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Abstract— We study control systems where the state mea-
surements are quantized and time-sampled, and an unknown
disturbance is being applied. We present a dynamic quantiza-
tion scheme that switches between three modes of operation.
We show that by using this scheme with a continuous static
feedback controller we achieve a closed-loop system which has
the Input-to-State Stability property (ISS). Our design does
not use any characterization of the disturbance; as long as the
disturbance is bounded the system will remain stable. We show
that three quantization regions per dimension is sufficient to
achieve the ISS property, and furthermore we show that the
ISS property is achievable using a data rate that is arbitrarily
close to the minimum required data rate when no disturbance
is applied.

I. INTRODUCTION

The effect of quantization on control systems has been

a research subject for several works published since the

late 80s, and especially in the last decade. By quantization

we refer both to space quantization and to time sampling.

By space quantization we mean that each measurement can

only have a finite set of different values. By time sampling

we mean that the measurement is only sampled once every

certain time interval, and not continuously. Quantization can

result from the technical properties of the sensors used to

measure the state of the system. It can also result from

limitations on the data rate that can be transmitted between

the sensors and the controller.

One can neglect the quantization, and design a stabilizing

controller assuming continuous state measurement is avail-

able. However, if the quantization regions are fixed over

time, then even if the continuous controller is designed to

make the system globally asymptotically stable (GAS), due

to quantization the closed-loop system will at most be only

locally practically stable. See [1] and [2] for more details.

If the quantization regions do change dynamically as the

system evolves, then, as is shown in the several papers

referenced below, it is possible to make the closed-loop

system GAS. This paper is based on a minimum data rate

approach which was presented for linear disturbance-free

systems in [3],[4]. The approach was extended to nonlinear

systems in [5] and [6], and disturbances were dealt with in

[7], [8], [9] and [10]. The basic scheme of this approach,

for disturbance-free systems, is as follows. Once the state is

known to be in a bounded region, calculate the region where
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the state will be in the next sampling time, and position

the quantizer to cover just this region. If there are enough

quantization regions compared to the system growth rate,

then the size of the quantization regions will be reduced

every sampling time, and the state estimation error will

converge to zero. To get the initial bounded region of where

the state is, the size of the region covered by the quantizer

needs to be enlarged each sampling time at a rate higher than

the system growth rate.

The simple scheme described in the previous paragraph

can achieve global asymptotic stability, but it may fail (for

example the system might escape to infinity) if a disturbance

is introduced. The GAS property is not applicable in the

presence of a disturbance, and so we chose the Input-to-State

Stability (ISS) property, first introduced in [11], as a natural

extension of the GAS property to systems with a disturbance.

In this paper we will show how to dynamically position

the quantizer so that the closed-loop system will have the

ISS property. We mentioned that several previous papers did

deal with disturbances; however, some specifications of the

disturbance were needed in the design of the quantization

schemes, and it is possible that using their schemes the

system will become unstable if the disturbance digresses

from this specification. Our scheme regards the disturbance

as completely unknown, and as long as the disturbance is

finite, the state will remain bounded. Furthermore, once the

disturbance vanishes the state will asymptotically converge

to the origin.

The only paper we know of that showed how to achieve

the ISS property with respect to a completely unknown

disturbance in the presence of quantization is [12]1. However,

that paper used a different approach which assumes the

quantizer can be changed dynamically in a more limited way

than the approach we follow. That approach also appeared

previously in [13] and [14] but for disturbance-free systems.

While this other approach may be easier to implement in

some scenarios because less flexibility is needed from the

quantizer, the approach we follow uses fewer quantization

regions. Using fewer quantization regions leads to a lower

data rate, and in some other scenarios where using more

1In [7] and [8], state boundedness in the presence of bounded disturbances
is achieved by using the knowledge of a disturbance bound. In [9], mean
square stability in the stochastic setting is obtained by utilizing statistical
information about the disturbance. In [10] only stability in probability is
proved, not ISS.
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quantization regions makes the system more complex it

may actually lead to a simpler implementation. We shall

mention that although the two approaches solve the same

problem (but under different conditions), the control design

and analysis in this paper are significantly different from

those in [12].

