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We study the problem of asymptotically stabilizing a switched linear control system using sampled and
quantized measurements of its state. The switching is assumed to be slow enough in the sense of combined
dwell time and average dwell time, each individual mode is assumed to be stabilizable, and the available
data rate is assumed to be large enough but finite. Our encoding and control strategy is rooted in the one
proposed in our earlier work on non-switched systems, and in particular the data-rate bound used here is

the data-rate bound from that earlier work maximized over the individual modes. The main technical step
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that enables the extension to switched systems concerns propagating over-approximations of reachable
sets through sampling intervals, during which the switching signal is not known; a novel algorithm is
developed for this purpose. Our primary focus is on systems with time-dependent switching (switched
systems) but the setting of state-dependent switching (hybrid systems) is also discussed.
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1. Introduction

The subject of this paper is control of switched systems based
on limited information about their state. More specifically, by “lim-
ited information” here we mean that measurements being passed
from the system to the controller are sampled and quantized us-
ing a finite alphabet, resulting in finite data-rate communication.
Our aim is to bring together two research areas - switched sys-
tems and control with limited information — which have both en-
joyed a lot of activity in the past two decades and made great
impact on applications, but synergy between which has been lack-
ing. The switched nature of the system enables one to capture
many processes encountered in practice which switch between
different modes of operation, while the limited nature of the com-
munication link between the system and the controller allows one
to incorporate scenarios where the controller is remotely located
or the sensors are limited. Combining the two aspects is essential
for the development of a unified framework for building and
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analyzing control systems capable of handling realistic dynamics
and realistic control architectures.

Feedback control problems with limited information have
been an active research area for some time now, as surveyed
in Nair, Fagnani, Zampieri, and Evans (2007) (several specifically
relevant works will be cited below). Information flow in a feedback
control loop is an important consideration in many application-
related scenarios. Even though in modern applications a lot of
communication bandwidth is usually available, there are also
multiple resources competing for this bandwidth (due to many
control loops sharing a network cable or wireless medium, or
microsystems with many sensors and actuators on a small chip). In
many applications one is also faced with constraints on the sensors
dictated by cost concerns or physical limitations, or constraints
on information transmission dictated by security considerations.
Besides multiple practical motivations, the questions of how much
information is really needed to solve a given control problem,
or what interesting control tasks can be performed with a given
amount of information, are quite fundamental from the theoretical
point of view. In the literature on control with limited information,
Lyapunov analysis and data-rate/transmission-interval bounds are
commonly employed tools (see, e.g., Liberzon, 2003b, Chapter 5;
Nesi¢ & Liberzon, 2009; Nesi¢ & Teel, 2004).

Switched and hybrid systems are ubiquitous in realistic system
models, because of their ability to capture the presence of two
types of dynamical behavior within the system: continuous flow
and discrete transitions. Amidst the large body of research on
switched and hybrid systems, particularly relevant here is the work
on stability analysis and stabilization of such systems, covered
in the books (Liberzon, 2003b; van der Schaft & Schumacher,
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2000), the survey (Shorten, Wirth, Mason, Wulff, & King, 2007),
and many references therein. Among the specific technical
tools typically employed to study these problems, common and
multiple Lyapunov functions and slow-switching conditions of the
(average) dwell-time type are prominently featured.

Control problems with limited information do not seem to have
received much attention so far in the context of switched systems.
(Some work has been devoted to quantized control of Markov
jump linear systems (Ling & Lin, 2010; Nair, Dey, & Evans, 2003;
Xiao, Xie, & Fu, 2010; Zhang, Chen, & Dullerud, 2009), but these
systems are quite different from the models we study. Besides, the
information structure considered in these references - except for
Xiao et al. (2010) which incorporates mode estimation - implies
that the discrete mode is always known to the controller, which
would remove most of the difficulties present in our problem
formulation. On the other hand, control of hybrid systems with
unknown discrete mode was also considered in Verma and Del
Vecchio (2012) but there the continuous state was not quantized.)
In view of the commonality of the technical tools employed for
the analysis of switched systems and for control design with
limited information, we contend that a marriage of these two
research areas is quite natural (implicit or explicit evidence of
this commonality can already be found in the above references
as well as in several other sources, including Girard, Pola, and
Tabuada (2010), Hespanha, Liberzon, and Teel (2008), and Vu and
Liberzon (2012)). In particular, (average) dwell-time assumptions
and multiple Lyapunov functions will play a crucial role in our
analysis.

In order to understand how much information is needed - and
how this information should be used - to stabilize a given system,
we must understand how the uncertainty about the system’s state
evolves over time along its dynamics. In more precise terms, we
need to be able to characterize propagation of reachable sets or
their suitable over-approximations during the sampling interval
(for a known control input). The reason is that at each sampling
time, the quantizer singles out a bounded set which contains the
continuous state and the controller determines the control signal
to be applied to the system over the next sampling interval; no
further information about the state is available during this interval,
and at the next sampling time a bounded set containing the state
must be computed to generate the next quantized measurement.
The system can be stabilized if the factor by which the state
estimation error is reduced at the sampling times is larger than
the factor by which it grows between the sampling times. Thus
propagation of reachable set bounds is a crucial ingredient in
the available results on rate-constrained control of non-switched
systems (such as Liberzon, 2003a which serves as the basis for
the present work), and the bulk of the effort required to handle
the switched system scenario is concentrated in implementing this
step and analyzing its consequences.

If the switching signal were precisely known to the controller,
then the problem of reachable set propagation would be just a
sequence of corresponding problems for the individual modes,
and as such would pose very little extra difficulty. (This would
essentially correspond to the situation considered, in a discrete-
time stochastic setting, in Nair et al., 2003.) On the other hand, if
the switching signal were completely unknown, then the set of
possible trajectories of the switched system would be too large
to hope for a reasonable (not overly conservative) solution. To
strike a balance between these two situations, we assume here that
we have a partial knowledge of the switching signal; namely, we
assume that the active mode of the switched system is known at
each sampling time, and that the switching is subject to a fairly
mild “slow-switching” assumption (described by a combination
of a dwell time and an average dwell time). If in addition the
allowed data rate is large enough, then we are able to design a

provably correct communication and control strategy to stabilize
the switched system.

We now outline in a bit more detail the sequence of steps that
we follow. In Section 2 we define the switched linear system that
we want to stabilize, explain what the information structure is, and
state the basic assumptions and the main result. In Section 3 we de-
scribe the basic encoding and control strategy which assumes that
appropriate bounds on reachable sets are available. Section 4 is de-
voted to generating such reachable set bounds. With these ingre-
dients in place, Section 5 completes the analysis through revealing
a cascade structure within the closed-loop system, constructing a
(mode-dependent) Lyapunov function which decreases in the ab-
sence of switching if the data rate is large enough, and invoking
the average dwell-time assumption to establish global asymptotic
stability. Section 6 contains a short simulation example. In Sec-
tion 7 we explain how our method can be adapted to hybrid sys-
tems by taking advantage of the knowledge of discrete dynamics.
Some concluding remarks are given in Section 8.

