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Abstract

This paper introduces appropriate concepts of input-to-state stability &®8Bintegral-ISS for impulsive systems, i.e., dynamical systems
that evolve according to ordinary differential equations most of the tmepccasionally exhibit discontinuities (or impulses). We provide

a set of Lyapunov-based sufficient conditions for establishing tt&Setoperties. When the continuous dynamics are ISS but the discrete
dynamics that govern the impulses are not, the impulses should not maxdirequently, which is formalized in terms of an average
dwell-time (ADT) condition. Conversely, when the impulse dynamics af® b8t the continuous dynamics are not, there must not be
overly long intervals between impulses, which is formalized in terms of @In@werse ADT condition. We also investigate the cases
where (i) both the continuous and discrete dynamics are ISS and (ii) fotheese is ISS and the other only marginally stable for the
zero input, while sharing a common Lyapunov function. In the formeeacae obtain a stronger notion of ISS, for which a necessary
and sufficient Lyapunov characterization is available. The use of the developed herein is illustrated through examples from a Micro-
Electro-Mechanical System (MEMS) oscillator and a problem of remdimaton over a communication network.
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1 Introduction have proved useful in this regard. Originally introduced
for continuous-time systems, they were subsequently also

Impulsive systemsombine continuous evolution (typically ~ Studied for discrete-time systems [10] and switched sys-
modeled by ordinary differential equations) with instanta t€ms [15]. However, the possibility of impulses has been
neous state jumps or resets (also referred to as impulses)excluded in these works. ISS notions for hybrid systems
Stability properties of such systems have been extensively@Ppeared in [4]. While [4] allows for the existence of im-
investigated in the literature; see, e.g., [3, 6, 23]. pulses, in [4] signals are defln_ed on hybrid time doma_uns, as

opposed to the usual time defined on the real line. This leads
When investigating stability of a system, it is important to to a distinct notion of ISS and some systems that are ISS in
characterize the effects of external inputs. The conceptstn€ framework of this paper are not ISS in the framework
of input-to-state stability(ISS) andintegral-input-to-state  ©f [4]- This issue is further discussed in Section 5.

stability (iISS), introduced by Sontag in [21] and [20], In this paper we study input-to-state stability propertés
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the impulsive system is ISS if the impulse times do not oc- where{ty,ts,t3,...} is a strictly increasing sequenceiof-

cur too frequently, which is formalized in terms of an aver- pulse timesn (tp, ) for some initial timetp; the statex(t) €

age dwell-time (ADT) condition from [8]. Conversely, when R" is absolutely continuous between impulsef;) € R™ is

the impulses are stabilizing but the continuous dynamics a locally bounded, Lebesgue-measurable input; aaddg

are destabilizing, the impulsive system is ISS if the impuls are functions fronR" x R™ to R", with f locally Lipschitz.

times satisfy a novel “reverse” ADT condition, which pre- The set of impulse times is assumed to be either finite or infi-

vents overly long intervals between impulse times. nite and unbounded. In particular, we exclude the possibili
of thety having a finite accumulation point, often referred to

Section 5 considers impulsive systems for which both the as chattering. All signals in this paper (including the estat
continuous dynamics and the impulses are stabilizing, andand the inputv) are assumed to be right-continuous and to
share a common ISS-Lyapunov function. Such systems arehave left limits at all time$. In view of this, we denote by
ISS regardless of how often or how seldom impuises occur. ()~ the left-limit operator, i.e.x™(t) = lims ~ x(s). Given
We further show that such systems exhibit a stronger form of & sequencgt,} and a pair of times, t satisfyingt > s > to,

ISS for which we provide necessary and sufficient conditions We Will let N(t,s) denote the number of impulse timgsin

in terms of the existence of appropriate Lyapunov functions the semi-open interva, t].

We also investigate impulsive systems for which the con- To introduce appropriate notions of ISS, we recall the fol-
tinuous dynamics are ISS and the impulse dynamics arejowing standard definitions: A function : [0,00) — [0, )
marginally stable for a zero input. We show that such sys- js of class.#’, and we writea € %", whena is continuous,
tems remain ISS for arbitrarily small ADT. We also consider strictly increasing, andr(0) = 0. If a is also unbounded,
the dual case, which consists of systems with ISS impulse then we say it is otlass.#, and writea € % A function
dynamics and continuous dynamics that are marginally sta-g : [0,00) x [0,0) — [0,) is of class.#".#, and we write
ble for a zero input. These systems remain ISS for arbiyraril g e ¢z 2, whenp(-,t) is of class.# for each fixedt > 0
large reverse ADT. Lyapunov-based conditions that cover gnd B(r,t) decreases to 0 ds— « for each fixedr > 0.

both cases are provided in Section 6.

d Suppose that a sequenfig} is given. We say that the im-
pulsive system (1) is1put-to-state stabl@lSS) if there exist

functions B € ¥ .Z andy € %, such that for every ini-

tial condition and every input, the corresponding solution
to (1) exists globally and satisfies

The motivation to study the class of systems considere
in this paper comes from multiple sources. Impulsive sys-
tems with external inputs arise naturally in control sys-
tems with communication constraints, as explicitly disads
in[9, 14, 17, 27]. A special case of one of our results (Corol-
lary 3) was already used in [14] to analyze stability of such a
system. The results presented here can be used to construct IX(t)| < B(|x(to)],t —to) + V(”W”[to.t]) Vi>ty (2)
deterministic versions of the results that appeared infi@7] '

stochastic disturbances. Impulsive systems with inpus al

describe the evolution of multiple Lyapunov functions for where|| - ||; denotes the supremum norm on an intedzal
switched systems with inputs (even if the latter exhibit no
state jumps), which in turn arise in the analysis of switghin

control algorithms for uncertain systems [7, 13]. Since the above definition applies to a fixed sequetgce

of impulse times, the ISS property depends on the choice of
i , i the sequence. However, it is often of interest to charaweri
We illustrate the use of the results presented in this paper|gg gver classes of sequencig}. To this end, we say
through_two examples mcluded_lr) Section 8. The first eXam- {hat the impulsive system (1) isiformly ISSover a given

ple studies the effect of the collision of air molecules véth 355 7 of admissible sequences of impulse times if the 1SS
MEMS oscillator. These collisions can be the main source property expressed by (2) holds for every sequence”in

of noise in mass-sensing applications. The second exampl€yith functions g andy that are independent of the choice
studies the effect of a TOD protocol in the state estimation 4 ihe sequence.

of multiple decoupled systems that share the same commu-

nication medium to transmit measurements to a remote lo-

cation where the state estimates are being built. The above ISS properties characterize robustness to inputs
in theL. sense. Another possibility is to consider “integral”
variants, in the spirit of [20]. We say that the impulsive

2 Basic definitions system (1) isintegral-input-to-state stabléilSS) if there
exist functions3 € .7 .Z anda, y € %, such that for every

We consider the general impulsive system with inputs

X(t) = f(x(t),w(t)), t#t, ke{l2...} 1) 2 Right-continuity ofw is being assumed just for simplicity of
X(t) =g(x (t),w (1)), t=t, ke{1,2,...} notation and it is not necessary for the results to hold.



initial condition and every inputv, we have

a(x®)]) < B(|x(to)],t —to) Jr/tot y(lw(s)[)ds

+ y(w™ (1)
1o ]

Vt>to. (3)

The notion ofuniform iISSover a given class” of impulse
time sequences is defined in the same way as for ISS.

3 Sufficient conditions for ISS

We say that a functioV : R" — R is a candidate expo-
nential ISS-Lyapunov functidior (1) with rate coefficients
c,d e R if V is locally Lipschitz, positive definite, radially
unbounded, and satisfies

X, W)
X, W))
for some functio x € . In (4a) and in equations that
follow, “Vx a.e.” should be interpreted as “for everyg R"
except possibly on a set of zero Lebesgue-measuie'ih
For generality, we are assuming thdtis locally Lips-
chitz but not necessarily differentiable everywhere. How-

ever, from Rademacher’s Theorem we know that the former
is sufficient to guarantee that the gradiéit (x) of V(x) is

—cV(x)

< vxa.e,Vw
<e dV(x)

VX, W

(4a)
(4b)

+X(Jw))
+Xx(Iw))

well defined except on a set of measure zero. For this reason

we qualify thex quantifier in (4a) with “almost everywhere.”

