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Abstract— This paper introduces appropriate concepts of
input-to-state stability (ISS) and integral-ISS for systems with
impulsive effects. We provide a set of Lyapunov-based sufficient
conditions to establish these properties. When the continu-
ous dynamics are stabilizing but the impulsive effects are
destabilizing, the impulses should not occur too frequently,
which can be formalized in terms of an average dwell-time
condition. Conversely, when the impulses are stabilizing and
the continuous dynamics are destabilizing, there must not be
overly long intervals between impulses, which is formalized
in terms of a reverse average dwell-time condition. We also
investigate limiting cases of systems that remain stable for
arbitrarily small/large average dwell-times.

I. INTRODUCTION

Impulsive systems combine continuous evolution (typically
described by ordinary differential equations) with impulse
effects (also referred to as state jumps or resets). Stability
properties of such systems have been extensively investigated
in the literature; see, e.g., [3].

When investigating stability of a system, it is important
to characterize the effects of external inputs. The concepts
of input-to-state stability (ISS) and integral-input-to-state
stability (iISS), introduced by Sontag in [17] and [18],
have proved useful in this regard. Originally introduced
for continuous-time systems, they were subsequently also
studied for discrete-time systems [9] and switched sys-
tems [14]. The possibility of impulse effects, however, has
been excluded in these works.

In this paper we study input-to-state stability properties
of impulsive systems, with external signals affecting both
the continuous dynamics and the state impulse map. These
systems are formally defined in Section II, where we also
define notions of ISS and iISS for such systems.

We provide a set of Lyapunov-based sufficient conditions
to establish ISS and iISS with respect to suitable classes
of impulse time sequences (see Sections III for ISS and
Section VI for iISS). It is shown that when the continuous
dynamics are ISS but the impulse effects are destabilizing,
the impulsive system is ISS if the impulse times do not
occur too frequently, which can be formalized in terms of
an average dwell-time condition [7]. Conversely, when the
impulses are stabilizing but the continuous dynamics are
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destabilizing, the impulsive system is ISS if the impulse
times satisfy a novel “reverse” average dwell-time condition,
which prevents overly long intervals between impulse times.

Section IV considers impulsive systems for which both the
continuous dynamics and the impulsive effects are stabiliz-
ing. Such systems are ISS regardless of how often or how
seldom impulses occur. For these systems we show that there
is no loss of generality in searching for Lyapunov functions
that decrease at exponential rates. This result is analogous to
what happens with ISS of purely discrete- or continuous-time
systems (cf. [16]).

We also investigate impulsive systems that, although ex-
hibiting destabilizing impulsive effects, remain ISS for arbi-
trarily small average dwell-time. Such systems typically arise
when a continuous-time ISS system is perturbed by additive
impulses. We also consider the dual case of impulsive
systems that exhibit destabilizing continuous dynamics but
remain ISS for arbitrarily large reverse average dwell-time.
These systems typically can arise when a discrete-time ISS
system is perturbed by a continuous drift between sampling
times. Lyapunov-based stability conditions that cover both
cases are provided in Section V.

The motivation to study the class of systems considered in
this paper comes from multiple sources. Impulsive systems
with external inputs arise naturally in control systems with
communication constraints, as explicitly discussed in [8, 13,
15, 20]. A special case of one of our results was used in [13]
to analyze stability of such a system. The results presented
here can be used to construct deterministic versions of the
results that appeared in [20] for stochastic disturbances.
Impulsive systems with inputs also describe the evolution
of multiple Lyapunov functions for switched systems with
inputs (even if the latter exhibit no state jumps), which in
turn arise in the analysis of switching control algorithms for
uncertain systems [6, 12].

II. BASIC DEFINITIONS

The general impulsive system with disturbances that we
consider takes the form

{

ẋ(t) = f
(

x(t), w(t)
)

, t 6= tk, k = 1, 2, . . .

x(t) = g
(

x−(t), w(t)
)

, t = tk, k = 1, 2, . . .
(1)

where the state x takes values in R
n; w is a measurable

locally bounded disturbance input taking values in R
m;



f and g are functions from R
n × R

m → R
n, with f

locally Lipschitz; and {t1, t2, t3, . . . } is a sequence of strictly
increasing impulse times in [t0,∞), where t0 is the initial
time. By construction the solution x : [t0,∞) → R

n to (1) is
right-continuous and (·)− denotes the left-limit operator, i.e.,
x−(t) = lims↗t x(s). Given a sequence {tk} and a pair of
times s, t satisfying t ≥ s ≥ t0, we will let N(t, s) denote
the number of impulse times tk in the semi-open interval
[s, t).

Suppose that a sequence {tk} is given. We say that the
impulsive system (1) is input-to-state stable (ISS) if there
exist functions1 β ∈ KL and γ ∈ K∞ such that for
every initial condition and every input w, the corresponding
solution of (1) satisfies

|x(t)| ≤ β(|x(t0)|, t − t0) + γ
(

‖w‖[t0,t]

)

, ∀ t ≥ t0 (2)

where ‖ · ‖J denotes the supremum norm on an interval J .
Because of the dual role of w as a continuous and discrete
perturbation, it is acceptable to discard its values on a set
of measure zero, provided that this set does not contain any
impulse times. This can be achieved by redefining the norm
of w as

‖w‖[t0,t] := max
{

ess sup
s∈[t0,t]

|w(s)|, sup
tk∈[t0,t]

|w(tk)|
}

. (3)

With this more general definition, all the subsequent devel-
opments remain valid. Considering only one function γ in
(2) leads to no loss of generality, compared to a bound in
which the two terms on the right-hand-side of (3) appear
weighted by different class K∞ functions.

Since the above definition applies to a fixed sequence {tk}
of impulse times, the ISS property depends on the choice of
the sequence. However, it is often of interest to characterize
ISS over classes of sequences {tk}. To this effect, we say
that the impulsive system (1) is uniformly ISS over a given
class S of admissible sequences of impulse times if the ISS
property expressed by (2) holds for every sequence in S with
functions β and γ that are independent of the choice of the
sequence.

