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Abstract

We address the invertibility problem for switched systems, which is the problem of recovering the switching signal and the input uniquely
given an output and an initial state. In the context of hybrid systems, this corresponds to recovering the discrete state and the input from partial
measurements of the continuous state. In solving the invertibility problem, we introduce the concept of singular pairs for two systems. We give
a necessary and sufficient condition for a switched system to be invertible, which says that the individual subsystems should be invertible and
there should be no singular pairs. When the individual subsystems are invertible, we present an algorithm for finding switching signals and
inputs that generate a given output in a finite interval when there is a finite number of such switching signals and inputs. Detailed examples
are included.
Published by Elsevier Ltd.
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1. Introduction

Switched systems—systems that comprise a family of
dynamical subsystems together with a switching signal deter-
mining the active system at a current time—arise in many
situations. Switching behaviors can come from controller
design, such as in switching supervisory control (Morse, 1996)
or gain scheduling control. Switching can also be inherent by
nature, such as when a physical plant has the capability of
undergoing several operational modes (e.g., an aircraft dur-
ing different thrust modes (Lygeros et al., 1999), a walking
robot during leg impact and leg swing modes (Westervelt
et al., 2003), different formations of a group of vehicles,
(Olfati-Saber and Murray, 2004). Also, switched systems
may be viewed as higher-level abstractions of hybrid sys-
tems (see, e.g., Henzinger and Sastry, 1998 for hybrid system
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definitions), obtained by neglecting details of the discrete be-
havior and instead considering switching signals from a suit-
able class. Switched systems have attracted growing research
interest recently and several important results for switched sys-
tems have been achieved, including various stability results
(Agrachev and Liberzon, 2001; Branicky, 1998; Hespanha and
Morse, 1999; Mancilla-Aguilar and Garcia, 2000), control-
lability and observability results (Sun et al., 2002; Xie and
Wang, 2004; Vidal et al., 2002), and input-to-state properties
(Hespanha, 2003; Xie et al., 2001; Vu et al., 2007) (see, e.g.,
Liberzon, 2003, for other references on switched systems and
switching control).

Here we address the invertibility problem for switched sys-
tems, which concerns with the following question: What is the
condition on the subsystems of a switched system so that, given
an initial state x0 and the corresponding output y generated
with some switching signal � and input u, we can recover the
switching signal � and the input u uniquely? The aforemen-
tioned problem is in the same vein with the classic invertibility
problem for non-switched linear systems, where one wishes to
recover the input uniquely knowing the initial state and the out-
put. The invertibility problem for non-switched linear systems
has been studied extensively, first by Brockett and Mesarovic
(1965), then with other algebraic criteria by Silverman (1969)
and Sain and Massey (1969); also, a geometric criterion is given
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by Morse and Wonham (1971) (see also the discussions and the
references in Moylan, 1977). However, the invertibility problem
for switched systems has not been investigated and it is the
subject of this paper. As in the classic setting, we start with
an output and an initial state, but here, the underlying process
constitutes multiple models and we have an extra ingredient to
recover apart from the input, namely, the switching signal.

We now briefly discuss how the invertibility problem for
switched systems fits into the current literature. On the one
hand, non-switched linear systems can be seen as switched
systems with constant switching signals. In this regard, the in-
vertibility problem for switched systems is an extension of the
non-switched counterpart in the sense that we have to recover
the switching signal in addition to the input, based on the out-
put and the initial state. On the other hand, switched systems
can be viewed as higher-level abstractions of hybrid systems.
Recovering the switching signal for switched systems is equiva-
lent to mode identification for hybrid systems. For autonomous
hybrid systems, this mode identification task is a part of the
observability problem for hybrid systems (Vidal et al., 2002;
Vidal et al., 2003). Mode detection for non-autonomous hybrid
systems using known inputs and outputs has been studied, for
example, in De Santis et al. (2003), Babaali and Pappas (2005)
(see also, Huang et al., 2004). Here, the difference is that we do
not know the input and we wish to do both mode detection and
input recovery at the same time using the outputs of switched
systems (see also, Sundaram and Hadjicostis, 2006, for input
recovery of switched systems with known switching signals).

1.1. A motivating example

Before going into detail in the next section, we present a
motivating example to illustrate an interesting aspect of the
invertibility problem for switched systems that does not have
a counterpart in non-switched systems (details are in Example
2 in Section 5). Consider a switched system consisting of the
two subsystems

�1 :
{

ẋ =
[

1 0
0 −1

]
x +

[
1
1

]
u,

y = [0 1 ] x,

,

�2 :
{

ẋ =
[

1 0
−1 2

]
x +

[−1
1

]
u,

y = [1 2 ] x.

Both �1 and �2 are invertible, which means that for every
output y in the output space of �1 and every initial state x0, there
exists a unique input u such that the system �1 with the initial
state x0 and the input u generates the output y, and similarly
for �2 (procedures for checking invertibility of non-switched
linear systems are well-known as discussed in the introduction).
One is given

y(t) =
{

2e2t − 3et if t ∈ [0, t∗),
c1e

t + c2e
2t if t ∈ [t∗, T ),

where t∗=ln 3, T = 6
5 , c1=15+18 ln( 2

3 ), c2= −4
3 −4 ln( 2

3 ), and
the initial state x0 =(−1, 0)T, and is asked to find the switching

signal � and the input u that generate y. Because the output y
has a discontinuity at time t=t∗ and is smooth everywhere else,
one may guess that t∗ must be a switching time and is the only
one (assuming that there is no state jump at switching times
and hence, x is always continuous; see Section 2.1). Following
this reasoning, since there are two subsystems, there are only
two possible switching signals:

�1(t) =
{

1, t ∈ [0, t∗)
2, t ∈ [t∗, T )

and �2(t) =
{

2, t ∈ [0, t∗),
1, t ∈ [t∗, T ).

For a fixed switching signal, by invertibility of �1 and �2, given
the output and the initial state, the input can be reconstructed
uniquely. One can then try both the switching signals �1 and
�2 above to see which one gives an input that generates the
output y. As it turns out, none of the switching signals �1
and �2 would give an input that generates y. Nonetheless, y
is generated, uniquely in this case, by the following switching
signal and input:

�(t) =
{2, t ∈ [0, t1),

1, t ∈ [t1, t∗),
2, t ∈ [t∗, T ),

u(t) =
{0, t ∈ [0, t1),

6e2t − 6et , t ∈ [t1, t∗),
0, t ∈ [t∗, T ),

where t1 = ln 2 (details are in Example 2 in Section 5). In
Section 4, we will show how a switch at a later time t = t∗ can
be used to recover a switch at an earlier time t = t1 even if the
output is smooth at t = t1.

