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Supervisory Control of Uncertain
Linear Time-Varying Systems

Linh Vu, Member, IEEE, and Daniel Liberzon, Senior Member, IEEE

Abstract—We consider the problem of adaptively stabilizing
linear plants with unknown time-varying parameters in the pres-
ence of noise, disturbances, and unmodeled dynamics using the
supervisory control framework, which employs multiple candidate
controllers and an estimator based switching logic to select the
active controller at every instant of time. Time-varying uncertain
linear plants can be stabilized by supervisory control, provided
that the plant’s parameter varies slowly enough in terms of mixed
dwell-time switching and average dwell-time switching, the noise
and disturbances are bounded and small enough in terms of
L-infinity norms, and the unmodeled dynamics are small enough
in the input-to-state stability sense. This work extends previously
reported works on supervisory control of linear time-invariant
systems with constant unknown parameters to the case of linear
time-varying uncertain systems. A numerical example is included,
and limitations of the approach are discussed.

Index Terms—Adaptive control, input-to-state-stability, in-
terconnected switched systems, linear time-varying systems,
supervisory control.

I. INTRODUCTION

A DAPTIVE control of uncertain time-varying plants is a
challenging control problem and has attracted consider-

able research attention over the last several decades. Various ro-
bust adaptive control schemes for linear time-varying systems
have been proposed, including direct model reference adaptive
control [1], indirect adaptive pole placement control [2]–[5], and
back-stepping adaptive control [6], [7] (see also, e.g., [8]–[11]).
These works and a majority of the literature on adaptive control
of time-varying systems, more or less, employ continuously pa-
rameterized control laws in combination with continuously es-
timated parameters. A notably different approach is [12], where
the strategy is to approximate the control input directly using
sampled output data.

We present in this paper a new approach to adaptively
stabilizing uncertain linear time-varying plants, using the
supervisory control framework [13], [14] (see [15, Chapter 6]
and the references therein for further background and related
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works on supervisory control; we also cover the supervisory
control framework in Section III). Supervisory control differs
from other adaptive control schemes (such as those mentioned
in the first paragraph) in that instead of continuous parameter
estimation, it discretizes the parameter space into a finite set of
nominal values and employs a family of candidate controllers,
one for each nominal value of the parameter. At every instant
of time, an active controller is selected by an estimator-based
supervisory unit using a logical decision rule. Advantages
of supervisory control include i) simplicity and modularity
in design: controller design amounts to controller design of
known linear time-invariant systems for which various com-
putationally efficient tools are available; and ii) the ability to
handle large uncertainty (see [16] for more discussions on the
advantages and drawbacks of supervisory control).

The supervisory control framework has been successfully
applied to linear time-invariant systems with constant un-
known parameters in the presence of unmodeled dynamics
and noise [14], [17], [18]. Nonetheless, supervisory control
of time-varying systems has not been studied, and it is the
objective of this paper to explore this topic (see also a related
problem of identification and control of time-varying systems
using multiple models [19]). When parameter variation is small
such that the time-varying plant can be approximated by a
system with a constant parameter and small (time-varying)
unmodeled dynamics, the robustness result in [18] can be
applied. However, when parameter variation is large such that
the previous approximation is not justified, the result in [18] is
no longer applicable. The main contribution of this paper is to
show that supervisory control is capable of stabilizing plants
with large variation in the parameter space over time, provided
that the parameter varies slowly enough in the mixed average
dwell-time and dwell-time senses. Further, stabilization can
be achieved in the presence of unmodeled dynamics, bounded
disturbances, and bounded measurement noise, provided that
the unmodeled dynamics are small in the input-to-state sense
and the noises and disturbances are small in the norm. The
contribution can be viewed in two ways: at the qualitative level,
it says that the supervisory control design provides a margin
of robustness against noise, disturbances, and unmodeled
dynamics; at the quantitative level, it provides a description of
this robustness margin.

Another contribution, relevant to switched system research,
is the use of a new class of slowly switching signals, which is
quantified by both dwell-time [17] and average dwell-time [20],
in stability analysis of switched systems. We use this class of
switching signals to obtain an input-to-state-stability-like (ISS-
like) result for interconnected switched systems (which is essen-
tial in the stability proof of supervisory control of time-varying
plants). The tool used to establish stability of interconnected
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switched systems can also be used to study stability of switched
nonlinear systems in which a constant switching gain among
a family of ISS-Lyapunov functions of the subsystems is not
available (see Remark 2).

The paper’s organization is as follows. In Section II, we
clarify the notation used in the paper, and in Section III, we
formulate the control problem and describe the supervisory
control framework. Our main result on closed-loop stability of
supervisory control of uncertain time-varying linear plants is
presented in Section IV. The subsequent sections are devoted
to the proof of the main result: the structure of the closed-loop
system is described in Section V and then formalized as an
interconnected switched system in Section VI, for which we
provide a stability analysis, following by the proof of the main
theorem in Section VII. We provide a numerical example and a
performance discussion in Section VIII and conclude the paper
in Section IX with a summary of the results and a discussion
of future work.

NOTATION

Denote by , , the segmentation operator
such that for a function , if ,
and otherwise. For a vector , denote by
the 2-norm: , and by the -norm:

. Denote by the induced 2-norm of a matrix .
For a function , denote and

. For , define the -weighted
norm of a function as

Denote by the function obtained when we let be
a variable in the preceding definition. For more details on
the norm , see, e.g., [21, Chapter 3]. A switching signal

, where is an index set, is a piecewise constant
and continuous from the right function, and the discontinuities
of are called switches or switching times. We assume that there
are finitely many switches in every finite interval (i.e., no Zeno
behavior). For a switching signal and a time , denote by
the latest switching time of before the time . By convention,

if is less than or equal to the first switching time of .
A switching signal has a dwell-time if every two consecu-

tive switches are separated by at least . Denote by
the number of switches in the interval . A switching
signal has an average dwell-time [20] if such
that The number

is called a chatter bound. When , we recover
dwell-time switching with the dwell-time being . Denote by

the class of switching signals with dwell-time
and by the class of switching signals with average
dwell-time and chatter bound .