The above ISS property characterizes robustness to dis-
turbances in the L∞/l∞ sense. Another possibility is to
consider “integral” variants, in the spirit of [18]. We say
that the impulsive system (1) is integral-input-to-state stable
(iISS) if there exist functions β ∈ KL and α, γ ∈ K∞

such that for every initial condition and every input w, the
inequality

α(|x(t)|) ≤ β(|x(t0)|, t − t0) +

∫ t

t0

γ(|w(s)|)ds

+
∑

tk∈[t0,t]

γ(|w(tk)|), ∀ t ≥ t0 (4)

1We say that a function α : [0,∞) → [0,∞) is of class K, and write
α ∈ K, when α is continuous, strictly increasing, and α(0) = 0. If α is
also unbounded, then we say it is of class K∞ and write α ∈ K∞. We
say that a function β : [0,∞) × [0,∞) → [0,∞) is of class KL, and
write β ∈ KL when β(·, t) is of class K for each fixed t ≥ 0 and β(s, t)
decreases to 0 as t → ∞ for each fixed s ≥ 0.

holds on the domain of the corresponding solution of (1).
The notion of uniform iISS over a given class S of impulse
time sequences is defined in the same way as for ISS.

III. SUFFICIENT CONDITIONS FOR ISS

We say that a function V : R
n → R is a candidate expo-

nential ISS-Lyapunov function for (1) with rate coefficients
c, d ∈ R if V is locally Lipschitz, positive definite radially
unbounded and2

∇V (x) · f(x, w) ≤ −cV (x) + χ(|w|) ∀x, w a.e. (5)

V (g(x, w)) ≤ e−dV (x) + χ(|w|) ∀x, w (6)

for some function χ ∈ K∞. For generality, we are assuming
that V is locally Lipschitz but not necessarily differen-
tiable everywhere. However, from Rademacher’s Theorem
we know that the former is sufficient to guarantee that the
gradient ∇V (x) of V is well defined except on a set of
measure zero. For this reason we qualify the quantifier in
(5) with “almost everywhere.” We do not require the rate
coefficient c, d to be non-negative and therefore V will not
necessarily decrease, even when w = 0. However, when
these coefficients satisfy an appropriate constraint one can
use V to show that the impulsive system is ISS.

Theorem 1 (uniform ISS) Let V be a candidate exponen-
tial ISS-Lyapunov function for (1) with rate coefficients c, d ∈
R with d 6= 0 3. For arbitrary constants µ, λ > 0, let Sµ,λ

denote the class of impulse time sequences {tk} satisfying

−dN(t, s) ≤ µ + (c − λ)(t − s), ∀ t ≥ s ≥ t0. (7)

Then the system (1) is uniformly ISS over Sµ,λ. �

Before proving Theorem 1, we provide some insight into
the significance of condition (7).

When d < 0, we must necessarily have c ≥ λ > 0
for (7) to hold. In this case, (5) says that the continuous
dynamics ẋ = f(x, w) are ISS with respect to w. Indeed,
the existence of an ISS-Lyapunov function V satisfying
∇V (x) · f(x, w) ≤ −α(V (x)) + χ(|w|) with α, χ ∈ K∞

is equivalent to ISS [19], and taking α to be linear is no loss
of generality [16].

Since d < 0, the impulses can potentially destroy ISS,
and we must require that they not happen too frequently.
Not surprisingly, in this case the condition (7) enforces an
upper bound on the number of impulses times: for c = λ it
only holds when the number of impulse times is no larger
than N0 := µ

|d| and for c > λ it can be re-written as

N(t, s) ≤
t − s

τ∗
+ N0, ∀ t ≥ s ≥ t0, (8)

2Taking the same function χ in (5) and (6) is no loss of generality,
because we can always consider the maximum of two functions; however,
it is also easy to treat the case of two different functions, which would lead
to slightly more complicated notation but less conservative estimates.

3When d = 0, Theorem 1 can still be applied because (6) also holds for
every d < 0. This case is closely related to the results in Section V.



where τ∗ := |d|
c−λ

, N0 := µ
|d| . This corresponds to the con-

cept of average dwell-time for switched systems introduced
in [7]. The special case N0 = 1 reduces to a dwell-time
condition in which consecutive impulses must be separated
by at least τ∗ units of time.

When d > 0, the condition (7) only poses a constraint
when λ > c. In this case, it enforces a lower bound on the
number of impulse times and it can be re-written as

N(t, s) ≥
t − s

τ∗
− N0, ∀ t ≥ s ≥ t0, (9)

where τ∗ := d
λ−c

, N0 := µ
d

. It now corresponds to a reverse
average dwell-time condition that demands, on average, at
least one impulse per interval of length τ ∗ > 0. With
d > 0, (6) says that the discrete dynamics x(k + 1) =
g
(

x(k), w(k)
)

are ISS with respect to w. When we have
c < 0, the continuous flow can potentially destroy ISS,
so we must require flows to be persistently interrupted by
impulses through the reverse average dwell-time condition.
We recall that, according to [1, Theorem 1], the condition (5)
with c < 0 is equivalent to forward completeness (bounded
response to bounded inputs) of the continuous dynamics. The
following result follows from the discussion above:

Corollary 2 (average dwell-time ISS) Let V be a candi-
date exponential ISS-Lyapunov function for (1) with rate
coefficients c, d ∈ R.

1) Let Savg[τ
∗, N0] denote the class of average dwell-time

impulse time sequences that satisfy (8). When d < 0,
(1) is uniformly ISS over Savg[τ

∗, N0], for every τ∗ >
|d|/c and N0 > 0.

