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Input to State Stabilizing Controller for
Systems With Coarse Quantization
Yoav Sharon, Member, IEEE, and Daniel Liberzon, Senior Member, IEEE

Abstract—We consider the problem of achieving input-to-state
stability (ISS) with respect to external disturbances for control sys-
tems with quantized measurements. Quantizers considered in this
paper take finitely many values and have an adjustable “center”
and “zoom” parameters. Both the full state feedback and the output
feedback cases are considered. Similarly to previous techniques
from the literature, our proposed controller switches repeatedly
between “zooming out” and “zooming in.” However, here we use
two modes to implement the “zooming in” phases, which allows
us to attenuate an unknown disturbance while using the minimal
number of quantization regions. Our analysis is trajectory-based
and utilizes a cascade structure of the closed-loop hybrid system.
We further show that our method is robust to modeling errors
using a specially adapted small-gain theorem. The main results are
developed for linear systems, but we also discuss their extension to
nonlinear systems under appropriate assumptions.

Index Terms—Disturbances, input-to-state stability (ISS), quan-
tized systems, stability of hybrid systems.

I. INTRODUCTION

A QUANTIZER is a device that converts a real-valued
signal into a piecewise constant one taking a finite set

of values. In the context of feedback control systems, the
real-valued signal is either the measurable output of the system
or the control input. Quantization is generally a constraint
related to the implementation of the control system. Digital
sensors, digital controllers and data links with limited date rate
are typical in many implementations of control systems, and
they all induce some degree of quantization.

The study of the influence of quantization on the behavior
of feedback control systems can be traced back at least to [1].
In the literature on quantization, the quantized control system
is typically regarded as a perturbation of the ideal (unquan-
tized) one. Two principal phenomena account for changes in
the system’s behavior caused by quantization. The first one is
saturation: if the quantized signal is outside the range of the
quantizer, then the quantization error is large, and the system
may significantly deviate from the nominal behavior (e.g., be-
come unstable). The second one is deterioration of performance
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near the target point (e.g., the equilibrium to be stabilized): as
this point is approached, higher precision is required, and so
the presence of quantization errors again distorts the proper-
ties of the system. These effects can be precisely characterized
using the tools of system theory, specifically, Lyapunov func-
tions and perturbation analysis; see, e.g., [2]–[4] for results in
this direction. We refer to this line of work as the “perturbation
approach.” The more recent work [5], also falling into this cat-
egory, is particularly relevant because it reveals the importance
of input-to-state stability for characterizing the robustness of the
controller to quantization errors for general nonlinear systems.

An alternative point of view which this paper follows, pio-
neered by Delchamps [3], is to regard the quantizer as an in-
formation-processing device, i.e., to view the quantized signal
as providing a limited amount of information about the real
quantity of interest (system state, control input, etc.) which is
encoded using a finite alphabet. This “information approach”
seems especially suitable in modern applications such as net-
worked and embedded control systems. The main question then
becomes: how much information is really needed to achieve a
given control objective? In the context of stabilization of linear
systems, one can explicitly calculate the minimal information
transmission rate that will dominate the expansiveness of the un-
derlying system dynamics. Results in this direction are reported
in [4], [6]–[10] and in the papers cited in the next paragraph;
[11]–[14] provide extensions to nonlinear systems.

All the aforementioned works only addressed stability in the
absence of external disturbances. Several papers did address the
issue of external disturbances, differing mainly in the stability
property they aim to achieve and in their assumptions on the ex-
ternal disturbance. Papers [15], [16], and [17] designed a con-
troller which guarantees stability only for a disturbance whose
magnitude is lower than some known value. In the paper [18]
mean square stability in the stochastic setting is obtained by uti-
lizing statistical information about the disturbance (a bound on
its appropriate moment). The paper [19] designed a controller
with which it is possible to bound the plant’s state in proba-
bility. With the expense of one additional feedback bit, no fur-
ther information about the disturbance is required. Note that
these two latter papers use (and prove) stochastic stability no-
tions. All of these papers followed the information approach.
Deterministic stability for a completely unknown bounded dis-
turbance was initially shown in [20]. By generalizing the pertur-
bation approach of [4] and [5], the deterministic stability prop-
erty achieved in [20] is input-to-state stability (ISS) which, apart
from ensuring a bounded state response to every bounded dis-
turbance, also ensures asymptotic stability (convergence to the
origin) when the disturbance converges to zero. The approach of
[20] was also shown to produce stability in [14] (also [21]).
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In this paper we also address the problem of achieving ISS for
deterministic systems and completely unknown disturbances. In
contrast to [20], which followed the perturbation approach, our
first and main contribution here is that we do this following the
information approach. The main advantage of using the infor-
mation approach is that it requires fewer, possibly many fewer,
quantization regions, which also translates to lower data rate. As
a result, a better understanding is achieved of how much infor-
mation is required for ISS disturbance attenuation. In fact, when
all state variables are observed (quantized state feedback) we are
able to achieve a data rate which can be arbitrarily close to the
minimal data rate required for stabilization with no disturbance.
We stress that following the information approach and not the
perturbation approach necessitates significantly different design
and analysis tools than what is described in [20].