We do not require the rate coefficiewtsl to be non-negative
and therefore/ will not necessarily decrease, even when
w = 0. The next result says that when these coefficients
satisfy appropriate constraints, one can still Wst show
that the impulsive system is ISS.

Theorem 1 (uniform ISS) Let V be a candidate exponen-
tial 1ISS-Lyapunov function fdf.) with rate coefficients,d
R with d 0. For arbitrary constantg, A > 0, let. [, A]
denote the class of impulse time sequertgssatisfying

(c—A)(t 5)
Then the systertl) is uniformly ISS over”[u,A]. O

—dN(t,s) — —s)<u Vt>s>t.

After proving Theorem 1, we will provide additional insight
into the somewhat mysterious condition (5). When none
of the rate coefficiente andd is positive, this condition
cannot hold for any impulse time sequence because the left-
hand side will necessarily grow to ast — s — co. All other

3 Taking the same functiory in (4a) and (4b) is no loss of
generality, because we can always consider the maximum of two
functions; however, it is also easy to treat the case of two different
functions, which would lead to slightly more complicated notation
but less conservative estimates for the gain function (2).

4 The cased = 0 is closely related to the results in Section 6.

combinations of signs far andd lead to interesting results.
Section 4 explores the case when one coefficient is strictly
positive and the other strictly negative, in which case weeha
uniform ISS for impulse sequences that satisfy appropriate
“dwell-time” conditions. Section 5 addresses the case when
both coefficients are strictly positive. In this case, (3als
holds and the system actually exhibits a form of uniform
ISS that is stronger than the one that appears in Theorem 1.
Finally, Section 6 addresses the marginal cases when one
coefficient is strictly positive and the other one is zero.

Proof of Theorem 1Pick constants > —1, of the same
sign asd, and 0 > 0, both sufficiently close to 0 so that
d>d:=;%,¢c>Ci= 52,1 := 422 > 0. Adding(t —s)
to both S|des of (5) and then d|V|d|ng both sides by 4,
we conclude that

ct—s)<pu

wherep := u/(1+¢€). We can then rewrite (4a) as

—dN(t,s)— —A(t—s) Vt>s>t,

(6)

OV (%) - f(x,w) < —cV(x) = (= )V (x) + x (|w])
and conclude from Lemma 1 in the Appendix that be-
tween any two consecutive impulsgs, tx the function

t — V(x(t)) is absolutely continuous and

V(X(t)) < —EV(x(t)) — (c =V (x(1)) + X ((w(t)]),

Vt € (tk_1,t) a.e. This means that

(c—EV(x(t) = x(W(t)]) = V(x(t) < —eV(x(t)) (7)

Vt € (tk_1,t%) a.e. Similarly, from (4b) we conclude that at
every impulse timey

(e —e V(X (k) = x(IW (%)

)
= V(x(t) < e WV(x (). (8)
Let a:= (min{c—G,e 9 — e 9})~1 > 0. Because of the
right-continuity ofx andw, there exists a sequence of times
to=:fp <f; <ty <t < <... such that we have

V(x(t) = i
V(x() < i

This sequence of times breaks the interftako) into a dis-
joint union of subintervals. Either this sequence is inéinit

and all subintervals are finite, or the sequence is finite and
the last subinterval is infinite. We now analyze these subin-
tervals separately.

ax (W) Vte
ax([wllgy) Vte

1),i=01,...
i=12,...

(9a)

fira
f), (9b)

Suppose thaf; > to so that the subintervato,f;) is non-
empty; otherwise, skip forward to the line below (14). Using
(7) and (9a), we conclude that between any two consecutive



impulsesty_1,t € (to,f1], we have tha¥/ (x(t))
Vt € (tk_1,t) a.e. Therefore,

V(X (t)) < e UMDV (x(t_1)). (10)
Moreover, in view of (8) and (9a),
V(X)) < eV (X (1)) (11)
Combining (10) and (11), we conclude that
V (X(t) < e e Tty (x(ty_4)). (12)

Noting that (10) is also true fot =1, we can iterate (12)
over theN(t,tp) impulses ontp,t] to obtain the bound

V(x(1) < e NEOEY (k1)) (13)
Vt € (to,f1] (cf. [12, Theorem 1.10.2]). Here we assumed
thatf; < o, otherwise the bound holds ¢ta, ). Combining
this with (6), we conclude that

V(x(t) < # A0V (x(ty)) Ve (to,fy].  (14)
Next we show that fot > {1, it is possible to construct an
upper bound foW (x(t)) that only depends ofw||t, ). On
every subinterval of the fornff,fj) we already have (9b).
If § is not an impulse time, then the same bound holds for
t =1. If fi is an impulse time, then (4b) gives

V(x(6)) < ae x (W, ) + X ((w (E)])

In either case, we have

V(x(t)) <

where again the bound hold$ > {; if fj = «. Now consider
any subinterval of the fornffi,fi1), i > 1. Repeating the
argument used to establish (14), wifthin place oft, and

using (15) witht = f;, we obtain

(ae” + 1) x (Wl o) Vte[E.8], i>1, (15)

tt.

Vv (x(fi))
Dx(IWlgg) Vte @l i>1

V( () <
e (aed
Combining this with (14) and (15) and noting that> 0,
we finally obtain the following global bound:

ghA
+ (16)

V(x(t)) < max{ef A0V (x(tg)),

& (ad! + 1) x(IwWlg)} Vt=to. (17)
The ISS estimate (2) follows from this by standard argu-
ments. Namely, sinc® is positive definite and radially
unbounded, it satisfieg1(|x|) <V(x) < az(]x|) for some
01,02 € . Therefore, (17) implies (2) wittB(r,t) :=

a;(e* May(r)) and y(r) = a; (e (@dd + 1)x(r)).
Global existence of solutions also follows from the so-
established boundedness of the state. Uniformity is also
clear, since the function8 and y do not depend on the
particular choice of the impulse time sequence. ]

4 |SS with (reverse) ADT

Suppose that an impulsive system has a candidate exponen-
tial 1ISS-Lyapunov function with rate coefficientsand d,

as in (4). Wherd < 0, we must necessarily haee> A >0

for (5) to hold. In this case, (4a) says that the continu-
ous dynamicsx = f(x,w) are ISS with respect ta. In-
deed, the existence of 48S-Lyapunov function gatisfy-

ing OV (x) - f(x,w) < —a(V (X)) + x(|w|) with a, X € #x is
equivalent to ISS [22], and taking to be linear is no loss

of generality [19].

Sinced < 0, the impulses can potentially destroy ISS, and
we must require that they do not happen too frequently. Not
surprisingly, in this case the condition (5) enforcesipper
bound on the number of impulses times: toe A it only
holds when the number of impulse times is no larger than
Np := u/|d| and forc > A it can be re-written as

t—
N(t,s) < ?S+No Vt> s>t (18)

for appropriately defined constant$,Ng > 0. This cor-
responds to the concept alerage dwell-time (ADTjor
switched systems introduced in [8]. The special ddge- 1
reduces to awell-timecondition in which consecutive im-
pulses must be separated by at legstinits of time.

Conversely, wher < 0 we must havel > 0 for (5) to hold.