This paper is based on two conference papers (Liberzon, 2011,
2013). The first of these was devoted to switched systems, while
the second emphasized hybrid systems. The present paper ad-
dresses both system classes and provides proof details not included
in the conference versions; these proof steps are important be-
cause that is where the interplay between the mode-dependent
Lyapunov function and the average dwell-time is revealed. We also
made significant structural and notational improvements in this
version to make the presentation easier to follow.

2. Problem formulation
2.1. Switched system

The system to be controlled is the switched linear control
system

X =A,x+Bsu, x(0)=xg (1)

where x € R" is the state, u € R™ is the control input, {(A,, Bp) :
p € P}isacollection of matrix pairs defining the individual control
systems (“modes”) of the switched system, & is a finite index set,
and o : [0,00) — & is a right-continuous, piecewise constant
function called the switching signal which specifies the active mode
ateach time. The solution x(-) is absolutely continuous and satisfies
the differential equation away from the discontinuities of o (in
particular, we assume for now that there are no state jumps, but
state jumps can also be handled as explained in Section 7.3). The
switching signal o is fixed but not known to the controller a priori.
The discontinuities of o are called “switching times” or simply
“switches” and we let N, (t, s) stand for their number on a semi-
open interval (s, t]:

N, (t, s) := number of switches on (s, t].

Our first basic assumption is that the switching is not too fast, in
the following sense.

Assumption 1 (Slow Switching).

(1) There exists a number 7z > 0 (called a dwell time) such that
any two switches are separated by at least tg, i.e., N, (t,s) < 1
whent — s < 1y4;

(2) There exist numbers t, > 74 (called an average dwell time) and
Np > 1 such that

t—s
Ny(t,s) <Ng+ —— Vt>s=>0. (2)
T,

a

The concept of average dwell time was introduced in Hespanha and
Morse (1999a) and has since then become standard; it includes
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dwell time as a special case (for Ny = 1). Note that if the
constraint 7, > 74 were violated, the average dwell-time condition
(item 2) would be implied by the dwell-time condition (item 1).
Switching signals satisfying Assumption 1 were considered in Vu
and Liberzon (2011), where they were called “hybrid dwell-time”
signals.

Our second basic assumption is stabilizability of all individual
modes.

Assumption 2 (Stabilizability). For each p € & the pair (Ap, By) is
stabilizable, i.e., there exists a state feedback gain matrix K, such
that A, +B,K, is Hurwitz (all eigenvalues have negative real parts).

In the sequel, we assume that a family of such stabilizing gain
matrices K,, p € & has been selected and fixed. We understand
that (at least some of) the open-loop matrices A,,p € & are
not Hurwitz. Note, however, that even if all the individual modes
are stabilized by state feedback (or stable without feedback),
stability of the switched system is not guaranteed in general (see,
e.g., Liberzon, 2003b).

2.2. Information structure

The task of the controller is to generate a control input u(-)
based on limited information about the state x(-) and about the
switching signal o (-). The information to be communicated to the
controller is subject to the following two constraints.

Sampling: State measurements are taken at times t;, = kts, k =
0,1,2,...,where t; > 0is a fixed sampling period.

Quantization: Each state measurement x(t;) is encoded by an
integer from 0 to N", where N is an odd positive integer, and sent
to the controller. In addition, the value of o (t;) € & is also sent to
the controller.

As a consequence, data is transmitted to the controller at the
rate of (log,(N" + 1) + log, |#|)/ 7, bits per time unit, where |P|
is the number of elements in . We assume the data transmission
to be noise-free and delay-free. We take the sampling period 7; to
be no larger than the dwell time from Assumption 1 (item 1):

T, < 1g. (3)

This guarantees that at most one switch occurs within each
sampling interval, i.e,, o does not take any values other than
o (t) and o (tg1) on [ty tyy1].2 Since the average dwell time 7, in
Assumption 1 (item 2) is larger than 74, we know that switches
actually occur less often than once every sampling period. The
reason for taking the integer N to be odd is to ensure that the
control strategy described later preserves the equilibrium at the
origin.

Throughout the paper, we work with the co-norm ||X|cc =
maxi<i<y |X;| on R" and the corresponding induced matrix norm

lAllco = maXj<i<n Z}Ll |A;| on R™", both of which we denote
simply by || - ||. To formulate our final basic assumption, we define
Ap =€), pep. (4)

Assumption 3 (Data Rate). A, < N forallp € 2.

We can view the above inequality as a data-rate bound because it
requires N to be sufficiently large relative to s, thereby imposing
(indirectly) a lower bound on the available data rate. A very similar

2 This assumption is made for simplicity. It could be relaxed to allow multiple
switches, up to a fixed number, per sampling interval. To extend our approach to
this setting, we would need to consider all possible sequences of “hidden” switches
consistent with the received data. This would make our formulas more complicated
but would not cause conceptual difficulties.

data-rate bound but for the case of a single mode appears in
Liberzon (2003a), where it is shown to be sufficient for stabilizing
a non-switched linear system. That bound is slightly conservative
compared to known bounds that characterize the minimal data
rate necessary for stabilization (see, e.g., Hespanha, Ortega, &
Vasudevan, 2002; Tatikonda & Mitter, 2004). However, the control
scheme of Liberzon (2003a) can be refined by tailoring it better
to the structure of the system matrix A, and then the data rate
that it requires will approach the minimal data rate (see also the
discussion in Sharon & Liberzon, 2012, Section V). Therefore, it
is fair to say that Assumption 3 does not introduce a significant
conservatism beyond requiring that the data rate be sufficient to
stabilize each individual mode of the switched system (1).

2.3. Main objective

The control objective is to asymptotically stabilize the system
defined in Section 2.1 while respecting the information constraints
described in Section 2.2. More concretely, we want to provide a
constructive proof of the following result.

Theorem 1 (Main Result). Consider the switched linear system (1)
and let Assumptions 1-3 and the inequality (3) hold. If the average
dwell time 7, is large enough, then there exists an encoding and control
strategy that yields the following two properties:

EXPONENTIAL CONVERGENCE: There exist a number .. > 0 and a
function g : [0, 00) — (0, c0) such that for every initial condition
Xo and every time t > 0 we have

g%l (5)

LYAPUNOV STABILITY: For every € > O there exists a § > 0 such that

Xl <e

ol <8 = lIx(O] <& Vt=0. (6)

A precise lower bound on the average dwell time 7, will be derived
in the course of the proof (see the formula (38) in Section 5.3 as
well as Remark 2 there). The exponential decay rate A will also
be explicitly characterized (see the formula (43) in Section 5.4). As
for the function g in the exponential convergence property, from
the proof it will be clear that g(r) does not gotoOasr — 0
and that, in general, g grows faster than any linear function at
infinity (see the formula (44) in Section 5.4 and the discussion at
the end of Section 4.3). For this reason, Lyapunov stability needs
to be established separately, and the two properties (exponential
convergence and Lyapunov stability) combined still do not give
the standard global exponential stability, but rather just global
asymptotic stability with an exponential convergence rate.