Our second contribution is that we also consider the case
where the state space is only partially measured, the situation
commonly referred to as output feedback. This is a significant
generalization of the approach described in [10], where only a
specific observer was given and no disturbances were consid-
ered. The papers [18], [19], and [13] do formulate a system
with output feedback, but it is assumed there that a state esti-
mate is generated before the quantization is applied ([13] does
not deal with disturbances). Here we generate the state estimate
from the quantized measurements. We argue that this setting is
much more reasonable when the quantization is due to physical
or practical constraints on the sensors (as opposed to just a data
rate constraint); refer to Remark 2 for more details. We empha-
size that our results are novel even for the state feedback case.

Our third contribution is establishing stability under mod-
eling errors where the system model is known only approxi-
mately, and may also vary over time. We show that under small
enough modeling errors the system remains ISS in a local prac-
tical sense. We prove this robustness result using a specially
adapted small-gain theorem.

The paper is organized as follows. In Section II-A we define
the system and the specific quantizer we use; in Section II-B
we define the desired stability property, an extension of the ISS
property; in Section III we present the proposed controller; in
Section IV we state and prove our main results; in Section V we
show that we can arbitrarily approach the minimum data-rate for
the unperturbed system; finally, in Section VI we show how our
results can be extended to nonlinear systems. We defer to part
A of the appendix the proofs of our technical lemmas. In part B
of the appendix we show that the small-gain theorem applies to
our modified ISS notion.

II. PROBLEM STATEMENT

A. System Definition

The linear continuous-time dynamical system we are to sta-
bilize is as follows :

(1)

where is the state, is an unknown initial
condition, is the control input, is an unknown

Fig. 1. Illustration of the quantizer for the 2-D output subspace, � � �. The
dashed lines define the boundaries of the quantization regions. The black dots
define the quantization values.

disturbance, assumed to be Lebesgue-measurable and locally
bounded, and is the measured output .

While is what the sensors measure, we assume that the in-
formation available to the controller is

, which is a sampled and quantized version of :

(2)

where is a quantization function and is the
time-sampling interval. The quantization parameters,

and ,
are generated by the controller. For convenience we use the
notation , and similarly for other variables, so
(2) becomes . We refer to the special
case where , the identity matrix, as the quantized state
feedback problem. We refer to the general case where is
arbitrary as the quantized output feedback problem.

We consider the following (square) quantizer. Assume , the
number of quantization regions per observed dimension, is an
odd number. The quantizer is denoted by

where each scalar component is defined as follows
(see Fig. 1 for an illustration):

otherwise.
(3)

We refer to as the center of the quantizer, and to as the
zoom factor. Note that what will actually be transferred from
the quantizer to the controller will be an index to one of the
quantization regions. The controller, which either generates the
values and or knows the rule by which they are generated,1

uses this information to convert the received index to the value
of as given in (3).

1The quantization parameters ��� and � can be available to the sensors (or the
sensor side of the communication link) depending on the source of quantization.
When the quantization is due to the limited bandwidth of the communication,
and there is sufficient computation capability on the sensor side of the commu-
nication link, the quantization parameters ��� and � may be generated simultane-
ously on both sides of the communication link. When the quantization is due
to the sensors, and the communication constraints between the controller and
the sensors can be neglected, these quantities can be generated by the controller
only and then sent to the sensors.
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Remark 1: Our results, except for those in Section V, apply
to a more general family of quantizers. For an arbitrary quan-
tizer, we denote by the (finite) set of possible values
of . A quantizer belongs to the family of quantizers to
which our results apply if there exist real numbers and

such that for all , and there exists a set
for which the following implications

hold with an arbitrary choice of norm:

The set is the set of quantization regions which
are bounded in the output space—no further assump-
tion is needed to bound the quantization error if the
quantizer transmits an index to a region belonging
to . It is easy to see that the square quantizer
above belongs to this family with

,
and when the -norm is considered.

Remark 2: In the literature on quantization there appear to
be two different methods of positioning the partial measure-
ment constraint (output feedback) in the feedback loop. One
approach, followed by [18], [19], and [13], assumes that while
not all the state variables are observed, those that are observed
are measured continuously. These continuous measurements are
fed into an observer that generates a state estimate. This state
estimate is sent through a communication link to the controller
(and thus has to be quantized). The second approach, followed
by [10] and this paper, assumes that the measurements of the ob-
served state variables are quantized, and from these quantized
measurements a state estimate needs to be generated. The reason
for having two approaches is the different possible sources of
quantization: Both approaches can handle the case when the
communication is the source of quantization; however, only the
second approach can handle the case when the sensors are the
source of quantization.

In this paper we use the -norm unless otherwise specified.
For vectors, . For continuous-time sig-
nals, , . For
discrete-time signals, ,

. For matrices we use the induced norm cor-
responding to the specified norm ( -norm if none specified).
For piecewise continuous signals we use the superscripts and

to denote the right and left continuous limits, respectively:
,

.

B. Desired Stability Property

The stability properties below are defined for a general
system whose state is and which is affected by an external
disturbance, . In the presence of a nonvanishing disturbance,
even without quantization we cannot achieve asymptotic sta-
bility. Therefore, we aim for a weaker stability property: that
the system be bounded and converge to a ball around the origin

whose size depends on the magnitude of the disturbance. Fur-
thermore, when the disturbance vanishes, we expect to recover
asymptotic stability. This desired behavior is encapsulated by
the (global) ISS property, originally defined in [22] as follows:

(4)

where is a function of class and is a function of class
2.