The paper is organized as follow. In §II we give a formal

definition of the system, how the measurement is being

quantized, and what is our goal (ISS). In §III we describe

how the parameters of the quantization should be changed

dynamically, and under what conditions our scheme will

achieve ISS. Our main theorem is presented in that section.

In §IV we give a more intuitive explanation of our scheme.

In §V we give a brief discussion on how to choose the

design parameters. In §VI we compare the minimum required

data rate for disturbance-free systems as given in previous

published results and the minimum required data rate for our

scheme, and show that they can be made arbitrarily close.

We extend our results to non-linear systems in §VII and

give concluding remarks in §VIII. The formal proof of the

validity of our scheme is omitted from this paper due to paper

length limitations, but will be available on our website (see

the appendix for the link) until a complete journal version

will be published. The main steps of the proof, however, are

presented in the appendix.

II. DEFINITIONS

In this paper we will use the ∞-norm unless otherwise

specified. For vectors, |x|
.
= |x|∞

.
= maxi |xi|. For signals,

‖w‖[0,t]
.
= supτ∈[0,t] |w(τ)|∞ and ‖w‖

.
= ‖w‖[0,∞). For

matrices, ‖M‖
.
= maxx

|Mx|
|x| ≡ maxi

(

∑

j |Mij |
)

.

The system we want to stabilize is described by the usual

linear equation:

ẋ(t) = Ax(t) + Bu(t) + Dw(t) (1)

where x ∈ R
n is the state, u ∈ R

m is the control input, and

w(t) ∈ R
l is an unknown bounded, measurable disturbance.

We assume that (A,B) is a stabilizable pair, so there exists a

K such that using u(t) = Kx(t) the system will be driven

to zero when no disturbance is applied.

We use the concept of Input-to-State Stability (ISS), which

was first introduced in [11], to describe the goal of our

design. A system is said to be ISS if the norm of the system

can be bounded as follows:

|x(t)| ≤ β (|x0| , t) + γw

(

‖w‖[0,t]

)

, ∀t ≥ 0 (2)

where γw is a class K∞ function2 and β is a class KL
function3.

Fix an odd integer N ≥ 3. The quantizer we are assumed

to be given is one that assigns N different labels for each

2A function α : [0,∞) → [0,∞) is said to be of class K if it is
continuous, strictly increasing, and α(0) = 0. A function α : [0,∞) →
[0,∞) is said to be of class K∞ if it is of class K and also unbounded

3A function β : [0,∞) × [0,∞) → [0,∞) is said to be of class KL
if β(·, t) is of class K for each fixed t ≥ 0 and β(s, t) decreases to 0 as
t → ∞ for each fixed s ≥ 0.

x1

x2

2µ

c

Fig. 1. Illustration of the quantizer for the two-dimensional state space,
N = 5. The dashed lines define the boundaries of the quantization regions.
The black dots define where the quantizer estimates the state to be, given
the index of the quantization region that currently contains the state. Note
that the quantizer output gives a displacement from c.

dimension of the state. The center point c ∈ R
n of the

quantizer can be dynamically defined by the controller,

together with a zoom factor µ ∈ R≥0. The quantizer Q,

which takes values in a finite subset of R
n, is defined

mathematically below and is also illustrated in Figure 1.

Qi (x; c, µ)
.
=















































(−N + 1)µ xi − ci ≤ (−N + 2)µ
(−N + 3)µ (−N + 2)µ < xi − ci ≤ (−N + 4)µ
...

...

0 −µ < xi − ci ≤ µ
...

...

(N − 3)µ (N − 4)µ < xi − ci ≤ (N − 2)µ
(N − 1)µ (N − 2)µ < xi − ci

(3)

Note that if |x− c| ≤ Nµ then the measurement error, |x−
Q (x; c, µ) |, is bounded by µ. We refer to the (bounded)

regions for which ∀i Qi (x; c, µk) 6= ±(N − 1)µk as the

inner regions, and to all the other (unbounded) regions as

the outer regions.

