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Preface

This book grew out of my lecture notes for a graduate course on optimal control theory which
I taught at the University of Illinois at Urbana-Champaign during the period from 2005 to 2010.
While preparing the lectures, I have accumulated an entire shelf of textbooks on calculus of variations
and optimal control systems. Although some of them are excellent, navigating and combining the
material from so many sources was a daunting task, and I was unable to find a single text with all
the features that I wanted:

Appropriate presentation level. I needed a friendly introductory text accessible to graduate
students who have not had extensive training in control theory or mathematical analysis; a text
that is rigorous and builds a solid understanding of the subject without getting bogged down in
technicalities.

Logical and notational consistency among topics. There are intimate connections between
the classical calculus of variations, the maximum principle, and the Hamilton-Jacobi-Bellman theory,
which I wanted to emphasize throughout the course. Due to differences in notation and presentation
style in the existing sources, it is very difficult for students (and even for instructors) to piece this
material together.

Proof of the maximum principle. The maximum principle is a centerpiece of optimal control
theory which also elucidates and puts in perspective earlier developments in calculus of variations,
and I felt it was important to cover its proof. This is a challenging task because a complete proof
is rather long and, without adequate preparation and guidance, the effort required to understand it
can seem prohibitive to most students.

Historical perspective. A course on optimal control gives students a unique chance to get
exposed to the work of some of the greatest mathematical minds and trace the beautiful historical
development of the subject, from early calculus of variations results to modern optimal control theory.
A good text, while of course focusing on the mathematical developments, should also give students
a sense of the history behind them.1

Manageable size. It is very useful to have a text compact enough so that all of the material in it
can be covered in one semester, since very few students will take more than one course specifically
on this subject.

The present book is an attempt to meet all of the above challenges (inevitably, with varying
degrees of success). The comment about proving the maximum principle in class deserves some
elaboration. I believe that to build the understanding necessary to correctly and effectively use the

1In Tom Stoppard’s famous play “Arcadia” there is an interesting argument between a mathematician and a historian
about what is more important: scientific progress or the personalities behind it. In a technical book such as this one,
the emphasis is clear, but some flavor of the history can enrich one’s understanding and appreciation of the subject.
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maximum principle, it is very helpful—if not essential—to master its proof. In my experience, the
proof given in this book is not too difficult for students to follow. This has to do not just with
the clarity and structure of the proof itself, but also with the fact that special attention is paid to
preparing students for this proof earlier on in the course (as well as helping them digest it through
subsequent discussions). On the other hand, due to the central role that the proof of the maximum
principle plays in this book, instructors not planning to cover this proof in class will not fully benefit
from adopting this text.

While some prior exposure to control theory, mathematical analysis, and optimization is certainly
helpful, this book is sufficiently self-contained so that any motivated graduate student specializing
in a technical subject (such as engineering or mathematics) should be able to follow it. Depending
on the student’s background, some supplementary reading may be necessary from time to time; the
notes and references located at the end of each chapter should facilitate this process.

Chapters 1–6 form the main part of the book and can serve as the basis for a one-semester
course. Depending on the pace, the instructor may also have time for some or all of the advanced
topics discussed in Chapter 7. I included only topics that in my opinion directly extend and enhance
the understanding of the core material. The instructor may give preference to some other areas
instead, such as the important issue of state constraints in optimal control, the classical subject of
stochastic optimal control and estimation, the very popular model predictive control, or the numerous
applications of optimal control theory. Fortunately, good references covering these topics are readily
available. It is also possible that the instructor will want to further elaborate on some aspects of the
theory presented in Chapters 1–6; in this regard, the end-of-chapter notes and references may be a
useful resource.

About 60 exercises are interspersed throughout the first six chapters and represent an integral
part of the book. My intention is for students to start working on each exercise as soon as the
corresponding material is covered. A solutions manual is available upon request for instructors.

I am grateful to my colleagues Tamer Başar, Yi Ma, and Bill Perkins who shared their valu-
able experiences and lecture notes from their offerings of the optimal control course at UIUC. I am
also indebted to students and friends who suffered through earlier drafts of this book and provided
numerous corrections and suggestions, along with stimulating discussions and much-needed encour-
agement; I would like to especially thank Sairaj Dhople, Michael Margaliot, Nathan Shemonski,
Hyungbo Shim, Guosong Yang, and Jingjin Yu. I appreciated the helpful and thoughtful comments
of the reviewers and the support and professionalism of Vickie Kearn and other editorial staff at
Princeton University Press. On the artistic side, I thank Polina Ben-Sira for the very cool cover
drawing, and my wife Olga not only for moral support but also for substantial help with all the
figures inside the book. Finally, I am thankful to my daughter Ada who told me that I should write
the book and gave me a toy tangerine which helped in the process, as well as to my little son Eduard
whose arrival definitely boosted my efforts to finish the book.

I decided not to eliminate all errors from the book, and instead left several of them on purpose
in undisclosed locations as a way to provide additional educational experience. To report success
stories of correcting errors, please contact me at my current email address (which is easy to find on
the web).

Daniel Liberzon

Champaign–Chicago–Paris



Chapter 1

Introduction

1.1 Optimal control problem

We begin by describing, very informally and in general terms, the class of optimal control problems
that we want to eventually be able to solve. The goal of this brief motivational discussion is to fix
the basic concepts and terminology without worrying about technical details.

The first basic ingredient of an optimal control problem is a control system. It generates possible
behaviors. In this book, control systems will be described by ordinary differential equations (ODEs)
of the form

ẋ = f(t, x, u), x(t0) = x0 (1.1)

where x is the state taking values in R
n, u is the control input taking values in some control set

U ⊂ R
m, t is time, t0 is the initial time, and x0 is the initial state. Both x and u are functions of t,

but we will often suppress their time arguments.

The second basic ingredient is the cost functional. It associates a cost with each possible behavior.
For a given initial data (t0, x0), the behaviors are parameterized by control functions u. Thus, the
cost functional assigns a cost value to each admissible control. In this book, cost functionals will be
denoted by J and will be of the form

J(u) :=

∫ tf

t0

L(t, x(t), u(t))dt +K(tf , xf ) (1.2)

where L and K are given functions (running cost and terminal cost, respectively), tf is the final (or
terminal) time which is either free or fixed, and xf := x(tf ) is the final (or terminal) state which is
either free or fixed or belongs to some given target set. Note again that u itself is a function of time;
this is why we say that J is a functional (a real-valued function on a space of functions).

The optimal control problem can then be posed as follows: Find a control u that minimizes J(u)
over all admissible controls (or at least over nearby controls). Later we will need to come back to
this problem formulation and fill in some technical details. In particular, we will need to specify
what regularity properties should be imposed on the function f and on the admissible controls u to
ensure that state trajectories of the control system are well defined. Several versions of the above
problem (depending, for example, on the role of the final time and the final state) will be stated
more precisely when we are ready to study them. The reader who wishes to preview this material
can find it in Section 3.3.

1
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It can be argued that optimality is a universal principle of life, in the sense that many—if not
most—processes in nature are governed by solutions to some optimization problems (although we
may never know exactly what is being optimized). We will soon see that fundamental laws of
mechanics can be cast in an optimization context. From an engineering point of view, optimality
provides a very useful design principle, and the cost to be minimized (or the profit to be maximized)
is often naturally contained in the problem itself. Some examples of optimal control problems arising
in applications include the following:

• Send a rocket to the moon with minimal fuel consumption;

• Produce a given amount of chemical in minimal time and/or with minimal amount of catalyst
used (or maximize the amount produced in given time);

• Bring sales of a new product to a desired level while minimizing the amount of money spent
on the advertising campaign;

• Maximize throughput or accuracy of information transmission over a communication channel
with a given bandwidth/capacity.

The reader will easily think of other examples. Several specific optimal control problems will be
examined in detail later in the book. We briefly discuss one simple example here to better illustrate
the general problem formulation.

Example 1.1 Consider a simple model of a car moving on a horizontal line. Let x ∈ R be the
car’s position and let u be the acceleration which acts as the control input. We put a bound on the
maximal allowable acceleration by letting the control set U be the bounded interval [−1, 1] (negative
acceleration corresponds to braking). The dynamics of the car are ẍ = u. In order to arrive at a
first-order differential equation model of the form (1.1), let us relabel the car’s position x as x1 and

denote its velocity ẋ by x2. This gives the control system ẋ1 = x2, ẋ2 = u with state
(
x1
x2

)
∈ R

2.

Now, suppose that we want to “park” the car at the origin, i.e., bring it to rest there, in minimal
time. This objective is captured by the cost functional (1.2) with the constant running cost L ≡ 1,

no terminal cost (K ≡ 0), and the fixed final state
(

0
0

)
. We will solve this optimal control problem

in Section 4.4.1. (The basic form of the optimal control strategy may be intuitively obvious, but
obtaining a complete description of the optimal control requires some work.)