In our system, in addition to the original state variables, , the
closed-loop system contains other variables. Of these additional
variables, the zoom factor in particular does not exhibit an ISS
relation with respect to the disturbance. A discussion in [20,
Sec. III-B] explains why it is hard and probably impossible to
have both the original state and the zoom factor exhibit an ISS
relation with respect to the disturbance. Nevertheless, the value
of the zoom factor at an arbitrary initial time affects the ISS
relation between the disturbance and the state. Therefore, the
property that we achieve, referred to as parameterized input-to-
state stability, is defined as

(5)

where the functions and are of class and
class , respectively. We say that a function
is of class when, as a function of its first two arguments with
the third argument fixed, it is of class , and it is a continuous
function of its third argument when the first two arguments are
fixed. We say that a function is of class
when as a function of its first argument with the second argu-
ment fixed, it is of class , and it is a continuous function of
its second argument when the first argument is fixed. If (5) only
holds locally, i.e., there exist and with
which (5) holds for all and all , then
we say that the system has local parameterized input-to-state
stability.

In the case of modeling errors, even this cannot in general
be achieved. Namely, we cannot achieve a global result, only a
local one; furthermore, even with no external disturbance, the
system is only practically stable, not asymptotically stable. The
weaker result we do achieve in the case of modeling error is
local practical input-to-state stability: There exist ,
and such that if where is a
measure of the modeling errors, then

(6)

In (6) is a function of class , and and are functions of
class . This property is along the lines of the input-to-state
practical stability (ISpS) [23]. The absence of the dependence
on in (6) is due to the local nature of this stability property.

2A function � � ������ ����� is said to be of class � if it is continuous,
strictly increasing, and ���� � �. A function � � ����� � ����� is said to
be of class� if it is of class� and also unbounded. A function � � ������
������ ����� is said to be of class�� if ���� �� is of class� for each fixed
� � � and ���� �� decreases to 0 as � �� for each fixed � � �.
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Fig. 2. Flow chart of the different modes of operations.

III. CONTROLLER DESIGN

A. Overview of the Controller Design

Our controller switches between three different modes of op-
eration. The motivation for each of these modes is given in this
subsection, with a flow chart appearing in Fig. 2.

Our quantizer consists of quantization regions of finite size,
for which the quantization error, , can be bounded,
and regions of infinite size, where the quantization error is un-
bounded. We refer to these regions as bounded and unbounded
quantization regions, respectively. Only a subset of finite size of
the infinite-size output space can be covered by the bounded
quantization regions. However, the size of this subset, referred
to as the unsaturated region, can be adjusted dynamically by
changing the parameters of the quantizer. Our controller follows
the general framework that was introduced in [4] and [5] to sta-
bilize the system from an unknown initial condition using dy-
namic quantization. In [20] this approach was developed further
to achieve disturbance attenuation. This framework consists of
two main modes of operation, generally referred to as zoom-in
and zoom-out modes. During the zoom-out mode, the unsatu-
rated region is enlarged until the measured output is captured in
this region and a state estimate with a bounded estimation error
can be established. This is followed by a switch to the zoom-in
mode. During the zoom-in mode, the size of the quantization
regions is reduced in order to achieve convergence of the es-
timation error. This reduction also reduces the size of the un-
saturated region, and eventually the disturbance may drive the
measured output outside this region. To regain a new state es-
timate with a bounded estimation error, the controller switches
back to the zoom-out mode. By switching repeatedly between
these two modes, an ISS relation can be established. We use the
name capture mode for the zoom-out mode.

To achieve the minimum data-rate, however, we are required
to use the unbounded regions not only to detect saturation, but
also to reduce the estimation error. We accomplish this dual use
by dividing the zoom-in mode into two modes: a measurement-
update mode and an escape-detection mode. After receiving

successive measurements in bounded quantization regions,
where is the observability index of the pair , we are
able to define a region in the state space which must contain
the state if there were no disturbance. We enlarge this region
proportionally to its current size to accommodate some distur-
bance. In the measurement-update mode we cover this contain-

ment region using both the bounded and the unbounded regions
of the quantizer. This allows us to use the smallest quantization
regions, leading to the fastest reduction in the estimation error.
However, we cannot detect a strong disturbance in this mode.
Therefore, in the escape-detection mode we use larger quanti-
zation regions to cover the containment region using only the
bounded regions. If a strong disturbance does come in, we can
detect it as the quantized output measurement will correspond
to one of the unbounded regions.

B. Preliminaries

In this section we assume that is fixed and
known. Extension to varying, unknown will be discussed in
Section IV-C. We define the sampled-time versions of , and

as

With these definitions we can write

(7)

We assume that is a controllable pair, so there exists
a matrix such that is Hurwitz. By construction
is full rank, and in general (unless belongs to some set of
measure zero) the observability of the pair implies that

is an observable pair (see [24, Prop. 6.2.11]). Thus with
, the observability index, the matrix

... ...
(8)

has full column rank. For state feedback systems and
is the identity matrix.

