(0,t)

]
of Nσ(0, t) satisfies

(42) E
[
esNσ(0,t)

]
6 S + e(e

sλ−eλ)t ∀ s > 0.

‡Recall [2] Chebyshev’s inequality: if ε > 0 and Y is a nonnegative random variable on the probability
space (Ω, F, P), then P

`
Y > ε

´
6 E[Y ] /ε.
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Proof. Using (G1), for s > 0,

E
[
esNσ(0,t)

]
=

∞∑
k=0

eskP
(
Nσ(0, t) = k

)
6

M−1∑
k=0

eskP
(
Nσ(0, t) = k

)
+

∞∑
k=M

esk (λt)ke−eλt

k!

6
M−1∑
k=0

esk +
∞∑

k=M

esk (λt)ke−eλt

k!
6 S + e(e

sλ−eλ)t,

where S :=
∑M−1

k=0 esk > 0. Clearly, E
[
esNσ(0,t)

]
is well defined for t > 0. �

43. Lemma. Consider the system (2). Suppose that the hypotheses of Theorem 8 hold.
Then for every nonnegative, monotonically increasing, divergent sequence (si)i∈N we have
lim supi→∞ E

[
Vσ(si)(x(si))

]
= 0.

Proof. Fix t ∈ R>0, and let ν := Nσ(0, t). It follows from Lemma 35 that

Vσ(t)(x(t)) 6 µν · Vσ(0)(x0) ·

(
ν−1∏
i=0

e−λσ(τi)Si+1

)
· e−λσ(t)(t−τν) a.s.

Taking expectations, and keeping in mind that by (G1) ∀ p ∈ P λp = λ◦, we obtain

E
[
Vσ(t)(x(t))

]
6 E[µν ] e−λ◦tVσ(0)(x0).

From Lemma 41 it follows that (42) holds; the substitution s = ln µ leads to

E
[
Vσ(t)(x(t))

]
6 Vσ(0)(x0)eλt + SVσ(0)(x0)e−λ◦t,

where, in view of (G3), λ := λ◦ −
(
µλ− λ̃

)
> 0. Together with (V1) this yields

(44) E
[
Vσ(t)(x(t))

]
6 α2(‖x0‖)

(
e−λt + Se−λ◦t

)
.

For an arbitrary fixed, nonnegative, monotonically increasing, divergent sequence (si)i∈N, (44)
shows that

lim sup
i→∞

E
[
Vσ(si)(x(si))

]
= 0,

since limt→∞
(
e−λt + Se−λ◦t

)
= 0. �

45. Lemma. Consider the system (2). Suppose that the hypotheses of Theorem 11 hold.
Then for every nonnegative, monotonically increasing, divergent sequence (si)i∈N we have
lim supi→∞ E

[
Vσ(si)(x(si))

]
= 0.

Proof. Fix ν ∈ N. From Lemma 35 we get, for s ∈ [τν , τν+1[,

Vσ(s)(x(s)) 6 µν · Vσ(0)(x0)

(
ν−1∏
i=0

e−λσ(τi)Si+1

)
e−λσ(s)(s−τν) a.s.

Taking expectations, and utilizing (V1) and (EH1)-(EH3) in successive steps,

E
[
Vσ(s)(x(s))

]
6 E

[
µνVσ(0)(x0)

(
ν−1∏
i=0

e−λσ(τi)Si+1

)
e−λσ(s)(s−τν)

]

6 α2(‖x0‖)E

[
µν

(
ν−1∏
i=0

e−λσ(τi)Si+1

)
e−λσ(s)(s−τν)

]

= α2(‖x0‖)µν

(
ν−1∏
i=0

E
[
e−λσ(τi)Si+1

])
E
[
e−λσ(s)(s−τν)

]
.(46)
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The finiteness of P and (EH1)-(EH3) lead to

E
[
e−λσ(τi)Si+1

]
=
∫ ∞

0

∑
p∈P

e−λpvP
(
σ(τi) = p

)
λe−λvdv

=
∑
p∈P

P
(
σ(τi) = p

)
λ

∫ ∞

0

e−(λp+λ)vdv.