In this book we focus on the mathematical theory of optimal control. We will not undertake
an in-depth study of any of the applications mentioned above. Instead, we will concentrate on the
fundamental aspects common to all of them. After finishing this book, the reader familiar with a
specific application domain should have no difficulty reading papers that deal with applications of
optimal control theory to that domain, and will be prepared to think creatively about new ways of
applying the theory.

We can view the optimal control problem as that of choosing the best path among all paths
feasible for the system, with respect to the given cost function. In this sense, the problem is infinite-
dimensional, because the space of paths is an infinite-dimensional function space. This problem is
also a dynamic optimization problem, in the sense that it involves a dynamical system and time.
However, to gain appreciation for this problem, it will be useful to first recall some basic facts about
the more standard static finite-dimensional optimization problem, concerned with finding a minimum
of a given function f : R

n → R. Then, when we get back to infinite-dimensional optimization, we
will more clearly see the similarities but also the differences.
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The subject studied in this book has a rich and beautiful history; the topics are ordered in such
a way as to allow us to trace its chronological development. In particular, we will start with calculus
of variations, which deals with path optimization but not in the setting of control systems. The
optimization problems treated by calculus of variations are infinite-dimensional but not dynamic. We
will then make a transition to optimal control theory and develop a truly dynamic framework. This
modern treatment is based on two key developments, initially independent but ultimately closely
related and complementary to each other: the maximum principle and the principle of dynamic
programming.

1.2 Some background on finite-dimensional optimization

Consider a function f : R
n → R. Let D be some subset of R

n, which could be the entire R
n. We

denote by | · | the standard Euclidean norm on R
n.

A point x∗ ∈ D is a local minimum of f over D if there exists an ε > 0 such that for all x ∈ D
satisfying |x− x∗| < ε we have

f(x∗) ≤ f(x). (1.3)

In other words, x∗ is a local minimum if in some ball around it, f does not attain a value smaller
than f(x∗). Note that this refers only to points in D; the behavior of f outside D is irrelevant, and
in fact we could have taken the domain of f to be D rather than R

n.

If the inequality in (1.3) is strict for x 6= x∗, then we have a strict local minimum. If (1.3) holds
for all x ∈ D, then the minimum is global over D. By default, when we say “a minimum” we mean
a local minimum. Obviously, a minimum need not be unique unless it is both strict and global.

The notions of a (local, strict, global) maximum are defined similarly. If a point is either a
maximum or a minimum, it is called an extremum. Observe that maxima of f are minima of −f , so
there is no need to develop separate results for both. We focus on the minima, i.e., we view f as a
cost function to be minimized (rather than a profit to be maximized).

1.2.1 Unconstrained optimization

The term “unconstrained optimization” usually refers to the situation where all points x sufficiently
near x∗ in R

n are in D, i.e., x∗ belongs to D together with some R
n-neighborhood. The simplest

case is when D = R
n, which is sometimes called the completely unconstrained case. However, as far

as local minimization is concerned, it is enough to assume that x∗ is an interior point of D. This is
automatically true if D is an open subset of R

n.

First-order necessary condition for optimality

Suppose that f is a C1 (continuously differentiable) function and x∗ is its local minimum. Pick
an arbitrary vector d ∈ R

n. Since we are in the unconstrained case, moving away from x∗ in the
direction of d or −d cannot immediately take us outside D. In other words, we have x∗ + αd ∈ D
for all α ∈ R close enough to 0.
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For a fixed d, we can consider f(x∗ + αd) as a function of the real parameter α, whose domain
is some interval containing 0. Let us call this new function g:

g(α) := f(x∗ + αd). (1.4)

Since x∗ is a minimum of f , it is clear that 0 is a minimum of g. Passing from f to g is useful
because g is a function of a scalar variable and so its minima can be studied using ordinary calculus.
In particular, we can write down the first-order Taylor expansion for g around α = 0:

g(α) = g(0) + g′(0)α + o(α) (1.5)

where o(α) represents “higher-order terms” which go to 0 faster than α as α approaches 0, i.e.,

lim
α→0

o(α)

α
= 0. (1.6)

We claim that
g′(0) = 0. (1.7)

To show this, suppose that g′(0) 6= 0. Then, in view of (1.6), there exists an ε > 0 small enough so
that for |α| < ε, the absolute value of the fraction in (1.6) is less than |g′(0)|. We can write this as

|α| < ε ⇒ |o(α)| < |g′(0)α|.
For these values of α, (1.5) gives

g(α) − g(0) < g′(0)α + |g′(0)α|. (1.8)

If we further restrict α to have the opposite sign to g ′(0), then the right-hand side of (1.8) becomes
0 and we obtain g(α) − g(0) < 0. But this contradicts the fact that g has a minimum at 0. We have
thus shown that (1.7) is indeed true.

We now need to re-express this result in terms of the original function f . A simple application
of the chain rule from vector calculus yields the formula

g′(α) = ∇f(x∗ + αd) · d (1.9)

where
∇f := (fx1 , . . . , fxn)T

is the gradient of f and · denotes inner product.1 Whenever there is no danger of confusion, we use
subscripts as a shorthand notation for partial derivatives: fxi

:= ∂f/∂xi. Setting α = 0 in (1.9), we
have

g′(0) = ∇f(x∗) · d (1.10)

and this equals 0 by (1.7). Since d was arbitrary, we conclude that

∇f(x∗) = 0 (1.11)

This is the first-order necessary condition for optimality.

A point x∗ satisfying this condition is called a stationary point. The condition is “first-order”
because it is derived using the first-order expansion (1.5). We emphasize that the result is valid when
f ∈ C1 and x∗ is an interior point of D.

1There is no consensus in the literature whether the gradient is a column vector or a row vector. Treating it as a row
vector would simplify the notation since it often appears in a product with another vector. Geometrically, however, it
plays the role of a regular column vector, and for consistency we follow this latter convention everywhere.



CALCULUS OF VARIATIONS AND OPTIMAL CONTROL 5

Second-order conditions for optimality

We now derive another necessary condition and also a sufficient condition for optimality, under the
stronger hypothesis that f is a C2 function (twice continuously differentiable).

First, we assume as before that x∗ is a local minimum and derive a necessary condition. For an
arbitrary fixed d ∈ R

n, let us consider a Taylor expansion of g(α) = f(x∗ + αd) again, but this time
include second-order terms:

g(α) = g(0) + g′(0)α +
1

2
g′′(0)α2 + o(α2) (1.12)

where

lim
α→0

o(α2)

α2
= 0. (1.13)

By the first-order necessary condition, g ′(0) must be 0 since it is given by (1.10). We claim that

g′′(0) ≥ 0. (1.14)

Indeed, suppose that g′′(0) < 0. By (1.13), there exists an ε > 0 such that

|α| < ε ⇒ |o(α2)| < 1

2
|g′′(0)|α2.

For these values of α, (1.12) reduces to g(α)− g(0) < 0, contradicting that fact that 0 is a minimum
of g. Therefore, (1.14) must hold.

What does this result imply about the original function f? To see what g ′′(0) is in terms of f ,
we need to differentiate the formula (1.9). The reader may find it helpful to first rewrite (1.9) more
explicitly as

g′(α) =
n∑

i=1

fxi
(x∗ + αd)di.

Differentiating both sides with respect to α, we have

g′′(α) =

n∑

i,j=1

fxixj
(x∗ + αd)didj

where double subscripts are used to denote second-order partial derivatives. For α = 0 this gives

g′′(0) =

n∑

i,j=1

fxixj
(x∗)didj

or, in matrix notation,

g′′(0) = dT∇2f(x∗)d (1.15)

where

∇2f :=



fx1x1 . . . fx1xn

. . .

fxnx1 . . . fxnxn



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is the Hessian matrix of f . In view of (1.14), (1.15), and the fact that d was arbitrary, we conclude
that the matrix ∇2f(x∗) must be positive semidefinite:

∇2f(x∗) ≥ 0 (positive semidefinite)

This is the second-order necessary condition for optimality.

Like the previous first-order necessary condition, this second-order condition only applies to the
unconstrained case. But, unlike the first-order condition, it requires f to be C 2 and not just C1.
Another difference with the first-order condition is that the second-order condition distinguishes
minima from maxima: at a local maximum, the Hessian must be negative semidefinite, while the
first-order condition applies to any extremum (a minimum or a maximum).

