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Observability for Switched Linear Systems:
Characterization and Observer Design

Aneel Tanwani, Member, IEEE, Hyungbo Shim, Member, IEEE, and Daniel Liberzon, Fellow, IEEE

Abstract—This paper presents a characterization of observ-
ability and an observer design method for switched linear systems
with state jumps. A necessary and sufficient condition is presented
for observability, globally in time, when the system evolves under
predetermined mode transitions. Because this characterization
depends upon the switching signal under consideration, the exis-
tence of singular switching signals is studied alongside developing
a sufficient condition that guarantees uniform observability with
respect to switching times. Furthermore, while taking state jumps
into account, a relatively weaker characterization is given for
determinability, the property that concerns with recovery of the
original state at some time rather than at all times. Assuming
determinability of the system, a hybrid observer is designed for
the most general case to estimate the state of the system and it is
shown that the estimation error decays exponentially. Since the
individual modes of the switched system may not be observable,
the proposed strategy for designing the observer is based upon
a novel idea of accumulating the information from individual
subsystems. Contrary to the usual approach, dwell-time between
switchings is not necessary, but the proposed design does require
persistent switching. For practical purposes, the calculations also
take into account the time consumed in performing computations.

Index Terms—Determinability, observability, observer design,
switched linear systems.

I. INTRODUCTION

T HIS paper studies observability conditions and observer
construction for switched linear systems described as

(1a)

(1b)

(1c)

where is the state, is the output,
and are the inputs, and is a locally bounded
measurable function. For some index set , the switching signal
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is a piecewise constant and right-continuous func-
tion that changes its value at switching times . In
our notation, if a function exhibits discontinuity at time instant
, we evaluate that function at to represent its value prior to

discontinuity, and at to indicate its value right after the jump.
It is assumed that there are a finite number of switching times in
any finite time interval; thus, we rule out the Zeno phenomenon
in our problem formulation. It is assumed throughout the paper
that the signal (and thus, the active mode and the switching
times as well) is known over the interval of interest. The
switching mode and the switching times may be gov-
erned by a supervisory logic controller, or considered as an ex-
ternal input, or determined internally depending on the system
state (in the last case, it is assumed that the value of can
be inferred from the measured output , or by using a sensor
that detects mode transitions). Also, one may refer to, e.g., [4],
[6], [19], [22], for the problem of estimation of the switching
signal .
In the past decade, the structural properties of switched sys-

tems have been investigated by many researchers and observ-
ability along with observer construction has been one of them,
see for example [16], [18], and [22]. In switched systems, the
observability can be studied from various perspectives. If we
allow for the use of the differential operator in the observer,
then it may be desirable to determine the continuous state of
the system instantaneously from the measured output and in-
puts. This in turn requires each subsystem to be observable, and
the problem becomes nontrivial when the switching signal is
treated as an unknown discrete state and simultaneous recovery
of the discrete and continuous state is desired. Some results on
this problem are published in [2], [5], and [22].
On the other hand, if the mode transitions are represented by

a known switching signal then, even though the individual sub-
systems are not observable, it is still possible to recover the ini-
tial state by appropriately processing the measured sig-
nals over a time interval that involves multiple switching in-
stants. This phenomenon is of particular interest for switched
systems or systems with state jumps as the notion of instanta-
neous observability and observability over an interval coincide
for non-switched linear time invariant systems. This variant of
the observability problem in switched systems has been studied
most notably by [3], [16], [24], and [25]. The authors in [8] and
[9] have studied the similar problem for the systems that allow
jumps in the states, but they do not consider the change in the
dynamics that is introduced by switching to different matrices
associated with the active mode.
The observer design has also received some attention in the

literature [1], [4], [12], where the authors have assumed that
each mode in the system is in fact observable admitting a state
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observer, and have treated the switching as a source of pertur-
bation effect. This approach not only has limited applicability
but it also incurs the need of a common Lyapunov function for
the switched error dynamics, or a fixed amount of dwell-time
between switching instants, because it is intrinsically a stability
problem of the error dynamics.
The main contribution of this paper is to present a character-

ization of observability and an observer design for the systems
represented by (1), where the subsystems are no longer required
to be observable. So the notion of observability adopted in this
paper is related to [3], [24] in the sense that we also consider
observability over an interval. However, the authors in [3] only
present a coordinate-dependent sufficient condition that leads to
the construction of an observer; and the work of [24] only fo-
cuses on a necessary and sufficient condition under which there
exists a switching signal that makes it possible to recover ,
without any discussion on design of observers. This paper fills
the void by constructing an asymptotic observer based on a nec-
essary and sufficient condition for observability. To the best of
authors’ knowledge, the considered class of linear systems is the
most general for this purpose in the literature.
In our approach, the switching signal is considered to be