C. Controller Architecture

Our controller consists of three elements: an observer which
generates a state estimate (with the notation );
a switching logic which updates the parameters for the quantizer
and sends update commands to the observer; and a stabilizing
control law which computes the control input based on the state
estimate. For simplicity of presentation, we assume the stabi-
lizing control law consists of a static nominal state feedback

(9)

However, any control law that renders the closed-loop system
ISS with respect to the disturbance and the state estimation error
will work with our controller.

Given an update command from the switching logic, the ob-
server generates an estimate of the state based on current and
previous quantized measurements. We require the state estimate
to be exact in the absence of measurement error and disturbance,
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and to be a linear function of the measurements. For concrete-
ness, we use the following state estimate from [10] which is
based on the pseudo-inverse:

...

(10)

In [25] we presented additional approaches to generate a state
estimate that satisfy the above requirements, and compared their
properties. Note that we must have at least successive mea-
surements to generate a state estimate. Therefore, (10) is de-
fined only for . In the special case of state feedback,
on which we will comment further as we present our results, the
state estimate is generated simply as . Between update
commands the observer continuously updates the state estimate
based on the nominal system dynamics:

(11)

D. Switching Logic

The switching logic keeps and updates a discrete time step
variable, , whose value corresponds to the current sam-
pling time of the continuous system—at each sampling time,
the switching logic updates where is the dis-
crete time step. At each discrete time step, the switching logic
operates in one of three modes: capture, measurement update
or escape detection. The current mode is stored in the vari-
able . The switching
logic also uses and as
auxiliary variables.

We assume the control system is activated at .
We initialize , , , and

, where can be any positive constant and is regarded
as a design parameter. We also have the following design pa-
rameters: , such that , and

such that . The parameter corresponds to
the proportional expansion of the zoom factor, , at each sam-
pling time. This proportional expansion prevents the state from
leaving the unsaturated region when the disturbance is small
relative to the current value of . Increasing , subject to con-
straint (16) below, improves the stability to the disturbance at the
expense of lowering the convergence rate. The parameter
corresponds to the expansion rate of the zoom factor during the
zoom-out phase. The parameter corresponds to the number of
sampling times between each initiation of an escape-detection
sequence during the zoom-in phase. Increasing improves the
convergence rate and allows for the use of fewer quantization
regions. However, increasing also prolongs the time it takes
to detect that the state had left the unsaturated region due to a
large disturbance, and therefore the stability to disturbances is
negatively affected. We also define

(12)

which in the case of state feedback reduces to
.

At each discrete time step, , the switching logic is imple-
mented by sequentially executing the following algorithms (we
use the notation to denote the th element of the vector

):

Algorithm 1 preliminaries

if

set

else if

set

(13)

else if

set

(14)

end if

have the observer record

if such that then

set

else

set

end if

initialize

Algorithm 2 capture mode

if

if then

set

else

set

if then

set

have the observer update the state estimate:

set

end if

end if

end if
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Algorithm 3 measurement update mode

if

set

have the observer update the state estimate:

if then

set

end if

end if

Algorithm 4 escape detection mode

if

if not then

set

have the observer update the state estimate:

if then

set

set

end if

else

set and

set

end if

end if

IV. MAIN RESULTS

A. Convergence Property

We define the following convergence property. It implies
that in an infinite sequence in which the switching logic is
never in the capture mode (a result of having no disturbance),

. Set as

(15)

If there exists for which the following holds:

(16)

then we say that the controller has the convergence property.
Whether the controller has the convergence property depends

on the choice of the design parameters and . The following

Lemma (proved in Appendix) gives a sufficient and easy to
verify condition for the existence of design parameters with
which the controller will have the convergence property.

Lemma 1: If the following condition holds:

(17)

then it is possible to choose and such that the controller will
possess the convergence property.

In the state feedback case we do not need an ob-
server as the updates of the state estimate become simply

. In this case (17) becomes
.

B. Results for When the System Model is Known

The state estimation error is defined as

(18)

In the simpler case where , the evolution of the state esti-
mation error is independent of the state. This property is critical
in proving the following proposition, which is the main tech-
nical step for deriving the desired stability results.

Proposition 2: If we implement the controller with the above
algorithm and that controller has the convergence property, then
the state estimation error of the closed-loop satisfies the param-
eterized-ISS property, (5), with .

The aggregate state of the system is . However,
due to the analysis that follows it will be easier to state the re-
sults for the state , which relates to the former by a
simple transformation of coordinates. Our first stability result is
the following:

Theorem 1: If we implement the controller with the above al-
gorithm and that controller has the convergence property, then
the aggregate state of the closed-loop system satisfies the pa-
rameterized-ISS property, (5), with .

