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Abstract

The subject of this paper is hybrid control of nonlinear systems with large-scale uncertainty. We describe a high-level controller, called
a “supervisor”, which orchestrates logic-based switching among a family of candidate controllers. We show that in this framework, the
problem of controller design at the lower level can be reduced to 8nding an integral-input-to-state stabilizing control law for an appropriate
system with disturbance inputs. Employing the recently introduced “scale-independent hysteresis” switching logic, we prove that in the
case of purely parametric uncertainty with unknown parameters taking values in a 8nite set the switching terminates in 8nite time and
state regulation is achieved. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper deals with the problem of controlling a non-
linear system in the presence of large modeling uncertainty.
The basic idea behind the supervisory control approach to
this problem is to employ logic-based switching among a
suitably de8ned family of candidate controllers. The need for
switching stems from the fact that typically no single con-
troller would guarantee a desired behavior when connected
with the poorly modeled process. Such switching schemes
provide an alternative to more traditional continuously tuned
adaptive control laws.
The main ingredients of the supervisory approach to

controlling uncertain nonlinear systems are adopted from
(Hespanha & Morse, 1999a) and have their roots in the
work on supervisory control of uncertain linear systems
reported in (Morse, 1996). In addition to the given process
and the family of candidate controllers, the supervisory
control system has three other subsystems, implemented
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by the designer: the multi-estimator, the monitoring signal
generator, and the switching logic. The task of the switch-
ing logic is to generate a switching signal which determines,
at each instant of time, the candidate controller that is to
be placed in the feedback loop. This controller selection is
based on the values of themonitoring signals, which are ob-
tained by taking appropriate integral norms of the estimation
errors produced by the multi-estimator. Intuitively, the idea
behind the switching strategy is to determine which of the
monitoring signals is the smallest, and to choose the candi-
date controller that is designed for the respective parameter
value. A form of hysteresis is used to slow the switching
down. The resulting closed-loop system is therefore hybrid,
as it combines discrete dynamics associated with the switch-
ing logic and continuous dynamics associated with the rest
of the system.
We impose the condition that each candidate controller

integral-input-to-state stabilizes the multi-estimator when
the corresponding estimation error is viewed as an input.
The concept of integral-input-to-state stability (iISS) was
introduced in (Sontag, 1998). The iISS property is a vari-
ation of the more familiar input-to-state stability (ISS)
property de8ned in (Sontag, 1989). Loosely speaking, the
state of an input-to-state stable system is small if its inputs
are small (“L∞ to L∞ stability”), whereas the state of an
integral-input-to-state stable system is small if its inputs
have 8nite energy as de8ned by an appropriate integral
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(e.g., “L2 to L∞ stability”). Every input-to-state stable sys-
tem is integral-input-to-state stable, but the converse does
not hold.
Requirements placed on the candidate controllers stem

from the following considerations. It is desirable that for
every frozen value of the switching signal, the closed-loop
system be detectable through the corresponding estima-
tion error. This detectability property, known as tunability
(Morse, 1990), is crucial because adaptive tuning=switching
algorithms are invariably designed with the goal of main-
taining “smallness” of the estimation error associated with
the controller that is currently in the feedback loop. It is es-
tablished in (Hespanha & Morse, 1999a) that detectability,
interpreted in a suitable sense for nonlinear systems, is
guaranteed if the process is detectable and each candidate
controller input-to-state stabilizes the multi-estimator with
respect to the corresponding estimation error. That paper
also shows how this result leads to a systematic technique
for designing hybrid control laws that achieve global output
regulation.
It turns out that in practical applications it is often dif-