The design of the quantizer will be under the constraint

that a measurement (sampling) of the state using the device

implementing the described quantizer can only be taken

every Ts seconds. Using this sampling time interval we

define the open-loop maximum growth rate:

Λ
.
= ‖exp (ATs)‖ .

We are now ready to describe the design of the controller

using this quantizer.

III. QUANTIZED CONTROLLER DESIGN

The controller will operate in either of three modes: zoom-

out, zoom-in/measurement update or zoom-in/escape detec-

tion, where the initial mode will be zoom-out. The controller

will also use x̂ ∈ R
n, µ ∈ R and ρ ∈ N as auxiliary vari-

ables. The variable x̂ will be changed continuously between

sampling times, and “abruptly” at the sampling times. If
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kTs is a sampling time, then x̂
−(kTs)

.
= limτրkTs

x̂(τ )
is the value of x̂ just before the abrupt change. We initialize

x̂(t0) = 0. The variable µ will be changed only at sampling

times, and we will use the notation µk
.
= µ(kTs). Its initial

value, µ0, can be any positive value, and will be regarded as

a design parameter. The controller will also have four other

design parameters: α > 0, s > 0, Ωout > Λ, P ∈ N. The

effect of the choice of the parameters on the performance of

the controller will be discussed in §V. Define

Ωin,m
.
=

Λ

N − α
Ωin,e

.
=

Λ + α

N − 2
. (4)

The control law will be as follows:

1) Between sampling times:

u(t) = Kx̂(t)

˙̂
x(t) = Ax̂(t) + Bu(t)

2) At sampling times (t = kTs):

a) In zoom-out mode:

If ∀i Qi

(

x(t); x̂−(t), µk

)

6= ±(N − 1)µk

Then update ρ = P ,

x̂(t) = x̂
−(t) + Q

(

x(t); x̂−(t), µk

)

, (5)

µk+1 = Ωin,mµk (6)

and switch to zoom-in/measurement update mode

Else update

µk+1 = Ωoutµk, x̂(t) = x̂
−(t)

b) In zoom-in/measurement update mode:

Update x̂ using (5) and also update ρ = ρ − 1.

If ρ = 0
Then update

µk+1 = Ωin,eµk (7)

and switch to zoom-in/escape detection mode

Else update µ using (6).

c) In zoom-in/escape detection mode:

If ∀i Qi

(

x(t); x̂−(t), µk

)

6= ±(N − 1)µk

Then update x̂ using (5), µ using (6), update ρ =
P , and switch to zoom-in/measurement update

mode

Else update

µk+1 =
s

N − 2
, x̂(t) = x̂

−(t) (8)

and switch to zoom-out mode.

We are now ready to state our main result.

Theorem 1: Consider the system (1) with the quantizer

described in §II and assume a state feedback gain, K, is

given such that (A + BK) is a Hurwitz matrix. Applying

the controller described above, with any choice of design

parameters such that

0 < ΩP
in,mΩin,e ≡

ΛP (Λ + α)

(N − α)
P

(N − 2)
< 1 (9)

holds, will make the closed-loop system Input-to-State Stable

with respect to the disturbances, i.e. there exist a class KL
function βcl and a class K∞ function γcl such that the

following holds:

|x(t)| ≤ βcl (|x0| , t) + γcl

(

‖w‖[0,t]

)

. (10)

Note that a necessary and sufficient condition for existence

of design parameters for which (9) holds is that ΛP+1 <
NP (N − 2), and since limTs→0 Λ = 1 this condition can

always be achieved if the sampling times are frequent enough

or N is large enough.

IV. EXPLANATION AND INTUITIVE JUSTIFICATION OF

THE PROPOSED CONTROLLER DESIGN

In this section we will describe in words the algorithm

presented in the previous section, and will try to give the

intuition as to why this specific design achieves the desired

properties.