The control strategy that we will develop to prove Theorem 1
is a dynamic one: it involves an additional state denoted by .
Theorem 1 only discusses the behavior of the state x, which is the
main quantity of interest, but it can be deduced from the proof
that the controller state X satisfies analogous bounds. We will
also see that X is potentially discontinuous at the sampling times
ty (which are not synchronized with the switching times of the
original system); in other words, our controller is a hybrid one.

3. Basic encoding and control strategy

In this section we outline our encoding and control strategy,
assuming for now that the state x satisfies known bounds at the
sampling times. The problem of generating such state bounds is
solved in the next section.

First, suppose that at some sampling time t,, we have

lIx(tk) I < Exy
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where E, > 0is a number known to the controller. (In Section 4.3
we will show how such a bound can be generated for an arbitrary
initial state xq, by using a “zooming-out” procedure.) At the first
such sampling time our controller is initialized. The encoder works
by partitioning the hypercube {x € R" : ||x|| < Ej,} into N" equal
hypercubic boxes, N per each dimension, and numbering them
from 1 to N" in some specific way. It then records the number of
the box that contains? x(ty,) and sends it to the controller, along
with the value of o (t;,). We assume that the controller knows the
box numbering system used by the encoder, so it can decode the
box number. It lets ¢y, € R" be the center of the box containing
x(ty,). We then have

Ekg
x(t —C < —.
1X(tig) = i ll = =5

Fort € [ty,, ty,+1), the control is set to

u(t) = K(,(tko)f((t)

where X is defined to be the solution of

&= (Aa(tko) + Ba(fko)KU(fko))’Ac = Atf(fko)i< + Ba(tko)u
with the boundary condition

X(tiy) = Cp-

At a general sampling time t;, k > ko + 1, suppose that a point
x; € R" and a number E; > 0 are known such that

lIX(tk) — x|l < Ey. (7)

Of course the encoder has precise knowledge of x; the quantities x;;
and E; have to be obtainable on the decoder/controller side, based
on the knowledge of the system matrices (but not the switching
signal) and previously received measurements. We explain later
how such x and E;, can be generated. The encoder also computes x;;
and E; in the same way, to ensure that the encoder and the decoder
are synchronized. The encoding is then done as follows. Partition
the hypercube {x € R" : ||x — x};|| < E;} into N" equal hypercubic
boxes, N per each dimension. Send the number of the box to the
controller, along with the value of o (t;). On the decoder/controller
side, let ¢, be the center of the box containing x(t;). This gives

() — all < 2 (8)
- N
and also
—1
loo—xil < N —Lg,. )

Note that the formula (9) is also valid for k = kg if we set x’,jo =0,
a convention that we follow in the sequel. For t € [ty, t;41) define
the control, along the same lines as before, by

u(t) = Ko X(t)

where X is the solution of

X = (At + Bo(tyKo ()X = As(tpX + Bot (10)
with the boundary condition
X(ty) = cr. (11)

The above procedure is to be repeated for each subsequent value of
k. Note that X is, in general, discontinuous (only right-continuous)
at the sampling times, and we will use the notation X(t,) =
lim; ~, X(t). In the earlier work (Liberzon, 2003a), x; was obtained
directly from % via x; := X(t,"). On sampling intervals containing
a switch this construction is no longer suitable (cf. Remark 1), and
the task of defining x} as well as Ex becomes more challenging.

3 In case X(ty,) lies on the boundary of several boxes, either one of these boxes
can be chosen.

4. Generating state bounds: over-approximations of reachable
sets

Proceeding inductively, we start with known x; and E; satisfy-
ing (7), where k > ko, and show how to find x; ; and Ey,; such that

[%(tk1) = Xy 1 | < Eier- (12)
Generation of Ej, is addressed at the end of the section.

4.1. Sampling interval with no switch

We first consider the simpler case when o (ty) = o (ty+1) =p €
#. By (3) we know that no switch has occurred on (ty, t;1], since
two switches would have been impossible. So, we know that on
the whole interval [ty, ty+1] mode p is active. We can then proceed
as in Liberzon (2003a). It is clear from (1) and (10) that the error
e := x — X satisfies & = A,e on [ty, ti41), and we know from (11)
and (8) that |le(ty)|| < Ex/N, hence

_ E,
||e(tk+1)|| =< Apﬁ( = Ex1 (13)
where Ap was defined in (4). It remains to let

Xjpr = ’A‘(tk_ﬁ) = W BTy (14)

and recall that x is continuous to see that (12) indeed holds.

4.2. Sampling interval with a switch

Suppose now that o (ty) = p and o (ty+1) = q # p. Then again
by (3) the controller knows that exactly one switch, from mode p
to mode g, has occurred somewhere on the interval (t, ty.1], but
it does not know exactly where. This case is more challenging.

Let the (unknown) time of the switch from p to g be t;+t, where
t € (0, 7).

4.2.1. Analysis before the switch
On [ty, ty + t) mode p is active, and we can derive as before that

_ R _ - E
Ix(ti + ) — R(te + D) < ||eAPf||ﬁ".

But X(t, + ) is unknown, so we need to describe a set that contains
it. Choose an arbitrary t’ € [0, 7;] (which may vary with k). By (10)
and (11) we have*

Rt + 1) = eWHBK o (15)
and

R(t + 1) = eWHBKDEO% 1 4 )

hence

[X(tk + 1) — X(tx + )|
< [leW BRI ED 113 4 ¢

< [l BRI [ B 1 .
We also have from (9) that
.. N—-1
leell < lxgll + TEk- (16)

By the triangle inequality, we obtain

— ~ ey /
IX(tk + ©) — Rt + )| < [[eB BRI e tBolo)t

. N—1 : B _
x (IIXkII + Ek) + IIEA"tIIN =t Diqa (B).

41 case either t; + t’ or t + t equals t; 1, the value of % at that time should be
replaced by the left limit X(t, + t'~) or X(t; + £~ ), respectively.
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4.2.2. Analysis after the switch
On the interval [ty + £, t;11), the closed-loop dynamics are

X A B.K X
<x> = <0q A, —ﬂBILKP) (x) (17)

Due to the mismatch between the modes governing the evolution
of x and X (these modes are g and p, respectively), the error e =
x — X no longer satisfies a closed-form differential equation, and
the behavior of x and % needs to be considered jointly. Letting

— (X 7 . (A ByK,
z2i= <x> Apg "(0 Ap+Bp1<p> (18)

we can write (17) in the more compact form

z = Apgz. (19)
The previous analysis shows that
7 &(tk + t/) r

Z(tk + t) <5\((tk + t/) =< Dk+1(t)
(noting the property |(a’, b")T|| = max{||a|, ||b||} of the oo-
norm). Consider the auxiliary system copy (on R?")
s = oo (Rt t)
Z = ApgZ, z(0) = <$<(tk i t’)) .
We have

2ty ) — Z(zs — DIl < 1€ 0| Dy (B).

