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Abstract— We address a new problem—the invertibility prob-
lem for continuous-time switched linear systems, which is the
problem of recovering the switching signal and the input
uniquely given an output and an initial state. In the context of
hybrid systems, this corresponds to recovering the discrete state
and the input from partial measurements of the continuous
state. In solving the invertibility problem, we introduce the
concept of singular pairs for two systems. We give a necessary
and sufficient condition for a switched system to be invertible,
which says that the subsystems should be invertible and there
should be no singular pairs. When all the subsystems are
invertible, we present an algorithm for finding switching signals
and inputs that generate a given output in a finite interval when
there is a finite number of such switching signals and inputs.

I. INTRODUCTION

Switched systems—systems that comprise a family of

dynamical subsystems together with a switching signal deter-

mining the active system—arise in many situations, both as a

result of controller design, such as in switching supervisory

control [5], and inherently by nature, such as when a physical

plant has the capability of undergoing several operational

modes (e.g., an aircraft during different flying modes [4]).

In this paper, we address the invertibility problem for

switched systems, which concerns with the following ques-

tion: What is the condition on the subsystems of a switched
system so that, given an initial state x0 and the corresponding
output y generated with some switching signal σ and input
u, we can recover the switching signal σ and the input u
uniquely? The aforementioned problem is in the same vein

with the classic invertibility problem for non-switched linear

systems, where one wishes to recover the input uniquely

knowing the initial state and the output. The invertibility

problem for non-switched linear systems has been studied ex-

tensively and completely solved, first by Brockett-Mesarovic

[1], then with other algebraic criteria and the inversion

constructions by Silverman [9], [10] and Sain-Massey [8],

and also a geometric criterion by Morse-Wonham [6] (see

also the discussions and the references in [7]). However,

the invertibility problem for switched systems has not been

investigated and it is the subject of this paper.

On the one hand, non-switched systems can be seen as

switched systems with constant switching signals. In this

regard, the invertibility problem for switched systems is an
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extension of the non-switched counterpart in the sense that

we have to recover the switching signal in addition to the

input, based on the output and the initial state. On the other

hand, switched systems can be viewed as higher-level ab-

stractions of hybrid systems. Recovering the switching signal

for switched systems is equivalent to mode identification
for hybrid systems. The mode identification problem for

hybrid systems with inputs using known inputs and outputs

has been studied, for example, in [3], [2], and for switched
systems without inputs using the outputs in [11], [12]. Here,

the difference is that we wish to do both mode detection
and input recovery at the same time using the outputs of

switched systems with inputs. Thus, the invertibility problem

for switched systems can be seen as a nontrivial extension

of the classic invertibility problem to switched systems as

well as an extension of the mode identification problem for

hybrid systems to the case with unknown inputs.

Our approach to the invertibility problem share some

flavors with the approach used in the switching observability

problem that was formulated and solved by Vidal et. al. [12],

in which the objective is to recover the switching signal

and the state uniquely from the output of a switched system

without inputs. The basic idea is to do mode identification

by utilizing relationship among the outputs and the states

of the subsystems. For non-switched systems without inputs,

this relationship is characterized via the observability matrix,

which was used to solve the switching observability problem

in [12]. For non-switched systems with inputs, the relation-

ship among the output, the input, and the state is much more

complicated and is realized using the structure algorithm [9],

with the help of which our results for switched systems are

subsequently developed.

II. PRELIMINARIES

Denote by Cn the set of n times differentiable functions;

C0 are continuous functions. Denote by F pc the set of

piecewise right-continuous functions. Denote by F n the

subset of F pc whose elements are n times differentiable

between two consecutive discontinuities. For u : D → R
n,

uQ is the restriction of u onto a set Q ⊆ D .

A switched linear system is written as

Γσ :

{
ẋ = Aσx+Bσu,
y = Cσx+Dσu,

(1)
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where σ : [0,∞) → P is a switching signal that indicates the

active subsystem at every time, P is some index set, and

Ap,Bp,Cp,Dp, p ∈ P , are the matrices of the subsystems.

A switching signal is a piecewise right-continuous function

that has a finite number of discontinuities, which we call

switching times, on every bounded time interval, and takes

a constant value on every interval between two consecutive

switching times. Denote by σp the switching signal such

that σ(t) = p ∀t ≥ 0. Denote by S the set of all admissible

switching signals. Denote by Γp,x0
(u) the trajectory of the

subsystem with index p with input u starting at x0 and by

ΓO
p,x0

(u) the corresponding output.