In Theorem 1 the second inequality of (5) can actually be
written as . We also remark that

when considering , where and is a
design parameter, Theorem 1 gives us the existence of functions

and , such that

(19)

Following is an outline of the proof. We divide the trajectory
of the estimation error into three repeating phases. In the first
phase the system is in capture mode, and we show using Lemma
6 that in finite time the estimation error will be captured and the
system will switch to the second phase. In both the second and
third phases the system switches repeatedly between the mea-
surement update and escape detections modes. However, in the
second phase the zoom factor, , is sufficiently large compared
to the disturbance so that the system is guaranteed, by Lemma 4,
not to switch to the capture mode. In the third phase the zoom
factor is small compared to the disturbance and this guarantee
is lost, but by Lemma 5 we can still bound the trajectory during
that phase. In Lemma 3 we prove that the zoom factor keeps
contracting during these last two phases. Lemma 7 addresses
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Fig. 3. Simulation of the proposed controller. Simulated here is a 2-D dynam-
ical system: ������� � �������� �� ���	������ 
 ��� �	������ 
 ��� �� �� �	������,
where only the first dimension is observed, ������ � ��� �	������, through a quan-
tizer with � � �. The solid line in the left plot is the trajectory of the system
(starting at ��� ��� � ��� �	). The dotted line in that plot is the state estimate.
The dash-dotted lines represent the jumps in the state estimate after a new mea-
surement is received. The locations of the trajectory and the state estimate at
the first few sampling times are marked by �. The underlined time indications
correspond to the state estimate. The two plots on the right show time segments
of the measured output �	 � �
�. The solid line is the unquantized output �����
of the system and the dotted line is its estimate. The vertical dash-dotted lines
depict the single bounded quantization region. The controller is in the capture
mode where these vertical lines are bounded by arrows facing outward, in the
update mode where the arrows are facing inward, and in the detect mode where
the vertical lines are bounded by small horizontal lines. Looking at both the left
plot and the top right plot, one can observe the initial transient of the system: At
� � � a sufficient number (two) of unsaturated measurements were collected
and the controller switches to the update mode; this causes the state estimate to
jump at � � � from the origin to � ����
� ���	; and at � � � the state esti-
mate jumps even closer to the true state. Looking at the bottom right plot, one
can observe the steady-state behavior of the simulation, where an escape of the
trajectory due to a disturbance is detected at � � ���
, and then the trajectory
is recaptured at � � ���
. The design parameters were: � � 
, � ��� � ����,
� � �, 
 � ����, 
 � ����, � � ���
�����	. The disturbance followed
the zero-mean normal distribution with standard deviation of 0.2.

the case of small disturbance when the trajectory goes into the
second phase after only sampling times from when the system
last switched to the capture mode. That lemma bounds the tra-
jectory during both the first and second phases, and states that
this bound goes to zero as the disturbance and the initial condi-
tion go to zero. The three phases discussed here are defined in
the proof below using , and where is the beginning
of the second phase, the beginning of the third phase, and
the beginning of a new first phase.

An illustrative simulation of the proposed controller is given
in Fig. 3.

The proofs of Proposition 2 and Theorem 1 will follow the
statements of the technical lemmas below. The proofs of the
technical lemmas are deferred to Appendix A.

Lemma 3: Assume that for some time step we have
and (i.e., a measurement up-

date sequence starts at ). If ,
(i.e., by time step the

controller has not switched to the capture mode) then
.

Lemma 4: There exist constants and with
the following properties: If for some time step we have

and , and the input is such that

(20)

then ,
,

, and

(21)

Lemma 5: Assume that for some time step we
have and . Let

.
There exists a constant such that if the disturbance does
not satisfy (20), then

Lemma 6: There exist functions
and , each nondecreasing in
when is fixed, and constants and , with
the following properties: For any time step such that

there exists such that
,

, ,

and ; the functions and

satisfy , .
Lemma 7: There exist a constant , a class function ,

and functions and
with the following properties: For any time step such

that , where was defined
in Lemma 6, then
satisfies ,

where was defined as part of
the convergence property, and

; when is fixed the function is of class ; the func-
tions and satisfy , .

Proof of Proposition 2: Assume that for some
. We say that an arbitrary sampling time has the SS proper-

ties if , and (20) does not hold
with . The proof proceeds in four steps: in the first step
we derive a bound on the trajectory from to ; in the second
step we derive a bound on the trajectory from to infinity; in
the third step we combine these two bounds and derive the ISS
bound on the estimation error; in the fourth step we derive the
bound on the zoom factor.

1) Step 1: Assume first that . Let be
the first time step after with the SS properties. If such a time
step does not exist, define . By Lemma 6 there exists

such that
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. With Lemmas 6, 3 and 4, we also

have that if then
. As Lemma 6

also states that , we
can derive

where

(22)

If then there is a time step ,
, such that and . If in

addition (20) does not hold with , then we define
, and thus we have, vacuously, .

If (20) does hold with , then with defined as the first
time step after with the SS properties, we can write:

. Taking into con-
sideration that only if , we get

where

.
(23)

Assume now that where
comes from Lemma 7 and set to be the first

time step after with the SS properties. Then there
exists such
that . With
Lemmas 7, 3, and 4, we also have that if then

. As
Lemma 7 also gives us that

, we derive :
where

(24)
For fixed and , both and

. Also, for fixed and , both
and are continuous and nonde-

creasing with respect to . However, only satisfies
, , and is a valid bound on the

trajectory only when . Nev-
ertheless, it is possible to construct a class function,

, such that when
and otherwise. With we
can write

.
Note that all the functions mentioned above are contin-

uous in and , and . They are
not, however, all continuous (or even defined) at
since for every . Neverthe-
less, is continuous at . This is due to

being of class , which implies that for sufficiently small ,
.

2) Step 2: Let be the first time step after such that
and . Set

if such a time step does not exist. Lemma 5 gives us that
. Let be the first time step after

such that , and (20) does not
hold with . Replacing with in the previous step,
we can write

Since also satisfies the SS properties as does , we can
repeat these arguments for future time steps and arrive at

, where .
Note that is of class .