2) Let Sr−avg[τ
∗, N0] denote the class of reverse average

dwell-time impulse time sequences that satisfy (9).
When d > 0, (1) is uniformly ISS over Sr−avg[τ

∗, N0],
for every τ∗ < d/(−c) and N0 > 0. �

PROOF OF THEOREM 1. Dividing both sides of (7) by 1+ε >
0, we conclude that

−d̄N(t, s) − c̄(t − s) ≤ µ̄ − λ̄(t − s), ∀ t ≥ s ≥ t0. (10)

where

d̄ :=
d

1 + ε
, c̄ :=

c − λ
2

1 + ε
, µ̄ :=

µ

1 + ε
, λ̄ :=

λ

2(1 + ε)
.

Moreover, we can always choose ε ∈ R sufficiently small so
that c̄ < c and d̄ < d. We can then rewrite (5) as

∇V (x) · f(x, w) ≤ −c̄V (x) − (c − c̄)V (x) + χ(|w|),

and conclude that

(c − c̄)V (x) ≥ χ(|w|) ⇒ ∇V (x) · f(x, w) ≤ −c̄V (x),
(11)

∀x, w a.e.. Similarly, from (6) we also conclude that

(e−d̄ − e−d)V (x) ≥ χ(|w|) ⇒ V (g(x, w)) ≤ e−d̄V (x),
(12)

∀x, w a.e. Let

ť1 := min
{

t ≥ t0 : V (x(t)) ≤ aχ(‖w‖[t0,t])
}

≤ ∞,

a := 1
min{c−c̄,e−d̄−e−d}

> 0. This is well defined because
both x(t) and ‖w‖[t0,t] are right-continuous in t (recall the
definition (3) of the norm). In view of (11) and (12),

V̇
(

x(t)
)

≤ −c̄V (t), ∀ t ∈ [t0, ť1) a.e.

along the continuous dynamics4 and V (x) ≤ e−d̄V (x−)
during the impulses. Thus on this time interval we have the
bound

V (x(t)) ≤ e−d̄N(t,t0)−c̄(t−t0)V (x(t0)), ∀ t ∈ [t0, ť1) (13)

(cf. [11, Theorem 1.10.2]). Combining this with (10), we
conclude that

V (x(t)) ≤ ek−λ̄(t−t0)V (x(t0)), ∀ t ∈ [t0, ť1). (14)

When ť1 = +∞, an ISS bound could already be deduced
from here using standard arguments. Otherwise, let t̂1 :=
inf

{

t > ť1 : V (x(t)) > aχ(‖w‖[t0,t])
}

≤ ∞. By construc-
tion, we have

V (x(t)) ≤ aχ(‖w‖[t0,t]), ∀ t ∈ [ť1, t̂1).

Next, let ť2 := min
{

t > t̂1 : V (x(t)) ≤ aχ(‖w‖[t0,t])
}

≤
∞. Repeating the argument used to establish (14), with t̂1
in place of t0, we obtain

V (x(t)) ≤ eµ̄−λ̄(t−t̂1)V (x(t̂1))

≤ eµ̄−λ̄(t−t̂1)
(

e−dV (x−(t̂1)) + χ(|w(t̂1)|)
)

≤ eµ̄−λ̄(t−t̂1)
(

a e−dχ(‖w‖[t0,t]) + χ(|w(t̂1)|)
)

≤ eµ̄
(

a e−d̄ + 1
)

χ(‖w‖[t0,t]) ∀ t ∈ [t̂1, ť2).

Arguing in the same way for all future times, we arrive at
the bound

V (x(t)) ≤ eµ̄−λ̄(t−t0)V (x(t0))+

eµ̄
(

a e−d̄ + 1
)

χ(‖w‖[t0,t]), ∀ t ≥ t0.

The ISS estimate (2) follows from this by standard argu-
ments. Namely, since V is positive definite and radially
unbounded, it satisfies α1(|x|) ≤ V (x) ≤ α2(|x|) for some
α1, α2 ∈ K∞, which allows us to convert a KL estimate
for V (x) into that for |x|. Uniformity is also clear, since the
final bound on V and hence the functions β and γ in (2)
do not depend on the particular choice of the impulse time
sequence.

Remark 1 We can see from the proof of Theorem 1 that
the condition (7) on the impulse rate only needs to hold for
times t on which

V (x(t)) >
χ(‖w‖[t0,t])

min{c − c̄, e−d̄ − e−d}
. �

4The function t 7→ V (x(t)) is absolutely continuous because V is locally
Lipschitz and x absolutely continuous on [t0, ť1). Therefore V (x(t)) has
time-derivative almost everywhere in this interval.



IV. NON-EXPONENTIAL ISS-LYAPUNOV FUNCTIONS

When the rate coefficients of a candidate exponential
ISS-Lyapunov function are both positive, we have ISS for
arbitrary impulse time sequences, because (7) poses no
constraints on the impulse time sequences, as long as we
choose λ ≤ c. In this case, we may ask whether there would
be an advantage in allowing a non-linear dependence on V
in the right-hand-sides of (5)–(6). In particular, we can ask if
it would be possible to show that a larger class of systems is
ISS for arbitrary impulse time sequences by simply demand-
ing the existence of a “non-exponential” locally Lipschitz,
positive definite, radially unbounded Lyapunov function U
that satisfies5

∇U(x) · f(x, w) ≤ −α
(

U(x)
)

+ χ(|w|) ∀x, w a.e. (15)
U(g(x, w)) ≤ (id − α)

(

U(x)
)

+ χ(|w|) ∀x, w
(16)

with α, χ ∈ K∞. The following result answers this question
in the negative:

Theorem 3 (exponential vs. non-exponential) The
following two statements are equivalent:

1) There exists a locally Lipschitz, positive definite, ra-
dially unbounded function U : R

n → R that satisfies
(15)–(16).

2) There exists a candidate exponential ISS-Lyapunov
function V for (1) with positive rate coefficients.