known and fixed, so that the trajectory of the system satisfies a
time-varying linear differential equation with state jumps. Then
for that particular trajectory, we answer the question whether it
is possible to recover from the knowledge of measured
inputs and outputs. We present a necessary and sufficient con-
dition for observability over an interval, which is independent
of coordinate transformations. Since this condition depends
upon the switching times, we study the denseness property of
the set of switching signals with a fixed mode sequence such
that system (1) satisfies the observability condition for each
switching signal in that set. For the sake of completeness, con-
ditions which can be verified independently of switching times,
are derived as a corollary to the main result. Also, with a similar
tool set, the notion of determinability (also called “final-state
observability” in [15] and reconstructability in [16]), which
is more in the spirit of recovering the current state based on
the knowledge of inputs and outputs in the past, is developed.
Moreover, a hybrid observer for system (1) is designed based
on the proposed necessary and sufficient condition. Since
the observers are useful for various engineering applications,
their utility mainly lies in their online operation method. This
thought is essentially rooted in the idea for observer construc-
tion adopted in this paper: the idea of combining the partial
information available from each mode and processing this
collected information at one instance of time to get the estimate
of the state. For real-time implementation, the time required
for processing this information is also taken into account in
our design. We show that under mild assumptions, such an
estimate converges to the actual state of the plant and the state
estimation error satisfies an exponentially decaying bound.
More emphasis will be given to the case when the individual

modes of system (1) are not observable (in the classical sense of
linear time-invariant systems theory) because it is obvious that
the system becomes immediately observable when it switches to
an observable mode. In such cases, the switching signal plays
a pivotal role as the observability of the switched system de-
pends upon not only the mode sequence but also the switching

times. In order to facilitate our understanding of this matter, let
us begin with an example.
Example 1: Consider a switched system characterized by

with , , , for ,
and is a constant. It is noted that neither of the two pairs,

or , is observable. However, if the switching
signal changes its value in the order at times
and , then we can recover the state. In fact, it turns out

that at least two switchings are necessary and the switching se-
quence should contain the subsequence of modes . For
instance, if the switching happens as , then the
output at time and is: , and

,
where is the initial condition and

. It is obvious that can be recovered from two
measurements and if with . On the
other hand, any switching signal, whose duration for mode is
an integer multiple of , is a “singular” switching signal (whose
precise meaning will be given in Section II-A).
Notation: For a square matrix and a subspace , we de-

note by the smallest -invariant subspace containing ,
and by the largest -invariant subspace contained in .
(See Property 7 in Appendix A for their computation.) For a
matrix denotes the column space (range space) of .
The sum of two subspaces and is defined as

. For a possibly non-invertible
matrix , the preimage of a subspace under is given by

. Let ; then it is seen
that for a matrix . For convenience
of notation, let where is the trans-
pose of , and it is understood that .
Also, we denote the products of matrices as

when , and
when . The notation means the vertical
stack of matrices , that is, .
Before going further, let us rename the switching sequence

for convenience. For system (1), when the switching signal
takes the mode sequence , we rename them

as increasing integers (1, 2, 3, ), which is ever increasing
even though the same mode is revisited; for convenience, this
sequence is indexed by . Moreover, it is often the case
that the mode of the system changes without the state jump
(1b), or the state jumps without switching to another mode.
In the former case, we can simply take and ,
and in the latter case, we increase the mode index by one and
take , and so on. In this way, various
situations fit into the description of (1) with increasing mode
sequence. The switching time is the instant when transition
from mode to mode takes place.

II. GEOMETRIC CONDITIONS FOR OBSERVABILITY

To make precise the notions of observability and deter-
minability considered in this paper, let us introduce the formal
definitions.
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Definition 1: Let , for , 2, be the
signals that satisfy (1) over an interval1 . We say
that the system (1) is -observable if the equality

implies that
. Similarly, the system (1) is said to be -de-

terminable if the equality
implies that .
Since the initial state , the switching signal , and the in-

puts uniquely determine on by (1), observ-
ability is achieved if and only if the whole state trajectory
on , is uniquely determined by the inputs, the output,
and the switching signal. Obviously, observability implies de-
terminability by forward integration of (1), but the converse is
not true due to the possibility of non-invertible matrices . In
case there is no jump map (1b), or each is invertible, observ-
ability and determinability are equivalent.
The use of Definition 1 leads to the following proposition

whose proof is rather straightforward and can be found in [20].
Proposition 1: For a switching signal , the system (1) is

-observable (or, determinable) if, and only if, zero in-
puts and zero output on the interval imply that
(or, ).
Because of Proposition 1, we are motivated to introduce the

following homogeneous switched system, which has been ob-
tained by setting the inputs equal to zero in (1):

(2a)

(2b)

If this homogeneous system is observable (or, determinable)
with a given , then implies that (or,

), and in terms of the description of system (1), this
means that zero inputs and zero output yield (or,

; hence, (1) is observable (or, determinable) because
of Proposition 1. On the other hand, if system (1) is observable
(or, determinable), then it is still observable (or, determinable)
with zero inputs, which is described as system (2). Thus, the
observability (or, determinability) of systems (1) and (2) are
equivalent.