1.2. Paper organization

In Section 2, we cover background on switched systems and
invertibility of non-switched linear systems, including the struc-
ture algorithm; in Section 3, we define the invertibility problem
for switched systems and provide a necessary and sufficient
condition for invertibility, using the concept of singular pairs;
in Section 4, we present an algorithm for finding inputs and
switching signals that produce a given output with a given ini-
tial state; examples are in Section 5; in Section 6, we highlight
the main results of the paper and discuss future work.

2. Notations and background

2.1. Notations and definitions

Denote by Cn
D the set of n times continuously differentiable

functions on a domain D; when the domain is not relevant, we
write Cn. Denote by F

pc
D the set of piecewise right-continuous

functions on a domain D; when the domain is not relevant, we
write Fpc. Denote by Fn the subset of Fpc whose elements
are Cn between two consecutive discontinuities. For u : D →
Rn, denote by uQ the restriction of u onto Q ⊆ D.

A switched linear system is written as

�� :
{

ẋ = A�x + B�u,

y = C�x + D�u,
(1)

where � : [0, ∞) → P is a piecewise constant right-
continuous switching signal that indicates the active subsystem
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at every time, P is some index set in a real vector space, and
Ap, Bp, Cp, Dp, p ∈ P, are the matrices of the individual
subsystems. The discontinuities of � are called switching times.
Denote by �p the constant switching signal such that �p(t) =
p∀t �0. For simplicity, we assume that the subsystems live in
the same state space and there is no state jump at switching
times. For any given initial state x0, a switching signal �, and a
piecewise continuous input u on any time domain, a solution of
(1) over the same domain always exists (in Carathéodory sense)
and is unique and is denoted by �x0,�(u); denote by �O

x0,�(u)

the corresponding output. For the subsystem �p, p ∈ P, denote
by �p,x0(u) the trajectory of �p with the initial state x0 and
the input u ∈ Fpc, and by �O

p,x0
(u) the corresponding output.

To simplify presentation, we assume that the output dimen-
sions of all the subsystems are the same, because detecting
switchings between two subsystems with different output di-
mensions is trivial. However, the input dimensions of the sub-
systems can be different. To avoid further complications with-
out compromising the content of the paper, we neglect to define
input sets of switched systems rigourously with the understand-
ing that inputs of the switched system (1) are concatenations
of the corresponding inputs of the active subsystems. Charac-
terizing the input set rigorously would require the concept of
“hybrid functions” whose segments are functions not necessar-
ily of the same dimensions, and also, the concept of compatible
input functions and switching signals. We do not pursue these
technicalities here and instead just write U for some input set
of the switched system (1).

For the switched system (1), denote by n the state dimension,
� the output dimension, and mp, p ∈ P the input dimensions of
the subsystems. Denote by Hx0 : S × U → Y the (switching
signal × input)-output map for some input set U, switching
signal set S, and the corresponding output set Y. We seek
conditions on the subsystem dynamics so that the map Hx0

is one-to-one for some sets S,U, and Y (precise problem
formulation is in Section 3).

For fi ∈ F
pc
[ti ,�i )

, i = 1, 2 (�i could be ∞), define the con-
catenation map ⊕ : Fpc × Fpc → Fpc as

(f1 ⊕ f2)(t) :=
{

f1(t) if t ∈ [t1, �1),

f2(t2 + t − �1) if t ∈ [�1, �1 + �2 − t2).

Note that if �1 = ∞, f1 ⊕ f2 = f1 ∀f2. The concatenation
of vector functions is defined as pairwise concatenation of the
corresponding elements. The concatenation of an element f and
a set S is f ⊕S := {f ⊕g, g ∈ S}. By convention, f ⊕∅=∅ ∀f .
Finally, the concatenation of two sets S and T is S ⊕T := {f ⊕
g, f ∈ S, g ∈ T }; by convention, S ⊕∅=∅ and ∅⊕ S =∅ ∀S.

2.2. Invertibility of non-switched linear systems

Consider a linear system:

� :
{

ẋ = Ax + Bu,

y = Cx + Du.
(2)

The invertibility problem for linear systems (from here onward,
when we say invertibility we mean left invertibility) concerns

with finding conditions on (2) so that for a given initial state x0,
the input–output map Hx0 : U → Y is one-to-one (injective),
where U is an input set and Y is the corresponding output
set. There are two major approaches to the problem: one is the
algebraic approach where conditions are obtained in terms of
matrix rank equalities; the other is the geometric approach that
is based on the invariant properties of subspaces.

An algebraic approach relies on the observation that differen-
tiating y reveals extra information about u via Cẋ=CAx+CBu.
If one keeps differentiating the output, one obtains more in-
formation about u from y, ẏ, ÿ, . . .. Along this approach, most
well-known are the rank condition for invertibility (Sain and
Massey, 1969) and the structure algorithm (Silverman, 1969),
where the latter differs from the former in that it only differen-
tiates parts of the output and not the entire output.

A geometric approach is different from an algebraic one in
that it does not involve output differentiations. Instead, the in-
vertibility property is realized from the fact that (i) Hx0 is in-
vertible if and only if the kernel of H0 is trivial, and (ii) the
kernel of H0 is the same as the set of inputs that yield the set V
of states that are reachable from the origin while keeping the
output zero. Left invertibility is equivalent to V∩B ker D={0}
and KerB ∩ KerD ={0} (see, e.g., Trentelman et al., 2001, Ch.
8.5; see also (Morse, 1971; Morse and Wonham, 1971)).

Remark 1. For non-switched linear systems, the following are
equivalent: (i) There is a unique u such that y = Hx0(u) for
one particular pair (x0, y) where y has a domain D ⊆ [0, ∞);
(ii) There is a unique u such that y = Hx0(u) for every y in
the range of �x0 for all possible domains and for all x0 ∈ Rn.
As a consequence, the output set Y can be taken as the set of
all output functions that are generated by continuous inputs on
arbitrary time domain. As we will see later in Section 3.1, the
map Hx0 for switched systems (as defined in Section 2.1) does
not have this property and a careful consideration of the output
set Y is needed.

2.3. The structure algorithm and the range theorem

In this paper, we pursue an algebraic approach (a geomet-
ric approach is equally interesting and could be the topic for
future research). Particularly, we will employ the structure al-
gorithm for non-switched linear systems (Silverman, 1969).
This subsection covers the structure algorithm, closely follow-
ing Silverman (1969), Silverman and Payne (1971). The reader
is referred to Silverman and Payne (1971) for further technical
details and proofs.