In view of (E3) the preceding equation may be written as

(47) E
[
e−λσ(τi)Si+1

]
=
∑
p∈P

λqp

λp + λ
.

Since P is finite, λ := −maxp∈P{−λp} is well-defined; therefore

E
[
e−λσ(s)(s−τν)

]
6 E

[
e−λ(s−τν)

]
.

If λ > 0, then E
[
e−λ(s−τν)

]
6 1; if λ < 0, then E

[
e−λ(s−τν)

]
6 E

[
e−λ(τν+1−τν)

]
, and by (E3)

and (EH1) this equals λ/(λ + λ). Hence

(48) E
[
e−λσ(s)(s−τν)

]
6 1 ∨

(
λ

λ + λ

)
.

Collecting the results of (46), (47) and (48), ∀ s ∈ [τν , τν+1[ we obtain

E
[
Vσ(s)(x(s))

]
6 α2(‖x0‖) ·

(
1 ∨

(
λ

λ + λ

))
·

∑
p∈P

µqp

(1 + λp/λ)

ν

.(49)

Fix a nonnegative, monotonically increasing, divergent sequence (si)i∈N. By Lemma 33, for
every i ∈ N there exists ν(i) ∈ N such that si ∈ [τν(i), τν(i)+1[, and ν(i) −→ ∞ as i −→ ∞
almost surely. Therefore, from (49) and (E4) we get

lim sup
i→∞

E
[
Vσ(si)(x(si))

]
6 α2(‖x0‖) ·

(
1 ∨

(
λ

λ + λ

))
· lim sup

i→∞

∑
p∈P

µqp

(1 + λp/λ)

ν(i)

= 0.

Since the sequence (si)i∈N was arbitrary, we conclude that for every nonnegative, monotonically
increasing, divergent sequence (si)i∈N, lim supi→∞ E

[
Vσ(si)(x(si))

]
= 0. �

50. Lemma. Consider the system (2). Suppose that the hypotheses of Theorem 14 hold.
Then for every nonnegative, monotonically increasing, divergent sequence (si)i∈N we have
lim supi→∞ E

[
Vσ(si)(x(si))

]
= 0.

Proof. Fix ν ∈ N. From Lemma 35 we get, for s ∈ [τν , τν+1[,

Vσ(s)(x(s)) 6 µν · Vσ(0)(x0)

(
ν−1∏
i=0

e−λσ(τi)Si+1

)
· e−λσ(s)(s−τν) a.s.
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Taking expectations, and utilizing (V1) and (UH1)-(UH3) in successive steps,

E
[
Vσ(s)(x(s))

]
6 E

[
µνVσ(0)(x0)

(
ν−1∏
i=0

e−λσ(τi)Si+1

)
e−λσ(s)(s−τν)

]

6 α2(‖x0‖)E

[
µν

(
ν−1∏
i=0

e−λσ(τi)Si+1

)
e−λσ(s)(s−τν)

]

= α2(‖x0‖)µν

(
ν−1∏
i=0

E
[
e−λσ(τi)Si+1

])
E
[
e−λσ(s)(s−τν)

]
.(51)

The finiteness of P and (UH1)-(UH3) lead to

E
[
e−λσ(τi)Si+1

]
=
∫ T

0

∑
p∈P

e−λpvP
(
σ(τi) = p

) 1
T

dv

=
∑
p∈P

P
(
σ(τi) = p

) 1
T

∫ T

0

e−λpvdv.

In view of (U3) the preceding equation may be written as

(52) E
[
e−λσ(τi)Si+1

]
=
∑
p∈P

qp

(
1− eλpT

)
λpT

.

Since P is finite, λ := −maxp∈P{−λp} is well-defined; therefore

E
[
e−λσ(s)(s−τν)

]
6 E

[
e−λ(s−τν)

]
.