In this case, the condition (4b) says that the discrete dynam
ics X(k+1) = g(x(k),w(k)) are ISS with respect tw. In-
deed, the existence of #S-Lyapunov function ¥atisfying
V(g(x,w)) < —a(V(x))+ x(|w]) with a, x € %% is equiv-
alent to discrete-time ISS [10], and takiagto be linear is

no loss of generality. Sincec < 0, the continuous flow can
potentially destroy ISS, so we must require flows to be per-
sistently interrupted by impulses. In this case, the coomlit
(5) enforces dower bound on the number of impulse times
and it can be re-written as

N(t,s)ztr;f_mo Yt > s> to, (19)

for appropriater®,Np > 0. This is areverse ADTcondition

that demands, on average, at least one impulse per interval
of length 7*. We remark that the existence of a functign
satisfying (4a) withc < 0 amounts to forward completeness
of the continuous dynamics [1, Corollary 2.11]; of course,

5 This follows from the implication (b)= (c) in Theorem 2,
which will be stated in Section 5.



we need the same functiovi to also capture ISS of the
discrete dynamics as in (4b).

Let Zavg[T*,No] denote the class of ADT impulse time se-
qguences which satisfy (18), and leti_ag[T*,No| denote

the class of reverse ADT impulse time sequences which sat-

isfy (19). The following result follows from the above ob-
servations:

Corollary 1 (ADT ISS) LetV be a candidate exponential
ISS-Lyapunov function fdd) with rate coefficients.d € R.

(&) When d< 0 and c> 0, (1) is uniformly ISS over
Zavg T*,No| for all T* > |d|/c and Ny > O.

(b) When d> 0 and c< 0, (1) is uniformly ISS over
—avg[T*,No| for all % < d/|c| and Ny > 0. O

Proof of Corollary 1. To prove (a), pick some* > |d|/c,

No > 0 and take an arbitrary impulse time sequence in
ZavgT*,No]. In view of (18), we have thaiN(t,s) <
(c—=A)(t—s9)/|d|+No Vt >s>1tg, for A :=c—|d|/T* >0,
from which we conclude that (5) holds with := |d|No.
Uniform ISS then follows from Theorem 1.

To prove (b), pick soma* < d/|c| and take an arbitrary
impulse time sequence i¥;_ag[T*,No]. In view of (19),
we have thatN(t,s) > —(c—A)(t—s)/d—No Vt > s> to,
for A :==c+d/1t* > 0, from which we conclude that (5)
holds with i := d Ny. Uniform ISS then follows from The-
orem 1. [ ]

5 ISS for arbitrary impulse time sequences

When the rate coefficients of a candidate exponential ISS-
Lyapunov function are both positive, Theorem 1 gives us

example, the one-dimensional impulsive system

X(t)

XU +wW(t), t#t,ke{L2,...}
X(t) .

—Xx~ (1), t=t, ke{1,2,...} (21)
is uniformly ISS over.#, but not strongly uniformly ISS.
This is because (20) would imply that if we were given a
finite time intervallty, T], a particular initial conditiorx(to),
and the zero inputv(t) = 0 Wt € [to, T], then we could make
|x(T)| arbitrarily small by increasing the number of impulses
N(T,to) on (to, T]. However, with the zero input to (21), the
norm of X(T) will be exactly the same regardless of how
many impulses take place {itv, T].

Remark 1 In the framework of [4], the systef20) would

not be ISS because it accepts a solution for which the time
sequencedis infinite but bounded, and such a solution would
not converge to zero. It turns out that strong uniform ISS is
essentially the same as ISS in the framework of [4], as noted
in the proof of Theorem 2 below. O

As mentioned above, when the rate coefficients of a candi-
date exponential 1ISS-Lyapunov function are both positive,
Theorem 1 gives us uniform ISS ovefy, but the system is
actually strongly uniformly ISS. Moreover, the existende o
such a candidate exponential ISS-Lyapunov function is also
a necessary condition for strong uniform ISS. The follow-
ing result provides a complete characterization of thigtyp
of stability.

Theorem 2 (strong uniform ISS) Assume that the impulse
map g in(1) is continuous. The following three statements
are equivalent:

(@) (1) is strongly uniformly ISS.

uniform 1SS for arbitrary impulse time sequences, because(b) There exist a locally Lipschitz, positive definite, el

(5) poses no constraints on the impulse time sequences, as

long as we choos@ < c. However, the system actually
exhibits a stronger form of uniform ISS.

To state this property we need the following notion: A func-
tion B : [0,00) x [0,00) x [0,00) — [0, ) is of class.# ¥ .Z,
and we write8 € 7 .¥.Z, when(-,s,-) andf(:,-,s) are of
class.# ¢ for each fixeds> 0. We say that the impulsive
system (1) isstrongly uniformly ISSf there exist functions
Bex L andy e . such that for every initial condi-
tion, every inputw, and every sequence of impulse tinfies
the solution to (1) exists globally and satisfies

X(t)] < B(Ix(to)|,N(t,to),t — to) + y([Wlltpq) (20)

Vvt > tg. We emphasize that this property is stronger than
uniform ISS over the set/, containing all monotone se-

guences of impulse times that are finite or unbounded. For

6 Recall that the sequence of impulse times is always strictly
increasing and either finite or infinite and unbounded.

unbounded function UR" — R and a, x € %, that
satisfy’

VX a.e,Yw
(22a)

U(g(xw)) < (id —a) (U (X)) + x(Iwl) ¥xw. (22b)

OU(x) - f(x;w) < —a (U(x) +x(Iw])

(c) There exists a candidate exponential 1SS-Lyapunov
function V for(1) with positive rate coefficients. O

From Theorem 2 we conclude that if the impulsive system
is strongly uniformly ISS [statement (a)], then both the-con
tinuous and discrete dynamics must be ISS [as implied by
statement (b)]. However, the converse is not true. In faw, o
can even construct impulsive systems for which the contin-
uous and discrete dynamics are both exponentially stable in

7 Taking the same functions andy in (22a) and (22b) is no loss
of generality, because we could always consider the minimum of
the two a’a and the maximum of the twg’s.



isolation (without inputs), but the combined impulsive-sys By the definition of solution to the hybrid system (23), the
tem exhibits unbounded solutions. Such an impulsive sys- statez(t*, j*) is obtained from the initial conditioz(t, jo) =
tem is essentially given in [24, Section IV]. This does not ¢&gthrough afinite alternate composition of the following two
contradict Theorem 2 because the statement (b) also asks fofunctions: a continuous flow,(;s,ti) that maps an initial
the continuous and discrete dynamics to “share” the sameconditionz(t;) = £ of the ODEZ= f(zu) into the solution
ISS-Lyapunov function, which is shown in Theorem 2 to be at times> t;; and the discrete jump map In particular,

a necessary condition for strong uniform ISS.

€i+1:g(%(fi;ti+17ti),u(ti+1,i)), OSI < J*

Proof of Theorem 2(a)= (b) The proof of this implication A1) = @&t ),

relies heavily on results from [4], from which we borrow .
the notation and terminology used to define and characterizeSUppose now that v‘\‘/e pick a s:nall qon_stanj 0 an_d con-
properties of hybrid systems. We start by constructing the struct the following “expanded” hybrid time domain
following hybrid system:
donf = (U (tf.tF.),1) ) Nlio,t'] x {os .- 1},
z=f(zu), zeC, zt =g(zu), ze D, (23) i

with trivial flow and jump set<C = D :=R", and with the ~ Wheretf :=t; + j &, on which we define the following “ex
same functiond andg as in the definition of the impulsive  panded” hybrid input€ : donf — R"
system (1). Such a hybrid system satisfies [4, Standing As-

sumption 1]. We first show that the hybrid system (23) is for- ut— je, ) ts <t<te
ward complete and ISS in the sense of [4], and then use [4, t,)) ' . <1+1< .
Theorem 2] to conclude that it must have an ISS-Lyapunov u(tj+1, ) tJ 1 €St

function in the sense of [4]. This ISS-Lyapunov functionlwil
turn out to satisfy (22a)—(22b). The key technical diffigult Vvt [tf,tfﬂ} j < j*, t <t* (cf. Figure 1). For sufficiently
in this argument arises from the fact that some solutions to

the hybrid system (23) do not have direct correspondence to
solutions to the impulsive system (1). This is true, e.g., fo
a solution defined on a hybrid time domain such as the one
depicted in the top diagram in Figure 1, which would allow
from three values of the state at tihe= t3. In particular,

one must make sure that ISS of (1) guarantees that even ‘ ‘ ‘

those solutions to the hybrid system (23) for which there hh L=t t
are multiple jumps at the same time instant or for which
the set of jump times has a finite accumulation point are L -—
well behaved. To overcome this difficulty, we use a contra- dorr?
diction argument to show that for a solution to the hybrid
system (23) to misbehave, the impulsive system (1) would
have to have a (somewhat different, but close) solution that
also misbehaves.