In either case, (1) is uniformly ISS over all impulse time
sequences.

PROOF OF THEOREM 3. The implication from 2 to 1 is
trivial. To prove the converse we explicitly construct a
candidate exponential ISS-Lyapunov function V from a non-
exponential one U . Let V (x) := κ(U(x)), ∀x, where κ ∈
K∞ is chosen to be continuously differentiable with κ′ is
nonnegative and nondecreasing, and

κ′(s)α(s) ≥ 2κ(s), ∀ s ≥ 0. (17)

Such a function is constructed in [16, pp. 22–23]. From (17)
and (15), we conclude that

∇V (x) · f(x, w) = κ′(U(x))∇U(x) · f(x, w)

≤ −κ′(U(x))α
(

U(x)
)

+ κ′(U(x))χ(|w|)

≤ −V (x) −
κ′(U(x))α

(

U(x)
)

2
+ κ′(U(x))χ(|w|), (18)

∀x, w a.e. When α
(

U(x)
)

≤ 2χ(|w|), we have

κ′(U(x))χ(|w|) ≤ κ′ ◦ α−1
(

2χ(|w|)
)

χ(|w|) =: χ̄(|w|)

and when α
(

U(x)
)

> 2χ(|w|),

−
κ′(U(x))α

(

U(x)
)

2
+ κ′(U(x))χ(|w|) ≤ 0.

5Taking the same functions α and χ in (15) and (16) is no loss of
generality, because we could always consider the minimum of the two α’a
and the maximum of the two χ’s.

In either case, we conclude from (18) that

∇V (x) · f(x, w) ≤ −V (x) + χ̄(|w|), ∀x, w a.e. (19)

On the other hand, using (17), the Mean Value Theorem and
the fact that κ′ is nondecreasing, we conclude that

2κ(s) ≤
κ′(s)α(s)

2
+ κ(s) ≤ κ

(

s +
α(s)

2

)

= κ ◦
(

id +
α

2

)

(s), ∀ s ≥ 0.

Specializing this inequality for6 s :=
(

id − α
2

)

(r), r ≥ 0

and using the fact that
(

id −
α

2

)

(r) ≤
(

id +
α

2

)−1

(r), ∀ r ≥ 0,

we further obtain

2κ ◦
(

id −
α

2

)

(r) ≤ κ(r), ∀ r ≥ 0. (20)

From the definition of V and (16), we conclude that

V (g(x, w)) ≤ κ
(

(id − α)(U(x)) + χ(|w|)|
)

(21)

∀x, w. When α(U(x)) ≤ 2χ(|w|), we have

κ
(

(id − α)(U(x)) + χ(|w|)|
)

≤ κ
(

U(x) + χ(|w|)|
)

≤ κ
(

α−1(2χ(|w|)) + χ(|w|)|
)

=: χ̃(|w|)

and when α(U(x)) > 2χ(|w|),

κ
(

(id − α)(U(x)) + χ(|w|)|
)

≤ κ ◦
(

id −
α

2

)

(U(x)) ≤
V (x)

2
,

by virtue of (20). In either case, we conclude from (21) that

V (g(x, w)) ≤
V (x)

2
+ χ̃(|w|), ∀x, w. (22)

This finishes the proof since (19) and (22) show that V
is a candidate exponential ISS-Lyapunov function V with
positive rate coefficients.

It should be clear from the proof of Theorem 3 that if
(16) is replaced by U(g(x, w)) ≤ U(x), ∀x, w, i.e., if the
impulses are “neutral” rather than “helpful” for ISS, then
there exists a candidate exponential ISS-Lyapunov function
V with rate coefficients c = 1, d = 0, for which the χ
term is absent from (6). In this case, it is straightforward to
prove that (1) is also uniformly ISS over all impulse time
sequences.

The dual case—when the continuous dynamics are “neu-
tral” and the impulses are “helpful” for ISS—is also of
interest, but then we must require that the impulses are
persistent in the sense of (9) with τ ∗ > 0 arbitrary. Taking
into account Remark 1, here is one way to state the result.

6The function id − α

2
must be nonnegative, otherwise we would obtain

a contradiction between (16) and the positive definiteness of U .



Theorem 4 (neutral continuous dynamics) Suppose that
there exist a locally Lipschitz, positive definite, radially
unbounded function V : R

n → R such that

∇V (x) · f(x, w) ≤ 0, ∀x, w a.e.

and class K∞ functions α and ρ such that

V (x) ≥ ρ(|w|) ⇒ V (g(x, w)) − V (x) ≤ −α(V (x)) (23)

and

V (x) ≤ ρ(r) and |w| ≤ r ⇒ V (g(x, w)) ≤ ρ(r). (24)

Fix an arbitrary positive integer N0 and an arbitrary positive
real number τ∗. Let SN0,τ∗ denote the class of impulse
time sequences {tk} with the following property: for each
t > t0 such that V (x(t̄)) ≥ ρ(‖w‖[t0,t̄]) for all t̄ ∈ [t0, t],
the number N(t, t0) of impulse times in the interval [t0, t]
satisfies the inequality (9) with s = t0. Then the system (1)
is uniformly ISS over SN0,τ∗ . �

PROOF OF THEOREM 4. Let

ť := min
{

t ≥ t0 : V (x(t)) ≤ ρ(‖w‖[t0,t])
}

≤ ∞

(this is well defined in view of right-continuity). By virtue
of (23), we have V (x) − V (x−) ≤ −α(V (x−)) at each
impulse time in the interval [t0, ť). Therefore, there exists a
function β̄ ∈ KL such that

V (x(t)) ≤ β̄
(

V (x(t0)), N(t, t0)
)

, ∀ t ∈ [t0, ť)

(cf. [9]). Invoking (9), we have

V (x(t)) ≤ β̄
(

V (x(t0)), max
{

0, t−t0
τ∗

− N0

})

=: β(V (x(t0)), t − t0), ∀ t ∈ [t0, ť).