The controller uses the state estimate, x̂, and the feedback

gain for the unquantized system, K, to calculate the control

input. If we define e = x − x̂ to be the estimation error,

then the system can be written as:

ẋ(t) = (A + BK)x(t) − BKe(t) + Dw(t). (11)

Because (A + BK) is Hurwitz, the system (11) is ISS with

respect to both the estimation error, e(t), and the disturbance,

w(t). See [15, §4.9] for more details.

Between sampling times, the state estimation error is

propagated as:

ė = ẋ − ˙̂
x = Ax + BKx̂ + Dw − (Ax̂ + BKx̂)

= Ae + Dw. (12)

The important observation from (12) is that the dynamics

of the estimation error between the sampling times are

independent of the state. The proposed controller design pre-

serves this independency at the sampling times – knowledge

of the estimation error but not of the state just before a

sampling time is sufficient to determine the estimation error

immediately after the sampling time. Thus, if we show that

using the proposed controller makes the relation between the

disturbance and the estimation error ISS, then we can use

the cascade theorem [11, Proposition 7.2] to show that the

closed-loop system is ISS.

Note that the quantization regions can be divided into

inner and outer regions. The inner regions are between

(−N + 2)µ and (N − 2)µ in all dimensions; each inner

region is a bounded box whose size is 2µ. The outer regions

are unbounded. The basic logic of the above controller is

to zoom out until the state falls inside an inner region (and

so the measurement error can be bounded). Once the state

does fall inside an inner region, the controller switches to a

sequence of measurement updates and escape detections. In

the measurement update mode all the quantization regions

are used to improve the estimation. However, this is done

under the assumption that the estimation error is less than

Nµ. By covering the space in which the state is expected to
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be with only the inner regions, the escape detection mode

is used to verify that this assumption still holds, and also

to improve the estimation when N > 3. If it is found that

the assumption no longer holds (due to the disturbance), the

controller switches back to zoom-out.

The distinction between the two zoom-in modes is essen-

tial to achieve the minimum number of quantization regions

(or minimum data rate). To see this, take for example the

extreme, but perhaps the most interesting, case where N = 3.

In this case the estimation improvement is done solely in the

measurement update mode, and not in the escape detection

mode. However the escape detection mode is still essential to

make the system robust to the disturbance. Between sampling

times, without a disturbance, the estimation error will always

grow at most by the factor of Λ; however, to make the system

ISS, the controller must assume that the error will grow even

more due to the disturbance. The size of a disturbance that

will drive the estimation error to one of the outer regions in

the escape detection mode is proportional to the current zoom

factor µ where the proportionality constant is determined

by α. Therefore, the controller will switch to the zoom-out

mode only when the estimation error is already small enough

compared to the disturbance. This is essential for achieving

the ISS property.

By taking Ωout > Λ we are guaranteed that for any

bounded disturbance, we will eventually catch the state dur-

ing the zoom-out. The condition (9) is needed in order to have

µ converge to zero in the zoom-in sequence. This condition

is equivalent to saying that the amount of information we

receive during each sequence of P zoom-in/measurement up-

dates and one zoom-in/escape detection, which is determined

by NP (N − 2), is large enough compared to the error’s

growth rate, which is determined by ΛP+1, and the “slack”

we give for the disturbance, given by α.

Figure 2 shows a simulation that visually illustrates the

behavior of the controller.

V. SENSITIVITY TO DESIGN PARAMETERS

Several design parameters are used by the controller. Any

choice for the design parameters will render the closed-loop

system ISS as long as (9) holds. However, different choices

will result in a different ISS gain and overshoot, and may

also affect performance measures which are not expressed by

the ISS definition, such as energy gain and data rate. By ISS

gain we refer to the γ function in the ISS definition, and by

overshoot we refer to the β function in the ISS definition. A

gain or overshoot will be smaller (or bigger) if it is smaller

(or bigger) for any chosen bound on the disturbance, any

initial condition and for all t ≥ 0.

The parameter α expresses the sensitivity of the system to

the disturbance and it is bounded from above via (9). The

ISS gain and the overshoot will decrease as α is increased.