—

= N W
T
[ ]

—

= N W
T
$

L e o
i i i

t 3 ta t

Since the impulsive system (1) is strongly uniformly ISS, Fig. 1. Hybrid time domain for a solution paie, u) with multiple

it satisfies (20) for appropriately selected functigBsc jumps at the same time instant and the corresponding “expanded”
X 2% andy € K. To prove that (23) is forward complete  time domain for the paitz*, u).

and ISS in the sense of [4], we take an arbitrary maximal
solution pair(z,u) to (23) with common hybrid time domain
of the form

small € > 0, there exists a hybrid azf : donf — R", for
which the pair(Z,uf) is also a solution pair to (23). In
fact, Z can also be constructed through the composition of
. a continuous flow with discrete jumps. The resulting value
dom=J([tj,tj+1],J) € [0,0) x{0,1,2,...} of Z at the hybrid time(t*, j*) is given by

i

.. . . . E= 3 1t 5 ) t 7. )

and assume by contradiction that there exists a hybrid time SEECCHCH AR I CERD) o
(t*,j*) € dom for which = 9(qe (&5t 0, 1), ultisei)), 0<i<]
Z(t,]7) = @e (&)t 1),

|2(t", j*)| > B(léol, J*,t" —to) + ¥ (llull ¢+ j+))
with &§ = &o. Because the solution to an ODE is (locally)

where|[u| ¢ j) := SuRFﬁedom:|u(Ej_)|a for some(t, j) € dom. continuous with respect to time agds a continuous func-
' i< tion, the map fromg? to &£ ; depends continuously on the



parametee. Since fore =0, &f = ¢, we conclude that we
can make each one of ti¢ arbitrarily close to the; for all

i between 0 and*. Therefore we can also malz&(t*, j*)
arbitrarily close toz(t*, j*) by making € > 0 sufficiently
small. Note that we also need to makemall to make sure
that the flowsg,(-) do not have finite-escape time in each
“expanded” intervaltf,t® ,].

In view of the above mentioned continuity, we can pick a
sufficiently small value foe for which we still have

+y(llull =)
+ YUl ) -

The advantage of working with the solution p@f, ué) over
the original pair ¢,u) is that all thetf, ; are strictly larger

j+1
than thetf, 0< j < j*. This allows us to construct signals

X : [to,t*] — R" andw’ : [to,t*] — R™ from the hybrid arc
Z and the hybrid inputé, respectively, as follows

u(t, j)

where j in the expression above is the largest integer for
which (t, j) € donf. The fact thatz® is a hybrid arc guar-
antees that the signaf is right-continuous. The signaié
andw?é can be viewed as projections of the hybrid signals
Z andué onto the time-axis of the hybrid time domain.

12t J")] > B(|&l. ",t" —to)

=B(I& it —to) (24)

XE(t) =Z(t,]), Wi(t)= Yt € [to,t7],

In view of the definition of a solution pair to the hy-
brid system (23), each of the signat§ is a solution
to the impulsive system (1) for the inpwt* and im-
pulse times{t{,t5,... }. Denoting byN?(t,tp) the number
of impulse timest in the semi-open intervalto,t), we
have thatN%(t,tp) = max{j > 0: (t,]) € domf} Since
NE(t",to) = J*, [lull = j+) = W[ tg,+), X* (to) = Z*(t0, 0) = &o,

andxé (t*) = Z(t*, j*), we conclude from (24) that
XE(E)] > B(XE (to), Jt" —to) + Y ([[U = )
> B(%*(to) |, N*(t",t0),t" —to) + V(W[ to.))

which contradicts (20). This shows that (24) cannot hold
for any hybrid time(t*, j*) € dom, and therefore the hybrid

system (23) is forward complete and ISS in the sense of [4].

We can now use [4, Theorem 2] to conclude that there exists

a smooth functiorld : R" — R that satisfies the properties
in (b), which finishes the proof of this implication.

(b) = (c) To prove this implication we explicitly construct a
candidate exponential ISS-Lyapunov functibfrom a non-
exponential ondJ. LetV(x) := k(U(X)), wherek € 7, is
chosen to be continuously differentiable withnonnegative
and nondecreasing, and
K'(s)a(s) > 2k(s)

Vs> 0. (25)

Such a function is constructed in [19, pp. 22-23]. From (25)
and (22a), we conclude that

|
X\
c
—

X))a (U (x)) + k(U (x))x (Jw)
K'(U(x)a (U(¥)/2+k'(Ux)x(Iw)) (26)

vx a.e,Yw. Whena (U(x)) < 2x(|w|), we have

K'(U(x)x (Iw]) < k"o a ™t (2x (Jw) X (Iwl) =: X(Jw])

and whena (U (x)) > 2x(|w]),

—k'(U(x))a(U(x)/2+&"UX)x(w]) <0
In either case, we conclude from (26) that

OV(x)- f(x,w) < -V(X)+x(jw|) VYxa.e,Vw. (27)

On the other hand, using (25), the Mean Value Theorem,
and the fact thak’ is nondecreasing, we conclude that

2k(s) < K'(s)a(s)/2+ K( s) <

K(s+a(s)/2)
Ko(id+a/2)(s) Vs>O0.

r>

H(r)

Specializing this inequality fét s:= (id — a/2)(r), r
0 and using the fact thaid — a/2)(r) < (id + a/2)~
Vr > 0, we further obtain

2ko(id—a/2)(r) <k(r) ¥r>Q0. (28)

From the definition oW and (22b), we conclude that
V(g(xw)) < k((id — a) (U (x)) + x(Iwl))

vx,w. Whena (U (x)) < 2x(|w|), we have

(29)

K ((id —a)(U(x)) +X(\W|)|)
<k(a t2x(w))+

and whena (U (x)) > 2x(|w]),

K (U (x) + X (lw Dl)
x(w))) =

X(Iw)

K ((id — ) (U () + x (W)
< Kkol(id—a/2)(U(x) <V(x/2

by virtue of (28). In either case, we conclude from (29) that

V(gw)) < sV +X(Iw)  Vxw (30)

NI

8 The functionid — a /2 must be nonnegative, otherwise we would
have a contradiction between (22b) and positive definitenelds of



This finishes the proof since (27) and (30) show tkWat is only marginally stable for the zero inputk) = 0 vk. This

is a candidate exponential ISS-Lyapunov functrwith type of systems occurs, e.g., in [14, Section 4] in the cdntex

positive rate coefficients. of control with limited information or in the MEMS device
that we discuss in Section 8.1. For such systems, one should