Next, (24) applied with r := ‖w‖[t0,t] at each impulse time
guarantees that V (x(t)) ≤ ρ(‖w‖[t0,t]), ∀ t ≥ ť. Combining
the two inequalities gives the ISS estimate.

The conditions (23) and (24) are both satisfied if we have

V (g(x, w)) − V (x) ≤ −ᾱ(V (x)) + χ(|w|) (25)

for some ᾱ, χ ∈ K∞. Indeed, letting ρ(r) := ᾱ−1(2χ(r)),
we see that (23) holds with α := ᾱ/2. Decreasing ᾱ if
necessary, assume with no loss of generality that id−ᾱ ∈ K.
We then have

V (x) ≤ ᾱ−1(2χ(r)), |w| ≤ r ⇒

V (g(x, w)) ≤ (id − ᾱ)
(

ᾱ−1(2χ(r))
)

+ χ(|w|)

< ᾱ−1(2χ(|w|))

and so (24) holds with the same ρ. Moreover, (23) im-
plies (25)—and consequently (24)—if the impulse map g
is continuous. Still, it is useful to write two separate condi-
tions (23) and (24) if we want a less conservative result. The
former condition coupled with (9) is the main ingredient for
obtaining ISS, while the latter is automatically enforced if,
for example, impulses can only decrease V (x).

V. ISS FOR ARBITRARY AVERAGE DWELL-TIMES

This section addresses two classes of systems for which
one may not have uniform ISS over all impulse sequences,
but one still has ISS over classes of impulse sequences
with arbitrarily small average dwell-time or arbitrarily large
reverse average dwell-time.

Impulsive systems often arise out of applying impulsive
perturbations to an ISS continuous-time system. This occurs,
e.g., in [13, Section 4] in the context of control with
limited information. For such systems, one should not expect
uniform ISS over all impulse sequences, but one can still ask
“how often” can these perturbations occur without destroying
ISS. The first part of Corollary 2 provides an answer to this
question in terms of a minimum average dwell-time τ ∗ >
|d|/c. However, it prompts the question of whether or not we
could have uniform ISS for an arbitrary small (but nonzero)
average dwell-time τ∗ > 0. Motivated by this observation,
we say that the impulsive system (1) is ISS for arbitrarily
small average dwell-time (a.d.t) when it is uniformly ISS
over every class Savg[τ

∗, N0] of average dwell-time impulse
time sequences that satisfy (8) with τ ∗ > 0, N0 < ∞.

Alternatively, impulsive systems can arise out of applying
continuous-time perturbations to an ISS discrete-time sys-
tem. This occurs, e.g., in [20] in the context of networked
control systems7. In this case, one may ask for “how long”
can the system flow between jumps without destroying ISS.
The second part of Corollary 2 provides an answer to this
question in terms of a maximum reverse average dwell-
time τ∗ := d/(−c), λ > 0. However, also in this case
one may have uniform ISS for an arbitrary large (but
finite) reverse average dwell-time τ ∗ > 0. Motivated by this
observation, we say that the impulsive system (1) is ISS for
arbitrarily large a.d.t. when it is uniformly ISS over every
class Sr−avg[τ

∗, N0] of reverse average dwell-time impulse
time sequences that satisfy (9) with τ ∗, N0 < ∞.

To address these questions it is convenient to introduce
the following terminology: We say that V : R

n → R is
non-expansive for the impulse map g(x, w) when, for every
d < 0, there exists a function χ ∈ K∞ such that

V (g(x, w)) ≤ e−dV (x) + χ(|w|) ∀x, w. (26)

This terminology is motivated by the observation that these
functions must necessarily satisfy V (g(x, 0)) ≤ V (x), ∀x.
Alternatively, we say that a locally Lipschitz function V is
non-expansive for the vector field f(x, w) when, for every
c < 0, there exists a function χ ∈ K∞ such that

∇V (x) · f(x, w) ≤ −cV (x) + χ(|w|) ∀x, w a.e. (27)

These functions must always satisfy ∇V (x) · f(x, 0) ≤ 0,
∀x a.e. The following result follows from the formulas given
above for τ∗:

7The analysis in [20] deals with stochastic disturbances w and considers
more general vector fields. A deterministic version of the framework in [20]
with marginally stable processes leads to the class of systems considered
here.



Corollary 5 (ISS for arbitrary a.d.t) Let V be a candi-
date exponential ISS-Lyapunov function for (1).

1) If V is non-expansive for the impulse map g(x, w),
then (1) is ISS for arbitrarily small a.d.t.

2) If V is non-expansive for the vector field (f, w), then
(1) is ISS for arbitrarily large reverse a.d.t. �

The remaining of this section is devoted to the question
of whether or not a given function V is non-expansive.

A. Non-expansiveness for impulse maps

To state the following result we say that a function h(x, w)
has linear growth on w uniformly over x if

∃L > 0 : |h(x, w)| ≤ L|w|, ∀x, w.

Theorem 6 (non-expansive for impulse maps) Assume
that g(x, w) − x has linear growth on w uniformly over
x. A locally Lipschitz, positive definite, radially unbounded
function V : R

n → R is non-expansive for the impulse map
g(x, w) if any of the following conditions holds:

C1 ∀ d < 0, there exists a function χ̄ ∈ K∞ such that

V (x + y) ≤ e−dV (x) + χ̄(|y|), ∀x, y. (28)

C2 there exists a function α ∈ K∞ such that8

α(V (x))|∇V (x)| ≤ V (x), ∀x a.e. (29)

C3 V (x)
|∇V (x)| is radially unbounded a.e.