However, increasing α will slow down the convergence of the

system in the zoom-in sequence. By taking more quantization

regions we may use a larger α but that will also require

higher data rate. The parameter P will have similar effects:
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Fig. 2. A simulation of using the described controller on a 2-dimensional,
open-loop unstable, system, N = 3. The top chart shows the state of the
system over 20 seconds of simulation. The middle chart focuses on the
first second of the simulation to show the initial transient. The bottom chart
focuses on the 10th second to show the steady state behavior. Only one
dimension of the state and its estimate are shown in the middle and bottom
charts. The vertical lines indicate the (single) inner region of the quantizer.
The lines with arrows pointing outward correspond to zoom-out, the lines
with arrows pointing inward correspond to zoom-in/measurement update,
and the lines with horizontal boundaries correspond to zoom-in/escape

detection. Simulation parameters: A = [4,−3; 2,−1], B = [−1; 4],
K = [4.0294,−1.7827], Ts = 0.02, α = 0.5, Ωout =

√
3, s = 3,

µ0 = 10, x0 = [−70;−10], ‖w‖ = 50.

higher P will result in faster convergence and smaller data

rate, but the ISS gain and overshoot will be increased.

The parameters µ0, s, and Ωout have more complicated

effect on the ISS gain and the overshoot, and their optimal

values, when the goal is to minimize the ISS gain or the

overshoot, depend on the characteristics of the disturbance

and the initial condition. The choice of µ0 will depend on

the expected magnitude of the initial condition, and it will

affect the overshoot only. The choice of s will depend on

the expected magnitude of the disturbance and it will affect

the ISS gain only. Last, the choice of Ωout will depend

on the expected deviation of the initial condition and the

disturbance from their expected values. None of these three

design parameters will affect the data rate.

VI. APPROACHING THE MINIMAL DATA RATE

As mentioned in the introduction, several papers

([3],[7],[8],[9],[10]) present (the same) lower bound on the

data rate necessary to stabilize a given system. In all these

cases, including ours, the lower bound on the necessary data

rate is independent of the disturbance characteristics, and is

derived only from the open-loop characteristics. However,

while the minimum rate required is independent of the

disturbance, the control design in all previous cases does

depend on some of the characteristics of the disturbance4.

4An exception is [10] which does suggest a method that does not depend
on any characteristics of the disturbance. However, the method does not
achieve the ISS property
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Our paper is unique since we show how to achieve the ISS

property while approaching the minimum rate, and do so

without using any knowledge on the characteristics of the

disturbance.

The bound on the minimum data rate, in terms of the bit-

rate that needs to be transmitted (R), is:

R >

∑

|ηj |≥1 log2 |ηj |

Ts

(13)

where η′
js are the eigenvalues of the discrete open-loop

matrix Φ
.
= exp(ATs). The data rate in our scheme is

given by log2 (Nn) /Ts, where N is bounded from below

via (9). The value Λ in (9) measures the ∞-norm growth

of the open-loop disturbance-free system. The choice of the

∞-norm came from the specific rectangular shape of our

quantizer. Assuming A is diagonizable, we can apply the

quantizer separately on each independent mode, and allocate

a different amount of quantization regions for each mode

based on its growth rate. The 2-norm growth rate of each

mode is eTsReλ(Al) ≡ |ηj |, where Reλ(Al) is the real part

of the eigenvalues of mode l, and ηj is any corresponding

discrete eigenvalue. While for modes whose eigenvalues have

non zero imaginary part the ∞-norm is in general bigger then

the 2-norm, we can rotate the orientation of the quantizer

and use the 2-norm to determine the change in zoom-factor

between two sampling times. This is explained in [8].

Overall the minimum data rate required for our scheme is

R =
∑

|ηj |≥1

log2

(

Ñj

)

/Ts (14)

where Ñj is the smallest odd integer such that

NP
j (Nj − 2) > |ηj |

(P+1)
(15)

holds. We arrived at (15) using the fact that α can be made

arbitrarily small without compromising the ISS property. If

we had Ñj = |ηj | then we would achieve (13). As is done

in [8] we can remove the restriction to odd integers in (15)

by using different number of quantization regions at each

sampling times, and then measure the average data rate.