3) Step 3: Combining the last two steps, we can derive the
first condition for the parametrized ISS property at the discrete
times: for all

where and
. Note that indeed and are of class

and , respectively. The extension from the discrete
analysis to continuous time, with the estimation error defined
as for every , can be proved along
the lines of [26, Theorem 6]. This proves the first line of (5).

4) Step 4: To construct the bound on we consider the
three phases of the trajectory: initial capture sequence, zoom-in
sequences and subsequent capture sequences. If

we start with and we grow the zoom factor until
for successive time steps we have . Thus at
the initial capture sequence we have

(25)

At a zoom-in sequence we may initially enlarge by a factor
of with defined according to (15). However, after this
possible initial enlargement, is decreased by a factor of
every steps. At subsequent capture sequences we start with

and enlarge it again until for successive time steps we
have . Therefore, we can set from (5) as

Proof of Theorem 1: With being Hurwitz, the
stabilizing control law, , renders the closed-loop system

(26)

ISS with respect to the disturbance and the estimation error.
Combining this ISS property with the parameterized-ISS prop-
erty proved in Proposition 2, and applying a cascade argument
similar to what was used to prove [22, Proposition 7.2], we can
conclude that the closed-loop system is parameterized-ISS with
respect to the disturbance.
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C. Modeling Errors

We represent modeling errors as with
only known and . It is assumed, though, that

for some and . To deal
with such modeling errors the only change needed in the design
is in the stabilizing control law, where will be chosen such
there exist two positive definite symmetric matrices, and ,
for which the following holds:

(27)

It is well-known and easy to show using a Lyapunov argument
that if (27) holds then the system (26) has the ISS stability prop-
erty with respect to the estimation error and disturbance

(28)

where is of class and and are of class .
Such a stabilizing gain matrix can be found by using linear
matrix inequality (LMI) techniques [27, Sec. 7.2].

With this stabilizing control law, we derive our second sta-
bility result:

Theorem 2: Assume the controller has the convergence prop-
erty and the stabilizing control law is chosen so that (27) holds
for some . Then the aggregate state of the closed-loop
system satisfies the local practical ISS property (6) with

for some , and .
Proof (Sketch): The dynamics of the estimation error be-

tween sampling times is now

(29)

Therefore its evolution is no longer independent of the state of
the system. The proposed controller in this case will render the
estimation error parameterized-ISS with respect to both the dis-
turbance and the system’s state

Due to the interleaved dependency of and on each other
we can no longer apply the cascade theorem. However, since
which follows (1) is continuous, we can now apply a variation of
the small-gain theorem, Theorem 4 which is given Appendix B,
and arrive at the result stated in the theorem.

Note that for every fixed , grows faster than any
linear function of both at and at . These
super-linear gains are not an artifact of our design. In [28] it
was shown, using techniques from information theory, that it is
impossible to achieve ISS with linear gain for any linear system
with finite data rate feedback.

V. APPROACHING THE MINIMAL DATA RATE

Several papers [8], [15], [16], [18], [19] present the same
lower bound on the data rate necessary to stabilize a given
system. This bound, in terms of the bit-rate to be trans-
mitted, is

(30)

where the ’s are the eigenvalues of the discrete open-loop ma-
trix . Note that (30) was derived as a neces-
sary bound for asymptotic stability in the disturbance-free case.
Therefore it is necessary for achieving disturbance rejection in
the ISS sense, which reduces to asymptotic stability when the
disturbance is zero. The following discussion shows that any
data rate that satisfies (30) is sufficient for achieving ISS using
our approach.

The main steps for achieving the minimum data rate are: 1)
using a different at each sampling time; 2) selecting large
enough, so that the effect of the reduced resolution during the
escape detection mode compared to the measurement update
mode becomes negligible; and 3) applying the quantization sep-
arately for each unstable mode of the system.

From Lemma 1 we have that one can choose to be the
smallest integer such that . Note that throughout our
algorithm and proofs there is no requirement that be the same
at every sampling time, as long as the convergence property is
satisfied. With a different at every sampling time, denoted
by , and restricting to the state feedback case, Lemma 1 can
be rephrased with the following condition replacing (17): There
exists such that for all , . We can
therefore choose any , where is the geometric
average of the ’s, and still be able to satisfy the convergence
property.

For unstable scalar systems where ,
, and we can then choose any average bit rate

. For multidimensional sys-
tems, when is diagonalizable with real eigenvalues, we can
apply a 1-D quantizer on each unstable mode of the system with
a number of quantization regions corresponding to the growth
rate of that mode. For pairs of conjugate complex eigenvalues,

and , we can apply a rotating 2-D square quantizer
whose rate of rotation is and its number of quantization re-
gions per dimension corresponds to a growth rate of . This,
as well as extension to nondiagonalizable systems, is explained
in details in [16].