We now need to generate a bound for the unknown Z(zs — ©).
Similarly to what we did before, pick a t” € [0, t,]. Then z(t") =

eAPqt/f(O) and z(t; — f) — e/_lpq(rs_f_tu)z(t”)’ hence
1z(ts — E) — z(t”)” < ||eAPq(IS*E*f”) —1I| ||2(l’”)||
< 0 —q et 1z0))
A P - .
= [P gy ef e + )

A e " A " ! N - 1
< [T et et (nx;:n + Tsk)

where we used (15) and (16) in the last step. By the triangle
inequality,

lz(t, ) — 2| < [l — g
e“_‘ 1111 o(Ap+BpKp)t’ * N-1
x || ||| PR g I + N
+ 11! DDy () = By ()
To eliminate the dependence on the unknown t, we take the
maximum over t (with t’ and t” fixed as above):

0<t<ts 0<t<tg

Epy1 == max E () = max {”equ(Ts—f—[//) _
5 N -1
4 Ap+BpKp)t’
x [|eat |||l B (IIX;’QII + TEk)
+ ||equ(z5—E>” <||e(Ap+Bpr)(f_tf) —1| ||e(Ap+Bp1<p)[/ I

N—1 i Ex
X<||X7§||+ N Ek)+||€A”tIIN>}-

We can use the inequalities

IM =1 < IM[[+ 1, [le®] < el (20)

to obtain a more conservative upper bound which is more useful
for computations:

A " 1" i ,
Ep1 < (e\lﬂqu max{t” ts—t"} | 1)[| et [[[e@+Bokn)t’ |

N-—1 i
x (nx;:u + Ek) + el

> <(elAp+Bpr max{t’,zs—t') + 1)||e(Ap+Bpr)f’ I

N—1 E,
x (x| + ——E ellplls =), 21
(|| Wl +—5 k) + N (21)

Note that this formula simplifies considerably if we sett’ = t” = 0,
but the original expression for Ej, ¢ is not necessarily minimized
with this choice of t" and t”. Finally, x;, , is defined by projecting
Z(t”) onto the x-component:

X;t_._] = (Inxn Onxn)i(t”)

_ Apgt” (R(t +t)
= e 0ne) e (30 11)

nxn

= (lxn Onen) Anat” ann) MBI (22)

Remark 1. Another possibility would be to still define x;, via
(14), which is simpler than the above expression and does not
involve choosing t’ and t”. However, the corresponding bound Ej., ;
may then be much larger, especially if the switch happens close to
the beginning of the sampling interval (because after the switch, X
is not a good approximation of x).

4.3. Generating an initial state bound Ej,

Initially, set the control to u = 0. At time 0, choose an arbitrary
Ey > 0 and partition the hypercube {x € R" : ||x|| < Ep} into N"
equal hypercubic boxes, N per each dimension. If x, belongs to one
of these boxes, then send the number of the box to the controller.
Otherwise send 0 (the “overflow” symbol). Choose an increasing
sequence Eq, E;, ... that grows fast enough to dominate the rate
of growth of the open-loop dynamics. For example, we can pick a
small ¢ > 0 and let

Ep = e@ro maxper IMplltep - =12, . ... (23)

There are other options but for concreteness we assume that
the specific “zooming-out” sequence (23) is implemented. Repeat
the above encoding procedure at each step. (As long as the
quantization symbol is 0, there is no need to send the value of
o to the controller.) Then we claim that there will be a time f,
such that, for the corresponding value Ey,, the symbol received by
the controller will not be 0. At this time, the encoding strategy
described in Section 3 can be initialized.

To see why the above claim is true, consider a sampling interval
[tk, tkr1] on whichu = 0.If 6 = p € £ on this interval, then
the dynamics are x = A,x from which it follows that |[x(t)|| <
AplIx(te) || on this interval, where

Ay = 01115a<)§s lle?s . (24)

If, on the other hand, the sampling interval contains a switch from
mode p to another mode g, then the dynamics become ¥ = Agx
after the switch and a (conservative) bound is now [x(t)| <
AgAp|lx(ty)|| for t € [ty, tyq]. Iterating, we obtain that [|x(¢)| <
maxyep AZ|[X|l on [0, 6] as long as u = O there. Since A, <

el®l7s the values of Ej in (23) grow faster than the largest values
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that ||x(t)]|| can attain on the intervals [t;_1, t;] under zero control.
It follows that kg is indeed well defined and there exist functions
n:[0,00) = Zspand y : [0, 00) — (0, 0o0) such that

ko < n(lixol),  Exy < ¥ (llxolD) (25)
and
XN < y(ixoll) V¢t € [0, ty,]. (26)

Both functions depend on the initial choice of Ey. Note that we can
pick them so that n(r) = O and y (r) = E, for all r < Ey. For large
values of its argument, y (-) is in general super-linear. In fact, we
can calculate that y (r) is of the order of r2/Ey, and 5(r) is of the
order of (maxyep ||ApllTs) ™! log(r/Eo), for large values of r.

5. Stability analysis

In this section we prove that the encoding and control strategy
developed in Sections 3 and 4 fulfills the properties listed in
Theorem 1.

5.1. Sampling interval with no switch

Consider an interval [ty, tyr1], kK > ko on whicho =p € P, as
in Section 4.1. Rewrite (14) as

Xey = ePotBpKp)Ts e(Ap+Bp1<p)rs(X;: + AY
= Spx; + Sp Ak 27)

where

Ap == Cr — X,t, Sp = eAp+BpKp)Ts (28)

We know from (9) that

Akl =

Ey (29)

and we know that S, is Schur stable because A, + BpK,, is Hurwitz.
Also, (13) and Assumption 3 give us

A
Epp1 = WpEk < Ek. (30)

We see that, as long as there are no switches, E, decays
exponentially and x;; evolves according to an exponentially stable
discrete-time linear system whose input Ay is bounded in terms
of Ei. It is then well known that the overall “cascade” system
describing the joint evolution of x;; and E is exponentially stable.
We now formalize this fact by constructing a Lyapunov function
in the form of a weighted sum of a quadratic form in x} and EZ,
along standard lines. This Lyapunov function will depend on p, the
currently active mode. Let P, = Py > 0and Q, = Q, > 0 be such

that
SyPpSy — Py = —Q, < 0. (31)

We let A(-) and A(-) denote the smallest and the largest eigenvalue
of a symmetric matrix, respectively. Define

1
a1p = SMQ), (32)

2n2||STP,S, |12 N-1)\°
= —22 tastes,) ) (—— ) .
e ( oy s ) ()

Let p, be a positive constant large enough to satisfy

A2
Frp + L <1
Pp N2
(such a p, exists because the second fraction is less than 1 by
Assumption 3). We now define

Vo (X5, Ex) == () Ppxi + ppEr. (33)

Lemma 1. The function V, satisfies

Vp(X?;+1’ Ek+l) < va(x:’ Ek)

where
V = max vp,
pPEP
2 (34)
ayy, B, A
vy i=max{1— —2 Py PV 1.

n(P)’ pp | N2

Proof. This is a slightly lengthy but straightforward calculation;
see Appendix A.1. O

5.2. Sampling interval with a switch

Next, consider an interval [ty, tyr1], kK > ko which contains a
switch from mode p to mode g, as in Section 4.2. We know from
(22) that x;, ; = Hpgc = Hpg(x; + Ax) where Hpq is a matrix
defined by

Hpq = (Iﬂxn Onxﬂ) equtN (;nxn) e(AP+BPKP)t/

nxn

(note that Hy, = I'ift’ = t” = 0) and Ay is defined in (28) and
satisfies (29). This gives

. N N-—-1
X1l < hpg | 1% Nl + ——Ex
N
where hy := ||[Hpqll. We also know from (21) that

Ei1 < 02,pgllXg Il + B2,pgEr
where
0ty pg = (eMoal 1) g ) et ootk

+ elApallTs (EHAP+B,,1<,JH max(t' re—t') | 1) e B | (35)

(this simplifies to o pg = (e!al™ + 1) 4 elApallts (elA+Bok5 1% 4 1)
ift' =t" =0)and

N-1 2 1
IBZ,pq = 0y pq N + eHqu“Tse”ApHTsﬁ. (36)

Extending the construction of the mode-dependent Lyapunov
function (33) to all modes p € &, we have the following result.