Strengthening the second-order necessary condition and combining it with the first-order neces-
sary condition, we can obtain the following second-order sufficient condition for optimality:
If a C2 function f satisfies

∇f(x∗) = 0 and ∇2f(x∗) > 0 (positive definite) (1.16)

on an interior point x∗ of its domain, then x∗ is a strict local minimum of f . To see why this is true,
take an arbitrary d ∈ R

n and consider again the second-order expansion (1.12) for g(α) = f(x∗+αd).
We know that g′(0) is given by (1.10), thus it is 0 because ∇f(x∗) = 0. Next, g′′(0) is given by (1.15),
and so we have

f(x∗ + αd) = f(x∗) +
1

2
dT∇2f(x∗)dα2 + o(α2). (1.17)

The intuition is that since the Hessian ∇2f(x∗) is a positive definite matrix, the second-order term
dominates the higher-order term o(α2). To establish this fact rigorously, note that by the definition
of o(α2) we can pick an ε > 0 small enough so that

|α| < ε, α 6= 0 ⇒ |o(α2)| < 1

2
dT∇2f(x∗)dα2

and for these values of α we deduce from (1.17) that f(x∗ + αd) > f(x∗).

To conclude that x∗ is a (strict) local minimum, one more technical detail is needed. According
to the definition of a local minimum (see page 3), we must show that f(x∗) is the lowest value of
f in some ball around x∗. But the term o(α2) and hence the value of ε in the above construction
depend on the choice of the direction d. It is clear that this dependence is continuous, since all the
other terms in (1.17) are continuous in d.2 Also, without loss of generality we can restrict d to be
of unit length, and then we can take the minimum of ε over all such d. Since the unit sphere in
R

n is compact, the minimum is well defined (thanks to the Weierstrass Theorem which is discussed
below). This minimal value of ε provides the radius of the desired ball around x∗ in which the lowest
value of f is achieved at x∗.

Feasible directions, global minima, and convex problems

The key fact that we used in the previous developments was that for every d ∈ R
n, points of the

form x∗ +αd for α sufficiently close to 0 belong to D. This is no longer the case if D has a boundary

2The term o(α2) can be described more precisely using Taylor’s theorem with remainder, which is a higher-order
generalization of the Mean Value Theorem; see, e.g., [Rud76, Theorem 5.15]. We will discuss this issue in more detail
later when deriving the corresponding result in calculus of variations (see Section 2.6).
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(e.g., D is a closed ball in R
n) and x∗ is a point on this boundary. Such situations do not fit into the

unconstrained optimization scenario as we defined it at the beginning of Section 1.2.1; however, for
simple enough sets D and with some extra care, a similar analysis is possible. Let us call a vector
d ∈ R

n a feasible direction (at x∗) if x∗ + αd ∈ D for small enough α > 0 (see Figure 1.1). If not
all directions d are feasible, then the condition ∇f(x∗) = 0 is no longer necessary for optimality.
We can still define the function (1.4) for every feasible direction d, but the proof of (1.7) is no
longer valid because α is now nonnegative. We leave it to the reader to modify that argument
and show that if x∗ is a local minimum, then ∇f(x∗) · d ≥ 0 for every feasible direction d. As for
the second-order necessary condition, the inequality (1.14) is still true if g′(0) = 0, which together
with (1.10) and (1.15) implies that we must have dT∇2f(x∗)d ≥ 0 for all feasible directions satisfying
∇f(x∗) · d = 0.

PSfrag replacements

x∗

feasible not feasible

feasible
not feasible

Figure 1.1: Feasible directions

If the set D is convex, then the line segment connecting x∗ to an arbitrary other point x ∈ D
lies entirely in D. All points on this line segment take the form x∗ + αd, α ∈ [0, ᾱ] for some d ∈ R

n

and ᾱ > 0. This means that the feasible direction approach is particularly suitable for the case of
a convex D. But if D is not convex, then the first-order and second-order necessary conditions in
terms of feasible directions are conservative. The next exercise touches on the issue of sufficiency.

Exercise 1.1 Suppose that f is a C2 function and x∗ is a point of its domain at which we have
∇f(x∗) · d ≥ 0 and dT∇2f(x∗)d > 0 for every nonzero feasible direction d. Is x∗ necessarily a local
minimum of f? Prove or give a counterexample.

When we are not dealing with the completely unconstrained case in which D is the entire R
n,

we think of D as the constraint set over which f is being minimized. Particularly important in
optimization theory is the case when equality constraints are present, so thatD is a lower-dimensional
surface in R

n (see Figure 1.2). In such situations, the above method which utilizes feasible directions
represented by straight lines is no longer suitable: there might not be any feasible directions, and
then the corresponding necessary conditions are vacuous. We will describe a refined approach to
constrained optimization in Section 1.2.2; it essentially replaces straight lines by arbitrary curves.

So far we have only discussed local minima. In practice, however, one is typically interested
in finding a global minimum over a given domain (or constraint set) D, if such a global minimum
exists. We now briefly discuss how conditions for local optimality can be useful for solving global
optimization problems as well, provided that these global problems have certain nice features.

The following basic existence result is known as the Weierstrass Theorem: If f is a continuous
function and D is a compact set, then there exists a global minimum of f over D. The reader will
recall that for subsets of R

n, compactness can be defined in three equivalent ways:
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PSfrag replacements

x∗

D

Figure 1.2: A surface

1) D is compact if it is closed and bounded.

2) D is compact if every open cover of D has a finite subcover.

3) D is compact if every sequence inD has a subsequence converging to some point inD (sequential
compactness).

We will revisit compactness and the Weierstrass Theorem in the infinite-dimensional optimization
setting.

The necessary conditions for local optimality that we discussed earlier suggest the following
procedure for finding a global minimum. First, find all interior points of D satisfying ∇f(x∗) = 0
(the stationary points). If f is not differentiable everywhere, include also points where ∇f does
not exist (these points together with the stationary points comprise the critical points). Next, find
all boundary points satisfying ∇f(x∗) · d ≥ 0 for all feasible d. Finally, compare values at all these
candidate points and choose the smallest one. If one can afford the computation of second derivatives,
then the second-order conditions can be used in combination with the first-order ones.

If D is a convex set and f is a convex function, then the minimization problem is particularly
tractable. First, a local minimum is automatically a global one. Second, the first-order necessary
condition (for f ∈ C1) is also a sufficient condition. Thus if ∇f(x∗) · d ≥ 0 for all feasible directions
d, or in particular if x∗ is an interior point of D and ∇f(x∗) = 0, then x∗ is a global minimum.
These properties are consequences of the fact (illustrated in Figure 1.3) that the graph of a convex
function f lies above that of the linear approximation x 7→ f(x∗) + ∇f(x∗) · (x− x∗).

PSfrag replacements

x

f(x)

x∗

Figure 1.3: A convex function

Efficient numerical algorithms—such as the well-known steepest descent (or gradient) method—
exist for converging to points satisfying ∇f(x∗) = 0 (stationary points). For convex problems, these
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algorithms yield convergence to global minima.

1.2.2 Constrained optimization

Now suppose that D is a surface in R
n defined by the equality constraints

h1(x) = h2(x) = · · · = hm(x) = 0 (1.18)

where hi, i = 1, . . . ,m are C1 functions from R
n to R. We assume that f is a C1 function and study

its minima over D.

First-order necessary condition (Lagrange multipliers)

Let x∗ ∈ D be a local minimum of f over D. We assume that x∗ is a regular point of D in the sense
that the gradients ∇hi, i = 1, . . . ,m are linearly independent at x∗. This is a technical assumption
needed to rule out degenerate situations; see Exercise 1.2 below.

Instead of line segments containing x∗ which we used in the unconstrained case, we now consider
curves in D passing through x∗. Such a curve is a family of points x(α) ∈ D parameterized by α ∈ R,
with x(0) = x∗. We require the function x(·) to be C1, at least for α near 0. Given an arbitrary
curve of this kind, we can consider the function

g(α) := f(x(α)).

Note that when there are no equality constraints, functions of the form (1.4) considered previously
can be viewed as special cases of this more general construction. From the fact that 0 is a minimum
of g, we derive exactly as before that (1.7) holds, i.e., g′(0) = 0. To interpret this result in terms of
f , note that

g′(α) = ∇f(x(α)) · x′(α)

which for α = 0 gives
g′(0) = ∇f(x∗) · x′(0) = 0. (1.19)

The vector x′(0) ∈ R
n is an important object for us here. From the first-order Taylor expansion

x(α) = x∗+x′(0)α+o(α) we see that x′(0) defines a linear approximation of x(·) at x∗. Geometrically,
it specifies the infinitesimal direction of the curve (see Figure 1.4). The vector x′(0) is a tangent
vector to D at x∗. It lives in the tangent space to D at x∗, which is denoted by Tx∗D. (We can think
of this space as having its origin at x∗.)