We can also take P to be large enough so that the “−2”

term, which is the penalty we need to pay to handle the

disturbance, becomes negligible. Thus, we can apply our

scheme using a data rate which is arbitrarily close to the

minimum data rate (13).

VII. EXTENSION TO NONLINEAR SYSTEMS

The crucial properties of linear systems which will be

used in the proof of Theorem 1 are (a) that the continuous,

unquantized, closed-loop system is ISS with respect to the

estimation error and the disturbance, and (b) that the estima-

tion error grows independently of the state as described by

(12). Both properties hold not only for linear systems, and

specifically for any nonlinear system,

ẋ(t) = f(x,u,w), (16)

there exists an upper bound on the estimation error that grows

independently of the state, if the system has the Lipschitz

property: Given lx > 0 and lw > 0 there exist Lx and Lw

such that

|f(x,u,w) − f(x̂,u, 0)| ≤ Lx|x − x̂| + Lw|w| (17)

∀|x| < lx,∀|x̂| < lx,∀|w| < lw. Note that for linear systems

the Lipschitz property holds globally - there exist Lx < ∞
and Lw < ∞ which work for lx = ∞ and lw = ∞. With

this property we have

∣

∣

e
−((k + 1)Ts)

∣

∣ ≤ Λ̄ |e(kTs)| + W̄kTs (18)

where Λ̄ = eTsLx , W̄t
.
=

∫ Ts

0
e(Ts−τ)LxLw |w(t + τ)| dτ ,

which can be further bounded using W̄t ≤ Γ̄‖w‖[t,t+Ts],

Γ̄
.
= ‖

∫ T

0
e(Ts−τ)LxLw‖.

Thus following the proof of Theorem 1 we can arrive at

the following theorem, which uses an (ǫ, δ) ISS (local-ISS)

definition [16, §4] because the Lipschitz property may not

hold globally:

Theorem 2: Consider a system (16) which has the Lip-

schitz property (17), and for which there exists a static

feedback with the ISS property (2). Assume lx and lw are

given. Then applying the same controller described above for

the linear system, with any choice of design parameters such

that (9) holds with Λ̄ in place of Λ, will make the closed-loop

system (ǫ,δ) ISS:

|x(t)| ≤ β̄cl (|x0| , t) + γ̄cl

(

‖w‖[0,t]

)

(19)

∀|x(0)| ≤ δ,∀‖w‖[0,t] ≤ ǫ. Here β̄cl, γ̄cl are defined as in

the proof of Theorem 1, with Γ̄, Λ̄ replacing Γ, Λ, and ǫ, δ
are any pair such that β̄cl(δ) + γ̄cl(ǫ) ≤ lx and ǫ ≤ lw.

VIII. CONCLUSION

In this paper we showed that it is possible to achieve input-

to-state stability even in the presence of a disturbance whose

bound is unknown, with as few as 3 quantization regions

per dimension. We also showed that we are able to approach

the minimum data rate needed to stabilize an unperturbed

system, without compromising the ISS property with respect

to a completely unknown disturbance. The quantizer we used

should be very easy to implement in practice.

Our future work is to extend this method to handle

also linear and nonlinear systems with output feedback and

delays.

APPENDIX

PROOF OF THEOREM 1

Because using a stabilizing state feedback gain, K, makes

the system (11) ISS with respect to the estimation error (and

the disturbance), all we need to show is that the described

controller makes the relation between the disturbance and

the estimation error ISS. The main result will then follow

as we have a cascade of two ISS systems. We present the

main key steps in proving the ISS property, but we omit

the proofs due to paper length limitations. Complete proofs

are contained in the full version of this paper which is

currently available (until a journal version will be published)
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in our website: http://decision.csl.uiuc.edu/

˜ysharon/cdc07_full.pdf.