A. Necessary and Sufficient Condition for Observability

Based on the tool set developed in, e.g., [23], we present a
characterization of the unobservable subspace for system (2)
with a given switching signal. Towards this end, let
denote the set of states at for system (2) that gen-

erate identically zero output over . Then, for fixed
switching times, it is easily seen that is actually a subspace
due to linearity of (2), and we call the unobservable sub-
space for . It can be seen that system (2) is an LTI
system between two consecutive switching times, so that its un-
observable subspace on the interval is simply given

1The notation is used to denote the interval , where
is arbitrarily small. In fact, because of the right-continuity of the switching
signal, the output belongs to the next mode when is the switching in-
stant. Then, the point-wise measurement is insufficient to contain the in-
formation from the new mode, and thus, it is imperative to consider the output
signal over the interval with . This definition implicitly implies
that the observability property does not change for sufficiently small (which
is true, and becomes clear shortly).

by the largest -invariant subspace contained in , i.e.,
where

So it is clear that . Now, when the measured output
is available over the interval that includes switch-
ings at , more information about the state is
obtained in general so that gets smaller as the difference

gets larger, and we claim that the subspace can be
computed recursively as follows:2

(3)

where . The following theorem presents a nec-
essary and sufficient condition for observability of the system
(1) while proving the claim in the process.
Theorem 1: For system (2) with a switching signal ,

the unobservable subspace for at is given by
from (3). Therefore, system (1) is -observable if, and
only if

(4)

From (3), it is not difficult to arrive at the following formula
for :

(5a)

(5b)

where . In order to inspect the observability
of system (2), one can compute using (3), (5a), or (5b). It
is easily seen that if (with arbitrary

, ).
Proof of Theorem 1: Sufficiency. Using the result of Propo-

sition 1, it suffices to show that the identically zero output of
(2) implies . Assume that on .
Then, it is immediate that . We next
apply the inductive argument to show that for

. Suppose that , then
since is the solution of (2). Zero output

on the interval also implies that .
Therefore,

where the expression on right coincides with the definition of
in (3). This induction proves the claim that , the unob-

servable subspace for , is given by (3). With ,
it is seen that , which proves the sufficiency.

2Although we use the matrix exponential in deriving conditions for observ-
ability, addressing the numerical implementation of such computations is be-
yond the scope of this paper. As an example, the reader may find [10] interesting
for that purpose.
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Necessity. Assuming that , we show that a nonzero
initial state yields the solution of (2) such that

on , which implies unobservability. First, we
show the following implication:

(6)

Indeed, assuming that with , it
follows that , which further gives

by using (3) and Properties 2, 3, and 11 in Appendix A. There-
fore, for , , and the
solution for satisfies that

for due to -invariance
of .
The observability condition (4) given in Theorem 1 is depen-

dent upon a particular switching signal under consideration, and
it is entirely possible that the system is observable for certain
switching signals and unobservable for others (cf. Example 1).
However, it would be more useful to know whether the observ-
ability property holds for a particular class of switching signals.
Towards this end, we show that if there is a switching signal
that satisfies (4), then the set of switching signals, with the same
mode sequence, for which (4) does not hold, is nowhere dense.
To formalize this argument, consider the set consisting of

all switching signals (over a possibly different time domain)
with a fixed mode sequence and switching times
such that . Then, for each , there

is a corresponding vector
with being the activation period

for mode under . We now introduce the metric on the
set as follows:

for any , with .
Theorem 2: Let system

observable with . If the set is nonempty, then it is an open
and dense subset of under the topology induced by the metric

.
The proof basically relies on the analyticity of the exponential

map—an argument which is employed in several control theo-
retic results of this kind, see for example [15, Ch. 6], [16, Ch.
4]. The same idea is used in a formally worked out proof of The-
orem 2 appearing in Appendix B. A consequence of Theorem
2 is that if there exists , then we can find an ele-
ment by introducing arbitrarily small perturbations in
the vector that corresponds to . We call such a singular
switching signal and the ones contained in the set are called
regular switching signals.

B. Conditions Independent of Switching Times

Existence of singular switching signals naturally raises the
question whether, under certain conditions, observability holds

uniformly with respect to switching times. In other words, it is
desirable to knowwhether the observability could be verified for
a given mode sequence independently of the switching times.
For this, we again consider the sets and for a given mode
sequence .
Definition 2: The switched system (1) is uniformly observ-

able for all switching signals (i.e., ) if, and only
if

(7)

By using the distributive property of intersection over union
of sets, one can rewrite by proceeding in the sequential
manner as before

(8)

However, in order to check condition (7) in practice, a difficulty
arises due to the fact that is not a subspace in general. (This
is because the set is not closed under addition of
vectors, and hence not necessarily a subspace even though is
a subspace.) To avoid this difficulty and obtain conditions for
observability based on computing the dimension of a subspace,
we seek a subspace containing , so that a sufficient condition
is obtained for uniform observability with respect to switching
times.
Corollary 1: Let be defined as follows:

Then, is a subspace that contains , and thus, the system
(1) is uniformly observable for all if .
By construction, the subspace also contains so that

it serves a sufficient condition for (4) as well as for (7).
Proof: The proof is completed by showing that

for . First, note that . Assuming that
for , we now claim that

. Indeed, by Properties 3, 9, and 11 in Appendix A, and the
recursion (8), we obtain

(9)

Therefore, the condition implies (7).
Since is contained in , it would be of interest to in-

vestigate how far the statement of Corollary 1 is from necessity,
and the following lemma turns out to be helpful for that purpose
(see Appendix B for its proof).
Lemma 1: For each , if , then
is the smallest subspace containing the set .