Consider the linear system (2). Let n be the state dimension,
m the input dimension, and � the output dimension. For the
moment, assume that the input u is continuous (for piecewise
continuous inputs, see Remark 2 below).

Let q0 := RankD. ∃ a nonsingular S0 ∈ R�×� such that

D0 := S0D = [DT
0 0]T, where D0 has q0 rows and rank q0.

We have y0 := S0y := C0x +D0u where C0 := S0C. Suppose
that at step k, we have yk = Ckx + Dku, where Dk has the

form [DT
k 0]T; Dk has qk rows and is full rank. Define I k :=
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[Iqk
0qk×�−qk

], where Iqk
is the identity matrix of dimension

qk , and I k := [
0�−qk×qk

I�−qk

]
. Let Ck := I kCk , C̃k := I kCk ,

ȳk := I kyk , and ỹk := I kyk . Define the differential operator

Mk :=
[

I k
d
dt

I k

]
. Then Mkyk=

[
Ck

C̃kA

]
x+

[
Dk

C̃kB

]
u= : Ĉkx+D̂ku.

Let qk+1 := RankD̂k . ∃ a nonsingular Sk+1 ∈ R�×� such that

Dk+1 := Sk+1D̂k = [DT
k+1 0]T, where Dk+1 has qk+1 rows

and rank qk+1. Let yk+1 := Sk+1Mkyk and Ck+1 := Sk+1Ĉk .
Then yk+1 =Ck+1x +Dk+1u and we can repeat the procedure.

Let Nk := ∏k
i=0Sk−iMk−i−1, k = 0, 1, . . . (M−1 := I ), Nk :=

I kNk , and Ñk := I kNk . Then yk=Nky, ȳk=Nky, and ỹk=Ñky.
Notice that since Dk has � rows and m columns, qk � min{�, m}
for all k and since qk+1 �qk , it was shown in Silverman and
Payne (1971) that ∃ a smallest integer ��n such that qk =
q� ∀k��.

If q� = m, the system is (left) invertible and an inverse is

�−1 :
⎧⎨⎩

ȳ� = N�y,

ż = (A − BD
−1
� C�)z + BD

−1
� ȳ�,

u = −D
−1
� C�z + D

−1
� y�

(3)

with the initial state z(0) = x0. If q� < m, the system is not
invertible, and then a generalized inverse is

�−1 :
⎧⎨⎩

ȳ� = N�y,

ż = (A − BD
†
�C�)z + BD

†
�ȳ� + BKv,

u = −D
†
�C�z + D

†
�ȳ� + Kv

(4)

with z(0) = x0, where D
†
� := D

T
� (D�D

T
� )−1 is a right-inverse

of D� and K := Null D�. The system �−1 in (4) is called
a generalized inverse because y = �O

x0
(u) if and only if u =

�−1,O
x0

(y�, v) for some v.
Let Lk := [C̃T

0 . . . C̃T
k ]T. Silverman and Payne (1971)

had shown that ∃ a smallest number �, ����n, such that
RankLk = RankL� ∀k��. Also, ∃ a number �, ����n

such that C̃� = ∑�−1
i=0 Pi(

∏�
j=i+1R̃j )C̃i for some matri-

ces R̃j and Pi (see, Silverman and Payne, 1971, p. 205,
for details). The number � is not easily determined as �
and �. The significance of � and � is that they can be
used to characterize the set of all outputs of a linear sys-
tem as in the range theorem. We include the range theorem
(Silverman and Payne, 1971, Theorem 4.3) below. Definethe

differential operators M1 :=
(

d�

dt�
− ∑�−1

i=0 Pi
di

dt i

) ∏�
j=0R̃j

and M2 := ∑�
j=0

(∏�
�=j+1R̃�

)
Kj

d�−1

dt�−j − ∑�−1
j=0Pj ×∑j

k=0

(∏�
�=k+1R̃�

)
Kk

dj−k

dtj−k for some matrices Ki from the
structure algorithm (see, Silverman and Payne, 1971, for de-
tails).

Theorem 1 (Silverman and Payne, 1971). A function f :
[t0, T ) → R� is in the range of �x0 if and only if

(i) f is such that N�f is defined and continuous;
(ii) Ñkf |t0 = C̃kx0, k = 0, . . . , � − 1;

(iii) (M1 − M2N�)f ≡ 0.

To simplify the presentation, we paraphrase the range the-
orem into Lemma 1 below that is easier to understand at the
expense of having to define extra notations. Define

• N := [ÑT
0 . . . ÑT

�−1]T, L := L�−1,

• Ŷ be the set of functions f : D → R� for all D ⊆ [0, ∞)

which satisfy (i) and (iii) of Theorem 1.

Lemma 1. For a linear system �, using the structure algorithm
on the system matrices, construct the set Ŷ, the differential
operator N : Ŷ → C0, and the matrix L. There exists u ∈ C0

such that y = �x0(u) if and only if y ∈ Ŷ and Ny|t+0 = Lx0

where t0 is the initial time of y.

Roughly speaking, the set Ŷ characterizes functions that
can be generated by the system from all initial positions (in
some sense, the condition (iii) capture the relationship among
the output components regardless of the input). The condition
Ny|t+0 = Lx0 guarantees that a particular y can be generated
starting from the particular initial state x0 at time t0. We evalu-
ate Ny at t+0 , which means limt→t+0

Ny|t , to reflect that y does
not need to be defined for t < t0. This is especially useful later
when we consider switched systems where inputs and outputs
can be piecewise right-continuous.

Remark 2. If we allow piecewise continuous inputs, the in-
vertibility condition for � is still the same (q� =m) but v in (4)
can be piecewise continuous functions. The inverse, the gener-
alized inverse, and Theorem 1 are applicable in between every
two consecutive discontinuities of the input (on every output
segment y[t,�) in which N�y[t,�) exists and is continuous).

Remark 3. When q� = �, M1 = M2 = 0 and the condition (iii)
becomes trivial. Also, in this case, � = � = �. The set Ŷ is
simplified to the set of functions f for which N�f is defined
and continuous. In particular, any Cn function will be in Ŷ. For
an invertible system, q� = � if the input and output dimensions
are the same.