Lemma 2. The functions V), and V, satisfy
Vq (X])i‘_]a Eit1) < uv, (Xlt7 Ey)
where

M= max Wu
POp#EP pa

200 (P h2, + 20403
= max[ N (37)

A(Pp)

2ni(Pyh?, (N - 1)2 N

ZPq,BZZ,pq
Pp N

Pp
Proof. This is another direct calculation; see Appendix A.2. O
5.3. Combined bound for sampling times

We now invoke item 2 of Assumption 1 (the average dwell-time

property) and derive a lower bound on the average dwell time 7,
that guarantees convergence.
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Lemma 3. Let v and u come from Lemmas 1 and 2, respectively. If

lo
Ty > (1 + glf) T (38)
log

then there exists a @ € (0, 1) such that
HANo ey 2
Voo (B0 = (5) 04 omax B, Vi = ko.

Proof. This is again a direct calculation; see Appendix A.3. O

Lemma 3 immediately leads to the bounds

Vo'(tk) (X;‘; s E’()

Xl < :
min A(Pp)
pEP
max p,
H\N iy | b " 3
< - ko (39)
v min A(Pp)
peP
and
No/2
Bo< (5)" 0tor (40)

for all k > ko. Recalling that, by (7), [[x(t)|| < [Ix;|l + Ex for all
k, we obtain an exponential decay bound for ||x(ty)| given by the
sum of the right-hand sides of (39) and (40). We will not need this
combined bound, though; only the individual bounds (39) and (40)
will end up being used in what follows.

Remark 2. Lemma 3 provides considerable insight into the inter-
play between the speed of switching, data rate, and stability, al-
though the relationships between the various quantities are not
simple. First, the condition (38) makes it clear that, as expected,
larger average dwell time (slower switching) is favorable for sta-
bility of the closed-loop switched system. The effect of increasing
N, which means increasing the data rate, can be traced through the
formulas derived earlier in this section. If N is increased then the
second term inside the maximum that defines v, in (34) decreases
(assuming that p, and all other constants stay the same), which
may thus lead to a decrease in v. At the same time, it is easy to
see from (35)-(37) that as N is increased u stays bounded (be-
cause B, ,q approaches a; p; which does not depend on N). It is
also interesting to notice that, since a1 ;, is defined by (32), the first
term inside the maximum defining v, in (34) decreases as the ratio
A(Qp)/A(Py) increases. In view of (31), increasing this ratio corre-
sponds to moving the eigenvalues of the matrix S, defined in (28)
closer to the origin. Hence, we may decrease v, by choosing K, that
improves Schur stability of this matrix (and/or by increasing N as
we already explained), although this of course affects u, as well. If
we are able to decrease v without increasing i, then we obtain a
decrease of the right-hand side of (38), which means that the lower
bound on the average dwell time t, required in Lemma 3 becomes
less restrictive. Finally, we note that the right-hand side of (38) de-
pends on t; not only directly but also through the constants i and
v, and this dependence goes all the way back to the matrix Sp,.

5.4. Intersample bound and exponential convergence

We are now ready to establish the first claim of Theorem 1
(exponential convergence). To do this, we modify relevant
calculations from Section 4 to derive bounds that are simpler (in
particular, we work with t" = t” = 0) and more conservative, but
apply to the whole sampling intervals and not just to the sampling

times. Consider an interval [t, tx4+1] with a possible switch at a
time t; + t in its interior. For all t € [t,t) some mode p € &
is active, and we have

. - E
lx(t) — x| < Apﬁ

where A, was defined in (24). Since X(t) = e k)=t ¢, we
have

IX(t) — cll < max [+ — 1|
0<s<ts
N-—-1
< max ||e(Ap+Bpr>5 —1I (||x;:|| + Ek>
0<s<ts N

and so, by the triangle inequality,

[x(t) — cill < max [[eb B |
0<s<ts

N—1 _ E _
x (kg + Ee )+ Ap— = Diyr.  (41)
k N PN +

After the switch (if there is indeed a switch) to another mode
q, the closed-loop dynamics are given by (17)-(19). The previous
formulas show that

= Ck
Z(te+t) — (c, )

Consider the auxiliary system copy (in R?")

kX - - Ck
Z = ApgZ, z(0) = < ) .
Ci

Forallt € [ty + ¢, ty.1) we have

=< Dk+lc

lz(t) = Z(t — t — O] < max [|e**||Dyy.
0<s<ts

Next, Z(t — ty — ) = efa(—&=DZ(0), hence

IZ(t =t — 1) — Z(0)]| < max [le® —I]|Z(0)]
0<s<rts

< max [l —TI||]lc|
0<s<ts

Z N-—1
< max [ — ]| (IIX??II + 7Ek> .
0<s<ts N

By the triangle inequality,

l2(t) = 2(©)]) < max [l —1]
<S=<Ts

.. N—1 i _
X I+ Ex | + max [|€%%||Dyyq =: Egsr.
N 0<s=<7s
Projecting onto the x-component, we deduce that
Ix(t) = cll < Exgr-

This subsumes the earlier bound (41) valid for the times before the
switch, i.e., we can use this bound on the whole interval. We obtain

" N-—-1
IXON < lleell + 11x(t) — el < %] + TE’(

+Ek+1 = O53,17(1”)‘:” + ,33.pqu
where

g = 1+ max llefees — 1|

<S<Ts
+ max [|e™|| max |eP Bl
0<s<ts 0<s<ts
and

N-—-1 - 1
‘= 03 jg——— + max ||e’*| max ||| —.
B3.pq 3Py + I Il Jnax lle™*|] N

0<s=<t
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(As before, we can use the inequalities (20) to derive more
conservative but more computationally friendly upper bounds.)
Invoking the earlier bounds (39) and (40), we conclude that for all
t € [ty, tyr1), k > ko we have

Ix()|| < co* 02, (42)
where
- U\ No/2 ?‘3;3”’1’
C = (—) max o3 pq | —————

v p.geP min A(Pp)

pEP
max
+ max B3.pq

We can now establish a continuous-time exponential decay bound:
rewriting (42) as

_ 1 _ 1ot 4
b (i), < colth1-tog,

1 1+ko .
() o

and recalling the initial bounds (25) and (26), we finally arrive at
the desired exponential convergence property (5) with

x|

IA

1 1
A= 275 log 7 (43)
and
1 1+n(r)
g(r)=c (ﬂ) y(r). (44)