The above discussion can be summarized as follows, which
suggests when the condition in Corollary 1 becomes necessary.
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Corollary 2: If each , for , is a sub-
space, then system (1) is uniformly observable with respect to
the switching times if and only if .
Example 2: The switched system considered in Example 1,

with the mode sequence and an arbitrary constant ,
provides an example of Corollary 2. It is seen that each is

a subspace as ,
, and . Indeed, the

switched system in Example 1 is not uniformly observable for
the mode sequence , as seen by the existence of the sin-
gular switching signals.
Now, let us consider an additional subsystem, where

, , and are zero matrices with

appropriate dimensions. For the switched system with the mode
sequence , and , we get ,

, and . The sufficient
condition in Corollary 1 is violated but the resulting switched
system is observable for all (which can be seen from
Theorem 1). The source of this gap is the fact that the set

is not a subspace. It is seen that the smallest subspace containing
, in this case, is .
Having studied the uniform observability with respect to the

switching times, we also discuss the existence of switching
times for observability under a given mode sequence. This is to
see whether the set is empty or not when the mode sequence
is given (or, the set is given). Regarding this question, the idea
of under-approximating yields the following necessary
condition.
Corollary 3: Let be defined as follows:

Then, is a subspace contained in for all , and
thus, if there exists a vector such that ,
that is, system (1) is -observable (or, equivalently
is non-empty), then .

Proof: For each , the proof proceeds similar to
Corollary 1. With , we assume that
for , and claim that . Again by Prop-
erties 3, 9, and 11 in Appendix A, and employing (3), we obtain

(10a)

(10b)

The condition is then implied by .
As a matter of fact, it can be shown that3

(11)

3Indeed, this follows from (10b) and from the claim that
for any subspace and a matrix , which is proved as follows. Since

for all , we have that . On the other
hand, since is a subspace containing , it holds
that because is the smallest subspace
containing (see Lemma 1). Taking orthogonal complement, we
get (by Property 10 in Appendix A), which proves the
claim.

Since the right-hand side of (11) can become {0} even though
for any , it is clear that the condition

is much weaker than requiring the existence of
that satisfies . However, it can be shown that4

for almost all ,
. Using this fact, if , then a switching

signal can be constructed where the mode sequence 1 through
is repeated at most times such that system (1) is observ-

able under this new switching signal for almost all switching
times. This approach of constructing a switching signal, which
makes the system (1) observable, coincides with the notion of
observability adopted in [16], [24] and is illustrated in the fol-
lowing example.
Example 3: Suppose that, for the switched system of

Example 1, the mode sequence is given. Then, with
, we obtain that and

. However, it is verified that

, so that (4) does not hold for any , showing that the
system is not observable with even though the necessary
condition of Corollary 3 is satisfied. On the other hand, if the
mode sequence is repeated at least once, so that the new mode
sequence is , then, other than the case where mode
is not activated for a multiple of time units, the system is
observable under the new switching signal.
Remark 1: By taking the orthogonal complements of ,
and , respectively, we get the dual conditions for ob-

servability, using Properties 5, 6, 8, and 10 in Appendix A,
as follows. System (1) is -observable if and only if

where

Similarly, one can state Corollaries 1 and 3 in alternate forms.
System (1) is uniformly observable if , where is
computed as

for . Also, if system (1) is -observable
with a switching signal, then , where is defined
sequentially, for , as

C. Necessary and Sufficient Conditions for Determinability

In order to study determinability of system (1) and arrive at
a result parallel to Theorem 1, our first goal is to develop an
object similar to . So, for system (2) with a given switching
signal, let be the set of states at time (or ) such
that its corresponding solution produces zero output on the

4One may refer to Corollary 6.2.4 and Proposition 6.2.11 in [15], where the
result is given for , but the same holds for any subspace .

AT
Comment on Text
In the following equation, G_j must be replaced by G_i
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interval .We call the undeterminable subspace
for . Then, it can be shown that is computed
recursively as follows:

(12)

These sequential definitions lead to another equivalent expres-
sion for :

(13)

In fact, the subspace indicates the set
of states obtained by propagating the unobservable states of the
mode (where ) to the time under the
dynamics of system (2). Intersection of these subspaces with

and shows that is the set of states
that cannot be determined at time from the zero output
over the interval . Therefore, the determinability of
system (2) can now be characterized in the following theorem.
Theorem 3: For system (2) and a given switching signal

, the undeterminable subspace for at

is given by of (13). Therefore, system (1) is -de-
terminable if and only if

(14)

The condition (14) is equivalent to (4) when all matrices,
, are invertible because of the relation

Example 4: If any of the jump maps of (2),
, is a zero matrix, then (14) trivially

holds regardless of whether (4) holds or not. This is intuitively
clear because we can uniquely determine even if

cannot be determined.
Recalling that is the set of switching signals with mode

sequence and , the following two corol-
laries parallel Corollaries 1 and 3, and are given for complete-
ness. Proofs are omitted but can be developed using the property
that .
Corollary 4: System (1) is uniformly determinable for all

