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Abstract

This paper introduces appropriate concepts of input-to-state stability (ISS) and integral-ISS for impulsive systems, i.e., dynamical systems
that evolve according to ordinary differential equations most of the time,but occasionally exhibit discontinuities (or impulses). We provide
a set of Lyapunov-based sufficient conditions for establishing these ISS properties. When the continuous dynamics are ISS but the discrete
dynamics that govern the impulses are not, the impulses should not occurtoo frequently, which is formalized in terms of an average
dwell-time (ADT) condition. Conversely, when the impulse dynamics are ISS but the continuous dynamics are not, there must not be
overly long intervals between impulses, which is formalized in terms of a novel reverse ADT condition. We also investigate the cases
where (i) both the continuous and discrete dynamics are ISS and (ii) one of these is ISS and the other only marginally stable for the
zero input, while sharing a common Lyapunov function. In the former case we obtain a stronger notion of ISS, for which a necessary
and sufficient Lyapunov characterization is available. The use of the tools developed herein is illustrated through examples from a Micro-
Electro-Mechanical System (MEMS) oscillator and a problem of remote estimation over a communication network.
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1 Introduction

Impulsive systemscombine continuous evolution (typically
modeled by ordinary differential equations) with instanta-
neous state jumps or resets (also referred to as impulses).
Stability properties of such systems have been extensively
investigated in the literature; see, e.g., [3, 6, 23].

When investigating stability of a system, it is important to
characterize the effects of external inputs. The concepts
of input-to-state stability(ISS) andintegral-input-to-state
stability (iISS), introduced by Sontag in [21] and [20],
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have proved useful in this regard. Originally introduced
for continuous-time systems, they were subsequently also
studied for discrete-time systems [10] and switched sys-
tems [15]. However, the possibility of impulses has been
excluded in these works. ISS notions for hybrid systems
appeared in [4]. While [4] allows for the existence of im-
pulses, in [4] signals are defined on hybrid time domains, as
opposed to the usual time defined on the real line. This leads
to a distinct notion of ISS and some systems that are ISS in
the framework of this paper are not ISS in the framework
of [4]. This issue is further discussed in Section 5.

In this paper we study input-to-state stability propertiesof
impulsive systems, with external signals affecting both the
continuous dynamics and the state impulse map. These sys-
tems are formally defined in Section 2, where we also define
the notions of ISS and iISS for such systems.

We provide a set of Lyapunov-based sufficient conditions
for establishing ISS and iISS with respect to suitable classes
of impulse time sequences (see Sections 3 and 4 for ISS,
and Section 7 for iISS). It is shown that when the contin-
uous dynamics are ISS but the impulses are destabilizing,
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the impulsive system is ISS if the impulse times do not oc-
cur too frequently, which is formalized in terms of an aver-
age dwell-time (ADT) condition from [8]. Conversely, when
the impulses are stabilizing but the continuous dynamics
are destabilizing, the impulsive system is ISS if the impulse
times satisfy a novel “reverse” ADT condition, which pre-
vents overly long intervals between impulse times.

Section 5 considers impulsive systems for which both the
continuous dynamics and the impulses are stabilizing, and
share a common ISS-Lyapunov function. Such systems are
ISS regardless of how often or how seldom impulses occur.
We further show that such systems exhibit a stronger form of
ISS for which we provide necessary and sufficient conditions
in terms of the existence of appropriate Lyapunov functions.

We also investigate impulsive systems for which the con-
tinuous dynamics are ISS and the impulse dynamics are
marginally stable for a zero input. We show that such sys-
tems remain ISS for arbitrarily small ADT. We also consider
the dual case, which consists of systems with ISS impulse
dynamics and continuous dynamics that are marginally sta-
ble for a zero input. These systems remain ISS for arbitrarily
large reverse ADT. Lyapunov-based conditions that cover
both cases are provided in Section 6.

The motivation to study the class of systems considered
in this paper comes from multiple sources. Impulsive sys-
tems with external inputs arise naturally in control sys-
tems with communication constraints, as explicitly discussed
in [9, 14, 17, 27]. A special case of one of our results (Corol-
lary 3) was already used in [14] to analyze stability of such a
system. The results presented here can be used to construct
deterministic versions of the results that appeared in [27]for
stochastic disturbances. Impulsive systems with inputs also
describe the evolution of multiple Lyapunov functions for
switched systems with inputs (even if the latter exhibit no
state jumps), which in turn arise in the analysis of switching
control algorithms for uncertain systems [7, 13].

We illustrate the use of the results presented in this paper
through two examples included in Section 8. The first exam-
ple studies the effect of the collision of air molecules witha
MEMS oscillator. These collisions can be the main source
of noise in mass-sensing applications. The second example
studies the effect of a TOD protocol in the state estimation
of multiple decoupled systems that share the same commu-
nication medium to transmit measurements to a remote lo-
cation where the state estimates are being built.

2 Basic definitions

We consider the general impulsive system with inputs

{

ẋ(t) = f
(

x(t),w(t)
)

, t 6= tk, k∈ {1,2, . . .}

x(t) = g
(

x−(t),w−(t)
)

, t = tk, k∈ {1,2, . . .}
(1)

where{t1, t2, t3, . . .} is a strictly increasing sequence ofim-
pulse timesin (t0,∞) for some initial timet0; the statex(t)∈
R

n is absolutely continuous between impulses;w(t)∈R
m is

a locally bounded, Lebesgue-measurable input; andf andg
are functions fromR

n×R
m to R

n, with f locally Lipschitz.
The set of impulse times is assumed to be either finite or infi-
nite and unbounded. In particular, we exclude the possibility
of thetk having a finite accumulation point, often referred to
as chattering. All signals in this paper (including the state x
and the inputw) are assumed to be right-continuous and to
have left limits at all times2 . In view of this, we denote by
(·)− the left-limit operator, i.e.,x−(t) = limsրt x(s). Given
a sequence{tk} and a pair of timess, t satisfyingt > s≥ t0,
we will let N(t,s) denote the number of impulse timestk in
the semi-open interval(s, t].

To introduce appropriate notions of ISS, we recall the fol-
lowing standard definitions: A functionα : [0,∞) → [0,∞)
is of classK , and we writeα ∈K , whenα is continuous,
strictly increasing, andα(0) = 0. If α is also unbounded,
then we say it is ofclassK∞ and writeα ∈K∞. A function
β : [0,∞)× [0,∞) → [0,∞) is of classK L , and we write
β ∈ K L , whenβ (·, t) is of classK for each fixedt ≥ 0
andβ (r, t) decreases to 0 ast → ∞ for each fixedr ≥ 0.

Suppose that a sequence{tk} is given. We say that the im-
pulsive system (1) isinput-to-state stable(ISS) if there exist
functions β ∈ K L and γ ∈ K∞ such that for every ini-
tial condition and every inputw, the corresponding solution
to (1) exists globally and satisfies

|x(t)| ≤ β (|x(t0)|, t − t0)+ γ
(

‖w‖[t0,t]

)

∀ t ≥ t0 (2)

where‖ · ‖J denotes the supremum norm on an intervalJ.

Since the above definition applies to a fixed sequence{tk}
of impulse times, the ISS property depends on the choice of
the sequence. However, it is often of interest to characterize
ISS over classes of sequences{tk}. To this end, we say
that the impulsive system (1) isuniformly ISSover a given
classS of admissible sequences of impulse times if the ISS
property expressed by (2) holds for every sequence inS

with functionsβ and γ that are independent of the choice
of the sequence.

The above ISS properties characterize robustness to inputs
in theL∞ sense. Another possibility is to consider “integral”
variants, in the spirit of [20]. We say that the impulsive
system (1) isintegral-input-to-state stable(iISS) if there
exist functionsβ ∈K L andα,γ ∈K∞ such that for every

2 Right-continuity of w is being assumed just for simplicity of
notation and it is not necessary for the results to hold.

2



initial condition and every inputw, we have

α(|x(t)|) ≤ β (|x(t0)|, t − t0)+
∫ t

t0
γ(|w(s)|)ds

+ ∑
tk∈[t0,t]

γ(|w−(tk)|) ∀ t ≥ t0. (3)

The notion ofuniform iISSover a given classS of impulse
time sequences is defined in the same way as for ISS.

3 Sufficient conditions for ISS

We say that a functionV : R
n → R is a candidate expo-

nential ISS-Lyapunov functionfor (1) with rate coefficients
c,d ∈ R if V is locally Lipschitz, positive definite, radially
unbounded, and satisfies

∇V(x) · f (x,w) ≤−cV(x)+ χ(|w|) ∀x a.e.,∀w (4a)

V(g(x,w)) ≤ e−dV(x)+ χ(|w|) ∀x,w (4b)

for some function3 χ ∈ K∞. In (4a) and in equations that
follow, “∀x a.e.” should be interpreted as “for everyx∈ R

n

except possibly on a set of zero Lebesgue-measure inR
n.”

For generality, we are assuming thatV is locally Lips-
chitz but not necessarily differentiable everywhere. How-
ever, from Rademacher’s Theorem we know that the former
is sufficient to guarantee that the gradient∇V(x) of V(x) is
well defined except on a set of measure zero. For this reason
we qualify thex quantifier in (4a) with “almost everywhere.”