5.5. Lyapunov stability

The proof of the second claim of Theorem 1 (Lyapunov stability)
proceeds along the lines of Liberzon (2003a) and Liberzon and
Hespanha (2005). Suppose that for the first few time steps k =
0,1,...,k; — 1 we have ¢, = 0, i.e, x(ty) is in the central
quantization box. (Recall that N is odd.) Then in particular ky = 0.
The following is true for these values of k. First, the formulas for
propagation of x; and Ej from Section 4 can be refined. If there is
no switch on (ty, ty+1], then (14) implies that x;_; = 0, and (30)
holds for some p. If there is a switch from p to g, then x; , is still 0
by (22), and

S\ A
= pes|| ZPE, — p
Ecpr = max [[eees| ~ e = S B

where

i A
2y, = max || =2
0<s<7s A,

and /_lp was defined in (24). The intersample bounds can also be
refined, because X = 0; the same analysis as in Section 4.3 applies,
giving us

IXOI = max A7 Ixoll V¢ € [0, ] (45)

Adopting (48), we have
A\ K No+X [ A k
No (0,t) p 0t m p
S2p0 (Ot (N> Bo< 2 ") o

A k
N 1/m 7P
2,0 (.qu N ) Eo (46)

Ex

IA

T 7

1
o switch i

4 L I I L
0 5 10 15 20 25
time
Fig. 1. Simulation example.
fork=0,1,...,k — 1, and this decays exponentially to 0 if m is

large enough so that
A
Q)mE <1
pq N

We note that the earlier formula (42) is valid for every k; > ko in
place of ky:

Ix(@©) || < co** V2E, Vit e [t, tirr), k> k. (47)

Now Lyapunov stability can be proved in three steps. First, given an
arbitrary ¢ > 0, we see from (47) that E, < &/c guarantees that
Ix(t)|| < eforallt > t;,.Second, taking E, as fixed, use the decay
bound (46) for E to calculate a value of k; for which E,, < ¢/c.

Finally, pick a 6 small enough so that max,c» Af,’“s < ¢and

. k=1
min Ap\ ' E

— ki — peP )

max AZK72§ < —=.
peP N N

This ensures that, by (45), [|x(t)]| stays below ¢ for 0 < t < t,
and that x falls within the central quantization box at the sampling
times t;, 0 < k < k; — 1, making the above analysis valid. With §
so chosen, we have the implication (6). This completes the proof of
the main result.

6. Simulation example

We simulated the above control strategy with the following
data: » = (1,241 = (3 %).B = (5). ki = (-2 0),
A, = (_01 é),Bz = (?),Kz = (O —1),X0 = (2, 2)T,E() =
0.5, 7, = 0.5, N = 5 (Assumption 3 is satisfied), t; = 1.05, 7, =
7.55, and Ny = 5. We chose both t’ and t” to be 0 (a few other
values we tried did not lead to better results). Fig. 1 plots a typical
behavior of the first component x; of the continuous state (in solid
red) and the corresponding component X; of the state estimate (in
dashed green) versus time; switches are marked by blue circles.
Observe the initial “zooming-out” phase and the nonsmooth
behavior of x when X experiences a jump (causing a jump in the
control u). The above value of the average dwell time 7, was
picked empirically to be just large enough to provide consistent
convergence in simulations. For this example, the theoretical lower
bound on the average dwell time 7, from the formula (38) is about
85.5 which is, not surprisingly, quite conservative.

Guided by the observations made in Remark 2, we can adjust
parameter values and see how this affects the theoretical average
dwell-time bound given by (38). Changing the first control gain
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in K; (let us label it as K;,1) from —2 to a smaller value moves
one eigenvalue of A; + B1K; to the left while the other eigenvalue
remains at —1, and this does not lead to a decrease of the average
dwell-time bound. In fact, the opposite is true: for K;; < —2 the
average dwell-time bound goes up (due to an increase in w ), while
for K;; = —1.5 it goes down to about 81.7. On the other hand,
decreasing slightly the second control gain in K, (let us label it as
K, 7) from —1, thereby moving both eigenvalues of A, + B,K; to
the left, does yield a decrease in the average dwell-time bound.
With K; , = K31 = —1.5, the right-hand side of (38) is just below
75 (although for K> < —1.5 it starts going up again). Increasing
N for this system is not beneficial (at least as far as our theory
goes) because it increases . Here N can be as low as 2 to satisfy
Assumption 3, and the optimal value appears to be N = 3 which
gives (with both control gains still at —1.5) the average dwell-time
bound of about 74.3. Clearly, we are not able to approach the value
T, = 7.55 observed to work in simulations.

7. State-dependent switching

Here we consider systems with state-dependent switching
(hybrid systems). In a hybrid system, the abstract notion of the
switching signal o that we used to define the switched system
(1) is replaced (or, we may say, realized) by a discrete dynamics
model which generates the sequence of modes, based typically
on the evolution of the continuous state. Many specific modeling
formalisms for hybrid systems exist in the literature, but a common
paradigm which we also have in mind here is that each mode
corresponds to a region in the continuous state space (sometimes
called the invariant for that mode) where the corresponding
continuous dynamics are active, and transitions (or switchings)
between different modes take place when the continuous state x
crosses boundaries (called switching surfaces, or guards) between
these regions. At the times of these discrete transitions, the value
of x in general can also jump to a new value according to some reset
map. (For more details on such hybrid system models see, e.g., van
der Schaft & Schumacher, 2000.)

Thus, compared to the switched system model (1), the two main
new aspects that must be incorporated are switching surfaces and
state jumps. We will address both these aspects in what follows.
However, since we saw that propagating (over-approximations of)
reachable sets is a key ingredient of our control strategy, we first
discuss some relevant prior work on reachable set computation
for hybrid systems in order to put our present developments in a
proper context.

7.1. Comparison with existing reachable set algorithms

Without aiming for completeness, we give here an overview of
some representative results. We classify them roughly according to
the type of dynamics in the considered hybrid system model and
the shapes of the sets used for reachable set approximation.

Early work by Puri, Borkar, and Varaiya on differential in-
clusions (Puri, Borkar, & Varaiya, 1996) approximates a general
nonlinear differential inclusion by a piecewise constant one, and
computes over-approximations of reachable sets which are unions
of polyhedra. Henzinger, Ho, and Wong-Toi (1998) and PreuRig,
Stursberg, and Kowalewski (1999) approximate hybrid systems by
rectangular automata (hybrid systems whose regions and flow in
each region are defined by constant lower and upper bounds on
state and velocity components, respectively) and base reachable
set computation on the tool HyTech; Frehse later developed a re-
fined tool, PHAVer (Frehse, 2005), for a similar purpose. Also re-
lated to this is reachability analysis using “face lifting” (Dang &
Maler, 1998). Asarin, Bournez, Dang, and Maler (2000) and Asarin,