, i.e., for all , if , where
is computed by

Corollary 5: If there exists a vector such that
, i.e., system (1) is -determinable for

some , then , where is computed by

Remark 2: An alternative dual characterization of deter-
minability is possible by inspecting whether the complete state
information is available while going forward in time. This is
achieved in terms of the subspace , obtained by taking the
orthogonal complement of . Using Properties 5, 6, 8, and
10 in Appendix A, it follows from (13) that

Note that, with , the set-valued map
pulls the state at back in time at . This map was used
in (5a) to pull back at . Since the dual of is also ,
the adjoint of this map pushes the row vectors forward in time
from to . In other words, is the set of states at
time instant that can be identified, modulo the unob-
servable subspace at , from the information of over the
interval . Therefore, the dual statement to Theorem
1 for determinability is that the system (1) is -deter-
minable if and only if

(15)

It is noted that a recursive expression for is given by

and the dual statements of Corollaries 4 and 5, that are inde-
pendent of switching times, are given as follows: system (1) is
uniformly determinable for all if , where

for . Similarly, if there exists a such that
system (1) is -determinable then , where

is computed as follows:

for .

III. OBSERVER DESIGN

In engineering practice, an observer is designed to provide an
estimate of the actual state value at current time. In this regard,
determinability (weaker than observability according to Defini-
tion 1) is a suitable notion for switched systems. Based on the
conditions obtained for determinability in the previous section,
an asymptotic observer is designed for system (1) in this sec-
tion. By asymptotic observer, we mean that the estimate
converges to the plant state as .

AT
Comment on Text
This expression is equivalent to the one obtained from (12) when each jump map E_i is invertible. In general, (12) and (13) are not equivalent.

AT
Comment on Text
Here, the expression for M_1^m is obtained (recursively) from the sequences appearing just below, and not from the formula given at the beginning of Remark 2. The two expressions are equivalent when all the jump maps are invertible.

AT
Cross-Out

AT
Replacement Text
(12)
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A. Observer Overview

In order to construct an observer for system (1), we introduce
the following assumptions.
Assumption 1:
1) The switching is persistent in the sense that there exists a
constant such that a switch occurs at least once in
every time interval of length ; that is,

(16)

In addition, there are a bounded number of switchings in
any finite time interval; i.e., there is a function
such that the number of switchings in any time interval of
duration is less than or equal to .

2) The system is persistently determinable in the sense that
there exists an such that

(17)

(The integer is interpreted as the minimal number of
switches required to gain determinability.)

3) There are constants and such that and
for all (which is always the

case when and belong to a finite set).
The observer we propose is a hybrid dynamical system of the

form

(18a)

(18b)

(18c)

with an arbitrary initial state . Here, is the time
for the th estimation update (see Fig. 2), and we assume that

for any and because these updates (18b) and (18c)
are executed sequentially on a digital processor. Fig. 1, together
with Fig. 2, provides an illustration of how the proposed ob-
server (18) is executed in practice. It is seen that the observer
consists of a system copy and an estimate update law by a cor-
rection vector . The vector can be thought of as an ap-
proximation of the state estimation error and our goal is to de-
sign such that . In order to construct , the
signals available from the actual plant are gathered and stored
over a time interval encompassing switches. Because of As-
sumption 1.2, this stored information is rich enough to compute
that closely approximates the state estimation error. More

specifically, we write as a function of the observable com-
ponents of individual modes, and the observable components
are recovered by running the classical Luenberger observers for
each of the past active modes. It is supposed that these
observers process the stored data of the past switching inter-
vals much faster than the real time scale. An estimate of the
plant state is then obtained from the estimates of the observable
components using an inversion logic. Computation of this esti-
mate is performed on a digital processor while the observer (18)
is also running (in parallel) synchronously with the plant. Un-
like our conference paper [20], we no longer assume that this
computation is performed instantaneously; we instead suppose
that the computation is completed within a maximal computa-
tion time . Therefore, the estimate obtained for the plant

Fig. 1. Flow diagram of the proposed observer. The stored information is pro-
cessed in the Estimate Update block to generate the updating signal , which
is passed on to the Synchronized Observer running in parallel to the plant at the
same pace.

Fig. 2. Assuming that in this figure, the computation of begins at
time . By processing the data between and , the computation completes
at and the estimate is updated by (18c). By assuming that is the
maximum computation time, . The computation for begins at
which is delayed because the previous computation for , having started at
, does not finish when the new switchings occur at and .While computing
, only the data between and is processed.

state is not for the current time. In order to compensate for the
computational delay, the catch-up process is introduced, with
which the estimate of the estimation error at the current time
(denoted by ) is obtained and used for updating (18c). For
example, in Fig. 2, having gathered the information from the
plant over the interval , the computation for starts at
and its value is available at , where .

After first switches, the computation of starts after every
switch. However, in the case that another switch occurs before
the on-going computation is complete, the request for the new
computation is put in a waiting queue until the completion of the
current computation. If several switches occur while a compu-
tation is being performed, then only the last active modes
are considered during the next computation. See the informa-
tion processed, marked with various types of lines, in Fig. 2.
Remark 3: One can always consider a nonswitched linear

system with quadruple as a special case of
switched system (1), where, for each , , ,

, , , and . Assumption 1.1
and Assumption 1.3 are trivially satisfied by introducing the
pseudo-switches at some arbitrary times. Assumption 1.2
corresponds to the usual observability condition. The proposed
observer scheme will be able to estimate the state of a non-
switched system. However, the state estimate is updated at
discrete time instants only.