We do not require the rate coefficientsc,d to be non-negative
and thereforeV will not necessarily decrease, even when
w = 0. The next result says that when these coefficients
satisfy appropriate constraints, one can still useV to show
that the impulsive system is ISS.

Theorem 1 (uniform ISS) Let V be a candidate exponen-
tial ISS-Lyapunov function for(1)with rate coefficients c,d∈
R with d 6= 04 . For arbitrary constantsµ ,λ > 0, letS [µ ,λ ]
denote the class of impulse time sequences{tk} satisfying

−d N(t,s)− (c−λ )(t −s) ≤ µ ∀ t ≥ s≥ t0. (5)

Then the system(1) is uniformly ISS overS [µ ,λ ]. 2

After proving Theorem 1, we will provide additional insight
into the somewhat mysterious condition (5). When none
of the rate coefficientsc and d is positive, this condition
cannot hold for any impulse time sequence because the left-
hand side will necessarily grow to∞ ast−s→ ∞. All other

3 Taking the same functionχ in (4a) and (4b) is no loss of
generality, because we can always consider the maximum of two
functions; however, it is also easy to treat the case of two different
functions, which would lead to slightly more complicated notation
but less conservative estimates for the gain functionγ in (2).
4 The cased = 0 is closely related to the results in Section 6.

combinations of signs forc andd lead to interesting results.
Section 4 explores the case when one coefficient is strictly
positive and the other strictly negative, in which case we have
uniform ISS for impulse sequences that satisfy appropriate
“dwell-time” conditions. Section 5 addresses the case when
both coefficients are strictly positive. In this case, (5) always
holds and the system actually exhibits a form of uniform
ISS that is stronger than the one that appears in Theorem 1.
Finally, Section 6 addresses the marginal cases when one
coefficient is strictly positive and the other one is zero.

Proof of Theorem 1.Pick constantsε > −1, of the same
sign asd, and δ > 0, both sufficiently close to 0 so that
d > d̄ := d

1+ε , c> c̄ := c−δ
1+ε , λ̄ := λ−δ

1+ε > 0. Addingδ (t−s)
to both sides of (5) and then dividing both sides by 1+ ε,
we conclude that

−d̄N(t,s)− c̄(t −s) ≤ µ̄ − λ̄ (t −s) ∀ t ≥ s≥ t0, (6)

whereµ̄ := µ/(1+ ε). We can then rewrite (4a) as

∇V(x) · f (x,w) ≤−c̄V(x)− (c− c̄)V(x)+ χ(|w|)

and conclude from Lemma 1 in the Appendix that be-
tween any two consecutive impulsestk−1, tk the function
t 7→V(x(t)) is absolutely continuous and

V̇(x(t)) ≤−c̄V(x(t))− (c− c̄)V(x(t))+ χ(|w(t)|),

∀ t ∈ (tk−1, tk) a.e. This means that

(c− c̄)V(x(t)) ≥ χ(|w(t)|) ⇒ V̇(x(t)) ≤−c̄V(x(t)) (7)

∀ t ∈ (tk−1, tk) a.e. Similarly, from (4b) we conclude that at
every impulse timetk

(e−d̄ −e−d)V(x−(tk)) ≥ χ(|w−(tk)|)

⇒ V(x(tk)) ≤ e−d̄V(x−(tk)). (8)

Let a := (min{c− c̄,e−d̄ − e−d})−1 > 0. Because of the
right-continuity ofx andw, there exists a sequence of times
t0 =: t̂0 ≤ ť1 < t̂1 < ť2 < t̂2 < .. . such that we have

V(x(t)) ≥ aχ(‖w‖[t0,t]) ∀ t ∈ [t̂i , ťi+1), i = 0,1, . . . (9a)

V(x(t)) ≤ aχ(‖w‖[t0,t]) ∀ t ∈ [ťi , t̂i), i = 1,2, . . . (9b)

This sequence of times breaks the interval[t0,∞) into a dis-
joint union of subintervals. Either this sequence is infinite
and all subintervals are finite, or the sequence is finite and
the last subinterval is infinite. We now analyze these subin-
tervals separately.

Suppose thaťt1 > t0 so that the subinterval[t0, ť1) is non-
empty; otherwise, skip forward to the line below (14). Using
(7) and (9a), we conclude that between any two consecutive
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impulsestk−1, tk ∈ (t0, ť1], we have thaṫV(x(t))≤−c̄V(x(t))
∀ t ∈ (tk−1, tk) a.e. Therefore,

V
(

x−(tk)
)

≤ e−c̄(tk−tk−1)V
(

x(tk−1)
)

. (10)

Moreover, in view of (8) and (9a),

V
(

x(tk)
)

≤ e−d̄V
(

x−(tk)
)

. (11)

Combining (10) and (11), we conclude that

V
(

x(tk)
)

≤ e−d̄e−c̄(tk−tk−1)V
(

x(tk−1)
)

. (12)

Noting that (10) is also true fork = 1, we can iterate (12)
over theN(t, t0) impulses on(t0, t] to obtain the bound

V(x(t)) ≤ e−d̄N(t,t0)−c̄(t−t0)V(x(t0)) (13)

∀ t ∈ (t0, ť1] (cf. [12, Theorem 1.10.2]). Here we assumed
thatť1 < ∞, otherwise the bound holds on(t0,∞). Combining
this with (6), we conclude that

V(x(t)) ≤ eµ̄−λ̄ (t−t0)V(x(t0)) ∀ t ∈ (t0, ť1]. (14)

Next we show that fort ≥ ť1, it is possible to construct an
upper bound forV(x(t)) that only depends on‖w‖[t0,t]. On
every subinterval of the form[ťi , t̂i) we already have (9b).
If t̂i is not an impulse time, then the same bound holds for
t = t̂i . If t̂i is an impulse time, then (4b) gives

V(x(t̂i)) ≤ ae−dχ(‖w‖[t0,t̂i))+ χ(|w−(t̂i)|)

In either case, we have

V(x(t)) ≤
(

ae|d| +1
)

χ(‖w‖[t0,t]) ∀ t ∈ [ťi , t̂i ], i ≥ 1, (15)

where again the bound holds∀ t ≥ ťi if t̂i = ∞. Now consider
any subinterval of the form[t̂i , ťi+1), i ≥ 1. Repeating the
argument used to establish (14), witht̂i in place oft0, and
using (15) witht = t̂i , we obtain

V(x(t)) ≤ eµ̄−λ̄ (t−t̂i)V(x(t̂i))

≤ eµ̄(

ae|d| +1
)

χ(‖w‖[t0,t̂i ]) ∀t ∈ (t̂i , ťi+1], i ≥ 1. (16)

Combining this with (14) and (15) and noting thatµ̄ > 0,
we finally obtain the following global bound:

V(x(t)) ≤ max
{

eµ̄−λ̄ (t−t0)V(x(t0)),

eµ̄(

ae|d| +1
)

χ(‖w‖[t0,t])
}

∀ t ≥ t0. (17)

The ISS estimate (2) follows from this by standard argu-
ments. Namely, sinceV is positive definite and radially
unbounded, it satisfiesα1(|x|) ≤ V(x) ≤ α2(|x|) for some
α1,α2 ∈ K∞. Therefore, (17) implies (2) withβ (r, t) :=

α−1
1 (eµ̄−λ̄ tα2(r)) and γ(r) := α−1

1 (eµ̄(ae|d| + 1)χ(r)).
Global existence of solutions also follows from the so-
established boundedness of the state. Uniformity is also
clear, since the functionsβ and γ do not depend on the
particular choice of the impulse time sequence.

4 ISS with (reverse) ADT

Suppose that an impulsive system has a candidate exponen-
tial ISS-Lyapunov function with rate coefficientsc and d,
as in (4). Whend < 0, we must necessarily havec≥ λ > 0
for (5) to hold. In this case, (4a) says that the continu-
ous dynamics ˙x = f (x,w) are ISS with respect tow. In-
deed, the existence of anISS-Lyapunov function Vsatisfy-
ing ∇V(x) · f (x,w)≤−α(V(x))+χ(|w|) with α,χ ∈K∞ is
equivalent to ISS [22], and takingα to be linear is no loss
of generality [19].

Sinced < 0, the impulses can potentially destroy ISS, and
we must require that they do not happen too frequently. Not
surprisingly, in this case the condition (5) enforces anupper
bound on the number of impulses times: forc = λ it only
holds when the number of impulse times is no larger than
N0 := µ/|d| and forc > λ it can be re-written as

N(t,s) ≤
t −s
τ∗

+N0 ∀ t ≥ s≥ t0 (18)

for appropriately defined constantsτ∗,N0 > 0. This cor-
responds to the concept ofaverage dwell-time (ADT)for
switched systems introduced in [8]. The special caseN0 = 1
reduces to adwell-timecondition in which consecutive im-
pulses must be separated by at leastτ∗ units of time.