The differential operator N is used in Lemma 1 to deal with
a general output y that may not be differentiable but Ny exists
(an example is that ẏ is not differentiable so ÿ does not exist
but Ny= d

dt
(y− ẏ) exists and is continuous). Let’s take a closer

look at N. We have

M0y0 =
(

ȳ0˙̃y0

)
=

(
S0
0

)
y + d

dt

(
0
S̃0

)
y =: K0,0y + d

dt
K0,1y.

(5)

Let Miyi := Ki,0y + d
dt

(Ki,1y + · · · + d
dt

Ki,i+1y). Then in

view of Mi+1yi+1 =
[

Si+1
0

]
Miyi + d

dt

[
0

S̃i+1

]
Miyi , we have

Ki,j ∈ R�×� defined recursively as

Ki+1,j =
[
Si+1

0

]
Ki,j +

[
0

S̃i+1

]
Ki,j−1 (6)

for 0�j � i + 2, i�0, where Ki,−1 = 0 ∀i by convention and
K0,0, K0,1 are as in (5). In view of the definition of Ki,j and
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the fact Ñky = S̃kMi−1yi−1, we have

Ny =: N0y + d

dt
(N1y + · · · + d

dt
N�−1y), (7)

where Ni :=
⎡⎢⎣

S̃0K−1,i

...
S̃�−1K�−2,i

⎤⎥⎦, 0� i��−1, K−1,0 =I and Kj,k =

0 ∀k�j + 2, ∀j by convention. We then have the following
lemma.

Lemma 2. Consider the linear system (2). Let � be the number
and N be the differential operator as described in the structure
algorithm. For any ���, for every y such that Ny exists and is
continuous, we have Ny = N0y + d

dt
(N1 + · · · + d

dt
(N�−2y +

d
dt

N�−1y)), where Ni, 0� i�� − 1, are as in (7) and Ni =
0, i��.

In general, Ny is calculated by a chain of differentiations
and additions as in the lemma. However, whenever y ∈ C�−1,
calculating Ny can be simplified to the matrix multiplication
[N0 . . . N�−1] by (y, . . . , y(�−1))T.

3. Invertibility of switched systems

The Invertibility Problem. Consider a (switching signal
× input)-output map Hx0 : S × U → Y for the switched
system (1). Find a set Y and a condition on the subsystems,
independent of x0, such that the map Hx0 is one-to-one.

3.1. Invertibility and singular pairs

We say that Hx0 is invertible at y if Hx0(�1, u1) =
Hx0(�2, u2) = y ⇒ �1 = �2, u1 = u2 (similarly for non-
switched systems, Hx0 : U → Y is invertible at y if
Hx0(u1)=Hx0(u2)=y ⇒ u1=u2). We say that Hx0 is invertible
on Y if it is invertible at y, ∀y ∈ Y. We say that the switched
system is invertible on Y if Hx0 is invertible on Y for all x0.

There is a major difference between the maps Hx0 for non-
switched systems and for switched systems. The former is a
linear map on vector spaces (i.e. the input functions). The latter
is a nonlinear map on the domain S × U, of which S is not
a vector space. For switched systems, uniqueness of (�, u) for
one pair (x0, y) does not imply uniqueness for other pairs, and
thus, a switched system may be invertible on one output set Y1
but not invertible on another set Y2 (which is not the case for
non-switched systems; see Remark 1). This situation prompts
a more delicate definition of the output set Y for switched sys-
tems, instead of letting Y be the set generated by all possi-
ble combinations of piecewise continuous inputs and switching
signals. For the invertibility problem, we look for a suitable set
Y and a condition on the subsystems so that unique recovery
of (�, u) is guaranteed for all y ∈ Y and all x0 ∈ Rn.

It is obvious that H0(�, 0) = 0 ∀� regardless of the subsys-
tem dynamics and therefore, the map H0 is not one-to-one if the
function 0 ∈ Y. Note that the available information is the same
for both non-switched systems and switched systems, namely,

the pair (x0, y), but the domain in the switched system case has
been enlarged to S × U, compared to U in the non-switched
system case. For non-switched systems, under a certain condi-
tion on the system dynamics (i.e. when the system is invert-
ible), the information (x0, y) = (0, 0) is sufficient to determine
u uniquely while for switched systems, that information is in-
sufficient to determine (�, u) uniquely, regardless of what the
subsystems are. This illustrates the issue of why we cannot take
the output set Y to be all the possible outputs. We call those
pairs (x0, y) for which Hx0 is not invertible at y singular pairs.
Fortunately, x0 = 0 and y[0,	) ≡ 0 for some 	 > 0 are the only
type of singular pairs that are independent of the subsystems
and for other pairs (x0, y), the invertibility of Hx0 at y depends
on the subsystem dynamics and properties of y.

Definition 1. Let x0 ∈ Rn and y ∈ C0 be a function in R� on
some time interval. The pair (x0, y) is a singular pair of the two
subsystems �p, �q if there exist u1, u2 such that �O

p,x0
(u1) =

�O
q,x0

(u2) = y.

We proceed to develop a formula for checking if (x0, y) is a
singular pair of �p, �q , utilizing the range theorem (Theorem
1 in this paper). For the subsystem indexed by p, denote by Np,
Lp, and Ŷp the corresponding objects of interest as in Lemma
1. It follows from Definition 1 and Lemma 1 that (x0, y) is a
singular pair if and only if y ∈ Ŷp ∩ Ŷq and

Npqy|t+0 :=
[

Np

Nq

]
y|t+0 =

[
Lp

Lq

]
x0 =: Lpqx0, (8)

where t0 is the initial time of y. For a given (x0, y), the condition
(8) can be directly verified since all Ŷp, Ŷq, Np, Nq, Lp, Lq

are known. Observe that 0 ∈ ImLpq and we can always have
(8) with x0 = 0 and y such that Npqy|t+0 = 0. If y[t0,t0+	) ≡ 0
and x0 = 0, then (8) holds regardless of Np, Nq , Lp, Lq . Apart
from this case, in general, Npqy|t+0 = 0 depends on Np, Nq ,
and y and it is possible to find conditions on Np, Nq, Lp, Lq

and y so that there is no x0 satisfying (8) if Npqy|t+0 �= 0 .

Remark 4. The singular pair notion relates to the scenario
where there is a switch in the underlying dynamical system yet
the output is still smooth at the switching time. A similar sce-
nario but with a different objective can be found in the context
of bumpless switching (Arehart and Wolovich, 1996), in which
the objective is to design the subsystems so that the output of
the switched system is continuous. In the invertibility problem
considered here, the subsystems are fixed and the objective is
to recover the switching signal and the input.