Recall that (see, e.g., [22]) a continuous function
is of class if is strictly increasing,

and , and further, if as .
A function is of class if

for every fixed , and decreases to 0 as
for every fixed . Denote by the class of continuous

non-decreasing functions .

II. PROBLEM FORMULATION AND THE SUPERVISORY

CONTROL ARCHITECTURE
A. Problem Formulation

Consider uncertain time-varying plants of the following form:

(1)
where is the state, is the input, is the
output, and are the disturbance and measurement noise,
respectively, is the state of the unmodeled dynamics,
and is the unknown time-varying parameter.
We assume that , and are continuous in , and ,
and are locally Lipschitz in and continuous in . We
assume that is nice enough so the existence and uniqueness
of a solution of (1) for every initial condition and piecewise-
continuous input is guaranteed.

Our objective is to use the supervisory control framework
[13], [14] to stabilize the uncertain plant (1) in the presence of
noise, disturbances, and unmodeled dynamics.

B. Switched System Approximation of Time-Varying Plants

Assumption 1: A compact set is known such that
.

We proceed by approximating the time-varying system (1)
by a switched system plus unmodeled dynamics in the fol-
lowing way. We divide into a finite number of subsets
such that , and , where

, is the number of subsets, and is the
boundary of the set . How to divide and what the number of
subsets is are interesting research questions of their own and
are not pursued here (see [23]), but intuitively, we want the sets

small in some sense. Define the signal

(2)

such that is continuous from the right. Because are not
known, the signal is not known a priori. We assume that the
sets , , , and “behave well” in the sense that the
signal in (2) is a well-defined switching signal without chat-
tering. Right continuity of can always be ensured by setting
the value of to be the limit from the right at the time the
signal crosses the boundary shared by two or more subsets;
if travels along the shared boundary of some sets, right conti-
nuity can still be ensured by carefully defined convention. Chat-
tering of could possibly occur for a general and general
regions but there exist works that address the issue of how
to design regions to avoid chattering (see, e.g., [24]). Gener-
ally, fast varying parameters (such as with large derivatives)
and a large number of subsets (the size of is large) imply fast
switching signal .

Assumption 2: The signal defined in (2) is a well-defined
switching signal.
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Fig. 1. Supervisory control framework.

For every subset , , pick a nominal value . Let
, and . We can rewrite

the plant (1) as

(3)

where , ,
and . The terms inside the square
brackets are those due to the process of approximating the time-
varying plant by a switched system, and the terms inside the
parentheses are the unmodeled dynamics.

Assumption 3: are stabilizable, and are de-
tectable .

C. The Supervisory Control Framework

The supervisory control framework [13], [14], [16], [17] con-
sists of a family of candidate controllers and a supervisor that
orchestrates the switching among the controllers (see the archi-
tecture of supervisory control in Fig. 1). The supervisory control
scheme described below is essentially the same as those in [14]
with a particular type of multi-estimator; the reader is referred
to [14] for further in-depth discussion.

1) Multi-Controller: A family of candidate controllers, pa-
rameterized by , are designed such that the controller with
index stabilizes the linear time-invariant plant

. Denote a state-space realization of the
controller with an index as

(4)

where , is a linear function, and .
2) Supervisor: The supervisor comprises a multi-estimator,

monitoring signals, and a switching logic.
Multi-Estimator: A multi-estimator is a bank of estimators,

each of which takes in the input and the output and produce
the estimated output , . A multi-estimator must have the
property that at least one of the output estimation errors is
small for all . We use the following particular observer-based
multi-estimator whose state is and
whose dynamics are

(5)

where are such that are Hurwitz for all .
We set the initial state for all . Let
be the output estimation errors.

Monitoring Signals: Monitoring signals are functions of
certain norm of the output estimation errors, and they are used
in the switching logic to produce the switching signal (see the
switching logic (7) below). We use the following particular type
of monitoring signals , , which is the -weighted

-norm of the output estimation errors [20]:

(6)

for some design constants . The signal can
be implemented as plus the output of the linear filter

with . The constant is to ensure that
the switching signal generated by the particular switching logic
below is a slow switching signal—a property necessary for sta-
bility proof (see the (28b) and (29b)).

Switching Logic: A switching logic produces a switching
signal that indicates at every instant of time the active controller.
We use the scale-independent hysteresis switching logic [20]

if such that
,

else
(7)

where is a hysteresis constant.
Altogether, the supervisory control law is given by

(8)

in view of (4), where is as in (7).

D. Design Parameters

The design parameters , , and must satisfy certain con-
ditions to ensure closed-loop stability. The relationship among
these parameters involves the so-called injected systems [25],
which are defined below.