8cult to achieve (or verify) input-to-state stability of the
controller-estimator interconnection (Hespanha, Liberzon,
& Morse, 1999; Chang, Hespanha, Morse, Netto, & Ortega,
2001). Thus it is of interest to weaken the requirements
imposed on the candidate controllers, which is the primary
motivation for the work described in this paper. In what
follows, we show that the detectability property, interpreted
in an integral sense, holds if the hypotheses are weakened
by demanding iISS instead of ISS. We then consider the
case of “exact matching”, in other words, we assume that
there are no unmodeled dynamics, noise, or disturbances,
so that the actual process is an unknown member of a 8-
nite family of admissible models. The scale-independent
hysteresis switching logic introduced in (Hespanha, 1998;
Hespanha & Morse, 1999b) guarantees that the switching
stops in 8nite time and the continuous states of the su-
pervisory control system converge to zero. A preliminary
version of this result was stated in (Hespanha & Morse,
1999c).
The 8ndings of this paper can thus be considered as inte-

gral versions of those previously reported in (Hespanha &
Morse, 1999a). The use of iISS in the present context seems
very natural because the monitoring signals are de8ned as
appropriate integral norms of the estimation errors. Another
contribution of this paper is that the analysis is carried out
in the time domain and is more straightforward than that in
(Hespanha & Morse, 1999a), where Lyapunov-like dissipa-
tion inequalities are used.
The concepts of integral-input-to-state stability and

detectability that are exploited in the paper are formally
de8ned and discussed in Section 2. The supervisory control
architecture is presented in Section 3. In Section 4 we state
the basic assumptions and establish the detectability result.
Section 5 is devoted to the description of the switching
logic and the analysis of the closed-loop system in the exact

matching case. The contributions of the paper are brieIy
summarized and assessed in Section 6.

2. Integral-input-to-state stability and detectability

First, recall that a function � : [0;∞) → [0;∞) is said
to be of class K if it is continuous, strictly increasing, and
�(0)=0. If � is also unbounded, then it is said to be of class
K∞. A function � : [0;∞) × [0;∞) → [0;∞) is said to
be of class KL if �(·; t) is of class K for each 8xed t¿ 0
and �(r; t) decreases to 0 as t → ∞ for each 8xed r¿ 0.
We will write �∈K∞, �∈KL when � is a class K∞
function and � is a class KL function, respectively.

Consider the general nonlinear system

ẋ = f(x; d);

y = h(x); (1)

where x∈Rn is the state, d∈Rk is the locally essen-
tially bounded (disturbance) input, and y∈Rl is the out-
put. In this paper, we only consider smooth systems for
simplicity (this requirement can be signi8cantly relaxed,
as discussed in the references cited below). Following
(Sontag & Wang, 1997), we will say that the system (1) is
input=output-to-state stable (IOSS) if for some functions
�1; �2 ∈K∞ and �∈KL, for every initial state x(0), and
every input d the corresponding solution of (1) satis8es the
inequality

|x(t)|6 �(|x(0)|; t) + �1(‖d‖[0; t]) + �2(‖y‖[0; t]) (2)

as long as it is de8ned. Here ‖·‖[a;b] stands for the (essential)
supremum norm of a signal restricted to the interval [a; b].
We will sometimes omit the subscripts if clear from the
context.
IOSS represents a natural detectability property of the

system, which basically says that the state eventually be-
comes small if the inputs and outputs are small. For this
reason, we will sometimes use the term “detectability” when
referring to this property; however, the precise notion being
used is IOSS, which is not to be confused with other pos-
sible interpretations of detectability for nonlinear systems.
Removing the �2 term from (2), one recovers the standard
notion of input-to-state stability (ISS) with respect to d, as
de8ned in (Sontag, 1989). Although in this paper we take
the equilibrium state of the system (1) to be the origin, the
subsequent de8nitions and results can be extended to the
case of nonzero equilibrium states (see Hespanha & Morse,
1999a,c).
An integral variant of the above detectability notion can

be de8ned as follows (Angeli, Sontag, & Wang, 2000). We
will say that the system (1) is integral input=output-to-state
stable (iIOSS) if for some functions �0; �1; �2 ∈K∞ and
�∈KL, for every initial state x(0), and every input d
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the corresponding solution of (1) satis8es the inequality

�0(|x(t)|)6 �(|x(0)|; t)+
∫ t

0
�1(|d(s)|)ds+

∫ t

0
�2(|y(s)|) ds

(3)

as long as it is de8ned. The corresponding property for sys-
tems without inputs, obtained by removing the �1 term from
(3), is called integral-output-to-state stability (iOSS).
Similarly, removing the �2 term from (3), we arrive at
integral-input-to-state stability (iISS), a property intro-
duced in (Sontag, 1998). We will need the following simple
fact (cf. Sontag, 1998, Proposition 6).