Conversely, whenc< 0 we must haved > 0 for (5) to hold.
In this case, the condition (4b) says that the discrete dynam-
ics x(k+ 1) = g

(

x(k),w(k)
)

are ISS with respect tow. In-
deed, the existence of anISS-Lyapunov function Vsatisfying
V(g(x,w)) ≤−α(V(x))+ χ(|w|) with α,χ ∈ K∞ is equiv-
alent to discrete-time ISS [10], and takingα to be linear is
no loss of generality5 . Sincec< 0, the continuous flow can
potentially destroy ISS, so we must require flows to be per-
sistently interrupted by impulses. In this case, the condition
(5) enforces alower bound on the number of impulse times
and it can be re-written as

N(t,s) ≥
t −s
τ∗

−N0 ∀ t ≥ s≥ t0, (19)

for appropriateτ∗,N0 > 0. This is areverse ADTcondition
that demands, on average, at least one impulse per interval
of lengthτ∗. We remark that the existence of a functionV
satisfying (4a) withc< 0 amounts to forward completeness
of the continuous dynamics [1, Corollary 2.11]; of course,

5 This follows from the implication (b)⇒ (c) in Theorem 2,
which will be stated in Section 5.
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we need the same functionV to also capture ISS of the
discrete dynamics as in (4b).

Let Savg[τ∗,N0] denote the class of ADT impulse time se-
quences which satisfy (18), and letSr−avg[τ∗,N0] denote
the class of reverse ADT impulse time sequences which sat-
isfy (19). The following result follows from the above ob-
servations:

Corollary 1 (ADT ISS) Let V be a candidate exponential
ISS-Lyapunov function for(1) with rate coefficients c,d∈R.

(a) When d< 0 and c> 0, (1) is uniformly ISS over
Savg[τ∗,N0] for all τ∗ > |d|/c and N0 > 0.

(b) When d> 0 and c< 0, (1) is uniformly ISS over
Sr−avg[τ∗,N0] for all τ∗ < d/|c| and N0 > 0. 2

Proof of Corollary 1. To prove (a), pick someτ∗ > |d|/c,
N0 > 0 and take an arbitrary impulse time sequence in
Savg[τ∗,N0]. In view of (18), we have thatN(t,s) ≤
(c−λ )(t −s)/|d|+N0 ∀ t ≥ s≥ t0, for λ := c−|d|/τ∗ > 0,
from which we conclude that (5) holds withµ := |d|N0.
Uniform ISS then follows from Theorem 1.

To prove (b), pick someτ∗ < d/|c| and take an arbitrary
impulse time sequence inSr−avg[τ∗,N0]. In view of (19),
we have thatN(t,s) ≥ −(c−λ )(t −s)/d−N0 ∀ t ≥ s≥ t0,
for λ := c+ d/τ∗ > 0, from which we conclude that (5)
holds withµ := d N0. Uniform ISS then follows from The-
orem 1.

5 ISS for arbitrary impulse time sequences

When the rate coefficients of a candidate exponential ISS-
Lyapunov function are both positive, Theorem 1 gives us
uniform ISS for arbitrary impulse time sequences, because
(5) poses no constraints on the impulse time sequences, as
long as we chooseλ ≤ c. However, the system actually
exhibits a stronger form of uniform ISS.

To state this property we need the following notion: A func-
tion β : [0,∞)× [0,∞)× [0,∞)→ [0,∞) is of classK L L ,
and we writeβ ∈K L L , whenβ (·,s, ·) andβ (·, ·,s) are of
classK L for each fixeds≥ 0. We say that the impulsive
system (1) isstrongly uniformly ISSif there exist functions
β ∈ K L L andγ ∈ K∞ such that for every initial condi-
tion, every inputw, and every sequence of impulse times6

the solution to (1) exists globally and satisfies

|x(t)| ≤ β (|x(t0)|,N(t, t0), t − t0) + γ
(

‖w‖[t0,t]

)

(20)

∀ t ≥ t0. We emphasize that this property is stronger than
uniform ISS over the setSall containing all monotone se-
quences of impulse times that are finite or unbounded. For

6 Recall that the sequence of impulse times is always strictly
increasing and either finite or infinite and unbounded.

example, the one-dimensional impulsive system

{

ẋ(t) = −x(t)+w(t), t 6= tk, k∈ {1,2, . . .}

x(t) = −x−(t), t = tk, k∈ {1,2, . . .}
(21)

is uniformly ISS overSall, but not strongly uniformly ISS.
This is because (20) would imply that if we were given a
finite time interval[t0,T], a particular initial conditionx(t0),
and the zero inputw(t) = 0 ∀t ∈ [t0,T], then we could make
|x(T)| arbitrarily small by increasing the number of impulses
N(T, t0) on (t0,T]. However, with the zero input to (21), the
norm of x(T) will be exactly the same regardless of how
many impulses take place in(t0,T].

Remark 1 In the framework of [4], the system(20) would
not be ISS because it accepts a solution for which the time
sequence tk is infinite but bounded, and such a solution would
not converge to zero. It turns out that strong uniform ISS is
essentially the same as ISS in the framework of [4], as noted
in the proof of Theorem 2 below. 2

As mentioned above, when the rate coefficients of a candi-
date exponential ISS-Lyapunov function are both positive,
Theorem 1 gives us uniform ISS overSall, but the system is
actually strongly uniformly ISS. Moreover, the existence of
such a candidate exponential ISS-Lyapunov function is also
a necessary condition for strong uniform ISS. The follow-
ing result provides a complete characterization of this type
of stability.

Theorem 2 (strong uniform ISS) Assume that the impulse
map g in(1) is continuous. The following three statements
are equivalent:

(a) (1) is strongly uniformly ISS.
(b) There exist a locally Lipschitz, positive definite, radially

unbounded function U: R
n → R and α,χ ∈ K∞ that

satisfy7

∇U(x) · f (x,w) ≤−α
(

U(x)
)

+ χ(|w|) ∀x a.e.,∀w
(22a)

U(g(x,w)) ≤ (id−α)
(

U(x)
)

+ χ(|w|) ∀x,w. (22b)

(c) There exists a candidate exponential ISS-Lyapunov
function V for(1) with positive rate coefficients. 2

From Theorem 2 we conclude that if the impulsive system
is strongly uniformly ISS [statement (a)], then both the con-
tinuous and discrete dynamics must be ISS [as implied by
statement (b)]. However, the converse is not true. In fact, one
can even construct impulsive systems for which the contin-
uous and discrete dynamics are both exponentially stable in

7 Taking the same functionsα andχ in (22a) and (22b) is no loss
of generality, because we could always consider the minimum of
the twoα ’a and the maximum of the twoχ ’s.
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isolation (without inputs), but the combined impulsive sys-
tem exhibits unbounded solutions. Such an impulsive sys-
tem is essentially given in [24, Section IV]. This does not
contradict Theorem 2 because the statement (b) also asks for
the continuous and discrete dynamics to “share” the same
ISS-Lyapunov function, which is shown in Theorem 2 to be
a necessary condition for strong uniform ISS.

Proof of Theorem 2.(a)⇒ (b) The proof of this implication
relies heavily on results from [4], from which we borrow
the notation and terminology used to define and characterize
properties of hybrid systems. We start by constructing the
following hybrid system:

ż= f (z,u), z∈C, z+ = g(z,u), z∈ D, (23)

with trivial flow and jump setsC = D := R
n, and with the

same functionsf andg as in the definition of the impulsive
system (1). Such a hybrid system satisfies [4, Standing As-
sumption 1]. We first show that the hybrid system (23) is for-
ward complete and ISS in the sense of [4], and then use [4,
Theorem 2] to conclude that it must have an ISS-Lyapunov
function in the sense of [4]. This ISS-Lyapunov function will
turn out to satisfy (22a)–(22b). The key technical difficulty
in this argument arises from the fact that some solutions to
the hybrid system (23) do not have direct correspondence to
solutions to the impulsive system (1). This is true, e.g., for
a solution defined on a hybrid time domain such as the one
depicted in the top diagram in Figure 1, which would allow
from three values of the state at timet2 = t3. In particular,
one must make sure that ISS of (1) guarantees that even
those solutions to the hybrid system (23) for which there
are multiple jumps at the same time instant or for which
the set of jump times has a finite accumulation point are
well behaved. To overcome this difficulty, we use a contra-
diction argument to show that for a solution to the hybrid
system (23) to misbehave, the impulsive system (1) would
have to have a (somewhat different, but close) solution that
also misbehaves.

Since the impulsive system (1) is strongly uniformly ISS,
it satisfies (20) for appropriately selected functionsβ ∈
K L L andγ ∈K∞. To prove that (23) is forward complete
and ISS in the sense of [4], we take an arbitrary maximal
solution pair(z,u) to (23) with common hybrid time domain
of the form

dom=
⋃

j

([t j , t j+1], j) ⊂ [0,∞)×{0,1,2, . . .}

and assume by contradiction that there exists a hybrid time
(t∗, j∗) ∈ dom for which

|z(t∗, j∗)| > β (|ξ0|, j∗, t∗− t0)+ γ
(

‖u‖(t∗, j∗)

)

,

where‖u‖(t, j) := sup(t̄, j̄)∈dom:
t̄≤t, j̄≤ j

|u(t̄, j̄)|, for some(t, j)∈ dom.