Assume that all the subsystems live in the same state

space R
n and there are no state jumps at switching times.

We assume that the output dimensions of all the sub-

systems are the same since detecting switchings between

two subsystems with different output dimensions is trivial.

The input dimensions of the subsystems can be different.

Due to space limitation, we neglect to define input sets of

switched systems rigourously1 with the understanding that

inputs of the switched system (1) are concatenations of the

corresponding inputs of the active subsystems.

Define the concatenation map ⊕ : F pc×F pc→F pc as

( f1 ⊕ f2)(t) :=

{
f1(t), if t ∈ [t1,τ1),
f2(t2+t−τ1), if t ∈ [τ1,τ1+τ2−t2),

where the domains of fi are [ti,τi), i = 1,2 (τi can be ∞).

Note that f1⊕ f2 = f1 ∀ f2 if τ1 = ∞, and in general, f1⊕ f2 �=
f2 ⊕ f1. The concatenation of a function f and a set S is

f ⊕ S := { f ⊕ g, g ∈ S}. By convention, f ⊕ /0 = /0 ∀ f . The

concatenation of two sets S and T is S⊕T := { f ⊕ g, f ∈
S,g ∈ T}; by convention, S⊕ /0 = /0, /0⊕S = /0 ∀S.

III. INVERTIBILITY OF LTI SYSTEMS AND THE

STRUCTURE ALGORITHM

Consider a non-switched linear system

Γ :

{
ẋ = Ax+Bu,
y = Cx+Du,

(2)

where x ∈R
n,u ∈R

m, and y ∈R
�. The invertibility problem2

for the system (2) concerns with finding conditions on

A,B,C,D so that for a given initial state x0, the input-output

map Hx0
: U → Y is one-to-one where U is the set of C0

functions and Y is the set of corresponding outputs.

For a number a ≤ �, define Ia := [Ia×a 0a×(�−a)],

Ĩa := [0a×(�−a) I(�−a)×(�−a)] and Ma :=
[

Ia

Ĩ�−a(d/dt)

]
.

Denote by M �×� the set of non-singular �× � matrices.

THE STRUCTURE ALGORITHM Let q0 = rank(D). ∃ S0 ∈
M �×� such that Ĩq0

S0D = 0. Let D0 := S0D and D0 := Iq0
D0.

Let y0 = S0y and C0 = S0C. Then y0 = C0x+D0u. Note that

1which would require the concept of “hybrid functions” whose segments
are functions not necessarily of the same dimension, and also, the concept
of compatible input functions and switching signals.

2more precisely, the left invertibility property; from here onward, when
we say invertibility we mean left invertibility.

rank(D0) = q0 and Ĩq0
D0 = 0. Suppose that at step k, we have

yk = Ckx+Dku, where Dk is such that rank(Iqk D0) = qk and
Ĩqk Dk = 0. Let Ck := IqkCk and C̃k := ĨqkCk. If qk < m, then

Mqk yk =
[

Ck

C̃kA

]
x+

[
Dk

C̃kB

]
u. Let qk+1 = rank

([
Dk

C̃kB

])
. Then

∃ Sk+1 ∈ M �×� such that Ĩqk+1
Sk+1

[
Dk

C̃kB

]
= 0. Let Ck+1 :=

Sk+1

[
Ck

C̃kA

]
, Dk+1 := Sk+1

[
Dk

C̃kB

]
, and Dk+1 := Iqk+1

Dk+1. Let

yk+1 := Sk+1Mqk yk . Then yk+1 = Ck+1x+Dk+1u and we can
repeat the procedure.

It was shown in [10] that ∃ a smallest integer α ≤ n such

that qk =qα ∀k ≥ α. The system is invertible iff 3 qα =m.

Let Nk := ∏k
i=0 Sk−iMqk−i−1

, (M−1 := I). Then yk = Nky.

Let Nk := Iqk Nk, Ñk := Ĩqk Nk, ỹk = Ñky, and ȳk = Nky.

We have

⎡⎢⎣Ñ0

...

Ñk

⎤⎥⎦y =

⎛⎜⎝ỹ0

...

ỹk

⎞⎟⎠ =

⎡⎢⎣C̃0

...