Lemma 1. Suppose that the system (1) is iIOSS. Suppose
that the initial state x(0) and the disturbance d are such
that the corresponding solution of (1) is globally de8ned;∫∞
0 �1(|d(s)|) ds¡∞; and

∫∞
0 �2(|y(s)|) ds¡∞.Then we

have x(t) → 0 as t → ∞.

We will also need the following technical lemma. It states
that IOSS implies the “mixed” detectability property, where
one takes a supremum norm of some inputs and outputs
and an integral norm of others. This lemma is proved by
standard arguments using the characterization of IOSS in
terms of an “exponential-decay IOSS-Lyapunov function”
(Sontag & Wang, 1997).

Lemma 2. Assume that the system (1) is IOSS. Suppose
that an arbitrary partition of its inputs and outputs into
two groups; denoted by v1 and v2; is given (here v1 and
v2 are vectors; each of which is allowed to contain both
input and output components). Then there exist functions
N�0; N�1; N�2 ∈K∞ and N�∈KL such that for every initial
state x(0) and every input d the solution of (1) satis8es the
following inequality as long as it exists:

N�0(|x(t)|)6 N�(|x(0)|; t) + N�1(‖v1‖[0; t]) +
∫ t

0
N�2(|v2(s)|) ds:

(4)

3. Supervisory control system architecture

Let P be an unknown process, with dynamics of the form

ẋ = f(x; u);

y = h(x);

where x∈Rn is the state, u∈Rm is the control input, and
y∈Rl is the measured output. We assume that P is a
member of some family of systems

⋃
p∈P Fp, where P

is an index set. For each p∈P, the subfamily Fp can be
thought of as consisting of a nominal process model Mp

together with a collection of its “perturbed” versions. How-
ever, the developments of this section and the next one do
not rely on any special structure of the Fp. The only ex-
plicit assumption that we impose on the unknown process is
detectability.

Fig. 1. Supervisory control architecture.

Assumption 1. The process P is IOSS.

The problem of interest is to design a feedback control law
that drives the state x (or at least the output y) ofP to zero. 1

To solve this problem, we will develop a “high-level” con-
troller, called a supervisor, whose purpose is to orchestrate
the switching among a suitably de8ned family of candidate
controllers Cp; p∈P. It is convenient to think of each Cp
as a controller that would be used to solve the regulation
problem if P were known to be a member of Fp. For ex-
ample, if for each p∈P the candidate controller Cp takes
the form

ẋC = gp(xC; y);

up = rp(xC; y); (5)

then the switched controller is given by

ẋC = g�(xC; y);

u= r�(xC; y);

where � is a piecewise constant switching signal taking val-
ues in P. Accordingly, the switched controller is denoted
by C�. We will actually use a somewhat more general form
for the candidate controllers, described below.
The supervisor consists of three subsystems (see Fig. 1):
Multi-estimator E—a dynamical system whose inputs are

the process’ input u and output y, whose state is denoted by
xE, and whose outputs are denoted by yp, p∈P.

Monitoring signal generator M—a dynamical system
whose inputs are the estimation errors

ep :=yp − y; p∈P (6)

and whose outputs �p, p∈P are suitably de8ned integral
norms of the estimation errors, called monitoring signals.

1 More general problems of regulation about nonzero equilibrium states
can be treated similarly (cf. Hespanha & Morse, 1999a,c).
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Switching logic S—a dynamical system whose inputs are
the monitoring signals �p, p∈P and whose output is the
switching signal �.
We write the multi-estimator E as

ẋE = F(xE; y; u)

yp = hp(xE); p∈P; (7)

where we assume that hp(0) = 0 for each p∈P. The un-
derstanding is that yp would converge to the process output
y asymptotically if Mp were the actual process model and
there were no noise or disturbances (cf. Section 5). IfP is a
8nite set, E can be realized simply as a parallel connection
of individual estimator equations of the form

ẋp = fp(xp; y; u);

yp = Nhp(xp)

for p∈P, in which case one has xE = stack{xp; p∈P}.
If the set P is in8nite, the multi-estimator can often be
implemented using the idea of state-sharing (Hespanha &
Morse, 1999a; Morse, 1996). This technique in fact leads
to a more eQcient way of designing a supervisory control
system even for the case when P has a 8nite but large
number of elements.
We write the switched controller C� as