By the definition of solution to the hybrid system (23), the
statez(t∗, j∗) is obtained from the initial conditionz(t0, j0) =
ξ0 through a finite alternate composition of the following two
functions: a continuous flowφu(ξ ;s, ti) that maps an initial
conditionz(ti) = ξ of the ODEż= f (z,u) into the solution
at times≥ ti ; and the discrete jump mapg. In particular,

ξi+1 = g
(

φu(ξi ; ti+1, ti),u(ti+1, i)
)

, 0≤ i < j∗

z(t∗, j∗) = φu(ξ j∗ ; t
∗, t j∗),

Suppose now that we pick a small constantε ≥ 0 and con-
struct the following “expanded” hybrid time domain

domε =
(

⋃

j

(

[tε
j , t

ε
j+1], j

)

)

∩ [t0, t
∗]×{ j0, j1, . . . , j∗},

wheretε
j := t j + j ε, on which we define the following “ex-

panded” hybrid inputuε : domε → R
n

uε(t, j) =

{

u(t − jε, j) tε
j ≤ t ≤ tε

j+1− ε
u(t j+1, j) tε

j+1− ε ≤ t ≤ tε
j+1

∀ t ∈ [tε
j , t

ε
j+1], j ≤ j∗, t ≤ t∗ (cf. Figure 1). For sufficiently

j

j

t

t

t1

t1

t2

t2 = t3

t3 t4

t4

1

1

2

2

3

3
dom

domε

Fig. 1. Hybrid time domain for a solution pair(z,u) with multiple
jumps at the same time instant and the corresponding “expanded”
time domain for the pair(zε ,uε ).

small ε > 0, there exists a hybrid arczε : domε → R
n, for

which the pair(zε ,uε) is also a solution pair to (23). In
fact, zε can also be constructed through the composition of
a continuous flow with discrete jumps. The resulting value
of zε at the hybrid time(t∗, j∗) is given by

ξ ε
i+1 = g

(

φuε (ξ ε
i ; tε

i+1, t
ε
i ),uε(tε

i+1, i)
)

,

= g
(

φuε (ξ ε
i ; tε

i+1, t
ε
i ),u(ti+1, i)

)

, 0≤ i < j∗

zε(t∗, j∗) = φuε (ξ ε
j∗ ; t

∗, tε
j∗),

with ξ ε
0 = ξ0. Because the solution to an ODE is (locally)

continuous with respect to time andg is a continuous func-
tion, the map fromξ ε

i to ξ ε
i+1 depends continuously on the
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parameterε. Since forε = 0, ξ ε
i = ξi , we conclude that we

can make each one of theξ ε
i arbitrarily close to theξi for all

i between 0 andj∗. Therefore we can also makezε(t∗, j∗)
arbitrarily close toz(t∗, j∗) by making ε > 0 sufficiently
small. Note that we also need to makeε small to make sure
that the flowsφu(·) do not have finite-escape time in each
“expanded” interval[tε

i , tε
i+1].

In view of the above mentioned continuity, we can pick a
sufficiently small value forε for which we still have

|zε(t∗, j∗)| > β (|ξ0|, j∗, t∗− t0)+ γ
(

‖u‖(t∗, j∗)

)

= β (|ξ ε
0 |, j∗, t∗− t0)+ γ

(

‖uε‖(t∗, j∗)

)

. (24)

The advantage of working with the solution pair(zε ,uε) over
the original pair (z,u) is that all thetε

j+1 are strictly larger
than thetε

j , 0≤ j ≤ j∗. This allows us to construct signals

xε : [t0, t∗] → R
n andwℓ : [t0, t∗] → R

m from the hybrid arc
zε and the hybrid inputuε , respectively, as follows

xε(t) = zε(t, j), wε(t) = uε(t, j) ∀ t ∈ [t0, t
∗],

where j in the expression above is the largest integer for
which (t, j) ∈ domε . The fact thatzε is a hybrid arc guar-
antees that the signalxε is right-continuous. The signalsxε

andwε can be viewed as projections of the hybrid signals
zε anduε onto the time-axis of the hybrid time domain.

In view of the definition of a solution pair to the hy-
brid system (23), each of the signalsxε is a solution
to the impulsive system (1) for the inputwε and im-
pulse times{tε

1 , tε
2 , . . .}. Denoting byNε(t, t0) the number

of impulse timestε
k in the semi-open interval[t0, t), we

have thatNε(t, t0) = max{ j ≥ 0 : (t, j) ∈ domε}. Since
Nε(t∗, t0) = j∗, ‖u‖(t∗, j∗) = ‖w‖[t0,t∗], xε(t0) = zε(t0,0) = ξ0,
andxε(t∗) = zε(t∗, j∗), we conclude from (24) that

|xε(t∗)| > β (|xε(t0)|, j∗, t∗− t0)+ γ
(

‖uε‖(t∗, j∗)

)

≥ β (|xε(t0)|,N
ε(t∗, t0), t

∗− t0)+ γ
(

‖w‖[t0,t∗)

)

,

which contradicts (20). This shows that (24) cannot hold
for any hybrid time(t∗, j∗) ∈ dom, and therefore the hybrid
system (23) is forward complete and ISS in the sense of [4].

We can now use [4, Theorem 2] to conclude that there exists
a smooth functionU : R

n → R that satisfies the properties
in (b), which finishes the proof of this implication.

(b)⇒ (c) To prove this implication we explicitly construct a
candidate exponential ISS-Lyapunov functionV from a non-
exponential oneU . Let V(x) := κ(U(x)), whereκ ∈ K∞ is
chosen to be continuously differentiable withκ ′ nonnegative
and nondecreasing, and

κ ′(s)α(s) ≥ 2κ(s) ∀s≥ 0. (25)

Such a function is constructed in [19, pp. 22–23]. From (25)
and (22a), we conclude that

∇V(x) · f (x,w) = κ ′(U(x))∇U(x) · f (x,w)

≤−κ ′(U(x))α
(

U(x)
)

+κ ′(U(x))χ(|w|)

≤−V(x)−κ ′(U(x))α
(

U(x)
)

/2+κ ′(U(x))χ(|w|) (26)

∀x a.e.,∀w. Whenα
(

U(x)
)

≤ 2χ(|w|), we have

κ ′(U(x))χ(|w|) ≤ κ ′ ◦α−1(2χ(|w|)
)

χ(|w|) =: χ̄(|w|)

and whenα
(

U(x)
)

> 2χ(|w|),

−κ ′(U(x))α
(

U(x)
)

/2+κ ′(U(x))χ(|w|) ≤ 0.

In either case, we conclude from (26) that

∇V(x) · f (x,w) ≤−V(x)+ χ̄(|w|) ∀x a.e.,∀w. (27)

On the other hand, using (25), the Mean Value Theorem,
and the fact thatκ ′ is nondecreasing, we conclude that

2κ(s) ≤ κ ′(s)α(s)/2+κ(s) ≤ κ(s+α(s)/2)

= κ ◦ (id +α/2)(s) ∀s≥ 0.

Specializing this inequality for8 s := (id −α/2)(r), r ≥
0 and using the fact that(id −α/2)(r) ≤ (id + α/2)−1(r)
∀ r ≥ 0, we further obtain

2κ ◦ (id−α/2)(r) ≤ κ(r) ∀ r ≥ 0. (28)

From the definition ofV and (22b), we conclude that

V(g(x,w)) ≤ κ
(

(id−α)(U(x))+ χ(|w|)
)

(29)

∀x,w. Whenα(U(x)) ≤ 2χ(|w|), we have

κ
(

(id−α)(U(x))+ χ(|w|)|
)

≤ κ
(

U(x)+ χ(|w|)|
)

≤ κ
(

α−1(2χ(|w|))+ χ(|w|)
)

=: χ̃(|w|)

and whenα(U(x)) > 2χ(|w|),

κ
(

(id−α)(U(x))+ χ(|w|)
)

≤ κ ◦ (id−α/2)(U(x)) ≤V(x)/2

by virtue of (28). In either case, we conclude from (29) that

V(g(x,w)) ≤
1
2

V(x)+ χ̃(|w|) ∀x,w. (30)

8 The functionid−α/2 must be nonnegative, otherwise we would
have a contradiction between (22b) and positive definiteness ofU .
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This finishes the proof since (27) and (30) show thatV
is a candidate exponential ISS-Lyapunov functionV with
positive rate coefficients.

(c) ⇒ (a) Sincec and d are both positive, we can pick
someλ > 0 sufficiently small so that (5) holds for every
sequence of impulse times. We now proceed as in the proof
of Theorem 1 to conclude that

V(x(t)) ≤ e−d̄ N(t,t0)−c̄(t−t0)V(x(t0))

+eµ̄(

ae|d| +1
)

χ(‖w‖[t0,t]) ∀ t ≥ t0.

This expression is obtained in the same way as (17), except
that now we combined the bounds (13) and (16) instead
of (14) and (16). Since both̄d and c̄ are positive, the ISS
estimate (20) follows by standard arguments.