An injected system with index is obtained by combining
the controller with index with the multi-estimator and takes

as the input. For the multi-estimator (5), the injected
system with index is of the form

(9)

where , , is

the state of the injected system, and is a Hurwitz ma-
trix (see Appendix A for detail on how to arrive at (9)).
Then there exists a family of quadratic Lyapunov functions

( is positive definite) such
that

(10a)

(10b)

for some constants (the existence of such
common constants for the family of injected systems is guaran-
teed because is finite). In fact, one can take to be twice
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the maximum (negative) real part of the eigenvalues of the ma-
trices over all . There also such that

(11)

We can always pick but there may be other smaller
satisfying (11) (for example, if are the same for all
even though ).
Let be twice the maximum (negative) real part of eigen-

values of the matrices over all

(12)

For switched plants ( , and there are no unmodeled dy-
namics), the constant in (6) can be chosen arbitrarily. The
larger is, the larger the ultimate bound of the closed-loop states
will be. For the original plant with unmodeled dynamics, we
need to be small enough, and the bound on depends on the
bounds on the unmodeled dynamics. This quantification on
will be made precise in Theorem 1’s statement in Section IV.
The parameters , , and are chosen such that

(13)

(14)

(15)

where is as in (7), is as in (11), is as in (6), is as in (11),
is as in (12), is as in (10b), is as in (6), and is as in

(10b).
Remark 1: We can give the conditions (13), (14), and (15) the

following interpretations: (13) means that the switching logic
must be active enough (smaller ) to cope with changing pa-
rameters in the plant; (14) implies that the “learning rate”
of the monitoring signals must be slower in some sense than
the “convergence rate” of the injected systems; and (15) can
be seen as saying the “learning rate” must be slower than
the “estimation rate” of the multi-estimator. For the case of
time-invariant plants (i.e are constant matrices), we
only need the condition (14), not the extra conditions (15) and
(13), to prove stability of the closed-loop system [14] (the condi-
tion (14) can be rewritten as ,
exactly as in [14]).

III. MAIN RESULT

Assumption 4: For the plant (1), the unmodeled dynamics of
is input-to-state stable (ISS) [26] with respect to and :

(16)

for some , . The unmodeled dynamics
and satisfy

(17a)

(17b)

for all and and for some with respect to
some given , 1, 2.

The following constant quantifies how well the
time-varying plant (1) without the unmodeled dynamics,
noise, and disturbances can be approximated by the nominal
switched system :

(18)

When , is a switching signal, and hence, the plant is a
switched plant (if further is a constant signal, then the original
plant, without unmodeled dynamics, is a linear-time invariant
system).

Slow switching signals are often characterized by dwell-time
or average dwell-time switching; see the paper [27] for an
in-depth discussion on various types of dwell-time switching.
For stability results in this paper, we define the class of hybrid
dwell-time signals , which is characterized
by three numbers—a dwell-time, an average dwell-time, and a
chatter bound—as follows:

(19)

When (which means the dwell-time can be infinitesi-
mally small), we have . Let

(20)

(21)

Theorem 1: Consider the uncertain plant (1). Suppose that
Assumptions 1, 2, 3, and 4 hold. Consider the supervisory con-
trol scheme with the multi-controller (4) with the state , the
multi-estimator (5) with the state , the monitoring signals (6)
with the states , and the switching logic (7). Suppose that
the design parameters satisfy (13), (14), and (15). For every

, there exist a function
and numbers such that if ,

, and , for all and for
every such that

all the closed-loop signals are bounded, and

(22)
for some and for some function

such that as for some con-
stant independent of , where is as in (6).

Roughly speaking, the theorem says that the supervisory con-
trol scheme is capable of stabilizing time-varying systems in the
presence of unmodeled dynamics with bounded disturbances
and bounded noise provided that the plant varies slowly enough
in the sense of hybrid dwell-time, the unmodeled dynamics are
small enough in the ISS sense, and the noise and disturbances
are small enough in the sense. The ultimate bound on the
plant state as can be made arbitrarily close to the order
of if the unmodeled dynamics, disturbances, and noise are suf-
ficiently small. Note that the bounds depends on the bounds on
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the initial states (similarly in spirit to the result in [18]); the
bounds given in the theorem are conservative (see Remark 3).

The supervisory control scheme for plants with time-varying
parameters is the same as those for plants with constant pa-
rameters [14]. However, unlike the case of constant parame-
ters where we have only one switching signal and hence, one
switched system (i.e., the switched injected system), here we
have two switching signals in the closed loop: one is generated
by the supervisory unit, the other comes from the plant itself.
The switching times of these two signals, in general, do not co-
incide, leading to a more complex analysis than in the case of
constant parameters.

The rest of the paper is devoted to the proof of the theorem
and to the quantification of the class of switching signals and
the number in the theorem’s statement. We present the struc-
ture of the closed-loop system in Section V, followed by a for-
malism of interconnected asynchronous switched systems and a
corresponding stability result in Section VI. In Section VII, we
provide the proof of Theorem 1 using the result for intercon-
nected switched systems in Section VI.

IV. CLOSED-LOOP STRUCTURE

The closed loop consists of two switched systems:
1) The switched system : The first switched system arises

from the dynamics of the state estimation errors. Let
be the state estimation error of the -th subsystem of

the multi-estimator, . Let . Because
is constant in and is the index of the nominal

switched plant for time in , in view of the linear ob-
server dynamics (5), the dynamics of for time in
are exponentially stable when , , and

are all zero. Further, because (in
view of (4)), , and and are com-
ponents of for all , any term of the form or

for some matrix can be written as a linear combi-
nation of and . It follows that the dynamics of
are of the following form:

(23)

where are Hurwitz for all ,
and are such that as ,

is such that if are bounded, then
as , where is as in (17), and is such that

as ; see Appendix B
for the formula and detailed derivation of and

. For the purpose of analysis later, we will augment
with the variable (the variable

relates to as ) to arrive at the
following switched system with jumps:

(24)

where , and for some jump map (recall
that is the latest switching time of before ).

2) The switched system : The second switched system is
the switched injected system from (9) and (7)

(25)

The second equation in (25) is to explicitly indicate that
there is no state jump at switching times (cf. the system
which has jumps at switching times).