ẋC = g�(xC; xE; e�);

u= r�(xC; xE; e�) (8)

with rp(0; 0; 0) = 0 ∀p∈P. For each frozen value
� ≡ p∈P, the above equations model the candidate con-
troller Cp. Note that here we are assuming the entire state
xE of the multi-estimator E to be available for control, which
is reasonable because E is implemented by the control
designer. Since y = hp(xE) − ep for each p∈P by
virtue of (6) and (7), this set-up includes static output feed-
back up = kp(y) and dynamic output feedback (5) as
special cases. This explains why we did not include y explic-
itly as an input toC�. A particular choice of inputs toC� may
vary.
The underlying decision-making strategy used by the su-

pervisor basically consists in selecting for �, from time to
time, the candidate controller index q whose corresponding
monitoring signal �q is currently the smallest. Intuitively,
the motivation for doing this is that the nominal process
model with the smallest monitoring signal “best” approxi-
mates the actual process, and thus the candidate controller
associated with that model can be expected to do the best
job of controlling the process. This idea originates in the
concept of certainty equivalence from parameter adaptive
control. A justi8cation for such a strategy will be seen more
clearly in light of the results to follow. Precise de8nitions
of the monitoring signal generator and the switching logic
are deferred to Section 5.

4. Detectability

For an arbitrary 8xed q∈P we can use the formula (6)
to rewrite the multi-estimator (7) as

ẋE = F(xE; hq(xE)− eq; u) := NFq(xE; eq; u): (9)

Consider the following auxiliary system, which we call the
injected system:

ṄxE = NFq( NxE; d; rq( NxC; NxE; d));

ṄxC = gq( NxC; NxE; d): (10)

Here d is a 8ctitious disturbance input. If d(·) = eq(·), the
system (10) has the same solutions as the one that results
when the qth candidate controller Cq, given by (8) with
� ≡ q, is connected to the multi-estimator given by (9). Our
choice of candidate controllers is based on the following
assumption.

Assumption 2. For each q∈P the injected system (10) is
iISS with respect to the disturbance d.

This means that for each q∈P there exist class K∞ func-
tions �q and �q and a classKL function �q such that for all
initial states NxE(0), NxC(0) and all locally essentially bounded
d(·) the solution of the system (10) satis8es the following
inequality:

�q

(∣∣∣∣∣
(

NxE(t)

NxC(t)

)∣∣∣∣∣
)
6 �q

(∣∣∣∣∣
(

NxE(0)

NxC(0)

)∣∣∣∣∣ ; t
)

+
∫ t

0
�q(|d(s)|) ds ∀t¿ 0: (11)

For linear systems, this property automatically follows from
(internal) stability of the injected system, but for nonlin-
ear systems this is not the case. The problem of designing
integral-input-to-state stabilizing control laws for nonlinear
systems is addressed in (Liberzon, Sontag, & Wang, 1999;
Liberzon, 1999; Teel & Praly, 2000; Liberzon, Sontag, &
Wang, 2001). Note that in the present context the distur-
bance d will be identi8ed with the estimation error eq, which
is an input to the qth controller. This substantially simpli-
8es the control design problem because, as explained in the
above references, it is in general easier to 8nd a control law
of the form u= k(x; d) than one of the form u= k(x).
We now turn our attention to the system that results when

the qth candidate controllerCq is placed in the feedback loop
with the process P and the multi-estimator E. The dynamics
of this system are described by the following equations:

ẋ = f(x; rq(xC; xE; hq(xE)− h(x)));

ẋE = F(xE; h(x); rq(xC; xE; hq(xE)− h(x)));

ẋC = gq(xC; xE; hq(xE)− h(x)): (12)
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Fig. 2. The closed-loop system (12).

Let us denote the state (x′; x′E; x
′
C)

′ of this system by x and
regard the estimation error eq = hq(xE) − h(x) as the out-
put of the system. Our main result in this section states that
the above system is iOSS through eq. This means, loosely
speaking, that the state x of (12) can be bounded by a suit-
able integral norm of eq (see Section 2 for the precise de8-
nition). Therefore, such a result provides a justi8cation for
switching control strategies of the kind considered in this
paper, which are based on choosing a candidate controller
whose index minimizes some integral norm of the estima-
tion error (see Section 5).