Lemma 1: If the controller is in zoom-in/escape detection

mode at t = (k+1)Ts, and µk > 1
α

maxm∈{k−P,...,k} WmTs
,

where

Wt
.
=

∣

∣

∣

∣

∣

∫ Ts

0

exp (A(Ts − τ))Dw(t + τ)dτ

∣

∣

∣

∣

∣

then the controller does not switch to the zoom-out mode

and

‖e‖[(k−P )Ts,(k+1)Ts] ≤ Nµk−P+1. (20)

For the sequel we define Γ
.
= ‖

∫ Ts

0
exp (A(Ts − τ))D‖.

Lemma 2: Whenever the controller switches to the zoom-

out mode after being in the zoom-in/escape detection mode

at t = (k1 + 1) Ts, the controller will switch back to zoom-

in/measurement update mode before the norm of the estima-

tion error |e(t)| reaches δ̃
(

|w|[(k1−P )Ts,t]

)

, t > (k1 +1)Ts,

where δ̃ is a continuous, non decreasing and unbounded

function:

δ̃(ν)
.
= s · max

{

1,

(

η1ΓΩ2
outν

s

)

1
1−log(Λ)/log(Ωout)

/Ωout

}

.

Note that δ̃ is not a class K∞ function as δ̃(0) = s > 0.

Lemma 3: Let k1 be defined so that (k1 + 1) Ts is the first

switch to zoom-out from zoom-in/escape detection. After this

first switch, the norm of the estimation error is bounded as

‖e‖[(k1−P )Ts,∞) ≤ δ (‖w‖), where δ is a class K∞ function.

Lemma 4: Consider the first zoom-in sequence.

Define J1Ts to be the sampling time of the first

zoom-in/escape detection mode in that sequence for

which µJ1+P < 1
α
Γ ‖w‖[0,(J1+P )Ts]. If µJ0+P <

1
α
Γ ‖w‖[0,(J1+P )Ts] where J0Ts is the last sampling time in

the zoom-out sequence preceding the first zoom-in sequence,

then define J1 = J0. The following holds:

‖e‖[J1Ts,(k1−P )Ts) < δ
(

‖w‖[0,(J1+P )Ts]

)

(21)

Lemma 3 and Lemma 4 bound the estimation error for t ≥
J1Ts. The following two lemmas will bound the estimation

error for t < J1Ts. In the first lemma we consider the case

|e0| > (N − 2)µ0 for which the controller will not switch

to zoom-in immediately at t = 0. In the second lemma we

will consider the complementary case.

Lemma 5: If |e0| > (N − 2)µ0 then the estimation error

for all t ∈ [0, J1Ts] is bounded as

|e(t)| < β̃e (|e0| , t) + δ̃e

(

‖w‖[0,t]

)

(22)

where β̃e is a class KL function and δ̃e is a class K∞

function.

Lemma 6: If |e0| ≤ (N − 2)µ0 then the estimation error

for all t ∈ [0, J1Ts] is bounded as

|e(t)| < β̂e

(

|e0| +
1

Λ − 1
Γ ‖w‖[0,t] , t

)

(23)

where β̂e is a class KL function.

Combining Lemmas 3–6 we arrive at the following corol-

lary, which basically says that we have ISS from the distur-

bance, w, to the estimation error, e:

Corollary 1: For all t > 0 we have:

|e(t)| ≤ βe (|e0| , t) + δe

(

‖w‖[0,t]

)

(24)

where βe (|e0|, t)
.
= max

{

β̂e (2|e0|, t) , β̃e (|e0|, t)
}

and δe (ν)
.
= max

{

β̂e

(

2Γν
Λ−1 , 0

)

, δ̃e (ν) , δ (ν)
}

.

Proof of Theorem 1: Since K is a stabilizing state feedback

controller, for (11) we have (see [15, §4.9]):

|x(t)| ≤ β (|x0| , t) + γe

(

‖e‖[0,t]

)

+ γw (‖w‖) .

This together with (24) shows that the closed-loop system

can be regarded as a cascade connection of two ISS systems,

and thus we can use a variation of [11, Proposition 7.2] to

arrive at |x(t)| ≤ βcl (|x0| , t) + γcl (‖w‖).
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