These two switched systems interact as follows:
1) Constraint on : The following inequalities give a bound

on the state jump of at switching times: for all :

(26a)

(26b)

for some . Also, has the following property:

(27)

where , is such that
as , and is as in (3). See Ap-

pendix C for the derivation of (26) and (27).
2) Constraint on : This constraint tells how the input and

the switching signal of are bounded in terms of the state
of (see Appendix C for the derivation)

(28a)

(28b)

where

(29a)

(29b)

V. INTERCONNECTED SWITCHED SYSTEMS

In order to make it easier to understand the closed-loop
structure in the previous section, we consider the formalism
of the closed loop described in the previous section and call it
an interconnected switched system. The two switched systems
(without unmodeled dynamics) are interconnected in the fol-
lowing way (see Fig. 2; the dash lines indicate that a subsystem
constrains another subsystem or signal, and the solid lines are
actual signals):

• The input of the second switched system is bounded
in terms of the state of the first switched system by
means of the relation (28a);

• The input of the first switched system is bounded in
terms of the state of the first switched system and the
state of the second switched system by means of
the relation (27);

• The switching signal of the second switched system
is bounded in terms of the state of the first switched system

by means of the relation (28b);
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Fig. 2. Interconnected switched systems.

Fig. 3. Interconnected switched systems with unmodeled dynamics.

• The jump map of as in (25) is bounded in terms of
the state of and the state of by means of the
relation (26).

Interconnected switched systems with the presence of unmod-
eled dynamics are illustrated in Fig. 3.

Assuming that the subsystems of both the switched systems
and are affine and zero-input exponentially stable, we

want to study stability of the closed loop.
Stability of certain types of interconnected switched systems

has been studied in [28]–[30]. In these works, the connec-
tion between the two switched systems in a loop is the usual
feedback connection. In [28], a small-gain theorem for in-
terconnected switched systems is provided. The works [29],
[30] give passivity theorems for interconnected switched sys-
tems and hybrid systems. However, for the loop in Fig. 2,
the small-gain theorem in [28] and the passitivity theorem in
[29], [30] are not directly applicable because it is difficult to
quantify input-output relationship/input-output gains of the two
switched systems, in which the first switched system’s jump
map is affected by the second switched system and the second
switched system’s switching signal is constrained by the first
switched system. We provide here tools for analyzing such
interconnected switched systems.

Lets look at the special case where is a constant signal, and
there are no unmodeled dynamics, no noise, and no disturbance
( , , ). Because is a constant signal, the
jump constraint (26) for does not come into effect, and
is a non-switched stable linear system. Then is exponentially
decaying to zero, and hence, goes to zero in view of (27),
and also, goes to zero. Then is bounded in view of (29),
and is an average dwell-time switching signal. From (28a),
(25), and the slow switching condition(14), it follows from the
stability result for switched systems under average dwell-time
[20] that is bounded. From there, stability of the plant state

can be concluded.
However, the situation is much more complicated when is

not a constant signal. The stability results [20], [31] for switched
systems without jumps are not applicable here because has
jumps. The stability result for impulsive systems [32] is also

not applicable here (we are not able to find a Lyapunov function
as in [32]). But moreover, the issue here is that the jump map
of involves the state of the second switched system, while
the input as well as the switching signal of the second switched
system is affected by the state of the first system. This type of
mutual interaction makes the analysis of the closed loop’s be-
havior between switching times challenging. We observe that
the switching signal is constrained by but is not con-
strained at all, so we use the following technique: we first elim-
inate the presence of by incorporating the properties (28a)
and (28b) of into other inequalities, and after that we find
the closed-loop behavior with respect to the switching signal
(without worrying about the switching signal ).

Before going into details, we outline the steps for proving
stability of the interconnected switched system with
the interrelations (26), (27), (28a), and (28b).

1) We establish an ISS-like property of the switched system
in terms of the state of and unmodeled dynamics,

noise, and disturbances between consecutive switches of
(Lemma 1).

2) We establish an ISS-like property of the switched system
with respect to for arbitrary time intervals using the

property of (Lemma 2 and Lemma 3).
3) We define a Lyapunov-like function which depends on

the states of and and their norms, and analyze the
behavior of between consecutive switches of (Lemma
4).

4) We establish boundedness of using a hybrid dwell-time
switching signal and conclude boundedness of all con-
tinuous signals in the loop.

A. Switched System

The lemma below says that the state of is bounded by
an exponentially decaying term with respect to the state and

at the last switching time and by norms of the
unmodeled dynamics, noise, and disturbances; see Appendix D
for the proof.

Lemma 1: Consider the switched system in (24) with the
constraints (26) and (27). For every , where is as in
(12), for all , we have

(30a)

(30b)

where

(31a)

(31b)

(31c)

(31d)

(31e)

(31f)
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, and are as in (24), is as in (27), and
are constants.

The first terms in (30a) and (30b) are those involving the
states at and up to the time and they are multiplied by ex-
ponentially decaying functions of . The terms and
are due to the unmodeled dynamics and switched plant approx-
imation, and the terms and are due to disturbances and
noise. These four terms are not multiplied by exponentially de-
caying functions.

B. Switched System

We now characterize the property of the second switched
system . See Appendix E for the proof of Lemma 2 and Ap-
pendix F for the proof of Lemma 3.

Lemma 2: Consider the switched system in (25) with the
constraints (28a) and (28b). Suppose that (14) and (15) hold.
For every , where is as in (10b), we have

(32)

for some constants and as in (14).
Define

(33)

where is as in (10b), is as in (12), and is as in (14).
Lemma 3: Consider the switched system in (25) with the

constraints (28a) and (28b) and the switched system in (24)
with the constraints (26) and (27). Suppose that satisfies (13),
(14), and (15). We have

(34a)

(34b)

for all , where is as in (33)

(35a)

(35b)

, , and are as in Lemma 1, is as in (14), and and
are as in Lemma 2.