3.2. A solution of the invertibility problem

We now return to the invertibility problem. Let Yall be the set
of outputs of the system (1) generated by all possible piecewise
continuous inputs and switching signals from all possible initial
states for all possible durations (the set Yall can be seen as all
the possible concatenations of all elements of Ŷp, ∀p ∈ P).
Let Y ⊂ Yall be the largest subset of Yall such that if y ∈ Y
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and y[t0,t0+	) ∈ Ŷp ∩ Ŷq for some p �= q, p, q ∈ P, 	 > 0,
t0 �0, then Npqy|t+0 �= 0. In other words, we avoid functions
whose segments can form singular pairs with x0 = 0 (so that
even if x0 = 0, there is no y ∈ Y that can form a singular
pair with x0). Excluding such functions from our output set,
we can impose conditions on the subsystems to eliminate the
possibility of singular pairs for all x0 ∈ Rn and all y ∈ Y.
Note that the singular pair concept in Definition 1 is defined
for continuous functions. Applying to switched systems, we
check for singular pairs for the continuous output segments
in between consecutive discontinuities at the output (note that
Ŷp ∩ Ŷq ⊆ C0 if the intersection is non-empty).

Theorem 2. Consider the switched system (1) and the output
set Y. The switched system is invertible on Y if and only if all
the subsystems are invertible and the subsystem dynamics are
such that for all x0 ∈ Rn and y ∈ Y∩C0, the pairs (x0, y) are
not singular pairs of �p, �q for all p �= q, p, q ∈ P.

Proof (Sufficiency). Suppose that Hx0(�1, u1)= Hx0(�2, u2)=
y ∈ Y. Let t1 := min{t > 0 : u1 or u2 or �1 or �2 is disconti-
nuous at t}. Let p = �1(0) and q = �2(0). From Lemma 1,
we have Npy|0+ = Lpx0 and Nqy|0+ = Lqx0, and y[0,t1) ∈
Ŷp ∩Ŷq . By definition, (x0, y[0,t1)) is a singular pair of �p, �q

if p �= q. Also by definition, y[0,t1) ∈ Y ∩ C0. Since there is
no singular pair for �p, �q , we must have p = q, i.e. �1(t) =
�2(t)=p ∀t ∈ [0, t1). Since �p is invertible, u1[0,t1)=u2[0,t1)=
u[0,t1) = �−1,O

p,x0
(y[0,t1)) is uniquely recovered on [0, t1) (recall

from Section 2.1 that �−1,O
p,x0

(y[0,t1)) is the output of the inverse

of �p starting at x0 with input y[0,t1)). Let x1 = x(t−1 ). By
continuity of the trajectory, we have x(t1)=x(t−1 )=x1. If t1=∞,
we then have �1(t) = �2(t) and u1(t) = u2(t) ∀t ∈ [0, ∞).

Suppose that t1 < ∞. We have Hx1(�1[t1,∞), u1[t1,∞)) =
Hx1(�2[t1,∞), u2[t1,∞)) = y[t1,∞). Let t2 := min{t > t1 :
u1 or u2 or �1 or �2 is discontinuous at t}. Repeating the ar-
guments in the previous paragraph, we must have �1(t) =
�2(t)=q ∀t ∈ [t1, t2) for some q ∈ P, and u1[t1,t2) =u2[t1,t2) =
u[t1,t2) = �−1,O

q,x0
(y[t1,t2)) is uniquely recovered on [t1, t2).

If t2 =∞, we then have �1(t)=�2(t) and u1(t)=u2(t) for all
t ∈ [0, ∞); otherwise, repeat the procedure with y[t2,∞). Since
there cannot be infinitely many discontinuities in a finite interval
(in other words, if there are infinitely many discontinuities, the
interval must be [0, ∞)), we conclude that �1(t) = �2(t) and
u1(t) = u2(t) ∀t ∈ [0, ∞).

Necessity: Suppose that �p is not invertible for some p ∈
P. Pick some x0 and y ∈ Y ∩ Ŷp ; this is always possible
from the definition of the set Y. Since y ∈ Ŷp, there exists
u such that y = �p,x0(u). Since �p is not invertible, there
exists ũ �= u such that �p,x0(ũ) = y (see Remark 1). Then
Hx0(�

p, u) = Hx0(�
p, ũ) = y. That means the map Hx0 is not

invertible at y and thus, the switched system is not invertible
on Y, a contradiction. Therefore, �p must be invertible for all
p ∈ P.

Suppose that there are some x0 ∈ Rn, y ∈ Y ∩ C0

and p �= q, p, q ∈ P such that (x0, y) is a singular
pair of �p, �q . This means ∃u1, u2 ∈ C0 (not necessarily

different) such that �p,x0(u1) = �q,x0(u2) = y and therefore,
Hx0(�

p, u1) = Hx0(�
q, u2) = y. Since �p �= �q , the foregoing

equality implies that Hx0 is not invertible at y, and thus, the
switched system is not invertible on Y, a contradiction. There-
fore, for all x0 ∈ Rn and y ∈ Y ∩ C0, (x0, y) are not singular
pairs of �p, �q for all p �= q, p, q ∈ P. �

While checking for singularity for given x0 and y is feasi-
ble using (8), in general, checking for singularity for all x0
and all y ∈ Y (and hence, checking invertibility) is not an
easy task. We now develop a rank condition for checking in-
vertibility of switched systems, which is more computationally
friendly. In the case when the subsystem input and output di-
mensions are equal, the rank condition is also necessary. We
first have the following lemma. For an index p, let Wp :=
[Np,0 Np,1 . . . Np,n−1] where Np,0, . . . , Np,n−1 are the ma-
trices as in Lemma 2 for the subsystem with index p. Define
Wpq := [WT

p WT
q ]T.

Lemma 3. Consider the switched system (1) and the output set
Y. Consider the following two statements:

(S1) The subsystem dynamics are such that for all x0 ∈ Rn and
y ∈ Y ∩ C0, the pairs (x0, y) are not singular pairs of
�p, �q for all p �= q, p, q ∈ P;

(S2) The subsystem dynamics are such that

Rank[Wpq Lpq ] = RankWpq + RankLpq (9)

for all p �= q, p, q ∈ P such that Ŷp ∩ Ŷq �= {0}.

Then S2 always implies S1. If the subsystems are invertible and
the input and output dimensions are the same (mp = � ∀p ∈
P), then S1 also implies S2.