C̃k

⎤⎥⎦x =: Lkx ∀k by virtue of

ỹk = C̃kx. Silverman and Payne have shown in [10] that

∃ a smallest number β, α ≤ β ≤ n, such that rank(Lk) =
rank(Lβ) ∀k ≥ β. Also, ∃ a number δ, β ≤ δ ≤ n such that

C̃δ = ∑δ−1
i=0 Pi

(
∏δ

j=i+1 R̃ j

)
C̃i for some matrices R̃ j related

to the structure algorithm and some constant matrices Pi
(see [10, p.205] for detail). The number δ is not easily

determined as α and β but the significance of δ is that it

can be used to characterize the set of all outputs of a linear

system as in the range theorem [10, Theorem 4.3], which we

paraphrase in Lemma 1 below. Let R̃a,b := ∏b
j=a R̃ j and de-

fine the differential operators M1 :=
(

dδ

dtδ −∑δ−1
i=0 Pi

di

dti

)
R̃0,α,

M2:=∑δ
j=0 R̃ j+1,αKj

dδ−1

dtδ− j −∑δ−1
j=0 Pj ∑ j

k=0 R̃k+1,αKk
d j−k

dt j−k where

Ki are matrices related to the structure algorithm. Let N :=
[ÑT

0 . . . ÑT
β−1

]T and L := Lβ−1. Denote by Ŷ the set of

functions f : D → R
� ∀D ⊆ [0,∞) such that Nδ f ∈ C0,

(M1−M2Nα) f ≡ 0. The notation |t+ means “evaluating the

limit as s ↓ t”.

Lemma 1: For a linear system Γ, using the structure
algorithm on the system matrices, construct a set Ŷ of
functions and a differential operator N : Ŷ → C 0 and a
matrix L. There exists u ∈C0 such that y = Γx0

(u) iff y ∈ Ŷ
and Ny|t+0 = Lx0 where t0 is the initial time.

Remark 1: A special case is m= p=qα (input and output

dimensions are the same and the system is invertible). Then

M1 =M2 =0 and thus, Cδ functions are always in Ŷ . �
Roughly speaking, the set Ŷ characterizes C0 functions that

can be generated by the system from all initial states (in

some sense, M1, M2 capture the coupling among output

components). The condition Ny|t+0 = Lx0 guarantees that the

particular y can be generated starting from x0 at time t0. We

use Ny|t+0 to reflect that y does not need to be defined for

t < t0 (which is useful later for switched systems where inputs

and outputs can be piecewise right-continuous).

The differential operator N in Lemma 1 is to deal with

3iff is the abbreviation for ”if and only if”.
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y that may not be differentiable but Ny exists. From the

construction of N, N has the following form:

Ny := N0y+
d
dt

(N1y+. . .+
d
dt

(Nβ−2y+
d
dt

Nβ−1y)), (3)

where Ni are � × � matrices resulting from the structure

algorithm (more details are in the journal version of the

paper). We then have the following lemma.

Lemma 2: Consider the linear system (2). Let β be the

number and N be the differential operator as described in

the structure algorithm. For any κ ≥ β, for every y such that

Ny exists and is continuous, we have Ny = N0y + d
dt (N1 +

· · ·+ d
dt (Nκ−2y + d

dt Nκ−1y)), where Ni,0 ≤ i ≤ β− 1, are as

in (3) and Ni = 0, i ≥ β.

IV. INVERTIBILITY OF SWITCHED SYSTEMS

THE INVERTIBILITY PROBLEM. Consider the map Hx0
: S ×

U → Y for the switched system (1). Find a set Y and a
condition on the subsystems, independent of x0, such that
the map Hx0

is one-to-one.
Recall that S is the set of all possible switching signals.

We do not specify what the set U is but instead, we specify

the set Y and then U will be the corresponding set of inputs

that together with S generate Y . The domains of Y , S , and

U are the same and can be [0,∞) or any interval.

We say that Hx0
: S × U → Y is invertible at y if

Hx0
(σ1,u1)=Hx0

(σ2,u2) = y ⇒ σ1=σ2,u1=u2 (similarly for

non-switched systems, Hx0
: U → Y is invertible at y if

Hx0
(u1)=Hx0

(u2) = y ⇒ u1=u2). Hx0
is invertible on Y if it

is invertible at y ∀y ∈ Y . The switched system is invertible
on Y if Hx0

is invertible on Y ∀x0.

There is a major difference between the maps Hx0
for non-

switched systems and for switched systems. The former is a

linear map. The latter is a nonlinear map on S ×U, of which

S is not a linear space. The map Hx0
for non-switched LTI

systems has the nice property that if Hx0
is invertible at y for

one pair (x0,y), then the map Hx0
is invertible on the set of

all possible outputs generated by continuous inputs and for

all x0. In contrast, for switched systems, uniqueness of (σ,u)
for one pair (x0,y) does not imply uniqueness for other pairs.