If λ > 0, then E
[
e−λ(s−τν)

]
6 1; if λ < 0, then E

[
e−λ(s−τν)

]
6 e−λT . Hence

(53) E
[
e−λσ(s)(s−τν)

]
6 1 ∨ e−λT .

Collecting the results of (51), (52) and (53), ∀ s ∈ [τν , τν+1[ we obtain

E
[
Vσ(s)(x(s))

]
6 α2(‖x0‖) ·

(
1 ∨ e−λT

)
·

∑
p∈P

µqp

(
1− e−λpT

)
λpT

ν

.(54)

Fix a nonnegative, monotonically increasing, divergent sequence (si)i∈N. By Lemma 34, for
every i ∈ N there exists ν(i) ∈ N such that si ∈ [τν(i), τν(i)+1[, and ν(i) −→ ∞ as i −→ ∞
almost surely. Therefore, from (54) and (U3) we get

lim sup
i→∞

E
[
Vσ(si)(x(si))

]
6 α2(‖x0‖) ·

(
1 ∨ e−λT

)
· lim sup

i→∞

∑
p∈P

µqp

(
1− e−λpT

)
λpT

ν(i)

= 0.

Since the sequence (si)i∈N was arbitrary, we conclude that for every nonnegative, monotonically
increasing, divergent sequence (si)i∈N, lim supi→∞ E

[
Vσ(si)(x(si))

]
= 0. �

55. Lemma. The system (2) has the following property: for every ε > 0 there exists Lε > 0
such that ‖x(t)‖ 6 ‖x0‖ eLεt ∀ t > 0 as long as ‖x(t)‖ < ε.

Proof. Since the vector field of each individual subsystem of the family (1) is locally
Lipschitz, and P is a finite set, there exists a constant Lε > 0 such that

(56) sup
p∈P,

‖x‖∈[0,ε[

‖fp(x)‖ 6 Lε ‖x‖ .
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Also, ∀x ∈ Rnr{0},
∣∣∣d‖x‖2dt

∣∣∣ = ∥∥2xT dx
dt

∥∥ 6 2 ‖x‖
∥∥dx

dt

∥∥, and
∣∣∣d‖x‖2dt

∣∣∣ = 2 ‖x‖
∥∥∥d‖x‖

dt

∥∥∥, which leads

to
∣∣∣d‖x‖dt

∣∣∣ 6 ∥∥dx
dt

∥∥. For the family (1), this and (56) lead to

(57)
d ‖x‖

dt
6 Lε ‖x‖ ∀x ∈

{
x ∈ Rn

∣∣ ‖x‖ < ε
}

r{0}.

An application of a standard differential inequality (see e.g. [16, Theorem 1.2.1]) indicates that
every solution x(·) of (2) satisfies

‖x(t)‖ 6 ‖x0‖ eLεt

so long as ‖x(t)‖ < ε. This proves the claim. �

§5.2. Proofs of the theorems in §3. We are finally ready for the proofs of the theorems
in §3.

Proof of Theorem 8. We need to establish the properties (AS1)-(AS2) of (2).
First we prove (AS2). Fix r, ε′ > 0. Lemma 43 shows that the assertion of Lemma 36

holds. In view of (V1) and Lemma 36, we can now write

lim
t→∞

α1(‖x(t)‖) = 0 a.s.;

hence there exists T (r, ε′) > 0 such that

‖x0‖ < r =⇒ P

(
sup

t>T (r,ε′)

α1(‖x(t)‖) < α1(ε′)

)
= 1.

Since r, ε′ are arbitrary, we conclude that ∀ r, ε′ > 0 there exists T (r, ε′) > 0 such that

‖x0‖ < r =⇒ P

(
sup

t>T (r,ε′)

‖x(t)‖ < ε′

)
= 1.

The (AS2) property of (2) follows.
It remains to prove (AS1). Fix ε > 0. We know from the (AS2) property proved above

that there exists a nonnegative real number T (1, ε), so that

‖x0‖ < 1 =⇒ P

(
sup

t>T (1,ε)

‖x(t)‖ < ε

)
= 1.