Proof. (S2) ⇒ (S1): Suppose that ∃ x0 ∈ Rn and y ∈ Y∩ C0

such that (x0, y) is a singular pair of �p, �q for some p �= q.
Let Np,q,k := [NT

p,k NT
q,k]T. From (8) and Lemma 2, we have

Npqy =Np,q,0y + d
dt

(Np,q,1y +· · ·+ d
dt

Np,q,n−1y) in view of
the definition of Np,i, Nq,i , 0� i�n − 1. Since Np,q,n−1y ∈
RangeNp,q,n−1, we also have d

dt
Np,q,n−1y ∈ RangeNp,q,n−1.

It follows that Npqy ∈ RangeWpq . The rank condition (9)
implies that RangeWpq ∩ RangeLpq = {0}. Therefore, from
(8), we must have Npqy|t+0 = 0 if p �= q. But this equality

contradicts the fact that y ∈ Y, and hence, there are no x0, y
that can form a singular pair for some �p, �q , p �= q.

(S1) + invertible subsystems + (mp = � ∀p ∈ P) ⇒ (S2):
Suppose that the rank condition is violated for some p �=
q, p, q ∈ P. That implies that RangeWpq ∩ RangeLpq �= {0}
and hence, there exist 
 and x0 such that Wpq
 = Lpqx0 �= 0.
If the subsystems are invertible and the input and output di-
mensions are the same, then Cn functions are always in Ŷp,
Ŷq (see Remark 3). There always exists a Cn function y on an
interval [0, 	) for some 	 > 0 such that (y, . . . , y(n−1))T|0 = 

and (y, . . . , y(n−1))T|t /∈ Ker Wpq∀t ∈ [0, 	). Since y ∈ Cn,
Npqy|0+ = Wpq(y, . . . , y(n−1))T|0+ = Wpq
 and Npqy|t =
Wpq(y, . . . , y(n−1))T|t �= 0 ∀t ∈ [0, 	), i.e. y ∈ Ŷp ∩ Ŷq ∩Y.
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It follows that x0, y forms a singular pair for �p, �q , a contra-
diction. �

From Theorem 2 and Lemma 3, we have the following result.

Theorem 3. Consider the switched system (1) and the output
set Y. The switched system is invertible on Y if all the sub-
systems are invertible and the rank condition (9) holds. If the
input and output dimensions of all the subsystems are the same,
then invertibility of all the subsystems together with the rank
condition (9) is also necessary for invertibility of the switched
system.

Remark 5. If a subsystem has more inputs than outputs, then
it cannot be (left) invertible. On the other hand, if it has more
outputs than inputs, then some outputs are redundant (as far as
the task of recovering the input is concerned). Thus, the case of
input and output dimensions being equal is, perhaps, the most
interesting case.

When a switched system is invertible i.e. it satisfies the con-
ditions of Theorem 2, a switched inverse system can be con-

structed as follows. Define the index inversion function �
−1 :

Rn × Y → P as

�
−1 : (x0, y) �→ p : y ∈ Ŷp and Npy|t+0 = Lpx0, (10)

where t0 is the initial time of y. The function �
−1

is well-
defined since there is no singular pair, and so, the index p at
every time t0 is uniquely determined from the output y and
state x. In the invertibility problem, it is assumed that y ∈ Y
is an output so the existence of p in (10) is guaranteed. Then a
switched inverse system is

�−1
� :

⎧⎪⎨⎪⎩
�(t) = �

−1
(z(t), y[t,t+	)),

ż = (A − BD
−1
� C�)�(t)z + (BD

−1
� N�)�(t)y,

u = −(D
−1
� C�)�(t)z + (D

−1
� N�)�(t)y

(11)

with z(0) = x0 where 	 > 0 is sufficiently small. The notation
(·)�(t) denotes the object in the parentheses calculated for the
subsystem with index �(t). The initial condition z(0)=x0 helps

determine the initial active subsystem, �(0) = �
−1

(x0, y[0,	))

at t = 0, from which time onwards, the switching signal and
the input as well as the state are determined uniquely and si-
multaneously via (11). In (11), we use �(t) in the right-hand
side of ż and z(t) in the formula of �(t) for notational conve-
nience. Indeed, if t is a switching time, �

−1
helps recover � at

the time t using small enough 	 such that t + 	 is less than the
next switching time. If t is not a switching time, � is constant
between t and the next switching time and is equal to � at the
last switching time.

Remark 6. In (11), since we use a full order inverse for each
subsystem, the state z is exactly the same as the state x of
the switched system, and hence, we can use z in the index

inversion function �
−1

. If we use a reduced-order inverse for
each subsystem (see, e.g., Silverman, 1969), we still get u but

then need to plug this u into the switched system to get x to

use in �
−1

.

Remark 7. Let �̄ := maxp∈P{�p}, where �p, p ∈ P, are
the � as in Theorem 1 for the subsystems. In Lemma 3,

instead of Wp, we can work with Wp where Wpy�̄ :=
[Np,0 . . . N

p,�̄−1](y, . . . , y(�̄−1))T. In general, Wp have fewer
columns than Wp, which make checking the rank condition
for systems with large dimensions simpler.

Remark 8. Our results can be extended to include the case
where output dimensions are different. If subsystem output di-
mensions are different, one needs to use “hybrid functions” to
describe the output set Y of the switched system (which are
now not functions but concatenations of functions of different
dimensions). Other than that, Definition 1 is unchanged (since
it implies that the output dimensions of the two systems must
be the same in order for (x0, y) to be a singular pair) and the
statements of Theorems 2 and 3 remain the same.

Remark 9. The results in this section can also be ex-
tended to include the case when there are state jumps at
switching times. Denote by fp,q : Rn → Rn the jump
map (also called reset map) i.e. if � is a switching time,
x(�) = x(�+) = f�(�−),�(�)(x(�−)). Note that the case of iden-
tity jump maps fp,q(x) = x ∀p, q ∈ P, ∀x ∈ Rn is the case
considered in this paper. For non-identity jump maps, the con-
cept of singular pairs changes to “(x0, y) is a singular pair of
�p, �q if ∃ u1, u2 such that �O

p,x0
(u1) = �O

q,fp,q (x0)
(u2) = y or

�O
p,fq,p(x0)

(u1) = �O
q,x0

(u2) = y”. The Eq. (8) becomes:

Npqy|t0 =
[
Lpx0
Lqfp,q(x0)

]
or Npqy|t0 =

[
Lpfq,p(x0)

Lqx0

]
.