A switched system may be invertible on one output set Y1

but not invertible on another set Y2 (which is not the case

for non-switched systems). This situation prompts a more

delicate definition of the output set Y for switched systems

(cf. output sets are irrelevant for invertibility of LTI systems).

One special case is x0 = 0, y ≡ 0. It is obvious that with

u ≡ 0 and any switching signal, we always have H0(σ,0) =
0 ∀σ regardless of the subsystem dynamics, and therefore,

the map H0 is not one-to-one if the function 0 ∈ Y . This

illustrates the issue of why we cannot take the output set Y
to be all the possible outputs. We call those pairs (x0,y) for

which Hx0
is not invertible at y singular pairs. Fortunately,

for other pairs (x0,y) �= (0,0), invertibility of Hx0
at y depends

on the subsystems’ dynamics and properties of y.

Definition 1: Let x0 ∈R
n and y ∈C0. The pair (x0,y) is a

singular pair of the two subsystems Γp,Γq if there exist u1,u2

such that ΓO
p,x0

(u1) = ΓO
q,x0

(u2) = y.

For the subsystem indexed by p, denote by Np, Lp, and

Ŷp the corresponding objects of interest as in Lemma 1.

It follows from Definition 1 and Lemma 1 that (x0,y) is a

singular pair iff y ∈ Ŷp ∩ Ŷq and

Np,qy
∣∣
t+0

= Lp,qx0, (4)

where Np,q :=
[

Np
Nq

]
, Lp,q :=

[
Lp
Lq

]
and t0 is the initial time

of y. For a given (x0,y), Eq. (4) can be directly verified since

Ŷp, Ŷq,Np,Nq,Lp, and Lq are known. Observe that 0∈ ImLp,q
and we can always have (4) with x0 = 0 and y such that

Np,qy|t+0 = 0. In particular, if y[t0,t0+ε) ≡ 0 and x0 = 0, then

(4) holds regardless of Np,Nq, Lp,Lq; this is the only case

of strong singular pairs. Apart from this case, in general,

Np,qy
∣∣
t+0

= 0 depends on Np,Nq and y, and it is possible to

find conditions on Np,Nq,Lp,Lq and y so that there is no x0

satisfying (4) if Np,qy
∣∣
t+0

�= 0 .

A. A solution of the invertibility problem

Let Y all be the set of outputs of the system (1) generated

by all possible piecewise continuous inputs and switching

signals from all possible initial states (the set Y all can be

seen as all the possible concatenations of all elements of

Ŷp ∀p ∈ P ). Let Y ⊂ Y all be the largest set of functions

in Y all on the time domain [0,∞) such that if y ∈ Y and

y[t0,t0+ε) ∈ Ŷp ∩ Ŷq for some p �= q, p,q ∈ P , ε > 0, then

Np,qy
∣∣
t+0

�= 0. Literally speaking, we avoid functions whose

segments can form singular pairs with x0 = 0. Excluding such

functions from our output set, we can impose conditions

on the subsystems to eliminate the possibility of singular

pairs ∀x0 ∈ R
n,y ∈ Y . Note that the singular pair concept in

Definition 1 is defined for y ∈C0. For switched systems, we

check for singular pairs for the continuous output segments

in between consecutive discontinuities at the output.

Theorem 1: Consider the switched system (1) and the
output set Y . The switched system is invertible on Y iff all
the subsystems are invertible and the subsystem dynamics
are such that ∀x0 ∈ R

n,y ∈ Y ∩C0, the pairs (x0,y) are not
singular pairs of Γp,Γq ∀p �= q, p,q ∈ P .

Proof: (Sketched).

Sufficiency: Suppose Hx0
(σ1,u1) = Hx0

(σ2,u2) = y. Let t1 > 0

be the first time such that u1 or u2 is discontinuous at

t1. From the nonsingular pair condition, it must be that

σ1(t) = σ2(t) = p ∀t ∈ [0, t1) for some p ∈ P . Then u1[0,t1) =
u2[0,t1) = u[0,t1) is uniquely recovered on [0, t1) by invertibility

of Γp. By continuity, x(t1) = x(t−1 ) =: x1. If t1 = ∞, then

σ1(t) = σ2(t), u1(t) = u2(t) ∀t ∈ [0,∞). Otherwise, repeat the

argument with x1 and y[t1,∞).