Remark 2 (neutral dynamics) It should be clear from the
proof of Theorem 2 [implication (b)⇒ (c)] that if (22b) is
replaced by U(g(x,w))≤U(x) ∀x,w, i.e., if the impulses are
“neutral” rather than “helpful” for ISS, then there exists
a candidate exponential ISS-Lyapunov function V with rate
coefficients c= 1, d = 0 for which theχ term is absent from
(4b)9 . In this case, it is straightforward to prove that(1) is
uniformly ISS overSall, but it may not be strongly uniformly
ISS. The example in(21) illustrates this situation.

One can also show that when(22b) holds but the contin-
uous dynamics are “neutral,” — i.e.,(22a) is replaced by
∇V(x) · f (x,w) ≤ 0 ∀x a.e.,∀w — the impulsive system(1)
is uniformly ISS, but only over restricted classes of impulse
sequences, for which the number of impulses N(t, t0) in the
interval (t0, t] is bounded from below by an expression of the
form N(t, t0)≥ η(t− t0) ∀t > t0, for some functionη ∈K∞.

More interesting situations arise when “neutrality” only
holds for the zero input. This case is treated more thoroughly
in the next section. 2

6 ISS for arbitrary ADT

We have just seen in Section 5 that when the continuous
and the discrete dynamics are both ISS and share an ISS-
Lyapunov function, we have a strong notion of uniform ISS
for the impulsive system. When only one of these dynamics
is ISS and the other is unstable, the results in Section 4 tellus
that some form of ADT is needed for ISS. We now consider
the “marginal” case in which one of the dynamics is ISS and
the other one is only marginally stable for the zero input.

Consider the impulsive system (1) and assume that ˙x =
f (x,w) is continuous-time ISS, butx(k+1) = g

(

x(k),w(k)
)

9 To check that this is so, note that we can always takec = 1 as
in (27). Moreover, whenU(g(x,w)) ≤ U(x) ∀x,w, the equation
(29) holds withα = χ = 0, and therefore the right-hand side of
(29) is simplyκ(U(x)) = V(x), which corresponds tod = 0.

is only marginally stable for the zero inputw(k) = 0∀k. This
type of systems occurs, e.g., in [14, Section 4] in the context
of control with limited information or in the MEMS device
that we discuss in Section 8.1. For such systems, one should
not expect uniform ISS overSall because the discrete dy-
namics lack ISS, but (4b) will typically still hold for some
d < 0 and part (a) of Corollary 1 thus provides an ISS re-
sult in terms of a minimum ADTτ∗ > |d|/c. However, for
these systems one can often draw stronger conclusions be-
caused can be made arbitrarily close to zero. Motivated by
this observation, we say that the impulsive system (1) isISS
for arbitrarily small ADT when it is uniformly ISS overev-
ery classSavg[τ∗,N0] of ADT impulse time sequences that
satisfy (18) withτ∗ > 0, N0 < ∞.

Alternatively, we consider an impulsive system for which
x(k+1) = g

(

x(k),w(k)
)

is discrete-time ISS, but ˙x= f (x,w)
is only marginally stable for the zero inputw(t) = 0 ∀t. This
type of systems occurs, e.g., in the context of networked
control systems such as the one described in Section 8.2
or in [27]10 . For such systems (4a) will typically hold for
somec < 0 and part (b) of Corollary 1 provides an ISS
result in terms of a maximum reverse a.d.tτ∗ := d/(−c),
λ > 0. However, also here one can draw stronger conclusions
because typicallyc can be made arbitrarily close to zero.
Motivated by this, we say that the impulsive system (1) is
ISS for arbitrarily large reverse ADTwhen it is uniformly
ISS overeveryclassSr−avg[τ∗,N0] of reverse ADT impulse
time sequences that satisfy (19) withτ∗ > 0, N0 < ∞.

It turns out that for both cases discussed above, we need a lit-
tle more than marginal stability for the sub-system that is not
ISS, and therefore we introduce the following terminology:
We say thatV : R

n → R is non-expansive for the impulse
map gwhenV is positive definite, radially unbounded, and
for everyd < 0 there exists a functionχ ∈K∞ for which (4b)
holds. This terminology is motivated by the observation that
such a function must necessarily satisfyV(g(x,0)) ≤ V(x)
∀x. Its existence thus guarantees marginal stability of the
discrete dynamicsx(k+1) = g

(

x(k),0
)

with zero input, but
it actually provides more than that. However, it is not suf-
ficient for ISS ofx(k+1) = g

(

x(k),w(k)
)

with respect to a
nonzero inputw(k).

Alternatively, we say that a locally Lipschitz functionV
is non-expansive for the vector field fwhenV is positive
definite, radially unbounded, and for everyc< 0 there exists
a functionχ ∈ K∞ for which (4a) holds. Such a function
also satisfies∇V(x) · f (x,0) ≤ 0 ∀x a.e. and it therefore
guarantees marginal stability of the continuous dynamics ˙x=
f (x,0) for the zero input, but it is not enough to guarantee
ISS of ẋ = f (x,w) with respect tow.

The following result follows from Corollary 1:

10 The analysis in [27] deals with stochastic disturbancesw and
considers more general vector fields. A deterministic version of
the framework in [27] with marginally stable processes leads to
the class of systems considered here.
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Corollary 2 (ISS for arbitrary ADT) Let V be a candi-
date exponential ISS-Lyapunov function for(1) with rate
coefficients c,d ∈ R.

(a) When c> 0 and V is non-expansive for the impulse map
g, (1) is uniformly ISS for arbitrarily small ADT.

(b) When d> 0 and V is non-expansive for the vector
field f , (1) is uniformly ISS for arbitrarily large reverse
ADT. 2

The remainder of this section is devoted to the question of
whether or not a given functionV is non-expansive.

6.1 Non-expansiveness for impulse maps

To state the following result, we say that a functionh : R
n×

R
m → R

n has class-K growth in w uniformly over xif

|h(x,w)| ≤ γ(|w|) ∀x,w

for some functionγ ∈ K , which we call thegrowth esti-
mate for h. The following result (proved in the appendix)
provides simple conditions that can be used to establish that
a candidate Lyapunov function is non-expansive for a given
impulse map.

Theorem 3 (non-expansiveness for impulse maps)
Consider a locally Lipschitz, positive definite, radially un-
bounded function V: R

n → R and an impulse map g for
which V(g(x,0)) ≤V(x) ∀x and g(x,w)−g(x,0) has class-
K growth in w uniformly over x. The function V is non-
expansive for the impulse map g if either of the following
conditions holds:

C1 V is a positive-coefficient linear combination of func-
tions that are non-expansive for the impulse map g.

C2 V(x)/|∇V(x)| is radially unbounded a.e.
C3 V is a positive-coefficient linear combination of ho-

mogeneous functions11 with (possibly different) de-
grees larger than or equal to one. 2

Remark 3 Theorem 3 describes a very broad class of posi-
tive definite functions V that are non-expansive. Indeed, C2
simply requires that the gradient of V be dominated by V
itself and C3 says that, e.g., any polynomial function falls
in this class. One may then wonder if in practice one will
ever encounter ISS impulsive systems with candidate expo-
nential ISS-Lyapunov functions that do not exhibit the non-
expansiveness property. The answer is affirmative and a sim-
ple one-dimensional example is given by

{

ẋ = −sat(x), t 6= tk, k = 1,2, . . .

x = x− +sat(w−), t = tk, k = 1,2, . . . ,

11 We recall that a functionV : R
n →R is homogeneous of degree

p if V(λx) = λ pV(x) ∀λ ≥ 0, x∈ R
n.

wheresat(·) denotes the saturation function limited at±1
and with unit slope on[−1,1]. This system is uniformly
ISS over the class of ADT impulse time sequences that sat-
isfy (18) for any τ∗ > 1 because

V(x) :=

{

x2 |x| ≤ 1
e2(|x|−1) |x| > 1

(31)

is a candidate exponential ISS-Lyapunov function with rate
coefficients c= 2 and d= −2. However, it is not ISS for
arbitrarily small ADT since x can explode with bounded
inputs, provided that the impulse times are closely spaced.
As expected, the function(31) does not satisfy any of the
conditions in Theorem 3. 2

The next Corollary covers a useful class of systems, which
includes the case of asymptotically stable linear continuous
dynamics and marginally stable linear discrete dynamics.

Corollary 3 (GES vs. ISS for arbitrarily small ADT)
Impulsive systems of the following form are always ISS for
arbitrarily small ADT:

{

ẋ = f1(x)+ f2(w), t 6= tk, k = 1,2, . . .

x = x− +g(x−,w), t = tk, k = 1,2, . . .

whereẋ = f1(x) is globally exponentially stable, f1 is glob-
ally Lipschitz, f2(0) = 0, and g(x,w) has class-K growth
in w uniformly over x. 2

Proof of Corollary 3. [11, Theorem 4.14] guarantees the ex-
istence of a locally Lipschitz functionV satisfyinga1|x|2 ≤
V(x)≤ a2|x|2, ∇V(x) · f1(x)≤−a3|x|2, and|∇V(x)| ≤ a4|x|
a.e., whereai > 0, i = 1,2,3,4. This implies that

∇V(x) ·
(

f1(x)+ f2(w)
)

≤−a3|x|
2 +a4|x| | f2(w)|,

from which (4a) follows by square completion, for an ap-
propriately chosen rate coefficientc> 0. On the other hand,
sinceg(x,w) has class-K growth in w uniformly over x,
we must haveg(x,0) = 0 ∀x, from which we conclude that
V(x+g(x,0)) =V(x) and that

(

x+g(x,w)
)

−
(

x+g(x,0)
)

=
g(x,w) has class-K growth. This allows us to use condi-
tion C2 in Theorem 3 to conclude thatV is non-expansive
for the impulse mapx+g(x,w) and the result then follows
from Corollary 2.