Theorem 3. Let Assumptions 1 and 2 hold. For each 8xed
q∈P; the system (12) is iOSS with respect to eq; i.e.; along
its solutions we have

�0(|x(t)|)6 �0(|x(0)|; t) +
∫ t

0
�̃q(|eq(s)|) ds (13)

for some functions �0; �̃q ∈K∞ and �0 ∈KL.

Proof. Fix an arbitrary q∈P. A convenient way of thinking
about the system (12) is facilitated by the block diagram
shown in Fig. 2; where the system enclosed in the dashed
box becomes equivalent to the injected system (10) upon
setting d= eq.
Let xEC := (x′E; x

′
C)

′. In view of Assumption 2, we have

�q(|xEC(t)|)6 �q(|xEC(0)|; t) +
∫ t

0
�q(|eq(s)|) ds; (14)

where �q; �q ∈K∞ and �q ∈KL. As for the process,
Assumption 1 and the formula (6) give

|x(t)|6 �(|x(0)|; t) + �1(‖uq‖) + �2(‖y‖)
6 �(|x(0)|; t) + �1(‖uq‖) + �2(‖2yq‖) + �2(‖2eq‖);

where �1; �2 ∈K∞ and �∈KL. Recall that we have uq=rq
(xC; xE; eq) with rq(0; 0; 0)=0 and yq=hq(xE) with hq(0)=0.
In view of this, it is easy to check that for a suitable class
K∞ function � we can rewrite the above inequality as

|x(t)|6 �(|x(0)|; t) + �(‖(x′E; x′C; e′q)′‖):

This implies that the subsystem corresponding to P, when
viewed as a system with inputs xE, xC, eq and state x, is ISS.
Applying Lemma 2 with v1 := xEC and v2 := eq to this sys-
tem, we conclude that there exist functions N�0; N�1; N�2 ∈K∞
and N�∈KL such that we have

N�0(|x(t)|)6 N�(|x(0)|; t) + N�1(‖xEC‖) +
∫ t

0
N�2(|eq(s)|) ds:

(15)

The calculations performed below are quite similar to the
ones used in (Sontag, 1989) for the analysis of cascade sys-
tems. We employ the trick of dividing a time interval under
consideration into two parts, exploiting the fact that in the
de8nitions of Section 2 one could replace 0 by an arbitrary
initial time t0¿ 0 (because the systems under consideration
are time-invariant). We obtain

N�0(|x(t)|)6 N�(|x(t=2)|; t=2)

+ N�1(‖xEC‖[t=2; t]) +
∫ t

t=2
N�2(|eq(s)|) ds: (16)

In view of (15) and (14), it is straightforward (although
tedious) to check that the 8rst term on the right-hand side
of (16) is bounded by

�1(|x(0)|; t) + �2(|xEC(0)|; t) + �̂1

(∫ t=2

0
�̂1(|eq(s)|) ds

)
;

where the functions �1; �2 ∈KL are de8ned by

�1(r; t) := N�(4 N�−1
0 (4 N�(r; t=2)); t=2);

�2(r; t) := N�(4 N�−1
0 (4 N�1(2�

−1
q (2�q(r; 0)))); t=2)

and the functions �̂1; �̂1 ∈K∞ are de8ned by

�̂1(r) :=max{ N�(4 N�−1
0 (4 N�1(2�

−1
q (2r)))); N�(4 N�−1

0 (4r))};
�̂1(r) :=max{�q(r); N�2(r)}:
Similarly, the second term on the right-hand side of (16) is
bounded by

�3(|xEC(0)|; t) + �̂2

(∫ t

0
�q(|eq(s)|) ds

)
;

where the functions �3 ∈KL and �̂2 ∈K∞ are de8ned by

�3(r; t) := N�1(2�
−1
q (2�q(r; t=2))); �̂2(r) := N�1(2�

−1
q (2r)):

Combining the above inequalities, we see that (16) reduces
to

N�0(|x(t)|)6 �1(|x(0)|; t) + �2(|xEC(0)|; t)