(c) = (a) Sincec andd are both positive, we can pick not expect uniform ISS oves, because the discrete dy-

someA > 0 sufficiently small so that (5) holds for every namics lack ISS, but (4b) will typically still hold for some

sequence of impulse times. We now proceed as in the proofd < 0 and part (a) of Corollary 1 thus provides an ISS re-

of Theorem 1 to conclude that sult in terms of a minimum ADT* > |d|/c. However, for
these systems one can often draw stronger conclusions be-
V(x(t)) < e~ dN(tto)—Clt—to)y/ V (X(to)) caused can be made arbitrarily close to zero. Motivated by
- d this observation, we say that the impulsive system (138
+eh(aéd + 1) x(Iwllg,q) Yt to. for arbitrarily small ADT when it is uniformly 1SS oveev-

ery class.Zavg[T*,No] of ADT impulse time sequences that
This expression is obtained in the same way as (17), exceptsatisfy (18) Wlthr >0, Ng < o0,
that now we combined the bounds (13) and (16) instead
of (14) and (16). Since botd andc are positive, the ISS  Alternatively, we consider an impulsive system for which
estimate (20) follows by standard arguments. ] x(k+1) = g(x(k)7w(k)) is discrete-time ISS, but= f (x,w)

is only marginally stable for the zero inpw(t) = 0 Vt. This
Remark 2 (neutral dynamics) It should be clear from the  type of systems occurs, e.g., in the context of networked
proof of Theorem 2 [implication (b} (c)] that if (22b)is control systems such as the one described in Section 8.2
replaced by Ug(x,w)) <U(x) Vx,w, i.e., iftheimpulsesare  or in [27]°. For such systems (4a) will typically hold for
“neutral” rather than “helpful” for ISS, then there exists somec < 0 and part (b) of Corollary 1 provides an ISS
a candidate exponential ISS-Lyapunov function V with rate result in terms of a maximum reverse a.dt:=d/(—c),
coefficients e= 1, d = 0 for which thex term is absent from A > 0. However, also here one can draw stronger conclusions

(4b)°. In this case, it is straightforward to prove thét) is because typicallc can be made arbitrarily close to zero.
uniformly ISS overZa, but it may not be strongly uniformly  Motivated by this, we say that the impulsive system (1) is
ISS. The example if21) illustrates this situation. ISS for arbitrarily large reverse ADTwhen it is uniformly

ISS overeveryclass.#r_avg[T*, No| of reverse ADT impulse
One can also show that whd@2b) holds but the contin-  time sequences that satisfy (19) with> 0, Ny < co.

uous dynamics are “neutral,” — i.e(22a)is replaced by

OV (x) - f(x,w) < 0 Vx a.e,Yw — the impulsive syste(th) It turns out that for both cases discussed above, we need a lit
is uniformly ISS, but only over restricted classes of impuls tle more than marginal stability for the sub-system thabis n
sequences, for which the number of impulsésty) in the ISS, and therefore we introduce the following terminology:
interval (to,t] is bounded from below by an expression of the We say thatV : R" — R is non-expansive for the impulse
form N(t,to) > n(t —tp) Vt > to, for some functiom € 7. map gwhenV is positive definite, radially unbounded, and

for everyd < 0 there exists a functiog € %, for which (4b)
More interesting situations arise when “neutrality” only  holds. This terminology is motivated by the observatiori tha
holds for the zero input. This case is treated more thoropghl such a function must necessarily sati$fyg(x,0)) < V(X)
in the next section. VX. Its existence thus guarantees marginal stability of the
discrete dynamicg(k-+ 1) = g(x(k),0) with zero input, but
. it actually provides more than that. However, it is not suf-
6 1SS for arbitrary ADT ficient for 1SS ofx(k+ 1) = g(x(k),w(k)) with respect to a
nonzero inputv(k).
We have just seen in Section 5 that when the continuous
and the discrete dynamics are both ISS and share an |SSA|temat|Ve|y, we say that a locally |_|psch|tz function
Lyapunov function, we have a strong notion of uniform ISS s non-expansive for the vector fieldwhenV is positive
for the impulsive system. When only one of these dynamics definite, radially unbounded, and for every: 0 there exists
is 1SS and the other is unstable, the results in Sectiondgell  a function x € %, for which (4a) holds. Such a function
that some form of ADT is needed for ISS. We now consider g|so satisfiesIV(x) - f(x,0) < 0 Vx a.e. and it therefore
the “marginal” case in which one of the dynamics is ISS and guarantees marginal stability of the continuous dynamies -
the other one is only marginally stable for the zero input.  f(x,0) for the zero input, but it is not enough to guarantee
ISS of X = f(x,w) with respect tow.
Consider the impulsive system (1) and assume that
f (x,w) is continuous-time ISS, butk+ 1) = g(x(k),w(k)) The following result follows from Corollary 1:

9 To check that this is so, note that we can always t@kel as 10The analysis in [27] deals with stochastic disturbaneeand

in (27). Moreover, wherJ (g(x,w)) < U(x) Vx,w, the equation considers more general vector fields. A deterministic version of
(29) holds witha = x =0, and therefore the right-hand side of the framework in [27] with marginally stable processes leads to
(29) is simplyk (U (x)) = V(x), which corresponds td = 0. the class of systems considered here.



Corollary 2 (1SS for arbitrary ADT) Let V be a candi-
date exponential 1SS-Lyapunov function {d&) with rate
coefficients ad € R.

(&) When c>0andV is non-expansive for the impulse map
g, (1) is uniformly ISS for arbitrarily small ADT.

(b) When d> 0 and V is non-expansive for the vector
field f, (1) is uniformly ISS for arbitrarily large reverse
ADT.

The remainder of this section is devoted to the question of
whether or not a given functiow is hon-expansive.

6.1 Non-expansiveness for impulse maps

To state the following result, we say that a functlonR" x
R™ — R" has class##" growth in w uniformly over xf
Ih(xw)| < y(W)  Vx,w
for some functiony € ¢, which we call thegrowth esti-
matefor h. The following result (proved in the appendix)
provides simple conditions that can be used to establigh tha

a candidate Lyapunov function is non-expansive for a given
impulse map.

Theorem 3 (non-expansiveness for impulse maps)
Consider a locally Lipschitz, positive definite, radiallp-u
bounded function V R" — R and an impulse map g for
which V(g(x,0)) <V(x) Vx and gx,w) —g(x,0) has class-
2 growth in w uniformly over x. The function V is non-
expansive for the impulse map g if either of the following
conditions holds:

Cl V isa positive-coefficient linear combination of func-
tions that are non-expansive for the impulse map g.
V(x)/|0V (x)| is radially unbounded a.e.

V is a positive-coefficient linear combination of ho-
mogeneous functiof with (possibly different) de-
grees larger than or equal to one. O

Cc2
C3

Remark 3 Theorem 3 describes a very broad class of posi-
tive definite functions V that are non-expansive. Indeed, C2
simply requires that the gradient of V be dominated by V
itself and C3 says that, e.g., any polynomial function falls
in this class. One may then wonder if in practice one will

wheresat-) denotes the saturation function limited #tl

and with unit slope or{—1,1]. This system is uniformly
ISS over the class of ADT impulse time sequences that sat-
isfy (18) for any t* > 1 because

V(X) ::{

is a candidate exponential ISS-Lyapunov function with rate
coefficients &= 2 and d= —2. However, it is not ISS for
arbitrarily small ADT since x can explode with bounded
inputs, provided that the impulse times are closely spaced.
As expected, the functiai831) does not satisfy any of the
conditions in Theorem 3. i

X2

2(-1)

X <1

X > 1 (31)

The next Corollary covers a useful class of systems, which
includes the case of asymptotically stable linear contiisuo
dynamics and marginally stable linear discrete dynamics.