Dang, and Maler (2002) work with linear dynamics and rectangu-
lar polyhedra and develop the tool called d/dt. They reduce the
conservatism due to the so-called “wrapping effect” by combin-
ing propagation of exact reachable sets at sampling instants with
convex over-approximation during intersample intervals. Similar
ideas appeared in the earlier work of Greenstreet and Mitchell
(1998) who also handle nonlinear models and non-convex poly-
hedra by using two-dimensional projections. Mitchell and Tomlin
(2000) and Tomlin, Mitchell, Bayen, and Oishi (2003) work with
general nonlinear dynamics and compute reachable sets as sub-
level sets of value functions for differential games, which are so-
lutions of Hamilton-Jacobi PDEs. Kurzhanski and Varaiya (2005)
work with affine open-loop dynamics and use ellipsoids for reach-
able set approximation (based on ellipsoidal methods for con-
tinuous systems developed in their prior work). They handle
discrete transitions by taking the union of reachable sets over pos-
sible switching times and covering it with one bounding ellipsoid.
Chutinan and Krogh (2003) compute optimal polyhedral approx-
imations of continuous flow pipes for general nonlinear dynam-
ics, using the tool CheckMate. Stursberg and Krogh (2003) work
with nonlinear dynamics and “oriented rectangular hulls” relying
on principal component analysis. Girard (2005) and Girard and
Le Guernic (2008) use a procedure similar to that of Asarin et al.
mentioned earlier, but work with zonotopes (affine transforms of
hypercubes) which allow more efficient computation for linear
dynamics. More recently, this approach was refined with the help
of support-function representations (Le Guernic & Girard, 2009)
and the accompanying tool SpaceEx (Frehse et al, 2011) was
developed. Other examples of very recent work in this area are
the result of Kim, Mitra, and Kumar (2011) on computation of
g-reach sets and the timed relational abstraction scheme of Zutshi,
Sankaranarayanan, and Tiwari (2012) for computation of reachable
set over-approximations.

There are several similarities between our method and the
previous ones just mentioned. Like d/dt and related techniques,
we also reduce the conservatism due to the “wrapping effect”
by making a distinction between sampling and intersample
approximations (the bounds derived in Sections 4 and 5.3 are valid
at sampling times only and they are sharper than the intersample
bounds derived in Section 5.4). Also, similarly to Kurzhanski
and Varaiya, we handle discrete transitions by taking the union
of reachable sets over possible switching times and covering it
with one bounding set, except we work with hypercubes rather
than ellipsoids. On the other hand, in spite of the multitude of
available methods, these methods were designed for reachability
verification and are not directly tailored to control problems of the
kind considered here. There are at least two important reasons why
we prefer to build on the method from Section 4 rather than just
adopt one of the above methods for dealing with hybrid systems:

(i) The methods just mentioned are computational (on-line) in
nature; by this we mean that approximations of reachable sets
are generated in real time as the system evolves. By contrast,
the method from Section 4 is analytical (off-line). Indeed, the
size of the reachable set bound Ej; at each time step, as well
as the center point x;, are obtained iteratively from the for-
mulas given in Section 4. In other words, knowing the system
data (the matrices A, and B, as well as the control gains Kj,),
we can pre-compute these bounds; there is no need to syn-
chronize their computation with the evolution of the system.
Consequently, the corresponding lower bound on the data rate
required for stabilization can be obtained a priori, which makes
more sense in the context of applications where communi-
cation strategies are designed separately from on-line control
tasks. (On the negative side, this makes the bounds on reach-
able sets that our method provides more conservative.)
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(ii) Our method is tailored specifically to linear dynamics and to
sets in the shapes of hypercubes. Our choice of hypercubes as
bounding sets is very natural from the point of view of quan-
tizer design with rectilinear quantization boxes, such as those
arising from simple sensors. (However, in other application
contexts it may be possible to work with different set shapes.
For example, zonotopes - which are affine transforms of hy-
percubes - would correspond to pre-processing the contin-
uous state by an affine transformation before passing it to a
digital encoder; this generalization appears to be quite promis-
ing for more efficient computations.)

7.2. Switching surfaces

With regards to hybrid systems where mode switching oc-
curs on switching surfaces, the first observation is that our The-
orem 1 already covers such systems, because our reachable set
over-approximation is computed by taking the union over all pos-
sible switching times f (see Section 4). Indeed, a switched system
admits more solutions than a hybrid system (for which it serves
as a high-level abstraction), and so our stabilization result conser-
vatively captures the hybrid system solutions. The main issue is
to verify that a given hybrid system fulfills the slow-switching as-
sumption (Assumption 1), i.e., that all solutions satisfy the dwell-
time and average dwell-time properties specified there. This can
be difficult, but is possible in some cases. Notable examples are hy-
brid systems whose switching surfaces are concentric circles with
respect to some norm, or lines through the origin in the plane.
(Average dwell time is not directly helpful but in these cases we
can compute dwell time, assuming linear dynamics in each mode.)
Some more interesting examples where time-dependent proper-
ties (of dwell-time type) are established a posteriori for control
systems with state-dependent switching can be found in Hespanha
and Morse (1999b) and Liberzon and Trenn (2010). Thus, translat-
ing a hybrid system to a switched system and applying our previ-
ous result off-the-shelf via verifying the slow-switching condition
can actually be a reasonable route to follow. In fact, since our strat-
egy guarantees containment of the reachable set at each sampling
time within a bounding hypercube, we can just run it and verify
empirically whether or not the switching is slow enough for con-
vergence. This is what we actually did in the simulation example
given in Section 6; in some sense it moves us closer to the on-line
computational methods cited above.

A better approach, however, is to improve our reachable set
bounds by explicitly incorporating the information available in
a hybrid system about where in the continuous state space the
switching can occur. Recall that our information structure makes
the current mode available to the controller at each sampling time
t. So, for example, if we know as in Section 4.1 that no switch has
occurred on an interval (¢, ty+1] and o(t) = p there, then the
hypercube {x € R" : |lx — ;| < Exs1}, which contains the
reachable set at time t = t;,1, can be reduced by intersecting it
with the invariant for mode p. In other words, if a guard passes
through this hypercube then we keep only the portion lying on
that side of the guard on which mode p is active; the point x;_
can also be redefined at this step. The resulting reduction in the
size of the bounding set can be quite significant, especially if the
set {x : |lx — x;|| < Ei}attimet = t; was close to some of
the switching surfaces. (Note, however, that if the reachable set
over-approximation at time ¢, must be a hypercube, then some
or all of this size reduction might become undone when passing
to a bounding hypercube.) Or, consider the situation of Section 4.2
where a sampling interval (t, ty+1] contains a switch fromo = p
to 0 = q at an unknown time t. The bounding set before the
switch, {x : [|x — X(tx + t")|| < Diy1(t)} (see Section 4.2(a))
can be reduced in the same way as above by intersecting it with

.
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Fig. 2. Reachable set over-approximation: before reduction (left) and after
reduction (right).

the invariant for mode p. (Since t is unknown, we should either
treat it as a parameter for this computation or take the maximum
over t first; (20) is helpful for doing the latter.) Then, when this
possibly reduced intermediate bounding set is used to calculate
the bounding set after the switch, which we previously defined as
{x : Ix—x¢, 1|l < Exs1} (see Section 4.2(b)), we may reduce it again,
this time intersecting it with the invariant for mode q. Overall, this
can lead to a significant reduction in the size of the reachable set
over-approximation compared to the method of Section 4 which
does not assume any relation between the continuous state x and
the switching signal (but again, working with hypercubes would
not allow us to take full advantage of this size reduction).