6.2 Non-expansiveness for vector fields

The following result (proved in the appendix) provides sim-
ple conditions for establishing that a candidate Lyapunov
function is non-expansive for a given vector field.

Theorem 4 (non-expansiveness for vector fields)Consider
a locally Lipschitz, positive definite, radially unbounded
function V : R

n → R and a vector field f for which
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∇V(x) · f (x,0) ≤ 0 ∀x and f(x,w)− f (x,0) has class-K
growth in w uniformly over x. The function V is non-
expansive for the vector field f if either of the following
conditions holds:

C4 V is a positive-coefficient linear combination of func-
tions that are non-expansive for the vector field f .

C5 V(x)/|∇V(x)| is radially unbounded a.e.
C6 V is a positive-coefficient linear combination of ho-

mogeneous functions with (possibly different) degrees
larger than or equal to one. 2

The next Corollary covers a useful class of systems, which
includes the case of asymptotically stable linear discrete
dynamics and marginally stable linear continuous dynamics.

Corollary 4 (GES vs. ISS for arbitrary large rev. ADT)
Impulsive systems of the following form are always ISS for
arbitrarily large reverse ADT:

{

ẋ = f (x,w), t 6= tk, k = 1,2, . . .

x = g1(x−)+g2(w−), t = tk, k = 1,2, . . .

where x(k+ 1) = g1(x(k)) is globally exponentially stable,
g1 is globally Lipschitz, g2(0) = 0, and f(x,w) has class-K
growth in w uniformly over x. 2

Proof of Corollary 4. Under the assumptions of the theo-
rem, it is not difficult to verify that, for some sufficiently
large integerk > 0, there existsa1 ≥ 1 such that the function
V(x) := ∑k

i=0 |φ(i,x)| is globally Lipschitz and satisfies

|x| ≤V(x) ≤ a1|x|, (32)
V(g1(x))−V(x) ≤−|x|/2, (33)

whereφ(k,x0) denotes the solution tox(k+ 1) = g1(x(k))
at time k starting atx(0) = x0. Since f (x,w) has class-K
growth inw uniformly overx, we have thatf (x,0) = 0 and
therefore∇V(x) · f (x,0) = 0 and f (x,w)− f (x,0) has class-
K growth in w uniformly over x. We can then use C5 in
Theorem 4 to conclude thatV is non-expansive for the vector
field f . Condition C5 holds because of (32) and the fact
that, sinceV is globally Lipschitz, there exists a constant
a2 > 0 for which |∇V(x)| ≤ a2 a.e. We now use Theorem 3
to show thatV satisfies (4b) for some rate coefficientd >
0. To this end, we consider the auxiliary impulsive map
ḡ(x̄,w) := x̄+g2(w) ∀ x̄∈ R

n,w∈ R
m. Sinceg2(0) = 0, we

have thatV
(

ḡ(x̄,0)
)

=V(x̄) ∀ x̄ andḡ(x̄,w)− ḡ(x̄,0) = g2(w)
has class-K growth inw uniformly overx. Since we already
established that condition C2 holds, we conclude thatV
is non-expansive for the impulse map ¯g and therefore, for
every d̄ < 0, we can find an appropriatēχ ∈ K∞, so that
V

(

ḡ(x̄,w)
)

≤ e−dV(x̄)+ χ̄(|w|) ∀ x̄,w. In particular, for ¯x =
g1(x) and using (32)–(33), we obtain

V
(

g1(x)+g2(w)
)

≤ e−d̄V
(

g1(x)
)

+ χ̄(|w|) ≤ e−d̄(V(x)

−|x|/2
)

+ χ̄(|w|) ≤ e−d̄(1−1/(2a1))V(x)+ χ̄(|w|),

from which (4b) follows for somed > 0, provided that
we choosed̄ < 0 sufficiently close to zero so thate−d̄(1−
1/(2a1))< 1. The result then follows from Corollary 2.

7 Sufficient conditions for integral-ISS

We now provide iISS counterparts to Theorem 1 and the
sufficient condition in Theorem 2. The first result establishes
iISS for suitably constrained impulse time sequences under
the hypotheses of Theorem 1, and the second one establishes
iISS for arbitrary impulse time sequences under hypotheses
weaker than (22a)–(22b).

Theorem 5 (uniform iISS) Let all hypotheses of Theo-
rem 1 hold and define the class of impulse time sequences
S [µ ,λ ], µ ,λ > 0 also as in Theorem 1. Then the system(1)
is uniformly iISS overS [µ ,λ ]. 2

Proof of Theorem 5.From (4a) and (4b) we see thatV(x(t))
is bounded from above by the (nonnegative) solutionv(t) of
the impulsive system

{

v̇ = −cv+ χ(|w|), t 6= tk, k = 1,2, . . .

v = e−dv− + χ(|w−|), t = tk, k = 1,2, . . .

with the initial conditionv(t0) = V(x(t0)). Let z(t) be the
(nonnegative and non-decreasing) solution to

{

ż= χ(|w|), t 6= tk, k = 1,2, . . .

z= z− + χ(|w−|), t = tk, k = 1,2, . . .

with the initial conditionz(t0) = 0. Definey(t) := v(t)−z(t).
Theny satisfiesy(t0) = V(x(t0)) and

{

ẏ = −cv= −cy−cz, t 6= tk
y = e−dv−−z− = e−dy−− (1−e−d)z−, t = tk.

Arguing as in the proof of Theorem 1, withy andz playing
the roles ofV and w, respectively, we can show that this
impulsive system is ISS with respect toz with linear gain:

y(t) ≤ β (y(t0), t − t0)+ γz(t) (34)

for some functionβ ∈ K L and constantγ > 0. Collecting
the above facts, we obtain

V(x(t)) ≤ v(t) = y(t)+z(t) ≤ β (y(t0), t − t0)+(γ +1)z

= β (V(x(t0)), t − t0)+
∫ t

t0
(γ +1)χ(|w(s)|)ds

+ ∑
tk∈[t0,t]

(γ +1)χ(|w−(tk)|)

from which the iISS estimate (3) follows.
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Theorem 6 (uniform iISS for arbitrary sequences)
Suppose that there exists a positive definite, radially un-
bounded, locally Lipschitz function V: R

n → R, a positive
definite functionα, and a classK∞ functionχ satisfying

∇V(x) · f (x,w) ≤−α(V(x))+ χ(|w|) ∀x a.e.,∀w (35a)
V(g(x,w)) ≤V(x)+ χ(|w|) ∀x,w. (35b)

Then the system(1) is uniformly iISS overSall. 2

Note that this theorem does not requireα to be radially
unbounded. This and the relaxation of (22b) to (35b) are the
key differences with respect to the necessary and sufficient
conditions for strong uniform ISS in Theorem 2.

Proof of Theorem 6.This is a relatively straightforward ex-
tension of the proof of the corresponding result for continu-
ous systems given in [2]. From (35a) and (35b) we see that
V(x(t)) is bounded from above by the (nonnegative) solu-
tion v(t) of the impulsive system

{

v̇ = −α(v)+ χ(|w|), t 6= tk, k = 1,2, . . .

v(t) = v−(t)+ χ(|w−(t)|), t = tk, k = 1,2, . . .

with the initial conditionv(t0) = V(x(t0)). Let z(t) be the
(nonnegative and nondecreasing) solution of

{

ż= χ(|w|), t 6= tk, k = 1,2, . . .

z(t) = z−(t)+ χ(|w−(t)|), t = tk, k = 1,2, . . .

with the initial conditionz(t0) = 0. Definey(t) := v(t)−z(t).
Theny is continuous everywhere, non-increasing, and

ẏ = −α(v) = −α(y+z), y(t0) = V(x(t0)). (36)

Let ť := min{t ≥ t0 : y(t)≤ z(t)} ≤ ∞, which is well defined
becausez is right-continuous. Sincey is non-increasing and
z is nondecreasing, we have

y(t) ≤ z(t) ∀ t ≥ ť (37)

and
y(t) > z(t) ∀ t ∈ [t0, ť)

the latter of which implies that

0≤ y(t) ≤ y(t)+z(t) ≤ 2y(t) ∀ t ∈ [t0, ť). (38)

By [2, Lemma IV.1], there exist functionsρ1 ∈ K∞ and
ρ2 : [0,∞) → [0,∞), with ρ2 continuous and monotone de-
creasing to 0, such thatα(r)≥ ρ1(r)ρ2(r) for all r ≥ 0. Us-
ing (36) and (38), we have

ẏ≤−ρ1(y+z)ρ2(y+z) ≤−ρ1(y)ρ2(2y) ∀ t ∈ [t0, ť).