Corollary 3 (GES vs. ISS for arbitrarily small ADT)
Impulsive systems of the following form are always ISS for
arbitrarily small ADT:

{

wherex = f1(x) is globally exponentially stable; fs glob-
ally Lipschitz, $(0) = 0, and gx,w) has class>#" growth
in w uniformly over X. O

t£t, k=1,2,...
t=tg, k=12,...

x = f1(X) + fo(w),
X=X+ g0, W),

Proof of Corollary 3. [11, Theorem 4.14] guarantees the ex-
istence of a locally Lipschitz functiow satisfyingay|x|? <
V(X) < ag|x|?, OV (x) - f1(x) < —ag|x|?, and|OV (x)| < ay|X|
a.e., wherey; > 0,i =123 4. This implies that

OV (%) - (F2(3) + f2(W)) < —as|x?+aalx| | f2(w)],

from which (4a) follows by square completion, for an ap-
propriately chosen rate coefficient- 0. On the other hand,
sinceg(x,w) has class#  growth in w uniformly overx,
we must have(x,0) = 0 Vx, from which we conclude that
V (x+9(x,0)) =V (x) and that(x+g(x,w)) — (x+g(x,0)) =
g(x,w) has class#  growth. This allows us to use condi-
tion C2 in Theorem 3 to conclude thdtis non-expansive
for the impulse map+ g(x,w) and the result then follows
from Corollary 2. [

ever encounter ISS impulsive systems with candidate expo-
nential ISS-Lyapunov functions that do not exhibit the non- 6.2  Non-expansiveness for vector fields
expansiveness property. The answer is affirmative and a sim-
ple one-dimensional example is given by

{

11we recall that a functiol : R" — R is homogeneous of degree
pif V(AX) =APV(x) VA >0, xe R".

The following result (proved in the appendix) provides sim-
) ple conditions for establishing that a candidate Lyapunov
X = —sa(x), function is non-expansive for a given vector field.

X=X +sa(w ),

t#£t, k=1,2,...
t=t, k=1,2,...,
Theorem 4 (non-expansiveness for vector fieldsConsider
a locally Lipschitz, positive definite, radially unbounded
function V: R" — R and a vector field f for which



OV (x) - f(x,0) <0 ¥x and f(x,w) — f(x,0) has classs#
growth in w uniformly over x. The function V is non-
expansive for the vector field f if either of the following
conditions holds:

from which (4b) follows for somed > 0, provided that

we choosed < 0 sufficiently close to zero so that9(1—
1/(2a1)) < 1. The resultthen follows from Corollary 2. m

C4 V is a positive-coefficient linear combination of func-
tions that are non-expansive for the vector field f.
V(x)/|0V (x)| is radially unbounded a.e.

V is a positive-coefficient linear combination of ho-
mogeneous functions with (possibly different) degrees
larger than or equal to one.

7 Sufficient conditions for integral-ISS

C5

C6 We now provide iISS counterparts to Theorem 1 and the

sufficient condition in Theorem 2. The first result estaldish

iISS for suitably constrained impulse time sequences under
the hypotheses of Theorem 1, and the second one establishes
iISS for arbitrary impulse time sequences under hypotheses

The next Corollary covers a useful class of systems, which weaker than (22a)—(22b).

includes the case of asymptotically stable linear discrete

dynamics and marginally stable linear continuous dynamics Theorem 5 (uniform iISS) Let all hypotheses of Theo-

rem 1 hold and define the class of impulse time sequences

Corollary 4 (GES vs. ISS for arbitrary large rev. ADT) .
Impulsive systems of the following form are always ISS for = [H:A], ;A > 0also asin Theorem 1. Then the sySKG-Dm

arbitrarily large reverse ADT: is uniformly iISS over”’[u, A].

{)’(: f(x,w),

X=01(X") +g2(W"),

t£t, k=1,2,...

— 12 Proof of Theorem 5From (4a) and (4b) we see thafx(t))
t=t, k=1,2,...

is bounded from above by the (nonnegative) soluti@n of
the impulsive system

where Xk+ 1) = g1(x(k)) is globally exponentially stable,
01 is globally Lipschitz, g(0) =0, and f(x,w) has class>#

t#£t, k=1,2,...
growth in w uniformly over x. O 7 b N

V= —cv+x(|w]),
t=t, k=1,2,...

v=e v+ x(w)),

Proof of Corollary 4. Under the assumptions of the theo-
rem, it is not difficult to verify that, for some sufficiently
large integek > 0, there existsy > 1 such that the function
V(x) := T o |@(i,x)| is globally Lipschitz and satisfies

with the initial conditionv(tg) = V(x(tp)). Let z(t) be the
(nonnegative and non-decreasing) solution to

{'ZX(IWI),

z=7z +x(w ),

t£t, k=12,...

IX| <V (x) <azlx|, t=1t, k=1,2,...

V(g1(x)) =V(x) < =Ix/2,
where @(k,X%p) denotes the solution ®(k+ 1) = gz (x(k))

at timek starting atx(0) = Xo. Since f(x,w) has class#
growth inw uniformly overx, we have thaff (x,0) = 0 and {y: —cv= —Cy—Cz

(32)
(33)
with the initial conditionz(tg) = 0. Definey(t) := v(t) — z(t).
Theny satisfiesy(tg) =V (x(tp)) and

t £ty
thereforeV (x) - f(x,0) = 0 andf (x,w) — f(x,0) has class- y=ed —z =edy —(1-e9z, t=t.

¢ growth inw uniformly overx. We can then use C5 in

Theorem 4 to conclude th¥tis non-expansive for the vector
field f. Condition C5 holds because of (32) and the fact
that, sinceV is globally Lipschitz, there exists a constant
ap > 0 for which|OV (x)| < ap a.e. We now use Theorem 3
to show thatv satisfies (4b) for some rate coefficietht>

0. To this end, we consider the auxiliary impulsive map
glx,w) := X4+ gz2(w) VX e R",we R™ Sincegy(0) =0, we
have thaW/ (g(x,0)) =V (X) Vxandg(X, w) — g(X, 0) = go(w)
has classy#” growth inw uniformly overx. Since we already
established that condition C2 holds, we conclude Wat
is non-expansive for the impulse mapand therefore, for
everyd < 0, we can find an appropriate € %, so that
V(g(xw)) < e 9V (X)+ x(|w]) VX, w. In particular, forx=
01(x) and using (32)—(33), we obtain

V(g1(%) +g2(w)) < e\ <e V(¥

e IV (g1(x)) + X(W)
— |X|/2) + X(w]) < e (1 1/(2a0))V (x) + X(|w]).

10

Arguing as in the proof of Theorem 1, withandz playing
the roles ofV andw, respectively, we can show that this
impulsive system is ISS with respectzavith linear gain:

y(t) < B(y(to),t —to) + yz(t) (34)

for some function € 7. and constany > 0. Collecting
the above facts, we obtain

V() < V() = YO +2(0) < B¥{to).t—to) + (v+ 1)z
t
= B(V(x(t0)).t—to) + | (y+1)x(w(s))ds
+ ) (y+Dx(w (t)l)

tk€Elto.t]

from which the iISS estimate (3) follows.



Theorem 6 (uniform iISS for arbitrary sequences)

Suppose that there exists a positive definite, radially un-

bounded, locally Lipschitz function MR" — R, a positive
definite functionr, and a class’, function x satisfying

OV(x)- f(x,w) < —a(V(x))+ x(lw]) Vxa.e,Vw (35a)
V(g w)) SV (x)+x(Iw])  Vxw. (35b)
Then the systeifl) is uniformly iISS over?yy. O

Note that this theorem does not requireto be radially

unbounded. This and the relaxation of (22b) to (35b) are the
key differences with respect to the necessary and sufficients.om which i1SS follows.

conditions for strong uniform ISS in Theorem 2.

Proof of Theorem 6This is a relatively straightforward ex-
tension of the proof of the corresponding result for continu

ous systems given in [2]. From (35a) and (35b) we see that

V(x(t)) is bounded from above by the (nonnegative) solu-
tion v(t) of the impulsive system

o

with the initial conditionv(tp) = V(x(tp)). Let z(t) be the
(nonnegative and nondecreasing) solution of

t£t, k=12,...
t=t, k=1,2,...

a(v)+x(wp),
Vo) +x(w ),

{Z_X(W|)7 t#tk7k:1527"'
)=z O+x(w O, t=tk=12..
with the initial conditionz(tp) = 0. Definey(t) :=v(t) — z(t).

Theny is continuous everywhere, non-increasing, and

=V (X(to)).