B. Algorithm for Computing

In the sequel, the above thought process is formalized by set-
ting up a machinery to compute the correction vector as indi-
cated in Fig. 1. Based on these computations, a procedure for im-
plementing the hybrid observer, according to the scheme shown

AT
Comment on Text
We assume the jump maps to be invertible, so the expression for M_{q-N}^q obtained in Remark 2, either from the direct formula or from the sequences, is the same.

AT
Comment on Text
The following assumption must also be added in the list:
All jump maps E_q are invertible.
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in Fig. 2, is outlined in Algorithm 1. It is then shown in The-
orem 4 that the state estimate computed according to the pa-
rameter bounds given in Algorithm 1 indeed converges to the
actual state of the system.
With , the error dynamics are described by

(19a)

(19b)

(19c)

The output error is defined as
. Since estimating is equivalent to the estimation of

(obtained by subtracting from of (18)), our design begins
with the estimation of at time (with ). In order
to estimate the observable part of from each mode , let us de-
sign the partial observers using the observability decomposition
[23] and the dynamics in (19). Choose a matrix such that its
columns are an orthonormal basis of , that is,

. Further, choose a matrix such that its columns are
an orthonormal basis of . From the construction, there are
matrices and , where ,
such that and , and the pair

is observable. Let and , so
that (resp. ) denotes the observable (resp. unobservable)
states of the mode . Thus, for , the error dynamics in
(19) satisfy

(20)

with the initial condition . Since is
observable over the interval , a standard Luenberger
observer, whose role is to estimate at the end of the in-
terval, is designed as

(21)

with the initialization , where is a matrix such
that is Hurwitz. Note that we have fixed the initial
condition of the estimator to be zero for each interval, whose
role becomes clear in (38).
Now let us define the state transition matrix , ,

that results in along the dynamics (19a)

and (19b) [but not (19c)]. For example, when and
are switching instants, we have that

(22)
in which is defined for convenience. Note that is
computed using the knowledge of the switching periods

which will be denoted simply by , and
note also that .
We now define a matrix with whose columns form

a basis of the subspace ; that is,

By construction, each column of is orthogonal to the sub-
space that has been transported from to along the
error dynamics (19a) and (19b). This matrix will be used for
annihilating the unobservable component in the state estimate
obtained from the mode after being transported to the time
. As a convention, we take to be a null matrix whenever

. Using the determinability of the system
(Assumption 1.2), it will be shown later in the proof of The-
orem 4 that the matrix

...
... (23)

has rank . Equivalently, has independent columns and is

left-invertible, so that , where denotes
the left-pseudo-inverse. Introduce the notation

(24)

Let us also define the vector as as shown in the equation at
the bottom of the page. The matrices with
are defined such that is a null matrix when is null, and
the following holds:

(25)

Each non-empty is an by matrix whose argument is
in general (due to the inversion of ), while the

argument of both and is .

...



TANWANI et al.: OBSERVABILITY FOR SWITCHED LINEAR SYSTEMS: CHARACTERIZATION AND OBSERVER DESIGN 899

Finally, let , where is the upper bound on
computation time, and define

(26)

Pick any number and compute the injection gain
such that

(27)

(One constructive way to compute such an is from the
squashing lemma [11, Lemma 1].) Using the information over
the interval , the error correction vector in (18c)
is now computed as

(28)

where

(29)

Algorithm 1 summarizes these calculations for and also
illustrates how the schematics of Figs. 1 and 2 could be im-
plemented. It comprises two processes running in parallel,
Synchronized Observer and Estimate Update. Whenever
the switching happens, the Synchronized Observer calls the
Estimate Update if the latter is not already occupied with com-
putation from previous switch. If the switch occurs while the
Estimate Update is active, we wait for it to finish the previous
computation and then look at the information from last
active modes for the next update.

Algorithm 1: Implementation of the hybrid observer

Input:

Initialization: , , , ,

1 Synchronized Observer Loop

2 Run the observer (18) synchronously to plant (1).

3 if switching occurs then increment .

4 if and then

5 and call Estimate Update.

6 Loop end

1 Estimate Update

2

3 for to do

4 Compute the gains satisfying (27).

5 Obtain by running the individual observer (21)
for the th mode.

6 Compute from (29).

7 Increment and set .

8 Set and update by (18c).

9

10 end

Remark 4: We remark that the idea of post-processing the
stored information is really significant for switched systems
with unobservable modes. While computing from the ob-
servable components of last active modes, we first
need to propagate these components under the dynamics of
subsequent modes, which requires exact knowledge of the
switching times. In addition, knowledge of the past switching
times is also used when the observer gains are chosen in (27),
with which it will be shown that the estimation error decreases
by the desired factor .