VI. EXTENSION TO NONLINEAR SYSTEMS

The crucial properties of linear systems which are used in the
proof of Theorem 1 are: a) that the continuous, unquantized,
closed-loop system is ISS with respect to the estimation error
and the disturbance and b) that the update law for the estimated
state between the sampling times (11) is such that the estimation
error grows between these sampling times according to

(31)
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where , and are known constants. For
linear systems these constants are ,

and

, which follows easily
from (7). If (31) holds globally, (as in the case
where the exact system model is known), and the number
of quantization regions allows the controller to satisfy the
convergence property, then the aggregate state of quantized
system satisfies the parameterized ISS property.

Neither property is unique to linear systems and both can also
be formulated for nonlinear systems. This leads to a better con-
ceptualization of our results. Consider a nonlinear system

(32)

with (state feedback). State feedback control laws
that render unquantized systems ISS with respect to either ex-
ternal disturbances or measurement errors have been proposed
for certain nonlinear systems; see for example the discussions in
[5] and [14] and the references therein. Designing state feedback
control laws that render unquantized systems ISS with respect to
both external disturbances and measurement errors is still con-
sidered an open problem. The two closest results, for systems in
strict feedback form, appear in [29, Sec. 6.2.2] and [30].

Assume that (32) satisfies the Lipschitz property:

(33)

for some , , and . When the
Lipschitz property holds globally, as in linear systems,

. Assuming the exact system model is known, if we
update our state estimate between sampling times according to

, then (31) holds with

(34)

To make the convergence property applicable to state feed-
back nonlinear systems, the only change needed is to redefine

(35)

A sufficient condition for the controller to have the convergence
property remains .

The above discussion leads to our third stability result:
Theorem 3: Consider a state feedback nonlinear system:

(36)

where has the Lipschitz property (33), and for which there
exists a static feedback which renders the dynamics

ISS with respect to and . If
then there exists a choice of and with which

the controller has the convergence property with de-
fined in (35). With this choice of and and a choice of

and , the aggregate state of the system will
satisfy the parameterized ISS property if it can be guaranteed

that and . This indeed can be guaranteed for
and such that

(37)

where and come from (19). Therefore the aggregate state
satisfies the local parameterized ISS property. If the Lipschitz
property holds globally, then the aggregate state satisfies the pa-
rameterized ISS property.

A natural question would be what is the necessary number of
quantizations regions needed to achieve ISS for a given bound
on and . Unfortunately, the theorem does not give
a direct answer to this question. Nevertheless, we can say the
following: Given , , , and such that
(33) holds, and , if

holds, where , and are the ISS gains of the state
feedback control law, then there exist appropriate design param-
eters , , , and with which the closed-loop system
will have the local parameterized ISS property. In this way we
can reach a semi-global result very similar to the one recently
proved in [31], although that paper follows a somewhat different
approach and also allows modeling errors and measurement dis-
turbances.

The proof of Theorem 3 follows the same lines as the proof of
Theorem 1 and it is therefore omitted. See also [11] for a similar
result but without disturbances.

VII. CONCLUSIONS

In this paper we showed how to achieve input-to-state sta-
bility with respect to external disturbances using measurements
from a dynamic quantizer. We showed that our technique is ap-
plicable to output feedback, is robust to modeling errors, and
can work with data rates arbitrarily close to the minimum data
rate for unperturbed systems. We also showed that our technique
can be extended to nonlinear systems.

The following are some problems which were raised by this
work, and should be addressed in future research. In the state
feedback case, we show what is the necessary and sufficient
number of quantization regions required for Input-to-State Sta-
bility. In the output feedback case, however, we can only show
that a given number of quantization regions is sufficient based on
which observer is implemented. It is possible that using another
observer a smaller number of quantization regions will be suf-
ficient. This raises the question of what is the optimal observer.
When addressing this question one usually needs to consider
also the computational resources that are available for the ob-
server.

In the recent paper [32], the method presented here was ex-
tended to systems with (possibly time varying) delays in addi-
tion to state quantization. Although external disturbances were
not considered, we did rely on the ISS property established here
after we showed that error signals which arise due to delays can
be regarded as external disturbances.
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Our analysis only considers the worst-case scenario, defined
by the bound on the magnitude of the actual disturbance. In
many applications the disturbance can be modeled to follow a
certain distribution which rarely produces the worst-case dis-
turbance. By utilizing the knowledge of the underlying distri-
bution, it might be possible to get a more accurate description
of the behavior of the system. It should also be possible in this
case to provide better tools for choosing the design parameters
under different performance requirements.

APPENDIX A
PROOFS OF THE TECHNICAL LEMMAS

Proof of Lemma 1: Assume satisfies and
for simplicity assume also that is a multiple of . Then for all

:

Because we have that converges to
as . We also have

Since we can make arbitrarily small by taking
to be large enough and to be small enough, we can make

, which satisfies the convergence property.

We will use the following definition in the proofs below:

...
...

. . .
...

Proof of Lemma 3: Set . Between
time steps and , is updated according to (13) or
(14). Note that depends linearly, with positive coeffi-
cients, on . Therefore, it is easy to see by induc-
tion from to that .
As we have that condition (16) holds, the result of the lemma
follows.