Letf:=min{t >t :y(t) < z(t)} < o, which is well defined
because is right-continuous. Sincgis non-increasing and
zis nondecreasing, we have

y=-a(v)=-a(y+2, y(to) (36)

y(t) <zt) vtx>t (37)
and
y(t) > z(t) Vte [to,f)
the latter of which implies that
0<y(t) <y(t)+2(t) <2y(t) VteltoD). (38)

By [2, Lemma IV.1], there exist functionp; € %, and
P2 : [0,00) — [0,), with p, continuous and monotone de-
creasing to 0, such that(r) > p1(r)p2(r) for all r > 0. Us-
ing (36) and (38), we have

Yy < —p1(y+2)p2(y+2) < —p1(y)p2(2y) Vi€ [to,1).

11

Thus there exists & € 2% (which does not depend on
our choice of trajectory) such thgft) < B(y(to),t —to) for
t € [to,f). Combining this with (37), we have

y(t) < B(y(to),t —to) +2(t)

and this yields (recalling the definition af

vt >t (39)

V(X(0) < WD) = (0 +2(t) < Bl(lo).t —to) + 22(0)
=B(H@H—m+/2MM$D

8 Examples
8.1 MEMS oscillator

The displacemeny of Micro-Electro-Mechanical System
(MEMS) oscillators can be modeled by the following two-
dimensional system:

my+ by + kiy+ kay® = v, (40)
whereb is a damping coefficienk; andks linear and cubic
stiffness terms for the restitution force, and driving force.

Figure 2 shows a schematic of such a device and typical
parameters values.

ZBb

my + by + kiy+ k3y3 =V

Fig. 2. MEMS device in Example 8.1. The following parame-
ter values are consistent with the folded spring device in [29]:
m=277,b=0.678, ky = 7.61, andkz = .0441 (in units ofu
Newtons,u meters,u seconds, and \Volts).

For experiments in air, Brownian motion due to collisions
with air molecules is the main noise source in mass-sensing
applications [16, 28]. The transfer of kinetic energy betwe
an air molecule and the oscillator due to a collision at time
tx can be modeled by a state-impulse of the following form:
yt) =y (&), Yt =y (t)+n" (t), (41)

wheren™ (t) denotes the change in velocity due to a collision
at timety. Defining

V(y,y) == y?+0.1yy + 36.5y2 + 18.25kay*/m,  (42)
we have that (4a) holds with= 10"2 and x(|v|) := v?/2.
Moreover, in view of condition C3 in Theorem 3, the func-
tion (42) is non-expansive for the impulse map (41). We thus



conclude from Corollary 2 that the impulsive system (40)— V in (46) is a candidate exponential ISS-Lyapunov function
(41) is ISS for arbitrarily small ADT. This means that the with rate coefficients

system remains ISS no matter how frequently the collisions

occur. The candidate Lyapunov function (42) was found nu- O<d< |ogL, c < —maxa; < 0.

merically, using the SOSTOOLS MATLAB toolbox [18]. n-1 i

We then conclude from Corollary 1 that the error system
(44) is uniformly ISS over the class of reverse ADT impulse
time sequences’;_ayg[T*, No|, for all Np > 0 and

8.2 Networked control system

Considem one-dimensional linear systems of the form

. . . 1 n
Xi=aixi+bvi, yi=x+m, ic{l2...n} (43) T <ma>qa4|09m' (48)

where thev; denote input disturbances and tphedenote
measurement/quantization noise. To build a remote estimat
of all thex;, one is allowed to send one measurement at each
time instant{ty,to, ... }. Between the reception of measure-
ments the estimate 0f x; evolves according t& = a X;,

t & {t1,t2,...} and, denoting by the index of the measure-
menty;, that is sent at timég, we have'?

In the context of this example this means that measurements
must be transmitted at a minimum “average” rate consistent
with (48). (ii) When all the systems (43) are stable, but not
necessarily asymptotically — i.e., @l < 0 — we conclude
from Condition C6 in Theorem 4 that the functignis non-
expansive for the vector field (44a). In this case, the error
system (44) is ISS for arbitrarily large reverse ADT because
of Corollary 2. For this example this means that measure-
oy Vi (te) =ik ments can be transmitted at any positive “average” ratg. (i
%i(t) = £ () i Ak When all the systems (43) are asymptotically stable — i.e.,
all 3 < 0 — the functionV in (46) is a candidate exponen-
tial ISS-Lyapunov function with positive rate coefficients
We now conclude from Theorem 2 that the error system
(44) is strongly uniformly ISS. This means that there are no
constraints posed on the frequency of measurements.

The dynamics of the resulting estimation erepr= X, — x;
can be described by the following impulsive system:

& =ae—hy, t#£t, k=12,... (44a)
i () 1=k ,
g ="k T t=t, k=1,2,... 44b 9 Conclusions
{q G it (44b)

We introduced the concepts of ISS and integral-ISS for
impulsive systems and provided Lyapunov-based sufficient
conditions for establishing these properties.

We consider a TOD-like protocol [17, 26] to decide which
measurement to senik is the index corresponding to the
largest absolute value of the erngr =y, =& — i, i.e,,

& —p| >l — | Vie {1,2 n) (45) When both the continuous and d!s_crete dynamics are stabi-
k- il = i (AR lizing, the Lyapunov-based conditions proved to be neces-
L sary and sufficient for strong uniform ISS, but it is unclear
Defining whether the conditions derived are also tight for the other
cases. Investigating this issue is a topic for future resear
n . . ..
Vie) =Y |al? (46) Another topic is the development of numerically efficient
i; procedures for constructing ISS-Lyapunov functions for im
pulsive systems, perhaps relying on semi-definite program-

it can be shown (see Appendix) that for every consthat ming.
(0,log(n/n—1)) one can find a functioly € % such that

V(o) e V(e () +x(u ), @n PP

wheree and u aren-vectors obtained by stacking together
all theg andp;, respectively.

Lemma 1 Consider two continuous functions :fR" x
R™—R", a:R"xR™— R and a locally Lipschitz function
V :R" — R, with the property that

We consider three possible cases: (i) When some of the n m
systems (43) are unstable — i.e., some 0 — the function V() - f(x,w) <a(x,w) VxeR™QweR™ (Al)

12For consistency of notation we assume that the value of the for some zero I__ebesgue-measure.QeI Rr_] that contains
output “just beforet, is sent to the remote estimator. In case the all points at which x— V(x) is not differentiable. For every
pi are continuous this is irrelevant singg(tx) = i, (t)- absolutely continuous solution }o,t1) — R"tox= f (x,w),
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with w(t) € R™ locally bounded and Lebesgue-measurable; By constructionky is positive fors# 0, monotone nonde-
we have that t- V(x(t)) is absolutely continuous and creasing, and radially unbounded. The latter property & du
to the hypothesis that(z)/|0V(2)] is radially unbounded.
V(x(t)) <a (x(t),w(t)), vt e [to,t1)\ .7 (A.2) The above construction does not guaranteekhat 7, be-
cause it may not be continuous or strictly increasing. How-

tains all points at which t— V(x(t)) is not differentiable. It's not tg; case, we can always replace it by a smaller func-
0 ion in .