We want to have a more explicit characterization of the tangent space Tx∗D, which will help
us understand it better. Since D was defined as the set of points satisfying the equalities (1.18),
and since the points x(α) lie in D by construction, we must have hi(x(α)) = 0 for all α and all
i ∈ {1, . . . ,m}. Differentiating this formula gives

0 =
d

dα
hi(x(α)) = ∇hi(x(α)) · x′(α), i = 1, . . . ,m

for all α (close enough to 0). Setting α = 0 and remembering that x(0) = x∗, we obtain

0 =
d

dα

∣∣∣∣
α=0

hi(x(α)) = ∇hi(x
∗) · x′(0), i = 1, . . . ,m.
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Figure 1.4: A tangent vector

We have shown that for an arbitrary C1 curve x(·) in D with x(0) = x∗, its tangent vector x′(0) must
satisfy ∇hi(x

∗) · x′(0) = 0 for each i. Actually, one can show that the converse is also true, namely,
every vector d ∈ R

n satisfying

∇hi(x
∗) · d = 0, i = 1, . . . ,m (1.20)

is a tangent vector to D at x∗ corresponding to some curve. (We do not give a proof of this fact but
note that it relies on x∗ being a regular point of D.) In other words, the tangent vectors to D at
x∗ are exactly the vectors d for which (1.20) holds. This is the characterization of the tangent space
Tx∗D that we were looking for. It is clear from (1.20) that Tx∗D is a subspace of R

n; in particular, if
d is a tangent vector, then so is −d (going from x′(0) to −x′(0) corresponds to reversing the direction
of the curve).

Now let us go back to (1.19), which says that ∇f(x∗) · d = 0 for all d ∈ Tx∗D (since the curve
x(·) and thus the tangent vector x′(0) were arbitrary). In view of the characterization of Tx∗D given
by (1.20), we can rewrite this condition as follows:

∇f(x∗) · d = 0 ∀ d such that ∇hi(x
∗) · d = 0, i = 1, . . . ,m. (1.21)

The relation between ∇f(x∗) and ∇hi(x
∗) expressed by (1.21) looks somewhat clumsy, since checking

it involves a search over d. Can we eliminate d from this relation and make it more explicit? A careful
look at (1.21) should quickly lead the reader to the following statement.

Claim: The gradient of f at x∗ is a linear combination of the gradients of the constraint functions
h1, . . . , hm at x∗:

∇f(x∗) ∈ span{∇hi(x
∗), i = 1, . . . ,m}. (1.22)

Indeed, if the claim is not true, then ∇f(x∗) has a component orthogonal to span{∇hi(x
∗)}, i.e,

there exists a d 6= 0 such that

∇hi(x
∗) · d = 0, i = 1, . . . ,m (1.23)

and ∇f(x∗) can be written in the form

∇f(x∗) = d−
m∑

i=1

λ∗i∇hi(x
∗) (1.24)
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for some λ∗1, . . . , λ
∗
m ∈ R. Taking the inner product with d on both sides of (1.24) and using (1.23)

gives

∇f(x∗) · d = d · d 6= 0

and we reach a contradiction with (1.21).

Geometrically, the claim says that ∇f(x∗) is normal to D at x∗. This situation is illustrated
in Figure 1.5 for the case of two constraints in R

3. Note that if there is only one constraint, say
h1(x) = 0, then D is a two-dimensional surface and ∇f(x∗) must be proportional to ∇h1(x

∗), the
normal direction to D at x∗. When the second constraint h2(x) = 0 is added, D becomes a curve
(the thick curve in the figure) and ∇f(x∗) is allowed to live in the plane spanned by ∇h1(x

∗) and
∇h2(x

∗), i.e., the normal plane to D at x∗. In general, the intuition behind the claim is that unless
∇f(x∗) is normal to D, there are curves in D passing through x∗ whose tangent vectors at x∗ make
both positive and negative inner products with ∇f(x∗), hence in particular f can be decreased by
moving away from x∗ while staying in D.

PSfrag replacements

∇h1(x
∗) ∇h2(x

∗)

∇f(x∗)

x∗

Figure 1.5: Gradient vectors and constrained optimality

The condition (1.22) means that there exist real numbers λ∗1, . . . , λ
∗
m such that

∇f(x∗) + λ∗1∇h1(x
∗) + · · · + λ∗m∇hm(x∗) = 0 (1.25)

This is the first-order necessary condition for constrained optimality. The coefficients λ∗
i ,

i = 1, . . . ,m are called Lagrange multipliers.

Exercise 1.2 Give an example where a local minimum x∗ is not a regular point and the above
necessary condition is false (justify both of these claims).

The above proof of the first-order necessary condition for constrained optimality involves geo-
metric concepts. We also left a gap in it because we did not prove the converse implication in the
equivalent characterization of the tangent space given by (1.20). We now give a shorter alternative
proof which is purely analytic, and which will be useful when we study problems with constraints
in calculus of variations. However, the geometric intuition behind the previous proof will be helpful
for us later as well. We invite the reader to study both proofs as a way of testing the mathematical
background knowledge that will be required in the subsequent chapters.
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Let us start again by assuming that x∗ is a local minimum of f over D, where D is a surface in
R

n defined by the equality constraints (1.18) and x∗ is a regular point of D. Our goal is to rederive
the necessary condition expressed by (1.25). For simplicity, we only give the argument for the case of
a single constraint h(x) = 0, i.e., m = 1; the extension to m > 1 is straightforward (see Exercise 1.3
below). Given two arbitrary vectors d1, d2 ∈ R

n, we can consider the following map from R × R to
itself:

F : (α1, α2) 7→
(
f(x∗ + α1d1 + α2d2), h(x

∗ + α1d1 + α2d2)
)
.

The Jacobian matrix of F at (0, 0) is

(
∇f(x∗) · d1 ∇f(x∗) · d2

∇h(x∗) · d1 ∇h(x∗) · d2

)
. (1.26)

If this Jacobian matrix were nonsingular, then we could apply the Inverse Function Theorem (see, e.g.,
[Rud76, Theorem 9.24]) and conclude that there are neighborhoods of (0, 0) and F (0, 0) = (f(x∗), 0)
on which the map F is a bijection (has an inverse). This would imply, in particular, that there are
points x arbitrarily close to x∗ such that h(x) = 0 and f(x) < f(x∗); such points would be obtained
by taking preimages of points on the ray directed to the left from F (0, 0) in Figure 1.6. But this
cannot be true, since h(x) = 0 means that x ∈ D and we know that x∗ is a local minimum of f over
D. Therefore, the matrix (1.26) is singular.

PSfrag replacements
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Figure 1.6: Illustrating the alternative proof

Regularity of x∗ in the present case just means that the gradient ∇h(x∗) is nonzero. Choose a
d1 such that ∇h(x∗) · d1 6= 0. With this d1 fixed, let λ∗ := −(∇f(x∗) · d1)/(∇h(x∗) · d1), so that
∇f(x∗) · d1 = −λ∗∇h(x∗) · d1. Since the matrix (1.26) must be singular for all choices of d2, its first
row must be a constant multiple of its second row (the second row being nonzero by our choice of
d1). Thus we have ∇f(x∗) · d2 = −λ∗∇h(x∗) · d2, or (∇f(x∗) + λ∗∇h(x∗)) · d2 = 0, and this must be
true for all d2 ∈ R

n. It follows that ∇f(x∗) + λ∗∇h(x∗) = 0, which proves (1.25) for the case when
m = 1.

Exercise 1.3 Generalize the previous argument to an arbitrary number m ≥ 1 of equality con-
strains, assuming as before that x∗ is a regular point.

The first-order necessary condition for constrained optimality generalizes the corresponding re-
sult we derived earlier for the unconstrained case. The condition (1.25) together with the con-
straints (1.18) is a system of n + m equations in n + m unknowns: n components of x∗ plus m
components of the Lagrange multiplier vector λ∗ = (λ∗1, . . . , λ

∗
m)T . For m = 0, we recover the condi-

tion (1.11) which consists of n equations in n unknowns. To make this relation even more explicit,
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consider the function ` : R
n × R

m → R defined by

`(x, λ) := f(x) +

m∑

i=1

λihi(x) (1.27)

which we call the augmented cost function. If x∗ is a local constrained minimum of f and λ∗ is the
corresponding vector of Lagrange multipliers for which (1.25) holds, then the gradient of ` at (x∗, λ∗)
satisfies

∇`(x∗, λ∗) =

(
`x(x∗, λ∗)
`λ(x∗, λ∗)

)
=

(
∇f(x∗) +

∑m
i=1 λ

∗
i∇hi(x

∗)
h(x∗)

)
= 0 (1.28)

where `x, `λ are the vectors of partial derivatives of ` with respect to the components of x and
λ, respectively, and h = (h1, . . . , hm)T is the vector of constraint functions. We conclude that
(x∗, λ∗) is a usual (unconstrained) stationary point of the augmented cost `. In other words, adding
Lagrange multipliers basically converts a constrained problem into an unconstrained one, and the
first-order necessary condition (1.25) for constrained optimality is recovered from the first-order
necessary condition for unconstrained optimality applied to `.