C4 V is quadratic or, more generally, takes the form

V (x) =

m
∑

i=1

(xT Pix)i, Pi ≥ 0, i ∈ {1, . . . , m}

where m is a positive integer. �

Remark 2 Theorem 6 indicates that there is a broad class
of positive definite functions V that are non-expansive for
impulse maps for which g(x, w) − x has linear growth. In-
deed, C3 simply requires that the gradient of V be dominated
by V itself, which happens for large classes of polynomial
functions as well as for every homogeneous function. One
may then wonder if there are interesting systems with such
impulse maps that are ISS for a given average dwell-time
τ∗ > 0 but are not ISS for arbitrarily small a.d.t. The answer
is affirmative and a simple example is given by

{

ẋ = − sat(x), t 6= tk, k = 1, 2, . . .

x = x− + sat(w), t = tk, k = 1, 2, . . . ,

where sat(·) denotes the saturation function limited at ±1
and with unit slope on [−1, 1]. This system is uniformly ISS

8Since V is positive definite, one could replace α(V (x)) by α(‖x‖) in
(29).

over the class of average dwell-time impulse time sequences
that satisfy (8) for any τ∗ > 1 because

V (x) :=

{

x2 |x| ≤ 1

e2(|x|−1) |x| > 1
(30)

is a candidate exponential ISS-Lyapunov function with rate
coefficients c = 2 and d = −2. However, it is not ISS for
arbitrarily small a.d.t. since x can explode with bounded
disturbances, provided that the impulse times are closely
spaced. As expected, the function (30) does not satisfy (29).

�

Corollary 7 (GES vs. ISS for arbitrarily small a.d.t.)
Impulsive systems of the following form are always ISS for
arbitrarily small a.d.t.:

{

ẋ = f1(x) + f2(w), t 6= tk, k = 1, 2, . . .

x = g(x−, w), t = tk, k = 1, 2, . . . ,

where ẋ = f1(x) is globally exponentially stable, f1 is
globally Lipschitz, f2(0) = 0, and g(x, w) − x has linear
growth on w uniformly over x. This includes the case of
linear continuous dynamics. �

PROOF OF COROLLARY 7 [10, Theorem 4.14] guarantees
the existence of a locally Lipschitz function V satisfying
a1|x|

2 ≤ V (x) ≤ a2|x|
2, ∇V (x) · f1(x) ≤ −a3|x|

2, and
|∇V (x)| ≤ a4|x| a.e., where ai > 0, i = 1, 2, 3, 4. This
implies that

∇V (x) ·
(

f1(x) + f2(w)
)

≤ −a3|x|
2 + a4|x|f2(w),

from which (5) follows by square completion. On the other
hand, V is non-expansive for the impulse map g(x, w) due to
condition C3 and the result follows from Corollary 5.
PROOF OF THEOREM 6. C1. Consider an arbitrary d < 0.
Using (28) and the fact that g(x, w) − x has linear growth,
we can write

V (g(x, w))− e−dV (x) = V (x+ g(x, w)−x)− e−dV (x)

≤ χ̄(|g(x, w) − x|) ≤ χ̄(L|w|) =: χ(|w|),

from which (26) follows.
C2. Without loss of generality we assume that α is locally
Lipschitz, as if this were not the case we could replace α by
a smaller locally Lipschitz function in K∞. We show that
C2 implies C1. To this effect, for an arbitrary d < 0, let
χ̄ ∈ K∞ be such that

|x| ≥ χ̄(|y|) ⇒ α(V (x)) ≥ −|y|/d. (31)

Such a function exists because, since V is positive definite
and radially unbounded, there exists a function α1 ∈ K∞

such that α1(|x|) ≤ V (x). It is then straightforward to verify
that one possible χ̄ is given by

χ̄(s) := α−1
1

(

α−1(−s/d)
)

, ∀ s ≥ 0.

We start by taking some x, y ∈ R
n \ {0} such that

|x| ≥ χ̄(|y|), V (x + y) > V (x).



Without loss of generality we assume that χ̄(|y|) ≥ 2|y| and
therefore |x| ≥ 2|y|. This guarantees that x + y 6= 0 because
g(x, w) − x has linear growth. Since V is positive definite,
it must be true that

µ := inf
s∈[0,1]

V (x + sy) > 0.

Defining v(s) := V (x + sy), ∀ s ∈ [0, 1], we conclude that
v(0) = V (x) > 0 and

v′(s) ≤ ∇V (x + sy) · y, ∀ s ∈ [0, 1] a.e.

We then conclude from (29) that

v(0) = V (x) > 0, v′(s) ≤
v(s)|y|

α(v(s))
, ∀ s ∈ [0, 1] a.e.

Suppose now that we define u : [0, 1] → [µ,∞) as the
solution to

u(0) = V (x) > 0, u′(s) =
u(s)|y|

α(u(s))
, ∀ s ∈ [0, 1]. (32)

Since u
α(u) |y| is locally Lipschitz on [µ,∞) we conclude

from [11, Theorem 1.10.2] that

v(s) ≤ u(s), ∀ s ∈ [0, s∗), (33)

where [0, s∗] denotes any interval for which the solution to
(32) exists. From (32), we also conclude that

α(u(s))

u(s)
u′(s) = |y|, ∀ s ∈ [0, s∗],

Integrating this expression over s, and making the (mono-
tone) change of integration variables ν = u(s), we obtain

∫ u(σ)

V (x)

α(ν)

ν
dν = σ|y|, ∀σ ∈ [0, s∗). (34)

In case s∗ < 1, then limσ→s∗ u(σ) = +∞ > V (x+ sy) and
we conclude that

∫ V (x+sy)

V (x)

α(ν)

ν
dν ≤

∫ ∞

V (x)

α(ν)

ν
dν = s∗|y| ≤ |y|.

Otherwise, using (33) and (34) with σ = 1, we also conclude
than

∫ V (x+sy)

V (x)

α(ν)

ν
dν =

∫ v(1)

V (x)

α(ν)

ν
dν

≤

∫ u(1)

V (x)

α(ν)

ν
dν ≤ |y|.