We illustrate the last point with a simple example. Consider
again the scenario when o (ty) = p and o (ty+1) = ¢q. Suppose
that switching from ¢ = p to 0 = q occurs on a hyperplane,
represented by the slanted line in Fig. 2, with mode p being active
on the left of this hyperplane and mode g being active on the right
of the hyperplane. Suppose that our original algorithm gives the
bounding hypercube shown on the left side of the figure. Here,
Xi,1 is on the “wrong” side of the switching hyperplane, since we
know that x(ty41) lies on the other side, i.e., it belongs to the part of
the hypercube that is below the hyperplane. Accordingly, we can
find a smaller hypercube that is still guaranteed to contain x(t1);
this reduced bounding set is shaded in gray on the right side of the
figure. Of course, the relative size of the two hypercubes depends
on the position of the hyperplane relative to the larger hypercube.

Additionally, the knowledge of switching surfaces can be used
to obtain some information about the unknown switching time ¢:
for example, if at time t;, we are far from any switching surface,
then using the system dynamics we can calculate a lower bound
on the time that must pass before a switch can occur.

7.3. State jumps

The reachable set propagation method of Section 4 assumes that
there are no state jumps at the switching times, i.e., the reset map
is the identity. However, it is not very difficult to augment it to
nontrivial reset maps. Specifically, if we have a reset map Rpq :
R" — R" which defines the new state Ry, (x) to which x jumps at
the time of mode transition from p to g, all we need is a knowledge
of some affine Lipschitz bound of the form ||[Rpq(X1) — Ryq(x2)|l <
allx; — x2|| + b. Then, we can apply the transformations ¢
Ryq(c) and D + aD + b to the reachable set over-approximations
of the form {x lx — c|| < D} obtained at each time that
corresponds to a switch (these times are t,+t on sampling intervals
containing a switch, see Section 4.2). We can continue working
with hypercubes because after incorporating resets in this way we
still obtain hypercubes. We see that accounting for state jumps
does not lead to substantial complications in our reachable set
algorithm. (The same claim is true for most of the other existing
reachable set algorithms from the literature: many of them assume
the identity reset map but can be generalized with not much
difficulty.) The stability analysis can proceed similarly, with the
constants a, b affecting the evolution of the Lyapunov function and
leading to a modified average dwell time bound.
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8. Conclusions

We presented a result on sampled-data quantized state feed-
back stabilization of switched linear systems, which relies on a
slow-switching condition in the sense of combined dwell time and
average dwell time and on a novel method for propagating over-
approximations of reachable sets for switched systems. We also
explained how this result can be applied in the setting of hybrid
systems, where it can actually be improved by utilizing the knowl-
edge of discrete dynamics. Future work will focus on refining the
reachable set bounds (by trying to find the optimal choice of the in-
termediate points t’ and t”, by working with bounding sets other
than hypercubes, by fleshing out the ideas of Section 7 for specific
classes of hybrid systems, and possibly by combining our method
with other known reachable set algorithms for hybrid systems);
relaxing the main assumptions (to allow, in particular, multiple
switches per sampling interval and less frequent transmissions of
the mode value ¢); and addressing more general systems (by in-
corporating external disturbances, modeling uncertainty, nonlin-
ear dynamics, and output feedback).

Acknowledgments

The author thanks Aneel Tanwani for helpful comments on an
earlier draft and Sayan Mitra for useful discussions of the literature.
Thoughtful comments of the anonymous reviewers, which helped
improve the paper, were also appreciated.

Appendix. Proofs of the technical lemmas

A.1. Proof of Lemma 1

The oo-norm || - || and the Euclidean norm | - | are related by
x|l < x| < /nllx]|, hence

Q) [IX11* < X" Qpx < nA(Qp) X%,

Proceeding similarly to Jiang and Wang (2001, Example 3.4), we
have from (27) that

(Xlt+1)TPlet+1 - (x,’:)TprZ
= (SpX; + SpAr) Py (Spx; + Sy Ak) — (x5) " Ppxi
= (x;:)ng PySpxi — (%) Pyx; + 2(x;;)T5; P,SpAx + A{s; P,Sp Ax

= — () Qi + 2(60)"S; PpSy Ax + ALS; PySp Ar
< =A@ X117 + 20X 1S, PoSp I | Awll + 1Sy PpSyll 1| Al

1 1
= —EA(QP)IIXZ‘IIZ -3 <\/1<Qp)||x7:||

2
_2n||s;Ppsp||||Ak||> <2n2||s;Ppsp||2

VAQ) 1(Qp)
1
+n||s;Ppsp||> 14kl? = =2 2@ IXI?

217 (IS} PySp I
A(Qp)

Using (29) we obtain

+ n”S;PpSp”) Akl

T T 2 2
(es1) PoXiq — (%) Poxy < —a pllxll” + B pEy.

By definition of V, we now have

* * T * 2
Vo (Xe1s Bk 1) = X)) PoXipq + opEiq
2
T 2 2 P2
< (Xi) pr;: - al,p”X?; ” + /31,pEk + %) mEk

2
U1p  a\Tp o+ Bip | 4 2
< HTPx — =—2-(x)TPxt + | =2 + L) p,E
k) FpX ni(P,) k) FpXk p Nz | Ptk
=< vap(xz, Ey) < va(x?;s Ey)
as claimed.

A.2. Proof of Lemma 2

We have

Vo1 Ees1) = (i) PoXipy + oy
< m(P)IIXg 1 I” + poEry < nk(Pq>hf,q<||x;:||

N-—-1
N

2
+ Ek) + Pq(OlZ,pq”X: Il + IBZ,pqu)2

1\* ,
)Ek

+ 20405 o X117 + 20083 poEi = (2nA (P2,

Y 2 * 112 Y 2 N —
< 2R (P2 JIXE 1% + 2nA (PRZ, | ———

- N-1\°
420008 ) 1P + (Z”MPwhzq (*+)

2n1(PR%, + 2pq03.
L(Py) «

2nh(POh2, (N — 1\  2pep2
4 pq < ) 4 »bq ppElf
Pp N Pp

< UpgVp(Xg, E) < uVp(xy, Ex)

as claimed.

+ quﬁzz,pq> EI% =

A.3. Proof of Lemma 3

The average dwell time property (2) implies that

k — ko
N (tiy, t) < No +

for every m such that
T, > mts. (48)

We know from (3) that N, (ty,, tx) equals the number of intervals
of the form (t;, ty11], ko < ¢ < k — 1 which contain a switch
(among the total number k — kg of such intervals). Combining the
conclusions of Lemmas 1 and 2, we have the following bound for
all k > ko:

k=ko g0 _No— k=Ko
Votoo (X5, Ex) < plNot 7w pk—ko=No="5 a(tko)(X}fo,Eko)
p\No 4 —1)/m\k—ko 2
= (;) e AL

(since x; = 0). We need to ensure that § := p'/™y™=D/m < 1,
which is equivalent to

and the claim follows.
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