There will also be a distinction between identifying the initial
switching mode and subsequent switching modes. Another gen-
eralization is to include switching mechanisms, such as switch-
ing surfaces. Denote by Sp,q the switching surface for system
p changing to system q such that x(t)=fp,q(x(t−)) if x(t−) ∈
Sp,q and �(t−)=p. Then we only need to check for singularity
for x0 ∈ Sp,q and x0 ∈ Sq,p instead of x0 ∈ Rn for �p, �q .

4. Output generation

In the previous section, we considered the invertibility ques-
tion of whether one can recover (�, u) uniquely for all y in some
output set Y. In this section, we address a different but closely
related problem which concerns with finding (�, u) (there may
be more than one) such that Hx0(�, u) = y for given y and x0.

For the switched system (1), denote by H−1
x0

(y) the preimage
of an output y under Hx0 ,

H−1
x0

(y) := {(�, u) : Hx0(�, u) = y}. (12)

By convention, H−1
x0

(y) = ∅ if y is not in the image set of
Hx0 . In general, H−1

x0
(y) is a set for a given y (when H−1

x0
(y)

is a singleton, the map Hx0 is invertible at y). We want to find
conditions and an algorithm to generate H−1

x0
(y) when H−1

x0
(y)

is a finite set.
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We need the individual subsystems to be invertible because
if this is not the case, then the set H−1

x0
(y) will be infinite by

virtue of the following lemma.

Lemma 4. Consider the non-switched linear system � in (2)
with piecewise continuous input. Suppose that � is not invert-
ible. Let [a, b] be an arbitrary interval. For every u ∈ F

pc
[a,b]

and xa ∈ Rn, there are infinitely many different v ∈ F
pc
[a,b], v �=

u, such that �O
xa

(v) = �O
xa

(u) and �xa (v)|b = �xa (u)|b.

Proof. If � is not invertible, then K �= 0 in the general-
ized inverse (4). Then the controllable subspace C̄ of (A −
BD

†
�C�, BK) is non-trivial. Pick any 
 ∈ C̄, 
 �= 0 and

T1, T2 > 0 such that T1 + T2 = b − a =: T . Since 0, 
 ∈ C̄,∃
a nonzero w1 ∈ C0[0,T1] such that �−1

0 (0, w1)|T1 = 
 and w2 ∈
C0[0,T2] such that �−1


 (0, w2)|T2 =0. By the time-invariant prop-

erty, we then have �−1
0 (0, w)|T = 0 where w = w1 ⊕ w2. Let

ū=�−1,O
0 (0, w); then �0(ū)|T =0 and �O

0 (ū) ≡ 0. Also by the
time-invariant property, if û(t) := ū(t − a), u ∈ F

pc
[a,b], then

�0(û)|b = 0 and �O
0 (û) ≡ 0. Let v = u + û. Linearity of � im-

plies �xa (v) = �xa (u) + �0(û) and �O
xa

(v) = �O
xa

(u) + �O
0 (û),

and hence, �xa (v)|b = �xa (u)|b and �O
xa

(v) = �O
xa

(u). Since
there are infinitely many 
 ∈ C̄, we have infinitely many such
v. �

Corollary 1. Consider a function y =Hx0(�, u) for some �, u.
Let Q ⊆ P be the set of values of �. If there exists q ∈ Q such
that �q is not invertible, then there exist infinitely many u such
that y = Hx0(�, u).

The previous discussion motivates us to introduce the fol-
lowing assumption.

Assumption 1. The individual subsystems �p are invertible
for all p ∈ P.

However, we have no other assumption on the subsystem
dynamics and the switched system may not be invertible as
the subsystems may not satisfy the invertibility condition in
the previous section. Since we look for an algorithm to find
H−1

x0
(y), we only consider the functions y of finite intervals (and

hence, there is a finite number of switches) to avoid infinite
loop reasoning when there are infinitely many switchings.

As we shall see, it is possible to use a switch at a later time
to recover a “hidden switch” earlier (e.g. a switch at which the
output is smooth). We now present a switching inversion algo-
rithm for switched systems that returns H−1

x0
(y) for a function

y ∈ F
pc
D where D is a finite interval, when H−1

x0
(y) is a finite

set. The parameters to the algorithm are x0 ∈ Rn and y ∈ F
pc
D ,

and the return is H−1
x0

(y) as in (12). Define the index-matching

map1 �−1 : Rn × Fpc → 2P as

�−1(x0, y) := {p : y ∈ Ŷp and Npy|t+0 = Lpx0}, (13)

1 The symbol 2P denotes the set of all subsets of a set P.

where t0 is the initial time of y. If �−1(x0, y) is empty, no
subsystem is able to generate that y starting from x0.

Begin of Function H−1
x0

(y)

Let the domain of y be [t0, T ).
Let P := {p ∈ P : y[t0,t0+	) ∈ Ŷp for some 	 > 0}.
Let t∗ := min{t ∈ [t0, T ) : y[t,t+	) /∈ Ŷp

for some p ∈ P, 	 > 0} or t∗ = T otherwise.
Let P∗ := �−1(x0, y[t0,t0+	)) for sufficiently small 	.
If P∗ �= ∅,

Let A := ∅.
For each p ∈ P∗,

Let u := �−1,O
p,x0

(y[t0,t∗)),
T := {t ∈ (t0, t

∗) : (x(t), y[t,t∗)) is
a singular pair of �p, �q for some q �= p}.

If T is a finite set,
For each � ∈ T, let 
 := �p(u)(�).

A := A ∪ {(�p

[t0,�), u[t0,�)) ⊕ H−1

 (y[�,T ))}

End For each
Else If T = ∅ and t∗ < T , let 
 = �p(u)(t∗).

A := A ∪ {(�p

[t0,t∗), u) ⊕ H−1

 (y[t∗,T ))}

Else If T = ∅ and t∗ = T ,
A := A ∪ {(�p

[t0,T ), u)}
Else A := ∅
End If

End For each
Else A := ∅
End If
Return H−1

x0
(y) := A

End of Function

The algorithm is based on the following relationship:

H−1
x0

(y[t0,T )) = {(�, u) ⊕ H−1
Hx0 (�,u)(t)(y[t,T )),

(�, u) ∈ H−1
x0

(y[t0,t))} ∀t ∈ [t0, T ), (14)

which follows from the semigroup property of trajectories of
dynamical systems (which include switched systems). Now,
if t in (14) is the first switching time after t0, then we can
find H−1

x0
(y[t0,t)) by singling out which subsystems are capable

of generating y[t0,t) using the index-matching map (13). The
problem comes down to determining the first switching time t
(and then the procedure is repeated for the function y[t,T )).