Necessity: Invertibility of all the subsystems can be seen by

picking a constant switching signal. If there is a singular

pair (x0,y) for some p �= q, then the switched system is not

invertible by definition.

In the case the subsystem input and output dimen-

sions are equal, we can have a rank condition for invert-

ibility of switched systems. For an index p, let Wp :=
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[Np,0 Np,1 . . . Np,n−1] where Np,0, . . . ,Np,n−1 are the matrices

as in Lemma 2 for the subsystem with index p.

Lemma 3: Consider the switched system (1) and the out-
put set Y . Consider the following two statements:
S1. The subsystem dynamics are such that for all x0 ∈ R

n

and y∈Y , the pairs (x0,y[t0,t0+ε)) are not singular pairs
of Γp,Γq for all p �= q, p,q ∈ P and for all t0 ≥ 0,ε > 0,
such that y[t0,t0+ε) ∈C0;

S2. The subsystem dynamics are such that

rank
[
Wp Lp
Wq Lq

]
= rank

[
Wp
Wq

]
+ rank

[
Lp
Lq

]
(5)

for all p �= q, p,q ∈ P such that Ŷp ∩ Ŷq �= {0}.
Then S2 ⇒ S1. If the subsystems are invertible and the input
and output dimensions are the same, then S1 ⇒ S2.
Proof of Lemma 3 is omitted due to space limitation. From

Theorem (1) and Lemma 3, we arrive at the following result.

Theorem 2: Consider the switched system (1) and the
output set Y . The switched system is invertible on Y if all the
subsystems are invertible and the rank condition (5) holds. If
the input and output dimensions of all the subsystems are the
same, then invertibility of all the subsystems together with
the rank condition is also necessary for invertibility of the
switched system.

When a switched system is invertible (as stated in Theorem

1), a switched inverse system can be constructed as follows.

Define the index inversion function Σ−1
: R

n ×Y → P as

Σ−1
: (x0,y) �→ p : y ∈ Ŷp, Npy|t+0 = Lpx0, (6)

where t0 is the initial time of y. The function Σ−1
is well-

defined since p is unique by the fact that there is no singular

pair, and so, the index at every time is uniquely determined

from the output y and state x. In the invertibility problem, it

is assumed that y is an output so the existence of p in (6) is

guaranteed. A switched inverse system is:

Γ−1
σ :

⎧⎪⎨⎪⎩
σ(t) = Σ−1(z(t),y[t,∞)),
ż = (A−BD−1

α Cα)σ(t)z+(BD−1
α Nα)σ(t) y,

u = −(D−1
α Cα)σ(t) z+(D−1

α Nα)σ(t) y

(7)

with the initial condition z(0) = x0. The notation (·)σ(t)
denotes the object in the parentheses calculated for the

subsystem with index σ(t). The initial active subsystem

σ(0) = Σ−1(y[0,∞),x0) at t = 0, from which time onwards,

the active system indexes and the input as well as the state

are determined uniquely and simultaneously via (7).

Remark 2: Our result can also be readily extended to

include the more general case of different output dimensions

(the only difference is the use of “hybrid functions” for

outputs instead of functions). The result in this section can

also be extended to include the case where the state spaces

of the subsystems are different and where there are state

jumps at switching times by appropriately modifying the

concept of singular pairs (taking into account different state

space dimensions and jump maps). For these cases, the

statements of Theorem 1 remain largely unchanged. Due to

space limitation, we do not provide details here and point to

later journal version of this paper. �
V. OUTPUT GENERATION

In the previous section, we considered the question of

whether one can recover (σ,u) uniquely ∀x0 ∈ R
n,y ∈ Y .

In this section, we address a different but closely related

problem which concerns with finding (σ,u) (there maybe

more than one) such that Hx0
(σ,u) = y for a given y and

x0. For the invertibility problem, we find conditions on the

subsystems and the set Y so that Hx0
is injective ∀x0. Here,

we are given one particular (x0,y) and wish to find the

preimage H−1
x0

of the map Hx0
:

H−1
x0

(y) := {(σ,u) : Hx0
(σ,u) = y}. (8)

By convention, H−1
x0

(y) = /0 if y is not in the image set of

Hx0
. In general, H−1

x0
(y) is a set for a given y (when H−1

x0
(y)

is a singleton, the map Hx0
is invertible at y).