The idea of passing from constrained minimization of the original cost function to unconstrained
minimization of the augmented cost function is due to Lagrange. If (x∗, λ∗) is a minimum of `, then
we must have h(x∗) = 0 (because otherwise we could decrease ` by changing λ∗), and subject to
these constraints x∗ should minimize f (because otherwise it would not minimize `). Also, it is clear
that (1.28) must hold. However, it does not follow that (1.28) is a necessary condition for x∗ to be a
constrained minimum of f . Unfortunately, there is no quick way to derive the first-order necessary
condition for constrained optimality by working with the augmented cost—something that Lagrange
originally attempted to do. Nevertheless, the basic form of the augmented cost function (1.27) is
fundamental in constrained optimization theory, and will reappear in various forms several times in
this book.

Even though the condition in terms of Lagrange multipliers is only necessary and not sufficient
for constrained optimality, it is very useful for narrowing down candidates for local extrema. The
next exercise illustrates this point for a well-known optimization problem arising in optics.

Exercise 1.4 Consider a curve D in the plane described by the equation h(x) = 0, where h : R
2 → R

is a C1 function. Let y and z be two fixed points in the plane, lying on the same side with respect to
D (but not on D itself). Suppose that a ray of light emanates from y, gets reflected off D at some
point x∗ ∈ D, and arrives at z. Consider the following two statements: (i) x∗ must be such that the
total Euclidean distance traveled by light to go from y to z is minimized over all nearby candidate
reflection points x ∈ D (Fermat’s principle); (ii) the angles that the light ray makes with the line
normal to D at x∗ before and after the reflection must be the same (the law of reflection). Accepting
the first statement as a hypothesis, prove that the second statement follows from it, with the help
of the first-order necessary condition for constrained optimality (1.25).

Second-order conditions

For the sake of completeness, we quickly state the second-order conditions for constrained optimality;
they will not be used in the sequel. For the necessary condition, suppose that x∗ is a regular point of
D and a local minimum of f over D, where D is defined by the equality constraints (1.18) as before.
We let λ∗ be the vector of Lagrange multipliers provided by the first-order necessary condition, and
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define the augmented cost ` as in (1.27). We also assume that f is C2. Consider the Hessian of `
with respect to x evaluated at (x∗, λ∗):

`xx(x
∗, λ∗) = ∇2f(x∗) +

m∑

i=1

λ∗i∇2hi(x
∗).

The second-order necessary condition says that this Hessian matrix must be positive semidefinite on
the tangent space to D at x∗, i.e., we must have dT `xx(x∗, λ∗)d ≥ 0 for all d ∈ Tx∗D. Note that this
is weaker than asking the above Hessian matrix to be positive semidefinite in the usual sense (on the
entire R

n).

The second-order sufficient condition says that a point x∗ ∈ D is a strict constrained local
minimum of f if the first-order necessary condition for optimality (1.25) holds and, in addition, we
have

dT `xx(x∗, λ∗)d > 0 ∀ d such that ∇hi(x
∗) · d = 0, i = 1, . . . ,m. (1.29)

Again, here λ∗ is the vector of Lagrange multipliers and ` is the corresponding augmented cost.
Note that regularity of x∗ is not needed for this sufficient condition to be true. If x∗ is in fact a
regular point, then we know (from our derivation of the first-order necessary condition for constrained
optimality) that the condition imposed on d in (1.29) describes exactly the tangent vectors to D at
x∗. In other words, in this case (1.29) is equivalent to saying that `xx(x∗, λ∗) is positive definite on
the tangent space Tx∗D.

1.3 Preview of infinite-dimensional optimization

In Section 1.2 we considered the problem of minimizing a function f : R
n → R. Now, instead of R

n

we want to allow a general vector space V , and in fact we are interested in the case when this vector
space V is infinite-dimensional. Specifically, V will itself be a space of functions. Let us denote a
generic function in V by y, reserving the letter x for the argument of y. (This x will typically be a
scalar, and has no relation with x ∈ R

n from the previous section.) The function to be minimized is
a real-valued function on V , which we now denote by J . Since J is a function on a space of functions,
it is called a functional. To summarize, we are minimizing a functional J : V → R.

Unlike in the case of R
n, there does not exist a “universal” function space. Many different choices

for V are possible, and specifying the desired space V is part of the problem formulation. Another
issue is that in order to define local minima of J over V , we need to specify what it means for
two functions in V to be close to each other. Recall that in the definition of a local minimum in
Section 1.2, a ball of radius ε with respect to the standard Euclidean norm on R

n was used to define
the notion of closeness. In the present case we will again employ ε-balls, but we need to specify which
norm we are going to use. While in R

n all norms are equivalent (i.e., are within a constant multiple
of one another), in function spaces different choices of a norm lead to drastically different notions
of closeness. Thus, the first thing we need to do is become more familiar with function spaces and
norms on them.

1.3.1 Function spaces, norms, and local minima

Typical function spaces that we will consider are spaces of functions from some interval [a, b] to R
n

(for some n ≥ 1). Different spaces result from placing different requirements on the regularity of
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these functions. For example, we will frequently work with the function space Ck([a, b],Rn), whose
elements are k-times continuously differentiable (here k ≥ 0 is an integer; for k = 0 the functions are
just continuous.) Relaxing the Ck assumption, we can arrive at the spaces of piecewise continuous
functions or even measurable functions (we will define these more precisely later when we need them).
On the other hand, stronger regularity assumptions lead us to C∞ (smooth, or infinitely many times
differentiable) functions or to real analytic functions (the latter are C∞ functions that agree with
their Taylor series around every point).

We regard these function spaces as linear vector spaces over R. Why are they infinite-dimensional?
One way to see this is to observe that the monomials 1, x, x2, x3, . . . are linearly independent. Another
example of an infinite set of linearly independent functions is provided by the (trigonometric) Fourier
basis.

As we already mentioned, we also need to equip our function space V with a norm ‖ · ‖. This is a
real-valued function on V which is positive definite (‖y‖ > 0 if y 6≡ 0), homogeneous (‖λy‖ = |λ| · ‖y‖
for all λ ∈ R, y ∈ V ), and satisfies the triangle inequality (‖y + z‖ ≤ ‖y‖ + ‖z‖). The norm gives
us the notion of a distance, or metric, d(y, z) := ‖y − z‖. This allows us to define local minima and
enables us to talk about topological concepts such as convergence and continuity (more on this in
Section 1.3.4 below). We will see how the norm plays a crucial role in the subsequent developments.

On the space C0([a, b],Rn), a commonly used norm is

‖y‖0 := max
a≤x≤b

|y(x)| (1.30)

where | · | is the standard Euclidean norm on R
n as before. Replacing the maximum by a supremum,

we can extend the 0-norm (1.30) to functions that are defined over an infinite interval or are not
necessarily continuous. On C1([a, b],Rn), another natural candidate for a norm is obtained by adding
the 0-norms of y and its first derivative:

‖y‖1 := max
a≤x≤b

|y(x)| + max
a≤x≤b

|y′(x)|. (1.31)

This construction can be continued in the obvious way to yield the k-norm on Ck([a, b],Rn) for each
k. The k-norm can also be used on C`([a, b],Rn) for all ` ≥ k. There exist many other norms, such
as for example the Lp norm

‖y‖Lp :=

(∫ b

a
|y(x)|pdx

)1/p

(1.32)

where p is a positive integer. In fact, the 0-norm (1.30) is also known as the L∞ norm.

We are now ready to formally define local minima of a functional. Let V be a vector space of
functions equipped with a norm ‖ · ‖, let A be a subset of V , and let J be a real-valued functional
defined on V (or just on A). A function y∗ ∈ A is a local minimum of J over A if there exists an
ε > 0 such that for all y ∈ A satisfying ‖y − y∗‖ < ε we have

J(y∗) ≤ J(y).

Note that this definition of a local minimum is completely analogous to the one in the previous
section, modulo the change of notation x 7→ y, D 7→ A, f 7→ J , | · | 7→ ‖ · ‖ (also, implicitly, R

n 7→ V ).
Strict minima, global minima, and the corresponding notions of maxima are defined in the same way
as before. We will continue to refer to minima and maxima collectively as extrema.
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For the norm ‖ · ‖, we will typically use either the 0-norm (1.30) or the 1-norm (1.31), with V
being C0([a, b],Rn) or C1([a, b],Rn), respectively. In the remainder of this section we discuss some
general conditions for optimality which apply to both of these norms. However, when we develop
more specific results later in calculus of variations, our findings for these two cases will be quite
different.