Pick arbitraryx € R", w e R™ for whichv:= g(x,w) —g(x,0)
Proof of Lemma 1.This result is proved in [25, Section 2]. is “small” in the sense that
For the benefit of the reader, we outline here the key steps
of the proof: Since(t) is absolutely continuous ani(x) is IV = |g(x,w) — g(x,0)| < kq(]g(x,0)|) (A.6)
locally Lipschitz, the functiom — V (X(t)) is absolutely con-
tinuous onltg,t1). Therefore there exists a zero Lebesgue- and definez(1) := g(x,0) + v V7 € [0, 1]. Because of (A.6)

measure se¥ C [to,t1) such that botk(t) andV (x(t)) exist d the fact thak4(s) < s/2 Vs> 0 have that
in [to,t1) \ .7. To construct a bound faf (x(t)), we first note and the fac a(8) = 8/2v52 0, we have tha

that for everyt € [to,t1) \ .7, this derivative can be bounded
from above by 12(T)| > 19(x,0)[ — ||
>19(x,0)| —ka(|9(x,0)]) = [9(x,0)|/2 (A7)
V(x(t) +hx(t)) -V (x(t))

V(x(t) = lim h VT € [0,1]. On the other hand, sinaé is locally Lipschitz,

< \/0 () — /O . _ from Rademacher’'s Theorem we conclude Mas differ-

< VEOX() = VIO F(x(U), WD), (A-3) entiable almost everywhere and again using (A.6), we ob-
tain OV (Z) - v < |OV(2)| Kq(|9(x,0)|) Vza.e. If we further

restrict our attention to points for whidf] > M, from
the definition ofkq we conclude that

where VO(x;v) = IimsuerOﬂyﬂz\w denotes

Clarke’s generalized directional derivative, which is wel
defined everywhere oR" becauseV is locally Lipschitz.

Second, by the continuity of the right hand side of (A.1), -
Second, 0y The cantinuity g AL 75 19x0)/2 = IV@-v<|dV(@ VZae. (A8)

VO f(x,w)) < a(xw) VXeR“weR™ (A.4) Since% =V VT € [0,1] andz(T) satisfies (A.7), we can use
(A.8) and Lemma 1 to conclude th&/'Z%) < |d|v(z(1))

including at pointsx € Q on whichV (x) may not be differ- VT a.e., which leads to
entiable. The inequality (A.2) then follows from (A.3) and

(A4). u V(g(x,w)) =V (z(1)) < €V (z(0))

=e WV (g(x0) <eV(x), (A9)
We emphasize that (A.2) holds even wheh), t € [to,t1)

lies entirely in a subset d® for which (A.1) does not hold <
because the gradieflV (x) does not exist. where we used the fact thl{g(x,0)) <V(x).

Suppose now that we picke R", w € R™ for whichv:=

Proof of Theorem 3C1. We prove this result for a linear 9(XW) —g(x,0) is “large” in the sense that it satisfies
combinationV = a;Vh + asVs, a1, az > 0 of two functions

Vi, Vo : R" — R both non-expansive for the impulse mgp 19(x,0)] < kg 1(IV]) = kg *(Jg(x, W) — g(x,0)|)
and the general result follows by induction on the number of

functions. Since both; andV; are non-expansive, for any instead of (A.6). We now have

givend < 0 there exist functiong, X2 € % for which

V(g(x,w)) =V (v+9(x,0)) < a (vl +[9(x,0)|)

Vi(g(xw)) < e M)+ xi(Iw)) Yxw i€ {1,2} <ao(id+Kk; (V) < x(\w), (A.10)

and therefor&/ satisfies (4b) withy := a a Hoo. . . .
(4b) witlx X1+ 02Xz € whereaq is a class#., function with the property that (x) <

. ; -1 ;

C2. F bit 0, ider th iliary functi a(|x)) vxeR", x := ao(id+ k4 ") oy, andy is the growth

or an arbitrargl < 0, consider the auxiliary function estimate ofg(x,w) — g(x,0). The existence ot € 7, is
V(2) guaranteed by the fact thdtis positive definite and radially

7} (A.5) unbounded. Combining (A.9) with (A.10), we conclude that

(s :
Kg(s) :=minqg =,|d| essinf
{2 l2l=s/2,0V (20 |V (2)] (4b) holds for every andw, from which C2 follows.
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C3. In view of C1, it suffices to show that a homogeneous k+ az(|x|) Vx a.e. (cf. [5]). Because of this, the fact that

functionV of degreep > 1 is non-expansive. Suppose that
we pick an arbitrary € R" for which OV (x) exists and is
nonzero and defina := x/|x|. It is well known that ifV
is homogeneous of degrge> 1, then its gradienflV is
homogeneous of degrge-1 > 0, from which we conclude
that
V) XPVR) XV
VK] KPIIVE] OV ()|

soV (X)/|OV (X)| — o as|x| — oo, becauséV (x)| for |X] =
1 must remain bounded. We thus conclude Whatatisfies
C2, which finishes the proof. [

Proof of Theorem 4C4. We prove this result for a linear
combinationV = a;V1 + a>V», ai, az > 0 of two functions
V1,Vo : R" — R both non-expansive for the vector fiefd
Since bothv; andV, are non-expansive, for any given< 0
there exist functiongz, X2 € . for which

DV (%) - F(x,W) < —CV(X) + xi (W) Vxw. i€ {1,2},
and therefor&/ satisfies (4a) withy 1= a1 x1+ d2X2 € Ho.

C5. For an arbitrarg < 0, consider the auxiliary function

V(2

ess inf .
l2>s,0v (240 |V (2)]|

As argued in the proof of Theorem 3 for the functigg

Ke(s) :i=—c

defined in (A.5), we can assume without loss of generality

thatk. € He.

We start by picking arbitrarx € R", w € R™ for which
OV (x) exists andz:= f(x,w) — f(x,0) is “small” in the
sense that it satisfies

|7 = | f(x,w) — f(x0)| < Ke(|X]). (A.12)

Using the fact thaflV(x) - f(x,0) <0, (A.11) and the defi-
nition of k., we conclude that

V(x)- f(x,w) =0V (X)- f(x,0)+ 0OV (x)-z
<OV(X)-z< [BV(X)| Ke([X) < —cV(X).  (A.12)

Suppose that we now picke R", w e R™ for which OV (x)
exists andz:= f(x,w) — f(x,0) is “large” in the sense that
it satisfies

x| < ke H(12]) = ke (I (x W) — £(x,0)]) (A.13)

instead of (A.11). Sinc¥ is locally Lipschitz, there exists a
functionaz € %, and a constark > 0 such thatOV (x)| <

14

X
f(x,0) <0, and (A.13), we now have

oV (x) -

OV(x)- f(x,w) =0V (x)- f(x,0)+0OV(X) -z
< DV(x)-z< Kiz|+ az(|x)) 2]
<Kz + a0 ks H(|2)l2 < x(W) (A1)

with x(s) := ky(s) + (a20kz Lo y)(s)y(s) Vs> 0, wherey is
the growth estimate of (x,w) — f(x,0). Combining (A.12)
with (A.14), we conclude that (4a) holds for almostaiind
w, from which C5 follows.

C6. Like in the proof of Theorem 3, one can show that C6
follows from C4 and C5. ]

Proof of inequality(47). For each index, we have that

& (ti)| — [ ()| < | (t) — 1 (1)
<& () — 1y, (W)l < I8, () [+ |1, ()],

where the first and last inequalities follow from the tri-
angle inequality and the middle one from (45). Since
all the | (t)| can be bounded from above by the vec-

tor norm |u~(tk)|, we further conclude thate (t)| <
€, ()| +2[u~ ()| Vi. Combining this inequality with the

well known?3 fact that(a+b)? < (1+¢)?a? + (1+ & 1)%b?
Va,b, e > 0 we obtain

V(e (W) = _leq_ (t)[?
<n(1+e)?e, (t)*+4n(1+ e u ()%
which implies that

V(67 (tx)
n(1l+¢)?

A1+e Y

2
(1+£)2 |u7(tk)|2'

(A.15)

g, () < —

On the other handV (e(t)) = |u, (t)]* — |6, (t)]* +
V (e (t)). Combining this with (A.15), we obtain

V(efty) < (1— n(liis)z)v(e*(tk))
A(1+e71)?

+(2+ S

)k WP

13To verify this, note that given any four positive constants
a,be p>0,

(1+¢€)PaP ga>b

P<
(a+b) {(1+e‘1)pbp ga<b,

from which (a+b)? < (1+€)?a + (1+ & 1)2b? follows.



from which (46) follows, as long as we define
d:=—lo (17;) (s)-—(1+m)sz
T @) XY T U ez )Y

and selecte so thatd > 0. In fact, we can get any
(0,log-";) by appropriate choice of.
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