Lemma 4: Suppose that the a non-switched linear system

Γ is not invertible. Consider an arbitrary interval [a,b]. For

every u ∈ F pc

[a,b] and xa ∈ R
n, ∃ infinitely many different v ∈

F pc

[a,b] such that ΓO
xa(v) = ΓO

xa(u) and Γxa(v)
∣∣
b = Γxa(u)

∣∣
b.

Proof: Proof is omitted due to space limitation.

A corollary of Lemma 4 is that for our output generation

problem, if one active subsystem is not invertible, then

H−1
x0

(y) will have infinite number of elements if H−1
x0

(y) �= /0.

This motivates us to introduce the following assumption.

Assumption 1: The subsystems Γp are invertible ∀p ∈ P .
We have no other assumption on the subsystem dynamics and

the switched system may not be invertible as the subsystems

may not satisfy the invertibility condition in the previous

section. Since we look for an algorithm to find H−1
x0

(y), we

only consider y of finite intervals (and hence, there is a finite

number of switches) to avoid infinite loop reasoning when

there are infinitely many switchings. Even though the subsys-

tems are invertible and the number discontinuities is finite,

finding H−1
x0

(y) is nontrivial since output discontinuities do

not always imply switches. We can have a switch and y is

still smooth at that switching time, and likewise, we can

have no switching even if y loses continuity (because for

a subsystem, the input maybe discontinuous and the output

may depend directly on the input through D).

We now present a switching inversion algorithm4 for

switched systems that takes x0 ∈ R
n, y ∈ F pc

D as parameters

and returns H−1
x0

(y) as in (8) where D is a finite interval,

when H−1
x0

(y) is a finite set. Define the index-matching
map5 Σ−1 : R

n ×F pc → 2P that returns the indexes of the

subsystems capable of generating y starting from x0:

Σ−1(x0,y) := {p : y ∈ Ŷp, Npy|t+0 = Lpx0}, (9)

where t0 is the initial time of y. Note that the map Σ−1 in

(9) is defined for every pair (x0,y) and returns a set, whereas

the index inversion function Σ−1
in (6) is defined for non-

singular pairs and returns an element of P .

4In the algorithm, “←” reads “assigned as”, and “:=” reads “defined as”.
5The symbol 2P denotes the set of all subsets of a P .
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Begin of Function H−1
x0

(y)
Let [t0,T ) := the domain of y;

P := {p ∈ P : y[t0,t0+ε) ∈ Ŷp for some ε > 0};

t∗ := min{t ∈ [t0,T ) :y[t,t+ε) /∈ Ŷp for some p ∈ P ,ε>0}
or t∗ = T otherwise.

P ∗ := Σ−1(x0,y[t0,t∗)).
If P ∗ �= /0, Let A := /0.

For each p ∈ P ∗,

Let u := Γ−1,O
p,x0 (y[t0,t∗)),

T := {t ∈ (t0, t∗) : (x(t),y[t,t∗)) is

a singular pair of Γp,Γq for some q �= p}.

If T is a finite set,

For each τ ∈ T , let ξ := Γp(u)(τ).
A ← A ∪{(σp

[t0,τ),u[t0,τ))⊕H−1
ξ (y[τ,T ))}

End For each
Else If T = /0 and t∗ < T , let ξ = Γp(u)(t∗).

A ← A ∪{(σp
[t0,t∗),u)⊕H−1

ξ (y[t∗,T ))}
Else If T = /0 and t∗ = T ,

A ← A ∪{(σp
[t0,T ),u)}

Else A := /0
End If

End For each
Else A := /0
End If
Return H−1

x0
(y) := A

End of Function

The switching inversion algorithm is a recursive procedure

calling itself with different parameters within the main loop.

There are three stopping conditions: it terminates either when

P ∗ = /0, in which case there is no subsystem that can generate

y starting from x0 at time t0, or when T is not a finite set, in

which case we cannot proceed due to infinitely many possible

switching times, or when T = /0 and t∗ = T , in which case

the switching signal is a constant signal.

If the return is a nonempty set, the set must be finite and

contains pairs of switching signals and inputs that generate

the given y starting from x0. If the return is an empty

set, it means that there is no switching signal and input

that generate y, or there is an infinite number of possible

switching times (it is possible to further distinguish between

these two cases by using an extra variable in the algorithm

that assigned different values for different cases). Notice the

utilization of the concatenation notation: if at any instant of

time, the return of the procedure is an empty set, then that

branch of the search will be empty because f ⊕ /0 = /0.