1.3.2 First variation and first-order necessary condition

To develop the first-order necessary condition for optimality, we need a notion of derivative for
functionals. Let J : V → R be a functional on a function space V , and consider some function
y ∈ V . The derivative of J at y, which will now be called the first variation, will also be a functional
on V , and in fact this functional will be linear. To define it, we consider functions in V of the form
y + αη, where η ∈ V and α is a real parameter (which can be restricted to some interval around
0). The reader will recognize these functions as infinite-dimensional analogs of the points x∗ + αd
around a given point x∗ ∈ R

n, which we utilized earlier.

A linear functional δJ |y : V → R is called the first variation of J at y if for all η and all α we
have

J(y + αη) = J(y) + δJ |y (η)α + o(α) (1.33)

where o(α) satisfies (1.6). The somewhat cumbersome notation δJ |y (η) is meant to emphasize that
the linear term in α in the expansion (1.33) depends on both y and η. The requirement that δJ |y must
be a linear functional is understood in the usual sense: δJ |y (α1η1+α2η2) = α1 δJ |y (η1)+α2 δJ |y (η2)
for all η1, η2 ∈ V and α1, α2 ∈ R.

The first variation as defined above corresponds to the Gateaux derivative of J , which is just the
usual derivative of J(y + αη) with respect to α (for fixed y and η) evaluated at α = 0:

δJ |y (η) = lim
α→0

J(y + αη) − J(y)

α
. (1.34)

In other words, if we define

g(α) := J(y + αη) (1.35)

then

δJ |y (η) = g′(0) (1.36)

and (1.33) reduces exactly to our earlier first-order expansion (1.5).

Now, suppose that y∗ is a local minimum of J over some subset A of V . We call a perturbation3

η ∈ V admissible (with respect to the subset A) if y∗ + αη ∈ A for all α sufficiently close to 0. It
follows from our definitions of a local minimum and an admissible perturbation that J(y∗ + αη) as
a function of α has a local minimum at α = 0 for each admissible η. Let us assume that the first
variation δJ |y∗ exists (which is of course not always the case) so that we have (1.33). Applying the
same reasoning that we used to derive the necessary condition (1.7) on the basis of (1.5), we quickly
arrive at the first-order necessary condition for optimality: For all admissible perturbations
η, we must have

δJ |y∗ (η) = 0 (1.37)

3With a slight abuse of terminology, we call η a perturbation even though the actual perturbation is αη.
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As in the finite-dimensional case, the first-order necessary condition applies to both minima and
maxima.

When we were studying a minimum x∗ of f : R
n → R with the help of the function g(α) :=

f(x∗ + αd), it was easy to translate the equality g ′(0) = 0 via the formula (1.10) into the necessary
condition ∇f(x∗) = 0. The necessary condition (1.37), while conceptually very similar, is much less
constructive. To be able to apply it, we need to learn how to compute the first variation of some
useful functionals. This subject will be further discussed in the next chapter; for now, we offer an
example for the reader to work out.

Exercise 1.5 Consider the space V = C0([0, 1],R), let g : R → R be a C1 function, and define the
functional J on V by J(y) =

∫ 1
0 g(y(x))dx. Show that its first variation exists and is given by the

formula δJ |y (η) =
∫ 1
0 g

′(y(x))η(x)dx.

Observe that our notion of the first variation, defined via the expansion (1.33), is independent of
the choice of the norm on V . This means that the first-order necessary condition (1.37) is valid for
every norm. To obtain a necessary condition better tailored to a particular norm, we could define
δJ |y differently, by using the following expansion instead of (1.33):

J(y + η) = J(y) + δJ |y (η) + o(‖η‖) (1.38)

The difference with our original formulation is subtle but substantial. The earlier expansion (1.33)
describes how the value of J changes with α for each fixed η. In (1.38), the higher-order term is
a function of ‖η‖ and so the expansion captures the effect of all η at once. We remark that the
first variation defined via (1.38) corresponds to the Fréchet derivative of J , which is a stronger
differentiability notion than the Gateaux derivative (1.34). Note also that we no longer need the
parameter α in (1.38). In fact, (1.38) suggests constructing more general perturbations: instead of
working with functions of the form y + αη, where η is fixed and α is a scalar parameter, we can
consider perturbed functions y+η which can approach y in a more arbitrary manner as ‖η‖ tends to
0 (multiplying η by a vanishing parameter is just one possibility). This generalization is conceptually
similar to that of passing from the lines x∗ + αd used in Section 1.2.1 to the curves x(α) utilized in
Section 1.2.2. We will start seeing perturbations of this kind in Chapter 3.

In what follows, we retain our original definition of the first variation in terms of (1.33). It is
somewhat simpler to work with and is adequate for our needs (at least through Chapter 2). While
the norm-dependent formulation could potentially provide sharper conditions for optimality, it takes
more work to verify (1.38) for all η compared to verifying (1.33) for a fixed η. Besides, we will
eventually abandon the analysis based on the first variation altogether in favor of more powerful
tools. However, it is useful to be aware of the alternative formulation (1.38), and we will occasionally
make some side remarks related to it. This issue will resurface in Chapter 3 where, although the
alternative definition (1.38) of the first variation will not be specifically needed, we will use more
general perturbations along the lines of the preceding discussion.

1.3.3 Second variation and second-order conditions

A real-valued functional B on V ×V is called bilinear if it is linear in each argument (when the other
one is fixed). Setting Q(y) := B(y, y) we then obtain a quadratic functional, or quadratic form, on
V . This is a direct generalization of the corresponding familiar concepts in finite-dimensional vector
spaces.
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A quadratic form δ2J
∣∣
y

: V → R is called the second variation of J at y if for all η ∈ V and all
α we have

J(y + αη) = J(y) + δJ |y (η)α + δ2J
∣∣
y
(η)α2 + o(α2). (1.39)

This exactly corresponds to our previous second-order expansion (1.12) for g given by (1.35). Re-
peating the same argument we used earlier to prove (1.14), we easily establish the following second-
order necessary condition for optimality: If y∗ is a local minimum of J over A ⊂ V , then for
all admissible perturbations η we have

δ2J
∣∣
y∗

(η) ≥ 0 (1.40)

In other words, the second variation δ2J
∣∣
y∗

must be positive semidefinite on the space of admissible

perturbations. For local maxima, the inequality in (1.40) is reversed. Of course, the usefulness of
the condition will depend on our ability to compute the second variation of the functionals that we
will want to study.

Exercise 1.6 Consider the same functional J as in Exercise 1.5, but assume now that g is C2. Derive
a formula for the second variation of J (make sure that it is indeed a quadratic form).

What about a second-order sufficient condition for optimality? By analogy with the second-order
sufficient condition (1.16) which we derived for the finite-dimensional case, we may guess that we
need to combine the first-order necessary condition (1.37) with the strict-inequality counterpart of
the second-order necessary condition (1.40), i.e.,

δ2J
∣∣
y∗

(η) > 0 (1.41)

(this should again hold for all admissible perturbations η with respect to a subset A of V over which
we want y∗ to be a minimum). We would then hope to show that for y = y∗ the second-order term
in (1.39) dominates the higher-order term o(α2), which would imply that y∗ is a strict local minimum
(since the first-order term is 0). Our earlier proof of sufficiency of (1.16) followed the same idea.
However, examining that proof more closely, the reader will discover that in the present case the
argument does not go through.

We know that there exists an ε > 0 such that for all nonzero α with |α| < ε we have |o(α2)| <
δ2J
∣∣
y∗

(η)α2. Using this inequality and (1.37), we obtain from (1.39) that J(y∗ +αη) > J(y∗). Note

that this does not yet prove that y∗ is a (strict) local minimum of J . According to the definition
of a local minimum, we must show that J(y∗) is the lowest value of J in some ball around y∗ with
respect to the selected norm ‖ · ‖ on V . The problem is that the term o(α2) and hence the above ε
depend on the choice of the perturbation η. In the finite-dimensional case we took the minimum of
ε over all perturbations of unit length, but we cannot do that here because the unit sphere in the
infinite-dimensional space V is not compact and the Weierstrass Theorem does not apply to it (see
Section 1.3.4 below).