Proof of Lemma 4: The settings
and imply that for we had

and either or
. The structure of our quantizer is such that

if for some , then where
denotes the quantization error. The observations

can be written as

(38)

Since the state estimate (10) was chosen so that in
the absence of measurement errors and disturbances, we get to-
gether with (38) that

...
... (39)

When taking the next measurement at time step , the dis-
tance between the real output, , and the center of the quan-
tizer is

(40)

Given that (20) holds with

we have from (13) that

(41)

The structure of our quantizer guarantees in this case that
. We can now repeat these arguments and show

that (39)–(41) holds for all .
At time steps the controller will switch to

, and we will have for
that . This guaran-

tees that both and ,
thus . Again, we can repeat these
arguments for with the exception that
for the controller will set .

Based on (39) we can bound the estimation error for
as

where

Note that in the definition of we used the constants ’s de-
fined in (15).

Proof of Lemma 5: If (20) does not hold, then it will not
necessarily be true that ,

. However, since now we have that
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(42)

we can still bound the estimation error as follows. For
we have

Iterating these two inequalities and combining with (42) we get
where

Proof of Lemma 6: Let be the first time step after
such that (let if no such time
step exists). We now have that for all

(43)

where . Now, the zoom factor grows as
. Define

and note that when is fixed, is a nonde-
creasing function. Assuming

, we will
have

Thus as well as
for

which guarantees that where is the
first time step after such that and

. Using (43) we can bound the estimation error until
the controller switches to the measurement update mode at
by

Note also that

where .
Proof of Lemma 7: Assume first that

and consider the case . Following
the same arguments as in Lemma 6 which led to (43), we can
write for :

This implies that if , then at a sampling
time not later than the controller will switch to the mea-
surement update mode. If for some time step the following
holds

(44)

then the output from the quantizer will be such that
. If for some time step (44) is

true , and is updated with
, then we will have . This implies that

. In turn, this means that as long as (44)
holds , even if ,
then so does (43) .

We now define the quantities shown at the bottom of the
page. Note that in the definition of we use the ’s defined in
(15) and we assume without loss of generality that . As-
sume also that is sufficiently small such that

. We defined and such
that we will have for all

(45)

and
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(46)

In deriving the first inequality in (46) we used (43) to bound the
estimation error—even though it is not true that

, we can still use (43) since (45) and (46)
imply that (44) holds. The proof is completed by setting

(47)

and letting be any class function such that
and . Note

that the function is a class function for
each fixed , and that

.

APPENDIX B
SMALL-GAIN THEOREM FOR LOCAL

PRACTICAL PARAMETERIZED ISS

The following is a modification of the small-gain theorem
[23, Th. 2.1]. It states that the interconnection of an ISS system
and a parameterized ISS system, under a small-gain condition,
results in a local practical ISS system. The modification is due to
the additional third signal , that does not have an ISS relation
with respect to the disturbance, and due to the fact that the small-
gain condition only holds locally. We believe the results of this
appendix have independent interest beyond the scope of proving
Theorem 2. Indeed, they had already been used (in a different
context) in [32].

Theorem 4: Consider two systems whose state variables,
and , satisfy the ISS and the parameterized ISS properties,

respectively:

(48)

Assume the first trajectory, , is continuous. Then the inter-
connected system will satisfy the local practical input-to-state
stability property: such that

, , ,

(49)
for all where is of class and and are of
class .

The proof of Theorem 4 will come after the following inter-
mediate results.

Lemma 8: Assume for some a signal satisfies

(50)

(51)

(any discontinuity in the signal results in a decrease of the norm
of the signal). Assume further that for some ,

(52)

and

(53)

Then given that , we have

Note that in particular every continuous signal satisfies (51).
This lemma is stated more generally than what is needed to
prove Theorem 4. In the proof of Theorem 4 it is applied on the
state which is assumed to be continuous. When Theorem 4
is used to prove Theorem 2, corresponds to the state of the
system, which is indeed continuous. The state , on the other
hand, corresponds to the estimation error which may be discon-
tinuous at sampling times. We note that in the state feedback
case the estimation error does satisfy (51) due to the construc-
tion of our quantizer, and so we could have applied Lemma 8
on instead of on . This observation will be useful when
considering other extensions such as delays [32].

Proof of Lemma 8: Assume on the contrary that
there exists such that . Choose

so that

is well-defined. By definition of
, and from and (51),

and . Thus .
From (50) and (52) we can now write ,
and conclude using (53) that . This contradicts

.
A corollary of the small-gain theorem [23, Th. 2.1] gives us

the following local result.
Lemma 9: Given , , , , and

, there exists and , , , such that
for every which satisfy the small-gain condition

the following property holds. For every three signals , ,
satisfying

for some , and , , if it can be guaran-
teed that , then :
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Proof of Theorem 4: Choose arbitrary ,
, such that ,

and consider the following small-gain condition:

(54)
For every fixed , and are of class . Thus for
every and every there exists a small
enough but strictly positive for which the small-gain
condition holds. Set

.
Since in (54) is strictly smaller than 1, there exist

and such that

(55)
For all nondecreasing functions and all , and

, we have .
Using this and (55) we can derive ,

Define

By the choice of , it is always possible to find ,
, such that

(56)

Given that (56) holds, we can use Lemma 8 to get
. Using (48) we can also derive the bound

And with this, we can write

for all . Note that for every fixed the
function is a function of class and the functions

and are of class . They are also all contin-
uous in . Thus taking the maximum of these functions over
is well defined and does not change their characteris-
tics. Note that we can actually satisfy the following small-gain
condition :

where . Lemma 9 now gives us (49).
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