Select δ(ε) = εe−LεT (1,ε) ∧ 1. By Lemma 55, ‖x0‖ < δ(ε) implies

‖x(t)‖ 6 ‖x0‖ eLεt < δ(ε)eLεT (1,ε) < ε ∀ t ∈ [0, T (1, ε)].

Further, the (AS2) property guarantees that with the above choice of δ and x0, we have
P
(
supt>T (1,ε) ‖x(t)‖ < ε

)
= 1. Thus, ‖x0‖ < δ(ε) implies P

(
supt>0 ‖x(t)‖ < ε

)
= 1. Since

ε is arbitrary, the (AS1) property of (2) follows.
We conclude that (2) is gas a.s. �

Proof of Theorem 11. The proof repeats verbatim that of Theorem 8, with just Lemma 45
substituted in place of Lemma 43. �

Proof of Theorem 14. The proof repeats verbatim that of Theorem 8, with just Lemma 50
substituted in place of Lemma 43. �

Proof of Corollary 9. Suppose that (G1′) holds. Using Jensen’s inequality§ in (V1),
in view of (44) we arrive at

α1(E[‖x(t)‖]) 6 E[α1(‖x(t)‖)] 6 α2(‖x0‖)
(
Se−λ◦t + e−λt

)
.

§Recall [2] Jensen’s inequality: if Z is an integrable random variable on the probability space (Ω, F, P), and
φ : R −→ R is a convex function, then φ(E[Z]) 6 E[φ(Z)].
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If we let β̃(r, s) := α−1
1

(
α2(r)

(
Se−λ◦s + e−λs

))
, then β̃ is a class KL function.¶ It follows that

E[‖x(t)‖] 6 β̃(‖x0‖ , t).

A standard argument (see [15, Lemma 4.5]) now shows that the (SM1) and (SM2) properties
follow from the above inequality.

Suppose now that (G2′) holds instead of (G1′). Let the Taylor’s series development of α1

around 0 be
α1(y) = c1y + R(y),

where R is the remainder term, R(y) = o(y),‖ and c1 > 0 by hypothesis.
First we prove (SM1). Fix ε > 0. By Theorem 8 and Definition 3, there exists δ(ε) > 0 so

that

(58) ‖x0‖ < δ(ε) =⇒ P

(
sup
t>0

‖x(t)‖ < ε

)
= 1;

i.e., (AS1) holds. Let Ω′ ⊂ Ω be the set of all ω such (AS1) fails; Theorem 8 guarantees that
P
(
Ω′) = 0. With x0 selected such that ‖x0‖ < δ(ε), it follows that

E[‖x(t)‖] =
∫

Ω

‖x(t, ω)‖P
(
dω
)

=
∫

ΩrΩ′
‖x(t, ω)‖P

(
dω
)

+
∫

Ω′
‖x(t, ω)‖P

(
dω
)

< ε.

The (SM1) property of (2) follows with δ̃ = δ.
Now we prove (SM2). Fix r, ε′ > 0, and select x0 with ‖x0‖ < r. In view of (44) and (V1),

there exists T1(r, ε′) > 0 such that

(59) E[α1(‖x(t)‖)] <
c1ε

′

2
∀ t > T1(r, ε′).

Also, since R(y) = o(y), there exists δ(ε′) > 0 such that ∀ y ∈ [0, δ(ε′)[, we have |R(y)| < c1ε
′/2.