Thus there exists aβ ∈ K L (which does not depend on
our choice of trajectory) such thaty(t) ≤ β (y(t0), t − t0) for
t ∈ [t0, ť). Combining this with (37), we have

y(t) ≤ β (y(t0), t − t0)+z(t) ∀ t ≥ t0 (39)

and this yields (recalling the definition ofz)

V(x(t)) ≤ v(t) = y(t)+z(t) ≤ β (y(t0), t − t0)+2z(t)

= β (V(x(t0)), t − t0)+
∫ t

t0
2χ(|w(s)|)ds

+ ∑
tk∈[t0,t]

2χ(|w−(tk)|)

from which iISS follows.

8 Examples

8.1 MEMS oscillator

The displacementy of Micro-Electro-Mechanical System
(MEMS) oscillators can be modeled by the following two-
dimensional system:

mÿ+bẏ+k1y+k3y3 = v, (40)

whereb is a damping coefficient,k1 andk3 linear and cubic
stiffness terms for the restitution force, andv a driving force.
Figure 2 shows a schematic of such a device and typical
parameters values.
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�����������������
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����������������� y

mÿ+bẏ+k1y+k3y3 = v

Fig. 2. MEMS device in Example 8.1. The following parame-
ter values are consistent with the folded spring device in [29]:
m = 277, b = 0.678, k1 = 7.61, andk3 = .0441 (in units ofµ
Newtons,µ meters,µ seconds, and Volts).

For experiments in air, Brownian motion due to collisions
with air molecules is the main noise source in mass-sensing
applications [16, 28]. The transfer of kinetic energy between
an air molecule and the oscillator due to a collision at time
tk can be modeled by a state-impulse of the following form:

y(tk) = y−(tk), ẏ(tk) = ẏ−(tk)+n−(tk), (41)

wheren−(tk) denotes the change in velocity due to a collision
at timetk. Defining

V(y, ẏ) := y2 +0.1yẏ+36.5ẏ2 +18.25k3y4/m, (42)

we have that (4a) holds withc = 10−3 and χ(|v|) := v2/2.
Moreover, in view of condition C3 in Theorem 3, the func-
tion (42) is non-expansive for the impulse map (41). We thus
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conclude from Corollary 2 that the impulsive system (40)–
(41) is ISS for arbitrarily small ADT. This means that the
system remains ISS no matter how frequently the collisions
occur. The candidate Lyapunov function (42) was found nu-
merically, using the SOSTOOLS MATLAB toolbox [18].

8.2 Networked control system

Considern one-dimensional linear systems of the form

ẋi = ai xi +bi νi , yi = xi + µi , i ∈ {1,2, . . . ,n}, (43)

where theνi denote input disturbances and theµi denote
measurement/quantization noise. To build a remote estimate
of all thexi , one is allowed to send one measurement at each
time instant{t1, t2, . . .}. Between the reception of measure-
ments the estimate ˆxi of xi evolves according tȯ̂xi = ai x̂i ,
t 6∈ {t1, t2, . . .} and, denoting byik the index of the measure-
mentyik that is sent at timetk, we have12

x̂i(tk) =

{

y−ik (tk) i = ik
x̂−i (tk) i 6= ik.

The dynamics of the resulting estimation errorei := x̂i −xi
can be described by the following impulsive system:

ėi = ai e−bi νi , t 6= tk, k = 1,2, . . . (44a)

ei =

{

µ−
ik

(tk) i = ik
e−i (tk) i 6= ik,

t = tk, k = 1,2, . . . (44b)

We consider a TOD-like protocol [17, 26] to decide which
measurement to send:ik is the index corresponding to the
largest absolute value of the error ˆx−i −y−i = e−i −µ−

i , i.e.,

|e−ik −µ−
ik
| ≥ |e−i −µ−

i | ∀ i ∈ {1,2, . . . ,n}. (45)

Defining

V(e) :=
n

∑
i=1

|ei |
2 (46)

it can be shown (see Appendix) that for every constantd ∈
(0, log(n/n−1)) one can find a functionχ ∈ K∞ such that

V
(

e(tk)
)

≤ e−dV
(

e−(tk)
)

+ χ(|µ−(tk)|), (47)

wheree and µ aren-vectors obtained by stacking together
all theei andµi , respectively.

We consider three possible cases: (i) When some of the
systems (43) are unstable — i.e., someai > 0 — the function

12 For consistency of notation we assume that the value of the
output “just before”tk is sent to the remote estimator. In case the
µi are continuous this is irrelevant sincey−ik (tk) = yik(tk).

V in (46) is a candidate exponential ISS-Lyapunov function
with rate coefficients

0 < d < log
n

n−1
, c < −max

i
ai < 0.

We then conclude from Corollary 1 that the error system
(44) is uniformly ISS over the class of reverse ADT impulse
time sequencesSr−avg[τ∗,N0], for all N0 > 0 and

τ∗ <
1

maxi ai
log

n
n−1

. (48)

In the context of this example this means that measurements
must be transmitted at a minimum “average” rate consistent
with (48). (ii) When all the systems (43) are stable, but not
necessarily asymptotically — i.e., allai ≤ 0 — we conclude
from Condition C6 in Theorem 4 that the functionV is non-
expansive for the vector field (44a). In this case, the error
system (44) is ISS for arbitrarily large reverse ADT because
of Corollary 2. For this example this means that measure-
ments can be transmitted at any positive “average” rate. (iii)
When all the systems (43) are asymptotically stable — i.e.,
all ai < 0 — the functionV in (46) is a candidate exponen-
tial ISS-Lyapunov function with positive rate coefficients.
We now conclude from Theorem 2 that the error system
(44) is strongly uniformly ISS. This means that there are no
constraints posed on the frequency of measurements.

9 Conclusions

We introduced the concepts of ISS and integral-ISS for
impulsive systems and provided Lyapunov-based sufficient
conditions for establishing these properties.

When both the continuous and discrete dynamics are stabi-
lizing, the Lyapunov-based conditions proved to be neces-
sary and sufficient for strong uniform ISS, but it is unclear
whether the conditions derived are also tight for the other
cases. Investigating this issue is a topic for future research.
Another topic is the development of numerically efficient
procedures for constructing ISS-Lyapunov functions for im-
pulsive systems, perhaps relying on semi-definite program-
ming.

A Appendix

Lemma 1 Consider two continuous functions f: R
n ×

R
m→R

n, α : R
n×R

m→R and a locally Lipschitz function
V : R

n → R, with the property that

∇V(x) · f (x,w) ≤ α(x,w) ∀x∈ R
n\Ω,w∈ R

m (A.1)

for some zero Lebesgue-measure setΩ ⊂ R
n that contains

all points at which x7→V(x) is not differentiable. For every
absolutely continuous solution x: [t0, t1)→R

n to ẋ= f (x,w),
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with w(t) ∈ R
m locally bounded and Lebesgue-measurable;

we have that t7→V(x(t)) is absolutely continuous and

V̇(x(t)) ≤ α
(

x(t),w(t)
)

, ∀ t ∈ [t0, t1)\T (A.2)

for some zero Lebesgue-measure setT ⊂ [t0, t1) that con-
tains all points at which t7→ V(x(t)) is not differentiable.

2

Proof of Lemma 1.This result is proved in [25, Section 2].
For the benefit of the reader, we outline here the key steps
of the proof: Sincex(t) is absolutely continuous andV(x) is
locally Lipschitz, the functiont 7→V(x(t)) is absolutely con-
tinuous on[t0, t1). Therefore there exists a zero Lebesgue-
measure setT ⊂ [t0, t1) such that both ˙x(t) andV̇(x(t)) exist
in [t0, t1)\T . To construct a bound foṙV(x(t)), we first note
that for everyt ∈ [t0, t1)\T , this derivative can be bounded
from above by

V̇(x(t)) = lim
h→0

V(x(t)+hẋ(t))−V(x(t))
h

≤Vo(x(t); ẋ(t)) = Vo(x(t); f (x(t),w(t)), (A.3)

where Vo(x;v) := limsuph→0+,y→z
V(y+hv)−V(y)

h denotes
Clarke’s generalized directional derivative, which is well
defined everywhere onRn becauseV is locally Lipschitz.
Second, by the continuity of the right hand side of (A.1),
we can conclude that

Vo(x; f (x,w)) ≤ α(x,w) ∀x∈ R
n,w∈ R

m, (A.4)

including at pointsx∈ Ω on whichV(x) may not be differ-
entiable. The inequality (A.2) then follows from (A.3) and
(A.4).

We emphasize that (A.2) holds even whenx(t), t ∈ [t0, t1)
lies entirely in a subset ofΩ for which (A.1) does not hold
because the gradient∇V(x) does not exist.

Proof of Theorem 3.C1. We prove this result for a linear
combinationV = α1V1 +α2V2, α1,α2 > 0 of two functions
V1,V2 : R

n → R both non-expansive for the impulse mapg
and the general result follows by induction on the number of
functions. Since bothV1 andV2 are non-expansive, for any
givend < 0 there exist functionsχ1,χ2 ∈ K∞ for which

Vi(g(x,w)) ≤ e−dVi(x)+ χi(|w|) ∀x,w, i ∈ {1,2}

and thereforeV satisfies (4b) withχ := α1χ1+α2χ2 ∈K∞.