C. Lyapunov-Like Function

We now introduce a Lyapunov-like function for the closed
loop. Let

(36)

By convention, . Note that ,
where is as in (31a). The following lemma gives a char-
acterization of with respect to the switching signal ; see
Appendix G for the proof.

Lemma 4: Consider the switched system in (25) with the
constraints (28a) and (28b) and the switched system in (24)

with the constraints (26) and (27). Suppose that (13), (14), and
(15) hold. Let be as in (36). Let and suppose that for
all

(37a)

(37b)

(37c)

for some positive constants and ,
where is as in (24), is as in (27), is as in(31f), and

is as in (35a). We have

(38)

where is as in (33), is as in (14), are some con-
stants, and is such that as .

D. Stability Property of the Function

From (38), the function satisfies an
inequality of the following form:

(39)

for all for some and . If there is no
switching or has finitely many switches (i.e., is bounded),
then it can seen from (39) that as . However,
the situation is more complicated when has infinitely many
switchings. We want to find a condition on the switching signal

to guarantee that is bounded, and goes to zero when
. Before presenting such a result (Lemma 6 below), we need

a preliminary result on hybrid average dwell-time switching
signals.

Define the function , which is parameterized by ,
, and , as follows:

(40)

The constant plays the role of a bound on the initial state
. This function stems from stability analysis of . In

particular, we can guarantee boundedness of if there exists
such that (see the proof of Lemma 6 in Appendix I).
This leads us to find conditions on , and to guarantee
that there exists such that . Formally, let

(41)

The set is always nonempty. To see this, pick any
. Because as , for every

and , for a large enough , we will have
and hence, is nonempty. We have the following
lemma to characterize the set (see Appendix H
for the proof).

Lemma 5: Consider the set defined as in (41).
For every , there exist and a function

such that
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Furthermore, the function can be characterized by two func-
tions, and

, such that

(42)

Using Lemma 5, we have the following stability result for the
function (see Appendix I for the proof).

Lemma 6: Consider a scalar function
which satisfies (39) for some class function and some con-
stant . Suppose that and

, where is as in Lemma 5. Then for all
, we have

(43)

for some constants .
Remark 2: The result in Lemma 6 can also be applied to sta-

bility analysis of switched nonlinear systems in which a constant
gain among the ISS-Lyapunov functions of the subsystems either
does not exist or is not available (cf. [31] where such a constant
gain is assumed). Consider the switched nonlinear system

(44)

where is a switching signal. Assume that
every subsystem is ISS. We want to find classes
of switching signals that guarantee ISS of the switched system.
Since every subsystem is ISS, there exists a family of positive
definite functions , , such that

(45a)

(45b)

for some functions and . The existence
of such a common , and is guaranteed if the set

is finite or if the set is compact and suitable continuity
assumptions with respect to hold (see [31, Remark 1]). Let
be a class function such that

(46)

Such always exists, e.g.,

From (45) and (46), we get

(47)

We then can apply Lemma 6 with and
to conclude ISS of the switched system

(44) with bounded inputs (with a known bound) under a class
of hybrid dwell-time switching signals.

E. Stability of Interconnected Switched System

We first state a result for interconnected switched systems
with disturbances and noise but without unmodeled dynamics
and without switched system approximation (i.e., the plant is
a switched system). Basically, the following theorem says that

if the noise and disturbances are small enough (the condition
(49)), the switching signal is a hybrid dwell-time switching
signal, and satisfies the condition (50), then the states have the
ISS-like property (51) with respect to the bounds on the noise
and disturbances. Let

(48)

Theorem 2: Consider the interconnected switched system of
in (25) and in (24) with the constraints (26), (27), and

(28). Suppose that
, where , and are as in (24), and and are

as in (27). Suppose that (13), (14), and (15) hold. For every
, there exists

for some such that if

(49)

where is as in (24) and is as in (27), and
and

(50)

then for all , we have

(51)
for some , and a function
such that as for some indepen-
dent of .

Proof: Consider the function defined as in (36). If
, then

(52)

Because , , , we have and
(where and are as in (31)), which implies (37b)

is true. Also,
, and so (37c) is true. Thus, (37b) and (37c) hold for all

(i.e., in Lemma 4). Because(13)–(15) hold, the
function satisfies the inequality (38) by Lemma 4. Because

as , where is as in Lemma 4, by
Lemma 5, there exist , , small enough such that

, and a function as in Lemma 5 exists.
Because the switching signal , and

satisfies the condition (50), it follows from Lemma
6 that has the ISS-like property (43) for all . From (43)
and the definition of as in (36), we obtain(51), where

and
, in view of the fact that

(from the definition of as in (36)). The property of
asserted in the theorem follows from the property of as in
Lemma 4.

When unmodeled dynamics are present, we have the fol-
lowing result, which essentially says that we still have the
ISS-like property if the unmodeled dynamics are small enough
in a certain sense. Suppose that and , where is as in
(24) and is as in (27), satisfy

(53a)
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(53b)

where for
some with respect to some and
constant .

Theorem 3: Consider the interconnected switched system of
in (25) and in (24) with the constraints (26), (27), and

(28). Suppose that (53) holds for some . Suppose
that (13), (14), and (15) hold. Suppose that , where

is as in (48). There exist such that for
all , , , and such that

(54a)

(54b)

(54c)

where is as in (24), is as in (27), and are as
in (24), is as in (27), and is as in (53a), there exists

for some such that if
and

(55)

then

(56)

for some constant and a function such that
as for some .