In view of the assertion of Theorem 8, there exists T2(r, ε′) > 0 such that

(60) ‖x0‖ < r =⇒ P

(
sup

t>T2(r,ε′)

‖x(t)‖ < δ(ε′)

)
= 1;

i.e., (AS2) holds. Let Ω′′ ⊂ Ω be the set of all ω such that (AS2) fails; Theorem 8 guarantees
that P

(
Ω′′) = 0. From (59) it follows that ∀ t > T1(r, ε′) ∨ T2(r, ε′),

c1ε
′

2
> E[α1(‖x(t)‖)]

=
∫

Ω

(
c1 ‖x(t, ω)‖+ R(‖x(t, ω)‖)

)
P
(
dω
)

= c1

∫
Ω

‖x(t, ω)‖P
(
dω
)

+
∫

Ω′′
R(‖x(t, ω)‖)P

(
dω
)

+
∫

ΩrΩ′′
R(‖x(t, ω)‖)P

(
dω
)

> c1E[‖x(t)‖]−
∫

ΩrΩ′′
|R(‖x(t, ω)‖)|P

(
dω
)

> c1E[‖x(t)‖]− c1ε
′

2
,

and we arrive at E[‖x(t)‖] < ε′. Since r, ε′ were arbitrary, with T̃ (r, ε′) := T1(r, ε′) ∨ T2(r, ε′),
the (SM2) property of (2) follows. �

¶A function β : R2
>0 −→ R>0, continuous in both arguments, is of class KL if β(·, t) is a function of class

K for every fixed t, and β(r, t) → 0 as t →∞ for every fixed r; we write β ∈ KL.

‖Recall that lim
h→0

o(h)

h
= 0, and lim

h→0

O(h)

h
∈ ]−∞,∞[.
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Proof of Corollary 12. Suppose that (E1′) holds. Then for a fixed ν ∈ N∪{0}, using
Jensen’s inequality in (49), ∀ s ∈ [τν , τν+1[

(61) E[‖x(s)‖] 6 α−1
1

α2(‖x0‖) ·
(

1 ∨
(

λ

λ + λ

))
·

∑
p∈P

µqp

(1 + λp/λ)

ν .

Considering (E4), it follows that

E[‖x(s)‖] 6 α−1
1

(
α2(‖x0‖) ·

(
1 ∨

(
λ

λ + λ

)))
.

The right hand side of the above inquality is independent of ν; hence ∀ s ∈ R>0. It follows
that for ε > 0, (SM1) holds with δ(ε) ∈

]
0, α−1

2

(
α1(ε)/

(
1 ∨

(
λ/(λ + λ)

))) [
. To see (SM2),

it suffices to prove that limt→∞ E[‖x(t)‖] = 0. But by Lemma 33 it follows that for every
t ∈ R>0 there exists ν(t) ∈ N ∪ {0} such that t ∈ [τν(t), τν(t)+1[, and ν(t) −→ ∞ almost surely
as t −→∞; keeping in mind (E4), (61) now yields the desired limit.

Suppose now that (E2′) holds instead of (E1′). In this case the proof repeats verbatim that
of Corollary 9 when (G2′) holds instead of (G1′), with just Theorem 11 replacing Theorem 8. �

Proof of Corollary 15. The proof repeats verbatim that of Corollary 12, with just
(U1′), (U2′), (U3), and Theorem 14 in place of (E1′), (E2′), (E4), and Theorem 11, respectively.

�

§ 6. Conclusion and Further Work

We established a methodology for almost sure global asymptotic stabilization of randomly
switched systems. As mentioned in §1, a necessary condition for its applicability is that the
controller for every subsystem can be so placed that the switching signal activates each closed
loop subsystem. Or, if the controller is implemented as a central unit, then it has to have
perfect information about σ at each instant of time. This actually leads us to wonder whether
it is possible to design one stabilizing controller for the switched control system, which gets
imperfect or no information about σ.

In the deterministic context, the problem of simultaneous stabilization of multiple systems
can be thought of as a possible approach to the case when the controller gets no information
about σ. Indeed, if a single controller stabilizes each subsystem, then under a sufficiently
slow switching hypotheses (e.g. Assumption 7 with small enough λ), the closed loop switched
system will be gas a.s. But in general the problem of simultaneous stabilization is restrictive
and difficult. However, if there exists a controller that stabilizes a subfamily of (fp)p∈P and at
the same time does not destabilize the others subsystems too much, the theorems of §3 can be
applied to the closed loop switched system. Such results will be reported elsewhere.
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