C2. For an arbitraryd < 0, consider the auxiliary function

κd(s) := min
{ s

2
, |d| ess inf

|z|≥s/2,∇V(z) 6=0

V(z)
|∇V(z)|

}

. (A.5)

By constructionκd is positive fors 6= 0, monotone nonde-
creasing, and radially unbounded. The latter property is due
to the hypothesis thatV(z)/|∇V(z)| is radially unbounded.
The above construction does not guarantee thatκd ∈K∞, be-
cause it may not be continuous or strictly increasing. How-
ever, for simplicity we assume thatκd ∈K∞, because if this
is not the case, we can always replace it by a smaller func-
tion in K∞.

Pick arbitraryx∈R
n, w∈R

m for whichv := g(x,w)−g(x,0)
is “small” in the sense that

|v| = |g(x,w)−g(x,0)| < κd(|g(x,0)|) (A.6)

and definez(τ) := g(x,0)+τ v ∀τ ∈ [0,1]. Because of (A.6)
and the fact thatκd(s) ≤ s/2 ∀s≥ 0, we have that

|z(τ)| ≥ |g(x,0)|− |v|
≥ |g(x,0)|−κd(|g(x,0)|) ≥ |g(x,0)|/2 (A.7)

∀τ ∈ [0,1]. On the other hand, sinceV is locally Lipschitz,
from Rademacher’s Theorem we conclude thatV is differ-
entiable almost everywhere and again using (A.6), we ob-
tain ∇V(z̄) · v ≤ |∇V(z̄)|κd(|g(x,0)|) ∀z̄ a.e. If we further

restrict our attention to points for which|z̄| ≥ |g(x,0)|
2 , from

the definition ofκd we conclude that

|z̄| ≥ |g(x,0)|/2 ⇒ ∇V(z̄) ·v≤ |d|V(z̄) ∀ z̄ a.e. (A.8)

Since dz
dτ = v ∀τ ∈ [0,1] andz(τ) satisfies (A.7), we can use

(A.8) and Lemma 1 to conclude that∂V(z(τ))
∂τ ≤ |d|V(z(τ))

∀τ a.e., which leads to

V
(

g(x,w)
)

= V(z(1)) ≤ e|d|V(z(0))

= e−dV
(

g(x,0)
)

≤ e−dV(x), (A.9)

where we used the fact thatV
(

g(x,0)
)

≤V(x).

Suppose now that we pickx∈ R
n, w∈ R

m for which v :=
g(x,w)−g(x,0) is “large” in the sense that it satisfies

|g(x,0)| ≤ κ−1
d (|v|) = κ−1

d (|g(x,w)−g(x,0)|)

instead of (A.6). We now have

V(g(x,w)) = V
(

v+g(x,0)
)

≤ α
(

|v|+ |g(x,0)|)

≤ α ◦ (id +κ−1
d )(|v|) ≤ χ(|w|), (A.10)

whereα is a class-K∞ function with the property thatV(x)≤
α(|x|) ∀x∈ R

n, χ := α ◦ (id +κ−1
d )◦ γ, andγ is the growth

estimate ofg(x,w)− g(x,0). The existence ofα ∈ K∞ is
guaranteed by the fact thatV is positive definite and radially
unbounded. Combining (A.9) with (A.10), we conclude that
(4b) holds for everyx andw, from which C2 follows.
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C3. In view of C1, it suffices to show that a homogeneous
functionV of degreep≥ 1 is non-expansive. Suppose that
we pick an arbitraryx∈ R

n for which ∇V(x) exists and is
nonzero and define ¯x := x/|x|. It is well known that ifV
is homogeneous of degreep ≥ 1, then its gradient∇V is
homogeneous of degreep−1≥ 0, from which we conclude
that

V(x)
|∇V(x)|

=
|x|pV(x̄)

|x|p−1 |∇V(x̄)|
=

|x|V(x̄)
|∇V(x̄)|

soV(x)/|∇V(x)| → ∞ as|x| → ∞, because|∇V(x̄)| for |x̄|=
1 must remain bounded. We thus conclude thatV satisfies
C2, which finishes the proof.

Proof of Theorem 4.C4. We prove this result for a linear
combinationV = α1V1 +α2V2, α1,α2 > 0 of two functions
V1,V2 : R

n → R both non-expansive for the vector fieldf .
Since bothV1 andV2 are non-expansive, for any givenc< 0
there exist functionsχ1,χ2 ∈ K∞ for which

∇Vi(x) · f (x,w) ≤−cVi(x)+ χi(|w|) ∀x,w, i ∈ {1,2},

and thereforeV satisfies (4a) withχ := α1χ1+α2χ2 ∈ K∞.

C5. For an arbitraryc < 0, consider the auxiliary function

κc(s) := −c ess inf
|z|≥s,∇V(z) 6=0

V(z)
|∇V(z)|

.

As argued in the proof of Theorem 3 for the functionκd
defined in (A.5), we can assume without loss of generality
that κc ∈ K∞.

We start by picking arbitraryx ∈ R
n, w ∈ R

m for which
∇V(x) exists andz := f (x,w)− f (x,0) is “small” in the
sense that it satisfies

|z| = | f (x,w)− f (x,0)| < κc(|x|). (A.11)

Using the fact that∇V(x) · f (x,0) ≤ 0, (A.11) and the defi-
nition of κc, we conclude that

∇V(x) · f (x,w) = ∇V(x) · f (x,0)+∇V(x) ·z
≤ ∇V(x) ·z≤ |∇V(x)|κc(|x|) ≤−cV(x). (A.12)

Suppose that we now pickx∈ R
n, w∈ R

m for which ∇V(x)
exists andz := f (x,w)− f (x,0) is “large” in the sense that
it satisfies

|x| ≤ κ−1
c (|z|) = κ−1

c (| f (x,w)− f (x,0)|) (A.13)

instead of (A.11). SinceV is locally Lipschitz, there exists a
functionα2 ∈ K∞ and a constantk≥ 0 such that|∇V(x)| ≤

k+ α2(|x|) ∀x a.e. (cf. [5]). Because of this, the fact that
∇V(x) · f (x,0) ≤ 0, and (A.13), we now have

∇V(x) · f (x,w) = ∇V(x) · f (x,0)+∇V(x) ·z
≤ ∇V(x) ·z≤ k|z|+α2(|x|)|z|

≤ k|z|+α2◦κ−1
c (|z|)|z| ≤ χ(|w|) (A.14)

with χ(s) := kγ(s)+(α2◦κ−1
c ◦γ)(s)γ(s) ∀s≥ 0, whereγ is

the growth estimate off (x,w)− f (x,0). Combining (A.12)
with (A.14), we conclude that (4a) holds for almost allx and
w, from which C5 follows.

C6. Like in the proof of Theorem 3, one can show that C6
follows from C4 and C5.

Proof of inequality(47). For each indexi, we have that

|e−i (tk)|− |µ−
i (tk)| ≤ |e−i (tk)−µ−

i (tk)|

≤ |e−ik (tk)−µ−
ik

(tk)| ≤ |e−ik (tk)|+ |µ−
ik

(tk)|,

where the first and last inequalities follow from the tri-
angle inequality and the middle one from (45). Since
all the |µ−

ik
(tk)| can be bounded from above by the vec-

tor norm |µ−(tk)|, we further conclude that|e−i (tk)| ≤
|e−ik (tk)|+2|µ−(tk)| ∀i. Combining this inequality with the

well known13 fact that(a+b)2 ≤ (1+ε)2a2+(1+ε−1)2b2

∀a,b,ε > 0 we obtain

V
(

e−(tk)
)

=
n

∑
i=1

|e−i (tk)|
2

≤ n(1+ ε)2|e−ik (tk)|
2 +4n(1+ ε−1)2|µ−(tk)|

2,

which implies that

−|e−ik (tk)|
2 ≤−

V
(

e−(tk)
)

n(1+ ε)2 +
4(1+ ε−1)2

(1+ ε)2 |µ−(tk)|
2.

(A.15)

On the other hand,V
(

e(tk)
)

= |µ−
ik

(tk)|2 − |e−ik (tk)|
2 +

V
(

e−(tk)
)

. Combining this with (A.15), we obtain

V
(

e(tk)
)

≤
(

1−
1

n(1+ ε)2

)

V
(

e−(tk)
)

+
(

1+
4(1+ ε−1)2

(1+ ε)2

)

|µ−(tk)|
2.

13 To verify this, note that given any four positive constants
a,b,ε, p > 0,

(a+b)p ≤

{

(1+ ε)pap εa≥ b
(1+ ε−1)pbp εa < b,

from which (a+b)2 ≤ (1+ ε)2a2 +(1+ ε−1)2b2 follows.
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from which (46) follows, as long as we define

d := − log
(

1−
1

n(1+ ε)2

)

, χ(s) :=
(

1+
4(1+ ε−1)2

(1+ ε)2

)

s2.

and selectε so thatd > 0. In fact, we can get anyd ∈
(

0, log n
n−1

)

by appropriate choice ofε.
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