Proof: The basic idea behind the proof is that if the
switched plant is stable with disturbances and noise (Theorem
2), then the supervisory control scheme is able to handle un-
modeled dynamics with small enough and smaller noise and
disturbances bounds.

From the definition of as in (31f) and (53), we get

(57)

for some constant , where and are as in (31f). The func-
tion has the property that for a fixed and , as

. From the definition of as in (35a), (53), and
(57), we have

(58)

where has the property that as for
fixed and . From the definition of as in (39), we have

(59)

for some constant .
Let be as in Lemma 5 and as in Lemma 4. From the

properties as , as
, and as , we have that for

given and , there exist ,
, such that

(60a)

(60b)

(60c)

(60d)

where is as in (52) and is as in (59).
Now, let be the function as in Lemma 5 with the parameter

. Consider the interconnected switched system in the
theorem with this function . Let

. From (60d), we have ,
and so . Suppose that .

Because for all , we have
for all in view of (59) and the defini-

tion of . Then for all , we have
in view of (58) and (60b), and in view

of (57) and (60c), and in particular,
and for all . From Lemma 4,
we have that satisfies (38) up to the time . Because

and satisfies the condition (55), by Lemma
6, for all . No matter
whether is a switching time of or not, there exists
such that there is no switching of in the open interval

. Because is continuous on , there exists
such that for all , and hence

for all . This contradicts the
definition of , and therefore, we must have . We then
have and for all .
Because and satisfies the condition
(55), by Lemma 6, we obtain for
all . In view of the definition of as in (36), the fore-
going inequality implies(56) for some constant and some
function (see the proof of Theorem 2 for the formula). We
have as so one can take
as . The limiting property of follows from
the property of as in Lemma 4.

PROOF OF THEOREM 1
F. Bounds of the Unmodeled Dynamics

Note that . Also,
, so and

. From (17a), using the separation property of class
functions (that for every ,

), we have

(61)

for some and such that as .
Similarly, we have

(62)

for some .
From the definition of , (61), and (62),

we have

(63)
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for some . Because , it follows from
(63) that has the property (53a) where . From
the definition of as in (27), (62), and the fact

, we have that has the property (53b) for some
constant . Because of the property of functions, we can
always have the same in both (53a) and (53b).

G. Stability

From (20) and (48), we have that if , then
. We have shown that and have the properties

(53). Because as , for
every in (54b), the condition (54b) is satisfied if is small
enough. Also, because as , the condition (54c)
is satisfied if is small enough. The foregoing facts and the
fact , when applied to Theorem 3, imply that for
small enough , , there exists a function such
that if and then for all

, we have (56). From (56) and the fact that
for all , it follows that has the property (22). Since the

unmodeled dynamics is input-to-state stable, from boundedness
of , we also have bounded. From the fact that as

and as , the limiting
property of follows as in Theorem 3, such that as

.

VI. NUMERICAL EXAMPLE

Consider the following uncertain system:

where are unknown. We know that
. The stabilization of the foregoing uncertain system is chal-

lenging because the sign of is not known. The previously re-
ported result for supervisory control with constant unknown pa-
rameters is not applicable here if has large variation such that
the system cannot be approximated by a system with a constant

and small unmodeled dynamics to a good degree. An example
of such is a periodic square signal alternating equally between
two values and 1 with period , .

The design procedure is as follows. Pick ,
, , and . The

set . We have , ,

, . Design feedback gains such
that have poles at for all , and design
observer gains such that have poles at for
all .

For these , we have the constants
, , and (see Appendix J

for the procedure of how to calculate theses constants using
LMIs). Pick , , and .
Calculate . Pick . Cal-
culate . Calculate

, , ,
. Calculate , ,

and . For , the curves with

Fig. 4. Curves � and � .

Fig. 5. Simulation result.

and the curve with are plotted in
Fig. 4.

For , it is calculated that . For
, , , we get and then,

. Then for all the initial state less than
, for all noise and disturbances less than and , for all

unmodeled dynamics less than , the state will satisfy (22) with
, , and .

We simulate the control system with the following noise, dis-
turbances, and unmodeled dynamics:

where are uniform random
sequences in , and is a periodic square signal
alternating equally between two values and 1 with period

, . The simulation result is plotted in Fig. 5.
Remark 3: The bounds provided in this paper are very con-

servative: the bounds in the simulation are much smaller than
the calculated bounds, and the calculated stability margin is ex-
tremely small (simulation shows the state bound of about 5
with the unmodeled dynamics bound of , compared with
the calculated values of 1.1952 and 1.8686 , re-
spectively). It is observed that in simulations with larger ini-
tial states, noise, disturbances, and unmodeled dynamics, the
control system in the example still remains stable. The conser-
vativeness of the bounds comes from three main sources: i) the
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bounds on the switching signal’s properties in (28) ii) the bound
on the state under the switching signal in (32), and iii)
the bounds on the state under the switching signal in (34),
not to mention the conservativeness of the numerical calculation
of the constants used in these bounds (e.g., .) While
the difference between the simulation bounds and the calculated
bounds is large, the conservativeness of the bounds is not en-
tirely surprising because even in the case of constant unknown
parameters, the reported bounds on the closed-loop states under
supervisory control are also conservative, several of which are
the starting points for the analysis of the time-varying case in
this paper. It is noted that performance of supervisory control,
even in the case of constant unknown parameters, is still an open
question. The use of LMIs to improve the numerical bounds as
in this work (see Appendix J) is a step forward in addressing
performance issues in supervisory control.