VI. EXAMPLES

Example 1: Consider the two subsystems:

Γ1 :

⎧⎨⎩ ẋ =
[

1 2

3 4

]
x+

[
1

2

]
u,

y =
[
0 1

]
x,

, Γ2 :

⎧⎨⎩ ẋ =
[

3 1

5 4

]
x+

[
1

3

]
u,

y =
[
0 2

]
x.

Using the structure algorithm, we can check that Γ1,Γ2 are

invertible. We have N1 = W1 = N2 = W2 = [1], L1 = [0 1],
L2 = [0 2]. In this example, the input and output dimensions

are the same. The rank condition (5) is satisfied. By The-

orem 2, we conclude that the switched system generated

by {Γ1,Γ2} is invertible on Y 1
:= {y ∈ F pc :

[
W1

W2

]
y|t+ �=

0 ∀t} = {y ∈ F pc : y(t) �= 0∀t}.

Example 2: Consider the two subsystems:

Γ1 :

⎧⎨⎩ ẋ=
[

1 0

0 −1

]
x+

[
1

1

]
u,

y =
[
0 1

]
x,

, Γ2 :

⎧⎨⎩ ẋ=
[

1 0

−1 2

]
x+

[−1

1

]
u,

y =
[
1 2

]
x.

Using the structure algorithm, we can check that Γ1,Γ2 are

invertible and N1 =W1=N2 =W2=[1], L1 = [0 1], L2 = [1 2].
Since the rank condition (5) is violated, the switched systems

generated by Γ1, Γ2 does not satisfy Theorem 2. Consider

an output

y(t) =

{
2e2t −3et , if t ∈ [0, t∗),
c1et + c2e2t , if t ∈ [t∗,T ),

where t∗ = ln3, T = 6
5
, c1 = 15+18ln( 2

3
), c2 =− 4

3
−4ln( 2

3
)

and the initial state x0 =(−1,0)T .

We illustrate how the switching inversion algorithm works.

In this case, the input and output dimensions are the same so

smooth functions are always in Ŷ1, Ŷ2. It follows that P =P
and t∗ in the algorithm is the same as t∗ in the definition

of y since y[t,t+ε) /∈ Ŷp only if y is discontinuous at t. Now,

P ∗ := Σ−1(x0,y[0,t∗)) = {2} by using (9) with x0, y(0)=−1.

An inverse of Γ2 (by the structure algorithm) is

Γ−1
2 :

⎧⎨⎩ ż =
[

0 4

0 −2

]
z+

[−1

1

]
ẏ,

u(t) = ẏ− [−1 4
]

x,
t ∈ [0, t∗)

with z(0) = x0, which yields

z(t) =
( −et

−et + e2t

)
=: x̄2(t), u(t) = 0, t ∈ [0, t∗). (10)

We find T ={t≤t∗ :(x(t),y[t,t∗)) is a singular pair of Γ1,Γ2},

which is equivalent to solving W1y(t)=L1x̄2(t), t ∈ [0, t∗) ⇔
2e2t−3et =x2(t)=−et +e2t , t ∈ [0, t∗), which has a solution

t = ln2 =: t1. Thus, T = {t1}, which is a finite set. We repeat

the procedure for ξ = x(t1) = (−2,2)T and y[t1,T ). Now, P ∗=
Σ−1(ξ,y[t1,t∗))={1,2}.

Case 1: p = 1. An inverse system of Γ1 is

Γ−1
1 :

⎧⎨⎩ ż =
[

1 2

0 0

]
z+

[
1

1

]
ẏ,

u = ẏ− [
0 −1

]
z,

with the initial state z(t1) = ξ, which yields

z(t) =
(

(−13+6ln2)et+6e2t−6tet

2e2t −3et

)
=: x̄1(t),

u(t) = 6e2t −6et ,
t ≥ t1.

We find T = {t ∈ (t1, t∗] : (x(t),y[t,t∗)) is a singular pair of

Γ1,Γ2}, which is equivalent to solving W2y(t)=2e2t−3et =
L2x̄1(t)=(−19+6ln2)et +10e2t−6tet , t1 < t ≤ t∗. It can be

checked that the foregoing equation does not have a solution.

Repeating the procedure with ξ = x̄1(t∗)= (15+18ln( 2
3
),9)

and y[t∗,T ), we get the solution σ = σ2
[t∗,T ), u[t∗,T ) = 0.
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Case 2: p = 2. This case means that t1 is not a switching

time. Then u(t) = 0 up to time t∗ by the structure algorithm,

and hence, x(t) =
( −et

−et + e2t

)
, τ ≤ t ≤ t∗, in view of (10).