+�3(|xEC(0)|; t) + �̂
(∫ t

0
�̃q(|eq(s)|) ds

)
;

where

�̂(r) :=max{�̂1(r); r}+ �̂2(r); �̃q(r) :=max{�̂1(r); �q(r)}:
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Therefore, we have

�̂0(|x(t)|)6 �̂−1(�1(|x(0)|; t) + �2(|xEC(0)|; t)

+�3(|xEC(0)|; t)) +
∫ t

0
�̃q(|eq(s)|) ds; (17)

where �̂0(r) := �̂−1( N�0(r)=2). The formulas (14) and (17)
yield (13) with

�0(r) :=min{�q(r=2); �̂0(r=2)};
�0(r; t) :=�q(r; t) + �̂−1(�1(r; t) + �2(r; t) + �3(r; t)):

Theorem 3 is quite general in the sense that it does not
rely on any explicit assumptions regarding the process un-
certainty. One could also consider the situation where the
process has, in addition to the control input u, a disturbance
input w, which enters in such a way that Assumption 1 is
still satis8ed (Hespanha and Morse, 1999a,c). In this case,
the right-hand side of the Eq. (13) would contain one addi-
tional term of the form �̂(‖w‖[0; t]), where �̂∈K∞.

5. Exact matching

The goal of this section is to address the problem of global
state or output regulation by hybrid output feedback. We do
this for the special case when the process P to be controlled
takes the form

ẋ = f(x; u; p∗);

y = h(x); (18)

where f and h are known functions and p∗ is an unknown
element of a 8nite index setP. Thus we assume that there are
no unmodeled dynamics, noise, or disturbances, so that the
unknown process P exactly matches one of a 8nite number
of nominal process models. Assumption 3 basically demands
that the estimation error associated with the true parameter
value be small in an integral sense.

Assumption 3. There exists a positive number # with
the property that for arbitrary initial conditions x(0);
xE(0); xC(0) there exists a constant C such that we have∫ t
0 e

#s�̃p∗(|ep∗(s)|) ds6C for all t that belong to the maxi-
mal interval on which the solution of the system is de8ned.
Here �̃p∗ is the function appearing in the formula (13)
which expresses the statement of Theorem 3; with q= p∗.

It is not hard to see that in the case when �̃p∗ is locally

Lipschitz, the integral
∫ t
0 e

#s�̃p∗(|ep∗(s)|) ds is bounded if

ep∗ and
∫ t
0 e

#s|ep∗(s)| ds are bounded. Then Assumption 3
is satis8ed with # small enough if the multi-estimator is de-
signed so that ep∗ converges to zero exponentially for every
control signal u. Several examples of such multi-estimator
design for nonlinear systems can be found in (Hespanha,
1998).

Fig. 3. Switching logic.

We generate the monitoring signals using the diSerential
equations

�̇p =−#�p + �̃p(|ep|); p∈P (19)

with the same #¿ 0 as in Assumption 3 and with initial
values satisfying �p(0)¿ 0. As for the switching logic, we
consider the scale-independent hysteresis switching logic
proposed in (Hespanha, 1998; Hespanha & Morse, 1999b).
Let us pick a number h¿ 0 called the hysteresis constant.
The functioning of the switching logic is as follows (see
Fig. 3). First, we set �(0) = argminp∈P{�p(0)}. Suppose
that at a certain time ti the value of � has just switched to
some q∈P. We then keep � 8xed until a time ti+1¿ti such
that (1 + h)minp∈P{�p(ti+1)}6 �q(ti+1), at which point
we set �(ti+1)=argminp∈P{�p(ti+1)}. (When the indicated
minimum is not unique, a particular value for � among
those that achieve the minimum can be chosen arbitrarily.)
Repeating this procedure, we generate a piecewise constant
signal � that is continuous from the right everywhere. As
we will see, by setting �p(0)¿ 0 for all p∈P we avoid
chattering.
The overall supervisory control system is a hybrid system

with continuous states x = (x′; x′E; x
′
C)

′ and �p, p∈P and
discrete state �. The following is a corollary of Theorem
3 and the results of (Hespanha, 1998; Hespanha & Morse,
1999b).