Since V (x + y) ≥ V (x) and α is monotone, we have that

α(ν) ≥ α(V (x)), ∀ ν ∈ [V (x), V (x + y)].

Moreover, since |x| ≥ χ̄(|y|), we conclude from this and
(31) that

α(ν) ≥ α(V (x)) ≥ −L|y|/d, ∀ ν ∈ [V (x), V (x + y)].

and therefore

|y| ≥

∫ V (x+y)

V (x)

α(ν)

ν
dν ≥ −

|y|

d

∫ V (x+y)

V (x)

1

ν
dν

= −
|y|

d
log

V (x + y)

V (x)
,

from which one concludes that

V (x + y) ≤ e−dV (x).

Since d < 0, this is also true when V (x+y) < V (x). So far
we have shown that, for every d < 0, there exists a function
χ̄ ∈ K∞ such that

|x| ≥ χ̄(|y|) ⇒ V (x + y) ≤ e−dV (x), ∀x, y ∈ R
n.

Suppose now that |x| < χ̄(|y|). Since V is continuous and
zero at zero, there exists a function α2 ∈ K∞ such that

V (x + y) ≤ α2(|x + y|) ≤ α2(|x| + |y|)

≤ α2(χ̄(|y|) + |y|) =: χ(|y|),

with χ ∈ K∞. Therefore, no matter what is the value of x,
we always have V (x + y) ≤ e−dV (x) + χ(|y|), from which
C1 follows.
C3. We show that this condition implies C2. Defining

α(s) := ess sup
V (x)≥s,∇V (x) 6=0

V (x)

|∇V (x)|

we conclude that α is monotone nondecreasing and that (29)
holds. Moreover, since V (x) is positive definite and V (x)

|∇V (x)|
is radially unbounded we always conclude that α is radially
unbounded. The above construction for α does not guarantee
that this function is continuous. However, it is also possible
to choose a continuous function in K∞ smaller than α.

C4. This is a straightforward consequence of C3.

B. Non-expansiveness for vector fields

The following results address ISS for arbitrarily large
reverse a.d.t.

Theorem 8 (non-expansive for vector fields) Assume that
f(x, w) has linear growth on w uniformly over x. A locally
Lipschitz, positive definite, radially unbounded function V :
R

n → R is non-expansive for the vector field f(x, w) if any
of the following conditions holds:

C5 ∀ c < 0, there exists a function χ̄ ∈ K∞ such that

|∇V (x)| · |y| ≤ −cV (x) + χ̄(|y|), ∀x, y a.e. (35)

C6 there exists a function α ∈ K∞ such that9

α(V (x))|∇V (x)| ≤ V (x), ∀x a.e. (36)

C7 V (x)
|∇V (x)| is radially unbounded a.e.

9Since V is positive definite, one could replace α(V (x)) by α(‖x‖) in
(36).



C8 V is quadratic or, more generally, takes the form

V (x) =

m
∑

i=1

(xT Pix)i, Pi ≥ 0, i ∈ {1, . . . , m}

where m is a positive integer. �

Corollary 9 (GES vs. slow-switching ISS) Impulsive sys-
tems of the following form are always slow-switching ISS:

{

ẋ = f(x, w), t 6= tk, k = 1, 2, . . .

x = g1(x
−) + g2(w

−), t = tk, k = 1, 2, . . . ,

where x(k + 1) = g1(x(k)) is globally exponentially stable,
g1 is globally Lipschitz, g2(0) = 0, and f(x, w) has linear
growth on w uniformly over x. �

PROOF OF COROLLARY 9 Under the assumptions of the
theorem, it is not difficult to verify that, for some integer
k > 0 sufficiently large there exists a1 > 0 such that the
function V (x) :=

∑k

i=0 |φ(i, x)| is globally Lipschitz and
satisfies

|x| ≤ V (x) ≤ a1|x| (37)

and
V (g1(x)) − V (x) ≤ −

1

2
|x|, (38)

where φ(k, x0) denotes the solution to x(k + 1) = g1(x(k))
at time k starting at x(0) = x0. Since V is globally Lipschitz,
there exists a constant a2 > 0, such that |∇V (x)| ≤ a2 a.e.
We thus conclude from condition C7 that V is non-expansive
for the vector field f(x, w). On the other hand, we saw in
Theorem 6 that condition C7 implies that (28) holds with
arbitrarily small d > 0. This means that for any d̄ > 0, we
can find an appropriate χ̄ ∈ K∞, so that

V
(

g1(x) + g2(w)
)

≤ e−d̄V
(

g1(x)
)

+ χ̄(|w|)

≤ e−d̄
(

V (x) −
1

2
|x|

)

+ χ̄(|w|)

≤ e−d̄
(

1 −
1

2a1

)

V (x) + χ̄(|w|),

from which (6) follows provided that we choose d̄ suffi-
ciently small so that e−d̄

(

1 − 1
2a1

)

< 1.
PROOF OF THEOREM 8. C5. Consider an arbitrary c < 0.
Using the fact that f(x, w) has linear growth and (35), we
can write

∇V (x) · f(x, w) + cV (x) ≤ L |∇V (x)| · |w| + cV (x)

≤ χ̄(L|w|) =: χ(|w|),

from which (27) follows.
C6. We show that this condition implies C5. To this effect,
for an arbitrary c < 0, let χ ∈ K∞ be such that

|x| ≥ χ(|y|) ⇒ α(V (x)) ≥ −|y|/c. (39)

Take some x, y ∈ R
n for which |x| ≤ χ(|y|). Since V is

locally Lipschitz there exists a function α2 ∈ K∞ and a
constant k ≥ 0 such that

|∇V (x)| ≤ k + α2(|x|), ∀x a.e.