One way to resolve the above difficulty would be as follows. The first step is to strengthen the
condition (1.41) to

δ2J
∣∣
y∗

(η) ≥ λ‖η‖2 (1.42)

for some number λ > 0. The property (1.42) does not automatically follow from (1.41), again
because we are in an infinite-dimensional space. (Quadratic forms satisfying (1.42) are sometimes
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called uniformly positive definite.) The second step is to modify the definitions of the first and second
variations by explicitly requiring that the higher-order terms decay uniformly with respect to ‖η‖.
We already mentioned such an alternative definition of the first variation via the expansion (1.38).
Similarly, we could define δ2J

∣∣
y

via the following expansion in place of (1.39):

J(y + η) = J(y) + δJ |y (η) + δ2J
∣∣
y
(η) + o(‖η‖2). (1.43)

Adopting these alternative definitions and assuming that (1.37) and (1.42) hold, we could easily
complete the sufficiency proof by noting that |o(‖η‖2)| < λ‖η‖2 when ‖η‖ is small enough.

With our current definitions of the first and second variations in terms of (1.33) and (1.39), we do
not have a general second-order sufficient condition for optimality. However, in variational problems
that we are going to study, the functional J to be minimized will take a specific form. This additional
structure will allow us to derive conditions under which second-order terms dominate higher-order
terms, resulting in optimality. The above discussion was given mainly for illustrative purposes, and
will not be directly used in the sequel.

1.3.4 Global minima and convex problems

Regarding global minima of J over a set A ⊂ V , much of the discussion on global minima given at
the end of Section 1.2.1 carries over to the present case. In particular, the Weierstrass Theorem is
still valid, provided that compactness of A is understood in the sense of the second or third definition
given on page 7 (existence of finite subcovers or sequential compactness). These two definitions of
compactness are equivalent for linear vector spaces equipped with a norm (or, more generally, a
metric). On the other hand, closed and bounded subsets of an infinite-dimensional vector space
are not necessarily compact—we already mentioned noncompactness of the unit sphere—and the
Weierstrass Theorem does not apply to them; see the next exercise. We note that since our function
space V has a norm, the notions of continuity of J and convergence, closedness, boundedness, and
openness in V with respect to this norm are defined exactly as their familiar counterparts in R

n. We
leave it to the reader to write down precise definitions or consult the references given at the end of
this chapter.

Exercise 1.7 Give an example of a function space V , a norm on V , a closed and bounded subset
A of V , and a continuous functional J on V such that a global minimum of J over A does not exist.
(Be sure to demonstrate that all the requested properties hold.)

If J is a convex functional and A ⊂ V is a convex set, then the optimization problem enjoys
the same properties as the ones mentioned at the end of Section 1.2.1 for finite-dimensional convex
problems. Namely, a local minimum is automatically a global one, and the first-order necessary
condition is also a sufficient condition for a minimum. (Convexity of a functional and convexity
of a subset of an infinite-dimensional linear vector space are defined exactly as the corresponding
standard notions in the finite-dimensional case.) However, imposing extra assumptions to ensure
convexity of J would severely restrict the classes of problems that we want to study. In this book,
we focus on general theory that applies to not necessarily convex problems; we will not directly
use results from convex optimization. Nevertheless, some basic concepts from (finite-dimensional)
convex analysis will be important for us later, particularly when we derive the maximum principle.
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1.4 Notes and references for Chapter 1

Success stories of optimal control theory in various applications are too numerous to be listed here; see
[CEHS87, ST05, Swa84] for some examples from engineering and well beyond. The reader interested
in applications will easily find many other references.

The material in Section 1.2 can be found in standard texts on optimization, such as [Lue84]
or [Ber99]. See also Sections 5.2-5.4 of the book [AF66], which will be one of our main references for
the optimal control chapters. Complete proofs of the results presented in Section 1.2.2, including the
fact that the condition (1.20) is sufficient for d to be a tangent vector, are given in [Lue84, Chapter 10].
The alternative argument based on the inverse function theorem is adopted from [Mac05, Section 1.4].
The necessary condition in terms of Lagrange multipliers can also be derived from a cone separation
argument (Farkas’ lemma) as shown, e.g., in [Ber99, Section 3.3.6]; we will see this type of reasoning
in the proof of the maximum principle in Chapter 4.

Section 1.3 is largely based on [GF63], which will be our main reference for calculus of variations;
function spaces, functionals, and the first variation are introduced in the first several sections of that
book, while the second variation is discussed later in Chapter 5. Essentially the same material can
be found in [AF66, Section 5.5]. In [GF63] as well as in [Mac05] the first and second variations are
defined via (1.38) and (1.43), while other sources such as [You80] follow the approach based on (1.33)
and (1.39).

For further background on function spaces and relevant topological concepts, the reader can
consult [Rud76] or [Sut75] (the latter text is somewhat more advanced). Another recommended
reference on these topics is [Lue69], where Gateaux and Fréchet derivatives and their role in func-
tional minimization are also thoroughly discussed. A general treatment of convex functionals and
their minimization is given in [Lue69, Chapter 7]; for convexity-based results more specific to cal-
culus of variations and optimal control, see the monograph [Roc74], the more recent papers [RW00]
and [GS07], and the references therein.



Chapter 2

Calculus of Variations

2.1 Examples of variational problems

We begin this chapter by describing a few examples of classical variational problems, i.e., problems
in which a path is to be chosen from a given family of admissible paths so as to minimize the value
of some functional. These examples will help us motivate the general problem formulation and will
serve as benchmarks for the theory that we will be developing.

2.1.1 Dido’s isoperimetric problem

According to a legend about the foundation of Carthage (around 850 B.C.), Dido purchased from a
local king the land along the North African coastline that could be enclosed by the hide of an ox.
She sliced the hide into very thin strips, tied them together, and was able to enclose a sizable area
which became the city of Carthage.

Let us formulate this as an optimization problem. Assume that the coast is a straight line
(represented by the x-axis in Figure 2.1). The hide strips tied together correspond to a curve of a
fixed length. The problem is to maximize the area under this curve.
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Figure 2.1: Dido’s problem

More formally, admissible curves are graphs of continuous functions1 y : [a, b] → R satisfying the

1Actually, the curve in Figure 2.1 is not the graph of a function. There is a tendency to ignore this difference
between curves and graphs of functions when formulating calculus of variations problems.
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endpoint constraints y(a) = y(b) = 0. The area under such a curve is

J(y) =

∫ b

a
y(x)dx

which is the quantity to be maximized. Of course, it is easy to convert this to a minimization
problem by working with −J . Keeping in mind the original problem context, we should actually
restrict y to be nonnegative (so it does not go into the ocean) or at least replace y by max{0, y} in
the definition of J ; but even without these modifications, it is clear that only nonnegative y can be
optimal. Assuming that the curve is differentiable (at least almost everywhere), we can write the
length constraint as ∫ b

a

√
1 + (y′(x))2dx = C0 (2.1)

where C0 is a fixed constant. Indeed, by the Pythagorean Theorem the integrand in (2.1) is precisely
the arclength element.

At this point the reader can probably guess what the optimal curve should be. It is an arc of a
circle. This solution was known to Zenodorus (2nd century B.C.), although its rigorous derivation
requires tools from calculus of variations which will be presented in this chapter.

Note that since we are representing admissible curves by graphs of functions y, we are excluding
circular arcs that are longer than a semicircle. In the context of Dido’s problem, we can think of
the interval [a, b] as not actually being specified in advance but instead as being chosen based on
the length constraint. Then, once we know that the optimal curve must be a circular arc, it is
straightforward to check that the optimal choice of the interval is the one in which the circular arc of
length C0 is precisely a semicircle, with the interval serving as the circle’s diameter (and thus having
length 2C0/π).

2.1.2 Light reflection and refraction

In free space, light travels along a path of shortest distance—which is of course a straight line. This
is already a solution to a variational problem, albeit a very simple one. More interesting situations
arise when a light ray encounters the edge of a medium. Two basic phenomena are reflection and
refraction of light (see Figure 2.2).
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Figure 2.2: Light reflection and refraction
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In the case of reflection, Hero of Alexandria (who probably lived in the 1st century A.D.) suggested
that light still takes the path of shortest distance among nearby paths. When the reflecting surface
is a plane, one can argue using some simple geometry that the angles between the normal to this
plane and the light ray before and after the reflection must then be the same. This result generalizes
to curved reflecting surfaces, although proving it rigorously is not trivial (see Exercise 1.4 in the
previous chapter).

Analyzing refraction is more challenging. Ptolemy made a list of angle pairs (θ1, θ2) corresponding
to the situation depicted on the right in Figure 2.2. His list dates back to 140 A.D. and contains
quite a few values. (This is ancient Greek experimental physics!) A pattern in Ptolemy’s results was
found only much later, in 1621, when Snell stated his law:

sin θ1 = n sin θ2 (2.2)

where n is the ratio of the speeds of light in the two media (n ≈ 1.33 when light passes from
air to water). A satisfactory explanation of this behavior was first given by Fermat around 1650.
Fermat’s principle states that, although the light does not take the path of shortest distance any
more, it travels along the path of shortest time. Snell’s law can be derived from Fermat’s principle
by differential calculus; in fact, this was one of the examples that Leibniz gave to illustrate the power
of calculus in his original 1684 calculus monograph.