Corollary 4. Let P be a 8nite set; and consider the super-
visory control system de8ned by (6); (7); (8); (18); (19);
and the switching logic described above; with arbitrary ini-
tial conditions satisfying �p(0)¿ 0 for all p∈P. Under
Assumptions 1; 2; and 3; there exists a time T ∗ such that
�(t) = q∗ ∈P for all t¿T ∗; i.e.; the switching stops in 8-
nite time; and all the continuous states converge to 0 as
t → ∞.

Proof. Let us de8ne (for analysis purposes only) the scaled
monitoring signals

N�p(t) := e#t�p(t); p∈P: (20)
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In view of (19) we have

N�p(t) = N�p(0) +
∫ t

0
e#s�̃p(|ep(s)|) ds; p∈P: (21)

The scale independence property of the switching logic im-
plies that replacing �p by N�p would have no eSect on �
(Hespanha; 1998; Hespanha &Morse; 1999b; Morse; 1996).
From (21) we see that each N�p is nondecreasing. This; the
8niteness of P; and the fact that N�p(0)¿ 0 for each p∈P
guarantee the existence of a positive number ' such that
N�p(t)¿' for all t¿ 0 and all p∈P. It is not hard to con-
clude now from the de8nition of the switching logic that
chattering cannot occur; in fact; there must be an interval
[0; T ) of maximal length on which the solution of the system
is de8ned; and � can only have a 8nite number of disconti-
nuities on each proper subinterval of [0; T ). For details; see
(Hespanha; 1998; Hespanha & Morse; 1999b).
Observe that N�p∗ is bounded on [0; T ) by virtue of

Assumption 3. It follows that the signals N�p satisfy the
hypotheses of the Scale-Independent Hysteresis Switch-
ing Lemma (Hespanha, 1998; Hespanha & Morse, 1999b)
which enables us to conclude that the switching stops in
8nite time. More precisely, there exists a time T ∗¡T
such that �(t) = q∗ ∈P for all t¿T ∗. In addition, N�q∗ is
bounded on [0; T ). Using (21) with p= q∗ and the bound-
edness of N�q∗ , we see that the integral

∫ T
0 �̃q∗(|eq∗(s)|) ds is

8nite (recall that # is positive). In view of (13) this implies
that x, xE, and xC are bounded on [0; T ). The estimation
error ep = yp − y is then also bounded for each p∈P,
hence each �̃p(|ep|) is bounded in view of the continuity
of �̃p. Furthermore, all the monitoring signals �p remain
bounded because they are generated by the system (19)
with bounded inputs �̃p(|ep|). Thus we see that T =∞, i.e.,
the solution of the system is globally de8ned. Having es-
tablished that T =∞, we can apply Lemma 1 to the overall
system, which enables us to conclude that x = (x′; x′E; x

′
C)

′,
and consequently �p, p∈P, converge to 0 as t → ∞.

As seen from the proof of Theorem 3, the function �̃q
appearing in the formula (13) depends on the functions
that express the IOSS property of the uncertain process P.
Therefore, it is rather restrictive to assume the knowledge
of �̃q or its upper bound for each q∈P. An alternative con-
struction presented below allows us to work directly with
the functions �q from (11), but requires a somewhat diSer-
ent convergence proof. Let us replace Assumption 3 by the
following.

Assumption 3′. . There exists a positive number # with
the property that for arbitrary initial conditions x(0); xE(0);
xC(0) there exist constants C1; C2 such that we have
|ep∗(t)|6C1 and

∫ t
0 e

#s�p∗(|ep∗(s)|) ds6C2 for all t that
belong to the maximal interval on which the solution of the
system is de8ned. Here �p∗ is the function appearing in the
formula (11) associated with Assumption 2; for q= p∗.

Instead of using the Eq. (19), we now generate the mon-
itoring signals by

�̇p =−#�p + �p(|ep|); p∈P (22)

with the same #¿ 0 as in Assumption 3′ and with
initial values satisfying �p(0)¿ 0. We use the same
scale-independent hysteresis switching logic as before.
Then the following result holds.