[5]. Therefore

|∇V (x)| · |y| ≤ k|y| + α2(|x|)|y|

≤ k|y| + α2(χ(|y|))|y| =: χ̄(|y|),

with χ̄ ∈ K∞ and we conclude that the inequality in (35)
holds a.e. for these values of x and y. Suppose now that
|x| > χ(|y|). From (39) and (36), we conclude that

|∇V (x)| · |y| ≤ −c α(V (x))|∇V (x)| ≤ −cV (x), ∀x a.e.,

which shows that (35) also holds a.e. for the remaining values
of x and y.
C7, C8. Like in the proof of Theorem 6, one can show that
both C7 and C8 imply C6.

VI. SUFFICIENT CONDITIONS FOR INTEGRAL ISS

We now provide iISS counterparts to Theorems 1 and 3.
The first result establishes iISS for suitably constrained
impulse time sequences under the hypotheses of Theorem 1,
and the second one establishes iISS for arbitrary impulse
time sequences under hypotheses weaker than (15)–(16).

Theorem 10 (uniformly iISS) Let all hypotheses of Theo-
rem 1 hold and define the class of impulse time sequences
Sµ,λ, µ, λ > 0 also as in Theorem 1. Then the system (1) is
uniformly iISS over Sµ,λ. �

PROOF OF THEOREM 10. From (5) and (6) we see that
V (x(t)) is upper bounded by the (nonnegative) solution v(t)
of the impulsive system

{

v̇ = −cv + χ(|w|), t 6= tk, k = 1, 2, . . .

v = e−dv− + χ(|w|), t = tk, k = 1, 2, . . .

with the initial condition v(t0) = V (x(t0)). Let z(t) be the
(nonnegative) solution to

{

ż = χ(|w|), t 6= tk, k = 1, 2, . . .

z = z− + χ(|w|), t = tk, k = 1, 2, . . .

with the initial condition z(t0) = 0. Define y := v−z. Then
y satisfies y(t0) = V (x(t0)) and

{

ẏ = −cv = −cy − cz, t 6= tk

y = e−dv− − z− = e−dy− − (1 − e−d)z−, t = tk.

Applying the proof of Theorem 1, with y and z playing the
roles of V and χ(|w|), respectively, we see that this impulsive
system is ISS with respect to z with linear gain:

y(t) ≤ β(y(t0), t − t0) + γz(t)

for some function β ∈ KL and constant γ > 0. Collecting
the above formulas, we obtain

V (x(t)) ≤ v(t) = y(t)+z(t) ≤ β(y(t0), t−t0)+(γ+1)z

= β(V (x(t0)), t − t0) +

∫ t

t0

(γ + 1)χ(|w(s)|)ds

+
∑

tk∈[t0,t]

(γ + 1)χ(|w(tk)|)



from which the iISS estimate (4) follows.

The following result is a relatively straightforward exten-
sion of the proof of the corresponding result for continuous
systems given in [2].

Theorem 11 Suppose that there exists a positive definite,
radially unbounded, locally Lipschitz function V : R

n → R,
a positive definite function α, and a class K∞ function χ
satisfying

∇V (x) · f(x, w) ≤ −α(V (x)) + χ(|w|), ∀x, w a.e., (40)

and
V (g(x, w)) ≤ V (x) + χ(|w|), ∀x, w. (41)

Then the system (1) is uniformly iISS over all impulse time
sequences {tk}. �

PROOF OF THEOREM 11. From (40) and (41) we see that
V (x(t)) is upper bounded by the (nonnegative) solution v(t)
of the impulsive system

{

v̇ = −α(v) + χ(|w|), t 6= tk, k = 1, 2, . . .

v(t) = v−(t) + χ(|w(t)|), t = tk, k = 1, 2, . . .

with the initial condition v(t0) = V (x(t0)). Let z(t) be the
(nonnegative and nondecreasing) solution of

{

ż = χ(|w|), t 6= tk, k = 1, 2, . . .

z(t) = z−(t) + χ(|w(t)|), t = tk, k = 1, 2, . . .

with the initial condition z(t0) = 0. Define y(t) := v(t) −
z(t). Then y is continuous everywhere, non-increasing, and

ẏ = −α(v) = −α(y + z), y(t0) = V (x(t0)). (42)

Let
ť := min{t ≥ t0 : y(t) ≤ z(t)} ≤ ∞

(this is well defined because z is right-continuous). Since y
is non-increasing and z is nondecreasing, we have

y(t) ≤ z(t), ∀ t ≥ ť (43)

and
y(t) > z(t), ∀ t ∈ [t0, ť)

the latter of which implies that

0 ≤ y(t) ≤ y(t) + z(t) ≤ 2y(t), ∀ t ∈ [t0, ť). (44)

By [2, Lemma IV.2], there exist functions ρ1 ∈ K∞ and
ρ2 ∈ L such that α(r) ≥ ρ1(r)ρ1(r) for all r ≥ 0. Using (42)
and (44), we have

ẏ ≤ −ρ1(y + z)ρ2(y + z) ≤ −ρ1(y)ρ2(2y), ∀ t ∈ [t0, ť).

Thus there exists a β ∈ KL (which does not depend on our
choice of trajectory) such that y(t) ≤ β(y(t0), t − t0) for
t ∈ [t0, ť). Combining this with (43), we have

y(t) ≤ β(y(t0), t − t0) + z(t), ∀ t ≥ t0 (45)

and this yields (recalling the definition of z)

V (x(t)) ≤ v(t) = y(t) + z(t) ≤ β(y(t0), t − t0) + 2z(t)

= β(V (x(t0)), t−t0)+

∫ t

t0

2χ(|w(s)|)ds+
∑

tk∈[t0,t]

2χ(|w(tk)|)

from which iISS follows.

VII. CONCLUSIONS

We introduced concepts of ISS and integral-ISS to sys-
tems with impulsive effects and provided Lyapunov-based
sufficient conditions to establish these properties. Converse
Lyapunov results for systems with impulsive effects will be
reported in a forthcoming paper. These results are based on
the converse Lyapunov theorems for hybrid systems in [4].
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