In light of the discussion in the previous paragraph, it is noted
that the switching inversion algorithm is a recursive procedure
calling itself with different parameters within the main algo-
rithm (e.g.H−1

x0
(y) uses the returns of H−1


 (y[�,T ))). There are
three stopping conditions: it terminates either when P∗ = ∅, in
which case there is no subsystem that can generate y at time t0
starting from x0, or when T is not a finite set, in which case
we cannot proceed because of infinitely many possible switch-
ing times, or when T is an empty set and t∗ = T , in which
case the switching signal is a constant switching signal.

If the algorithm returns an empty set, it means that there is
no � and u that can generate y, or there is an infinite number
of possible switching times (it is possible to further distinguish
between these two cases by using an extra variable in the algo-
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rithm that is assigned different values for the different cases).
Note the utilization of the concatenation notation here: if at any
instant of time, the return of the procedure is an empty set, then
that branch of the search will be empty because f ⊕ ∅ = ∅.

Remark 10. When y ∈ Fn and the input and output dimen-
sions are the same, t∗ in the algorithm can be simplified to be
the first discontinuity of y in [t0, T ) (or t∗ = T if y is continu-
ous). That is because in this case, Cn functions are always in
Ŷp ∀p ∈ P (see Remark 3) and thus, P=P, and y[t,t+	) /∈ Ŷp

only if y is discontinuous at t.

5. Examples

Example 1. Consider the switched system generated by the
following two subsystems:

�1 :
{

ẋ=
[

1 2
3 4

]
x+

[
1
2

]
u,

y= [0 1 ] x,

�2 :
{

ẋ=
[

3 1
5 4

]
x+

[
1
3

]
u,

y= [0 2 ] x.

Using the structure algorithm, we can check that the two sys-
tems are invertible. The operators N1, N2 are matrix operators
and N1 = W1 = [1], L1 = [0 1], N2 = W2 = [1], L2 = [0 2].
In this example, the input and output dimensions are the same.
The rank condition (9) is satisfied. By Theorem 2, we conclude
that the switched system generated by {�1, �2} is invertible on
Y := {y ∈ Fpc : W1,2y|t+ �= 0 ∀t} = {y ∈ Fpc : y(t) �=
0 ∀t}.
Example 2. We return to the example in the introduction. Us-
ing the structure algorithm, we can check that the two systems
are invertible. We have N1=W1=[1], L1=[0 1], N2=W2=[1],
L2 = [1 2]. The rank condition is violated, and hence, the
switched system generated by �1, �2 is not invertible.

We now illustrate how the inversion algorithm works. Using
(13) with x0 and y(0)=−1, we obtain P∗ := �−1(x0, y[0,t∗))=
{2} (see Remark 10). The structure algorithm for �2 on [0, t∗)
yields the inverse

�−1
2 :

{
ż =

[
0 4
0 −2

]
z +

[−1
1

]
ẏ,

u(t) = ẏ − [−1 4] z,

t ∈ [0, t∗)

with z(0) = x0, which then gives

z(t) = (−et , −et + e2t )T =: x(t),

u(t) = 0,
t ∈ [0, t∗). (15)

We find T={t � t∗ : (x(t), y[t,t∗)) is a singular pair of �1, �2},
which is equivalent to solving W1y(t) = L1x(t) (since we al-
ready have W2y(t) = L2x(t) ∀t ∈ [0, t∗)). This leads to the
equation 2e2t − 3et = x2(t) = −et + e2t , t ∈ [0, t∗). The fore-
going equation has a solution t = ln 2 =: t1 < t∗, and hence,
T = {t1}, which is a finite set. We have 
 = x(t1) = (−2, 2)T

and we repeat the procedure for the initial state 
 and the output
y[t1,T ). Now P∗ = �−1(
, y[t1,t∗)) = {1, 2}.

Case 1: p = 1. Using the structure algorithm, we obtain the
inverse system of �1,

�−1
1 :

{
ż =

[
1 1
0 0

]
z +

[
1
1

]
ẏ,

u = ẏ − [0 −1] z,

with the initial state z(t1) = 
, which yields z(t) = ((−13 +
6 ln 2)et +6e2t −6tet , 2e2t −3et )T =: x(t) and u(t)=6e2t −6et ,
t � t1. We find T={t1 < t � t∗ : (x(t), y[t,t∗)) is a singular pair
of �1, �2}, which is equivalent to solving W2y(t)=2e2t −3et =
L2x(t) = (−19 + 6 ln 2)et + 10e2t − 6tet for t1 < t � t∗. It is
not difficult to check that the foregoing equation does not have
a solution. We let 
 = x(t∗) = (15 + 18 ln( 2

3 ), 9) and repeat
the procedure with 
 and y[t∗,T ), which yields � = �2

[t∗,T ) and
u[t∗,T ) = 0.

Case 2: p = 2. This case means that t1 is not a switching
time. Then u(t)=0 up to time t∗ by the structure algorithm, and
hence, x(t)=(−et , −et +e2t )T, �� t � t∗ in view of (15). We
then repeat the procedure with 
 = x(t∗) = (−3, 6) and y[t∗,T ).
We have y(t∗) = 33 + 18 ln( 2

3 ), and since L1
 /∈ W1y(t∗) and
L2
 /∈ W2y(t∗), we have �−1(
, y[t∗,T )) = ∅.

Thus, the inversion algorithm returns {(�, u)}, which were
given in Section 1.1.

As we can see, there is a switching at t1 < t∗ whilst the output
is smooth at t1. Using the switching inversion algorithm, we
can detect the switching at t1 and recover the switching signal
and subsequently the input.

6. Conclusions

We formulated the invertibility problem for switched sys-
tems, which seeks a condition on the subsystems that guaran-
tees unique recovery of the switching signal and the input from
given output and initial state. We introduced the concept of sin-
gular pairs and presented a necessary and sufficient condition
for invertibility of continuous-time switched linear systems,
which says that the subsystems should be invertible and there
should be no singular pairs with respect to the output set. For
switched systems, not necessarily invertible but with invertible
subsystems, we gave an algorithm for finding switching signals
and inputs that generate a given output from a given initial state.

The invertibility problem for discrete-time switched systems
remains an open problem. Other research topic is a geomet-
ric approach for continuous-time switched systems, which will
complement the matrix-oriented approach presented here. An-
other direction is to extend the results to switched nonlinear
systems, for which the extension of the structure algorithm for
non-switched nonlinear systems (Singh, 1981) or the geometric
approach (Benedetto et al., 1989) may be useful.
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