Remark 4: We have also performed simulations of the su-
pervisory control scheme in this paper applied to the output
tracking problem, where we make the output of the uncertain
plant with unknown and to track
the output of the reference model . Simulation
results show that the supervisory control scheme also works well
in this output tracking example and is the motivation for further
theoretical research on supervisory control.

VII. CONCLUSION

We addressed the stabilization problem for time-varying un-
certain systems using supervisory control. We introduced a new
class of switching signals called hybrid dwell-time switching
signals, which are characterized by both dwell-time and average
dwell-time. We showed that in the presence of bounded distur-
bances and noise, all the closed-loop signals are bounded pro-
vided that the plant varies slowly enough in the hybrid dwell-
time sense and the unmodeled dynamics are small enough. In
the absence of unmodeled dynamics, disturbances, and noise,
the closed-loop plant state can be made as small as desired. In
proving closed-loop stability, we also studied stability of inter-
connected switched systems in which the jump map of the first
switched system is bounded by the state of the second switched
system, and the switching signal of the second switched system
is bounded in terms of the state of the first switched system.
We provided an ISS-like stability result for such interconnected
switched systems. This stability result can also be applied to sta-
bility analysis of switched nonlinear systems. Numerical simu-
lations and discussions are provided to illuminate the utility and
drawback of the proposed control scheme.

This work has provided a theoretical foundation for applying
supervisory control to time-varying systems. This contribution
can be viewed in two ways: at the qualitative level, it says that
the supervisory control design provides a margin of robustness
against noise, disturbances, and unmodeled dynamics; at the
quantitative level, it provides a description of this robustness
margin. Future work aims to address performance issues such
as how to obtain tighter bounds and how to choose the design
parameters to improve transient response. Another potential di-
rection is to address the issue of fast-switching plants by finding
the design parameters that yield the largest class of hybrid dwell-
time signals. Also, supervisory control for output tracking of un-
certain time-varying plants deserves further exploration.

APPENDIX A
THE INJECTED SYSTEMS

Because the linear controller stabilizes the plant
, it follows that the system:

(64)

is exponentially stable when . Also, for ,
we can write

and so the system

(65)

is exponentially stable if and
. Therefore, if , then and

go to zero exponentially in view of (64), and hence,
goes to zero exponentially, and thus,

goes to zero exponentially for all . The foregoing
reasoning shows that for a fixed controller, the injected system
is exponentially stable when . Because the injected
system is linear, it follows that each injected system must be of
the form , where
is the state of the injected system, and is Hurwitz .

APPENDIX B
THE ERROR DYNAMICS

Because is constant in and is the index of the
nominal switched plant for time in , in view of the linear
observer dynamics (5), we have

where , ,
, and

; are Hurwitz for all
by construction. In view of (from (4)) and

, we then obtain

(66)

where (recall that
and are components of for all so is a

linear combination of and ). Equation (66) is rewritten as
the switched system

(67)

where and . It is clear
from the definitions that is such that as

, is such that as , and
as .
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APPENDIX C
CONSTRAINTS BETWEEN AND

Constraint for : Because
, we have

and so

(68)

for all in view of the fact that is a component of
. Therefore, in view of , we have (26a).

We have
for all , and hence,

, where , and in
view of the fact that are components of .

Note that the -weighted norm has the following prop-
erties. From the definition of as in Section II, we have

(69)

The -weighted norm is decreasing in and additionally,
has the following properties:

(70a)

(70b)

for all (note that the left-hand side of (70a) is the
-weighted norm of the exponentially decaying function

with the rate ).
Taking -weighted norm of both sides of the fore-

going inequality, we get
. Letting , , and ,

we get (26b) in view of .
We have

Therefore

where , and we get (27).
Constraint for : The hysteresis switching logic has the

following properties ([31, Lemma 4.2],[14, Lemma 1]): for
every index and arbitrary , we have

(71)

(72)

Note that the above inequalities hold for any . In view of
, we obtain (28b) and (28a).

APPENDIX D
PROOF OF LEMMA 1

Since is constant in and is Hurwitz, from (24),
we have

for some . The foregoing inequality and (26a) give (30a).
From (27), we have

where , and so
Then

(73)

Taking -weighted norm on both sides of (30a), in view
of (70a) and (70b), we get

Combining the foregoing inequality with (73), the fact that
, and (26b), we get (30b).

APPENDIX E
PROOF OF LEMMA 2

Let be an arbitrary time. Let
be the switching times of in ; by convention,
and . Let where
are as in (10). From (10b), we have

(74)

for all . The foregoing inequality and (11) give
for all

. Letting and iterating the foregoing in-
equality for to , together with (74) with and

, we then have

(75)

where . Because there are no
more than switches in the interval , from
(28b), we have

(76)

where is as in (29), ,
, , and , and the
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equality follows from the fact that . Note that we
have in view of (13). Because , we have

The foregoing inequality and (76) give:

(77)

where the last inequality holds because in
view of (14). From (75), (77), and (28a), we obtain

(78)

The foregoing inequality and (10a), in view of the fact that
is continuous, give (32) (replacing in (78) with ) where

and .

APPENDIX F
PROOF OF LEMMA 3

For the convex function we have
and so,

. Using the foregoing identity with (30a), for all
, we have

(79)

Applying (79) with and to (32), we get

The foregoing inequality leads to (34a) in view of the defini-
tion of and the fact . Taking

-weighted norm on both sides of (34a), we get

From (69), we have
. The

preceding inequality, in view of the fact that

[which follows directly from (69)], gives (34b).