Proposition 5. Let P be a 8nite set; and consider the su-
pervisory control system de8ned by (6); (7); (8); (18); (22);
and the switching logic described above; with arbitrary ini-
tial conditions satisfying �p(0)¿ 0 for all p∈P. Under
Assumptions 1; 2; and 3′; there exists a time T ∗ such that
�(t) = q∗ ∈P for all t¿T ∗; i.e.; the switching stops in
8nite time; and all the continuous states converge to 0
as t → ∞.

Proof. Exactly as in the proof of Corollary 4; using the
scaled monitoring signals (20); we prove that there exists
a time T ∗¡T such that �(t) = q∗ ∈P for all t¿T ∗; and
that the integral

∫ T
0 �q∗(|eq∗(s)|) ds is 8nite. In view of (11)

this implies that xE and xC are bounded on [0; T ) because
solutions of the multi-estimator (7) with the q∗-th candi-
date controller in the feedback loop coincide with solu-
tions of the injected system (10) when q = q∗ and d(·) =
eq∗(·). Since ep∗ is bounded by Assumption 3; it follows that
y = yp∗ − ep∗ remains bounded as well. Therefore; ep =
yp − y is bounded for each p∈P. Each �p(|ep|) is then
also bounded in view of the continuity of �p. Furthermore;
all the monitoring signals �p remain bounded because they
are generated by (19) with bounded inputs �p(|ep|). Finally;
x is bounded in view of Assumption 1. Thus we see that
T =∞; i.e.; the solution of the system is globally de8ned.
Having established that T =∞, we can apply Lemma 1

to the injected system (10), which enables us to conclude
that xE; xC → 0 as t → ∞. Since all signals are bounded, the
derivative ė q∗=ẏ q∗−ẏ is bounded. The boundedness of eq∗ ,
ė q∗ , and of the integral

∫∞
0 �q∗(|eq∗(s)|) ds is well known

to imply that eq∗ → 0 as t → ∞ (see, e.g., Aizerman &
Gantmacher, 1964, p. 58). Thus we have y=yq∗ −eq∗ → 0,
hence x → 0 by Assumption 1, and �p → 0 for each p∈P
as before.

If one is only concerned with output regulation and
not state regulation, a close examination of the proof of
Proposition 5 reveals that the assumptions can be weakened
even further.

Assumption 1′. The state x of P is bounded if the control
input u and the output y are bounded.

Assumption 2′. For each q∈P and every disturbance d sat-
isfying

∫∞
0 �q(|d(s)|) ds¡∞; the solution ( NxE; NxC) of the

injected system (10) remains bounded for arbitrary initial
conditions and we have hq( NxE) → 0.
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Proposition 6. Let P be a 8nite set. Under Assumptions
1′; 2′; and 3′; all the signals in the supervisory control sys-
tem de8ned by (6); (7); (8); (18); (22); and the switching
logic described above remain bounded for arbitrary initial
conditions satisfying �p(0)¿ 0 for all p∈P. There exists
a time T ∗ such that �(t) = q∗ ∈P for all t¿T ∗; i.e.; the
switching stops in 8nite time; and we have y(t) → 0 as
t → ∞.

A speci8c supervisory control system satisfying Assump-
tion 2′ was studied in (Hespanha et al., 1999).

6. Concluding remarks

In this paper, we have described a framework for supervi-
sory control of poorly modeled nonlinear systems. By using
the integral versions of input-to-state stability
and detectability, we were able to weaken the assump-
tions imposed in earlier work (Hespanha & Morse, 1999a).
The analysis techniques presented here are more direct
than, and provide an alternative to, the methods used in
(Hespanha & Morse, 1999a). Our results underscore the
importance of developing systematic methods for design-
ing integral-input-to-state stabilizing controllers for general
classes of nonlinear systems; see (Liberzon et al., 1999;
Liberzon, 1999; Teel & Praly, 2000; Liberzon et al., 2001)
for more information on this topic.
If the injected system (10) is iISS but not ISS, then it

may happen that its state converges to zero when the input
d has a 8nite energy expressed by a suitable integral, but
blows up under the action of a bounded input. Thus the su-
pervisory control algorithms presented here might be less
robust with respect to bounded noise, disturbances, and un-
modeled dynamics than the one considered in (Hespanha &
Morse, 1999a). This constitutes an important area for further
investigation.
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