We repeat the procedure with ξ = x(t∗) = (−3,6) and y[t∗,T ).

We have y(t∗) = 33 + 18ln(2/3). Since L1ξ /∈ W1y(t∗) and

L2ξ /∈W2y(t∗), we get Σ−1(ξ,y[t∗,T )) = /0.

The switching inversion algorithm returns {(σ,u)}, where

σ(t) = σ2
[0,t1) ⊕σ1

[t1,t∗) ⊕σ2
[t∗,T ),

u(t) =

⎧⎪⎨⎪⎩
0, if 0 ≤ t < t1,

6e2t −6et , if t1 ≤ t < t∗,
0, if t∗ ≤ t ≤ T.

We see that there is a switching at t1 whilst the output is

smooth at t1. Without the concept of singular pairs, one might

falsely conclude that there is no switching signal and input

after trying all obvious combinations of the switching signals

(i.e. σ = σi
[0,t∗) ⊕σ j

[t∗,T ), i, j ∈ {1,2}). Here, we can recover

the switching signals and the inputs (uniquely in this case).

This clearly demonstrates the usefulness of the singular pair

concept.

VII. THE INVERTIBILITY PROBLEM FOR DISCRETE-TIME

SWITCHED SYSTEMS

In this section, we outline the invertibility problem for

discrete-time switched systems, which is currently under

further investigation by the authors. The continuous-time

case and discrete-time case are different as we will explain

below. Consider a discrete-time switched system

Γσ :

{
x[k +1] = Aσ[k]x[k]+Bσ[k]u[k],
y[k] = Cσ[k]x[k]+Dσ[k]u[k]. (11)

We assume that the the individual subsystems live in the

same state space R
n. The discrete-time switching signal σ is

a function σ : {0,1,2, . . .} → P ; switching times are k such

that σ(k) �= σ(k−1), k ≥ 1. Unlike the case of continuous-

time switching signals, we do not have further restrictions on

σ because a discrete-time signal already implies that there

can only be finitely many switches in any finite interval.

We assume that there is no jump at switching times. Denote

by f[a:b] the restriction of a discrete-time function f on an

interval [a : b]. While invertibility for the continuous-time

case is defined as injectivity of the switching signal × input-

output map Hx0
, invertibility for the discrete-time case is

defined with a delay as follows:

PROBLEM For the discrete-time switched system (11), find a
condition on the matrices Ap,Bp,Cp,Dp, p ∈ P , a set S of
switching signals, a set U of inputs, and a set Y of outputs
such that Hx0

(σ1[0:k],u1[0:k]) = Hx0
(σ2[0:k],u2[0:k]) = y[0:k] ⇒

σ1[0:k−d] = σ2[0:k−d],u1[0:k−d] = u2[0:k−d] ∀x0 ∈ R
n,y ∈ Y ,σ ∈

S ,u ∈ U,k ≥ d for some number d ≥ 0.
Compared to the continuous-time case, the invertibility

problem for discrete-time switched systems differs from

the former in that the latter requires specifying the set S
and the delay d. For continuous-time non-switched systems,

an output in an infinitesimally small interval is completely

determined by the input in the same interval. Carrying over

to switched systems, this property enables us to identify

switching times and the active subsystem index by comparing

the subsystem dynamics using the output in an infinites-

imally small interval. For discrete-time switched systems,

note that if every subsystem is invertible with 0 delay, then

we can have a result similar to the continuous-time case

using the current output sample. However, in general, for a

discrete-time non-switched system, an output in an interval

is determined by the input in a shorter interval. This delay

behavior of the individual subsystems makes it difficult to

determine switching times and the active subsystem index

of a switched system. Suppose that for the subsystems, we

need α sample delay to recover the input uniquely. For

the switched system, there will be output segments with

length α (around switching times) such that in that segments,

there will be mixing of more than one dynamics. Since the

switching signal is not known, it is not clear how to use

that output segment to recover the input (and the switching

signal).

VIII. CONCLUSION

We have formulated a new problem, namely, the invertibil-

ity problem for switched systems. We introduced the concept

of singular pairs and presented a necessary and sufficient

condition for invertibility of continuous-time switched linear

systems. For continuous-time switched linear systems, not

necessarily invertible, with invertible subsystems, we pro-

vided an algorithm that finds switching signals and inputs

that generate a given output with given initial state. Future re-

search direction is to investigate invertibility of discrete-time

switched linear systems and switched nonlinear systems.
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