C. Analysis of Error Convergence

The following theorem shows that the above implementation
indeed guarantees the convergence of the state estimation error
to zero.
Theorem 4: Under Assumption 1, consider the hybrid ob-

server (18) in which the estimate update is computed through
(28) and introduced at , according to Algorithm 1. If the gains
, for each , are chosen so that (27) holds for

any choice of , then . Further-

more, the estimation error satisfies the following exponential
convergence rate:

(30)

where is a positive constant and the function
has the property that when .
In (30), the factor denotes the exponential decay rate

in estimation error which can be increased by choosing the
output injection gains appropriately, but it comes at the cost of
poor transient response. This observation is consistent with the
peaking phenomenon studied in [17].
We remark that if the computation time is to be ignored,

then the analysis becomes much simpler and for that case we
refer to the conference version [20].

Proof of Theorem 4: From Assumption 1 and Algorithm 1,
it can be seen that

Hence, it suffices to show that because
Assumptions 1.1 and 1.3 imply that

(31)

In the remainder of this proof, an expression for is de-
rived whose norm is shown to converge to zero. For this pur-
pose, fix and suppose that the th estimate update
process for completes at time after having processed the
data on the interval (where it is possible that there
is another switch between and ).
The error at , can be written as

(32)
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The matrix with , defined in (22), transports to
along (19) by

(33)

We now have the following series of equivalent expressions for
:

...

(34)

To appreciate the implication of this equivalence, we first note
that for each , the term trans-
ports the observable information of the th mode from the in-
terval to the time instant . This observable infor-
mation is corrupted by the unknown term , but since
the information is being accumulated at from modes

, the idea is to combine the partial information from
every intermediate mode to recover . This is where we use
the notion of determinability. By Properties 1, 5, and 6 in Ap-
pendix A, and the fact that
and , it follows under Assumption
1.2 that

This equation shows that the matrix defined in (23) has rank
, and is right-invertible. Keeping in mind that the range space
of each is orthogonal to , each equality in (34)
leads to the following relation:

(35)

for . Stacking (35) from to ,
and employing the left-inverse of , we obtain that

(36)

where denotes . It is seen

from (36) that, if we were able to estimate without
error, then the plant state would be exactly recovered by
(36) because and both entities on the
right side of the equation are known. However, since this is not
the case, is replaced with its estimate in (29),

and is set as an estimate of , as done in (29).
Using the linearity of in its arguments, and substituting

from (28) in (19c), we get

(37)

where denotes with

. It follows from (20) and (21) that

for with

(38)

which implies that

Plugging this expression in (37), and using the definition of
from (25), we get

(39)

For each , let
. Then it follows that

From Fig. 2 and Algorithm 1, it is seen that

and

Thus,
, where is defined in (26).
Moreover, with and considered above, it can be seen that,

for each , it holds that
(since either equals or ).
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Then, from the selection of gains ’s satisfying (27), it is seen
that

(40)

where . Finally, applying the statement of Lemma
2, given in Appendix B, to (40) aids us in the completion of the
proof as it shows that as .
In order to compute the exponential decay bound, note that

(48) in the statement of Lemma 2, with , leads to the
following inequality for :

(41)

because and . And, since
for , it follows from (31)

that for each ,

(42)

Combining (41) and (42), it holds for that

(43)

On the other hand, since , an over-
approximation of the error on the interval is obtained,
by ignoring the error updates, as

(44)

where the constant
.

From (43) and (44), we arrive at the following, for :

(45)

in which it should be noted that the inequality holds for
all because the right-hand side is greater than

for . Taking and
, the proof

is completed.
Example 5: We demonstrate the operation of the proposed

observer for the switched system considered in Example 1 with
. We assume that each mode is activated for seconds

and for any , so that, for each nonnegative in-
teger , mode is active over (called odd
interval henceforth), and mode for
(called even interval). We also use the notation for odd
positive integers and for even positive integers. As men-
tioned earlier, the system is observable (and thus, determinable)

over a time interval with the given switching signal if the mode
sequence is contained in that interval. Hence, we
pick in order to include both sequences and

, so that Assumption 1.2 holds. For simplicity, it is as-
sumed that and that the computations always end
at with (because ).With an
arbitrary initial condition , the observer to be implemented
is

(46a)

(46b)

(46c)

In order to determine the value of , we start off with the es-
timators for the observable part of each subsystem, denoted by
in (20). Note that mode has a one-dimensional unobserv-

able subspace whereas for mode , the unobservable subspace
is . Since mode is active on every odd interval and mode
on every even interval, represents the partial information
obtained from mode , and is a null vector as no informa-
tion is gathered from mode . So the one-dimensional partial
observer in (21) is implemented only for odd intervals. From
mode , we compute

so that and , which yields the observer in (21)
as

with the initial condition , and being the dif-
ference between the measured output and the estimated output
of (46). The notation denotes the first component of the vector
. The gain will be chosen later by (47). From mode , we

get , and , so that , , and
are null-matrices.
The next step is to use the value of to compute ,

for each . The matrices appearing in the computation of
are given as follows. For every

where, as a convention, we have taken as a null matrix
whenever . Using the matrices ,

, we obtain for every
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Fig. 3. Size of the state estimation error and the switching signal.

Since for every , with ,
the error correction term can be computed recursively by the
formula

where ,

, and for .
Next, for every , we repeat the same calculations and

obtain

Using with , we obtain

where

and ,
.