APPENDIX G
PROOF OF LEMMA 4

From the definition of , we have

(80)

From the definition of as in Lemma 1 and as in (35), in
view of (80), we have

(81)

where and
, in view of (37b) and (37c). From (34a) and

(81), we get

(82)
where . From (34b) and (81), we have

(83)
From (30b), we get

(84)

where . From (30a), we get

(85)

in view of , where . From
(82), (83), (84), (85), and the definition of as in (36), we get

(86)

where , ,
,

, and
. Let

Then from (86), we get

We then have (38) where , and .
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From the definition of , we have for some con-
stant as . From the definitions of ,
as . From the definition of , we have as

. It follows from the definition of that
for some constant as and .

APPENDIX H
PROOF OF LEMMA 5

The function has two parameters, and , and thus, is a
mesh in 3-D if we plot versus and . It is difficult to solve
for the function analytically, but for given , , and , it
can be numerically calculated as follows.

Start from and . For each pair of and ,
starting from and in small increment of , sequen-
tially check from 0 in increment of until for some

whether that satisfies . The

first that gives the existence of such that

is an approximated value of . Repeat the procedure for
a new with a small increment or a new with a small in-
crement ; Stop when both and reach some chosen upper
bounds. This procedure will produce a granular mesh for the
function . The smaller , , and are, the closer the nu-
merically calculated mesh is to the function , at the expense of
the computational time.

To help better understand the function , we can also have
following characterization of cuts of when we fixed either
or .

Average Dwell-Time versus Chatter Bound Curves:
• Fix a . Define the set parameterized by as

(87)

Since the function is increasing in and de-
creasing in , in view of (87), there exists a function

as the lower boundary of
such that

for some ( can be ). We will
call an average dwell-time versus chatter bound
curve. It is not easy to characterize the function
analytically, but the function can be calculated numerically
for given , , and (up to approximation
errors). The algorithm is as follows: Start from . For
each , starting from and in small increment of

, sequentially check from 0 in increment of
until for some whether that satisfies

. The first that gives the existence of

such that is an approximated value

of . Repeat the procedure for new with a
small increment . The smaller and are, the closer
the numerically calculated curve is to the curve ,
at the expense of the computational time.

Average Dwell-Time versus Dwell-Time Curves:
• Fix a . Define the set parameterized by as

(88)

Since the function is decreasing in and also de-
creasing in , in view of (88), there exists a function

as the lower boundary of
such that

for some . We call an
average dwell-time versus dwell-time curve. The function

is not easy to characterize analytically but can
be calculated numerically for given , , and

. Similarly to the case with fixed , the algorithm for
a fixed is as follows: Start from . For each ,
starting from and in small increment of ,
sequentially check from 0 in increment of until

for some whether that satisfies
. The first that gives the existence of

such that is an approximated value
of . Repeat the procedure for new with a
small increment . The smaller and are, the closer
the numerically calculated curve is to the curve ,
at the expense of the computational time.

Using the average dwell-time versus chatter bound curve and
the average dwell-time versus dwell-time curve curve, we obtain
the (42).

Remark 5: When is bounded, say , for
every , , , and , we can always
choose large enough so that .
Then, and

, and there-
fore, both the sets and can be characterized by a single
number , which is exactly the lower bound on average
dwell-time for stability of (as reported in [20], [31]; see also
[32]). In general, when is an unbounded function, the set
is characterized by an average dwell-time versus chatter bound
curve, and the set is characterized by an average dwell-time
versus dwell-time curve (these curves are horizontal lines when

is constant).

APPENDIX I
PROOF OF LEMMA 6

Because , from the definition of
as in (41), there exists such that

(89)

where and .
If the switching signal is a constant (no switching in ), then

clearly satisfies (43), in view of (39).
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Suppose that has at least one switch. Denote by the
set of switching times of in . Define

Let be the first switching time of . We have

in view of and . The foregoing inequality of
together with (89) imply that in view of

and . From the definition of , we have that
(and thus, is not empty). We will next show that by
contradiction.

Suppose that . This means there is a switching time
after such that . Let be

the switching times of in ; by convention and
. From the definition of and , we have

(90)

From (39), we have
in view of (90). Iterating the fore-

going inequality for to , in view of
, we obtain

(91)

Because , in view of the fact that there are
switches in , we have .

Also, because there are switches in , we
have . The foregoing inequality
and (91) yield

(92)
where . Also because ,
we have , and then

, .
We then have

The foregoing inequality and (92) yield

(93)

Because has a dwell-time , we have
. Then the right-hand side of (93) is bounded by

,

in view of (89). Thus, , in which , a
contradiction with the definition of .

Therefore, . In view of (93), we have

(94)
for all . We then get (43) with and

.

APPENDIX J
LMIS FOR NUMERICAL CALCULATION

The explicit forms for the matrices and of the injected
system in (9) are

...
... (95)

... (96)

Because are Hurwitz, the functions as in (10) can be
obtained by solving the Lyapunov equation

for some . However, this approach will likely lead
to a big Lyapunov gain , which is undesirable. Instead, we
will employ LMIs to find , that yield the smallest
possible. To do so, we write (10b) as

Because the foregoing inequality is true for all and all ,
it is implied by

where reads “negative definite” (similarly, reads “positive
definite”). We then have the following LMIs:

(97)

The above set of LMIs can be solved numerically for given
. For our analysis here, we also want the ratio

small, where and are as in (10). This can be
achieved by adding the following LMIs into (97):

(98)

To find small , , and , the algorithm is as follows. First,
pick a small such that
(for example, ). Pick and such that

is large (for example, ). Start with some
small and large (such as and ), check for
feasibility of the set of (97) and (98). If the LMIs do not have
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a solution, then increase until the LMIs have a solution. For
that , try to reduce while the LMIs still have a solution. Then
try to increase and to reduce while the LMIs still have
a solution. The increment and the decrement of those constants
can be fully automated by programming the above algorithm
into computer codes.
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