To compute the gain , we note that , are null
matrices, and

and

Also, for , and are null matrices, and

and

By taking equal to for each , and computing
the induced 2-norm of the matrix, it is seen that,

. Also, . So, the lower
bound for the gain , is obtained as follows:

(47)

Once again it can be seen that the singularity occurs when
is an integer multiple of . Moreover, if approaches this sin-
gularity, then the gain required for convergence gets arbitrarily
large. This shows that even though the condition
guarantees observability, it may cause some difficulty in prac-
tice if . This also explains why the knowledge of the
switching signal is required in general to compute the observer
gains.
The results of simulations with , ,

and , are illustrated in Fig. 3. The error initially evolves
according to the unstable system dynamics as no correction is
applied till . The figure clearly shows the hybrid nature
of the proposed observer, which is caused by the jump disconti-
nuity in the error signal. The error grows between the error up-
dates because the subsystem at mode has unstable dynamics,
but indeed gets smaller as increases.

IV. CONCLUSION

This paper addressed the characterization of observability
and determinability in switched linear systems with state
jumps. It was shown that, for a fixed mode sequence, the set
of switching signals over which these properties hold is either
empty or dense under a certain metric topology. To study
when the properties hold uniformly with respect to switching
times, we derived separate sufficient and necessary conditions
as corollaries to the main result. Later, using the property of
determinability, an asymptotic observer was constructed that
combines the partial information obtained from each mode to
get an estimate of the state vector. For practical considerations,
the proposed observer takes into account the time consumed in
processing the information. Under the assumption of persistent
switching, the error analysis shows that the estimate indeed
converges to the actual state exponentially.
As an extension to the current work, it may be interesting

to investigate how far these ideas carry over to nonlinear sys-
tems. The proposed method for observer design relies on the lin-
earity of the system (1), in the sense that one can easily compute
exact solutions of the linear system with zero inputs. In fact, it
is seen in (34) that the transportation of the partially observable
state information (represented by ), obtained at each mode, can
be computed even with some unobservable information (by ).
Since linearity guarantees that the observable information is not
altered by this transportation process, the unobservable compo-
nents are simply filtered out after the transportation. We empha-
size that this idea may not be transparently applied to nonlinear
systems, and may need a different approach as in [13] and [14].
However, the geometric approach adopted in this paper has been
applied to the study of observability in another class of switched
dynamical systems that comprise algebraic constraints [21].
Another interesting direction of research could be to make

the observer design robust to uncertainties in the system. These
uncertainties may manifest in two forms: perturbations in the
model of the system, and perturbations in the signals used
for constructing the state estimate. For example, in our work,
the observer assumed exact knowledge of the output and the
switching signal. It may happen that the output available to the
observer is quantized, or the switching times are not known
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exactly. Addressing such issues is nontrivial and requires
further research.

APPENDIX

A. Some Useful Properties

Let , , and be any linear subspaces, be a (not neces-
sarily invertible) matrix, and be matrices of suitable
dimension. The following properties can be found in the litera-
ture such as [23], or developed with little effort.
1) and .
2) , and .
3) , and

(with equality if and only if
, which holds, in particular, for any

invertible ).
4) , and

(with equality if and only if
, which holds, in partic-

ular, for any invertible ).
5) .
6) and .
7) and

.
8) and

.
9) and for any .
10) .

Now, with ,
11) and for all .
12) and .

B. Proofs

Proof of Theorem 2: It is first shown that, for any ,
a neighborhood of is also contained in . Recalling the
expression for from (5b), introduce the following matrix:

and let . Note that ,
so that if, and only if, has full column
rank, or equivalently , where denotes
the determinant of the matrix . Since comprises
analytic functions of , the determinant is also an ana-
lytic function. It is well-known that an analytic function is ei-
ther identically zero, or the set comprising zeros of an analytic
function has an empty interior [7, Ch. 4]. Therefore, the set

has an empty interior (with respect
to the topology induced by norm), and is closed. Hence, the
set is open and there exists an such that
for each , where
is associated with and satisfies since .
Now pick any such that . Then, the corre-
sponding belongs to , which implies showing
that is open.
Next, to show the denseness of , we pick , and

show that is the limit point of . In this case, ,

and . Since has an empty interior, for every ,
there exists such that . Let be the
switching signal corresponding to , then , proving
that every neighborhood of , with respect to metric , has
a non-empty intersection with .
Proof of Lemma 1: From the inclusion relation of (9), it

suffices to show that is the smallest subspace con-
taining where

. Let denote the smallest subspace
containing . Then, since is a subspace
containing by Property 9 in Appendix A, it
follows that . Next, pick any and let
be a matrix such that . From the definition of , it
follows that for all , but by continuity,
it also holds for all . Repeated differentiation of both
sides at leads to for , or
equivalently by Property 7 in Appendix A. This
shows that , and hence, .
Lemma 2: Suppose that the sequence satisfies

where . Then the following holds:

(48)

which implies that the maximum value of the sequence
over a window of length is strictly decreasing and con-
verging to zero, and thus, .

Proof of Lemma 2: By putting on the right-hand side,
it is clear that

(49)

Similarly, it follows that

where the last inequality follows from (49). By induction, this
leads to
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