The problems of light reflection and refraction are mentioned here mainly for historical reasons,
and we do not proceed to mathematically formalize them. (However, we will revisit light reflection
in Section 7.4.3.)

2.1.3 Catenary

Suppose that a chain of a given length, with uniform mass density, is suspended freely between two
fixed points (see Figure 2.3). What will be the shape of this chain? This question was posed by
Galileo in the 1630s, and he claimed—incorrectly—that the solution is a parabola.
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Figure 2.3: A catenary

Mathematically, the chain is described by a continuous function y : [a, b] → [0,∞), and the two
suspension points are specified by endpoint constraints of the form y(a) = y0, y(b) = y1. The length
constraint is again given by (2.1). In the figure we took y0 and y1 to be equal, and also assumed
that the suspension points are high enough and far enough apart compared to the length C0 so
that the chain does not touch the ground (y(x) > 0 for all x). The chain will take the shape of
minimal potential energy. This amounts to saying that the y-coordinate of its center of mass should
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be minimized. Since the mass density is uniform, we integrate the y-coordinate of the point along
the curve with respect to the arclength and obtain the functional

J(y) =

∫ b

a
y(x)

√
1 + (y′(x))2dx

(the actual center of mass is J(y)/C0). Thus the problem is to minimize this functional subject to
the length constraint (2.1). As in Dido’s problem, we need to assume that y is differentiable (at least
almost everywhere); this time we do it also to ensure that the cost is well defined, because y ′ appears
inside the integral in J .

The correct description of the catenary curve was obtained by Johann Bernoulli in 1691. It is
given by the formula

y(x) = c cosh(x/c), c > 0 (2.3)

(modulo a translation of the origin in the (x, y)-plane), unless the chain is suspended too low and
touches the ground. The name “catenary” is derived from the Latin word catena (chain).

2.1.4 Brachistochrone

Given two fixed points in a vertical plane, we want to find a path between them such that a particle
sliding without friction along this path takes the shortest possible time to travel from one point
to the other (see Figure 2.4). The name “brachistochrone” was given to this problem by Johann
Bernoulli; it comes from the Greek words βράχιστoς (shortest) and χρóνoς (time).
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Figure 2.4: The brachistochrone problem

It is tempting to think that the solution is a straight line, but this is not the case. For example,
if the two points are at the same height, then the particle will not move if placed on the horizontal
line (we are assuming that the particle is initially at rest); on the other hand, traveling along a lower
semicircle, the particle will reach the other point in finite time. Galileo, who studied this problem
in 1638, showed that for points at different heights, it is also true that sliding down a straight line is
slower than along an arc of a circle. Galileo thought that an arc of a circle is the optimal path, but
this is not true either.

The travel time along a path is given by the integral of the ratio of the arclength to the particle’s
speed. We already know the expression for the arclength from (2.1). To obtain a formula for the
speed, we use the law of conservation of energy. Let us choose coordinates as shown in Figure 2.4:
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the y-axis points downward and the x-axis passes through the initial point (the higher one). Then
the kinetic and potential energy are both 0 initially, thus the total energy is always 0 and we have

mv2

2
−mgy = 0 (2.4)

where v is the particle’s speed, m is its mass, and g is the gravitational constant. Choosing suitable
units, we can assume without loss of generality that m = 1 and g = 1/2. Then (2.4) simplifies to

v =
√
y (2.5)

and so our problem becomes that of minimizing the value of the functional

J(y) =

∫ b

a

√
1 + (y′(x))2√

y(x)
dx (2.6)

over all (almost everywhere) differentiable curves y connecting the two given points with x-coordinates
a and b.

Johann Bernoulli posed the brachistochrone problem in 1696 as a challenge to his contemporaries.
Besides Bernoulli himself, correct solutions were obtained by Leibniz, Newton, Johann’s brother
Jacob Bernoulli, and others. The optimal curves are cycloids, defined by the parametric equations

x(θ) = a+ c(θ − sin θ)

y(θ) = c(1 − cos θ)
(2.7)

where the parameter θ takes values between 0 and 2π and c > 0 is a constant. These equations
describe the curve traced by a point on a circle of radius c as this circle rolls without slipping on
the horizontal axis (see Figure 2.5). A somewhat surprising outcome is that the fastest motion may
involve dipping below the desired height to build speed and then coming back up (whether or not this
happens depends on the relative location of the two points). This principle also applies to changing
an airplane’s altitude.

Figure 2.5: A cycloid

It is interesting to note that Johann Bernoulli’s original solution to the brachistochrone problem
was based on Snell’s law (2.2) for light refraction. In view of equation (2.5), we can treat the particle
as a light ray traveling in a medium where the speed of light is proportional to the square root of the
height. In a discretized version of this situation, the vertical plane is divided into horizontal strips
and the speed of light is constant in each strip. The light ray follows a straight line within each strip
and bends at the boundaries according to Snell’s law. From this piecewise linear path, a cycloid is
obtained in the limit as the heights of the strips tend to 0. This solution can be obtained more easily
(and more rigorously) using methods from calculus of variations and optimal control theory.

Exercise 2.1 Find another example of a variational problem. Describe it verbally first, then for-
malize it by specifying admissible curves and giving an expression for the functional to be minimized
or maximized. You do not need to solve it.
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2.2 Basic calculus of variations problem

The reader has probably observed that the problems of Dido, catenary, and brachistochrone, although
different in their physical meaning, all take essentially the same mathematical form. We are now
ready to turn to a general problem formulation that captures these examples and many related
ones as special cases. For the moment we ignore the issue of constraints such as the arclength
constraint (2.1), which was present in Dido’s problem and the catenary problem; we will incorporate
constraints of this type later (in Section 2.5).

The simplest version of the calculus of variations problem can be stated as follows. Consider a
function L : R × R × R → R.

Basic Calculus of Variations Problem: Among all C1 curves y : [a, b] → R satisfying given boundary
conditions

y(a) = y0, y(b) = y1 (2.8)

find (local) minima of the cost functional

J(y) :=

∫ b

a
L(x, y(x), y′(x))dx. (2.9)

Since y takes values in R, it represents a single planar curve connecting the two fixed points
(a, y0) and (b, y1). This is the single-degree-of-freedom case. In the multiple-degrees-of-freedom case,
one has y : [a, b] → R

n and accordingly L : R × R
n × R

n → R. This generalization is useful for
treating spatial curves (n = 3) or for describing the motion of many particles; the latter setting was
originally proposed by Lagrange in his 1788 monograph Mécanique Analytique. The assumption that
y ∈ C1 is made to ensure that J is well defined (of course we do not need it if y ′ does not appear in
L). We can allow y′ to be discontinuous at some points; we will discuss such situations and see their
importance soon.

The function L is called the Lagrangian, or the running cost. It is clear that a maximization
problem can always be converted into a minimization problem by flipping the sign of L. In the
analysis that follows, it will be important to remember the following point: Even though y and y ′

are the position and velocity along the curve, L is to be viewed as a function of three independent
variables. To emphasize this fact, we will sometimes write L = L(x, y, z). When deriving optimality
conditions, we will need to impose some differentiability assumptions on L.

2.2.1 Weak and strong extrema

We recall from Section 1.3 that in order to define local optimality, we must first select a norm, and on
the space of C1 curves y : [a, b] → R there are two natural candidates for the norm: the 0-norm (1.30)
and the 1-norm (1.31). Extrema (minima and maxima) of J with respect to the 0-norm are called
strong extrema, and those with respect to the 1-norm are called weak extrema.

These two notions will be central to our subsequent developments, and so it is useful to reflect on
them for a little while until the distinction between the two types of extrema becomes clear and there
is no possibility of confusing them. If a C1 curve y∗ is a strong extremum, then it is automatically
a weak one, but the converse is not true. The reason is that an ε-ball around y∗ with respect to
the 0-norm contains the ε-ball with respect to the 1-norm for the same ε, as is clear from the norm
definitions; on the other hand, the ε-ball with respect to the 1-norm does not contain the ε ′-ball
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with respect to the 0-norm for any ε′, no matter how small. In other words, it is harder to satisfy
J(y∗) ≤ J(y) for all y close enough to y∗ if we understand closeness in the sense of the 0-norm.
Closeness in the sense of the 1-norm is a more restrictive condition, since the derivatives of y and y ∗

also have to be close, meaning that there are fewer perturbations to check than for the 0-norm. We
will see that, for the same reason, studying weak extrema is easier than studying strong extrema.

On the other hand, it will become evident later that the concept of a weak minimum is not
very suitable in optimal control. Indeed, an optimal trajectory y∗ should give a lower cost than all
nearby trajectories y, and there is no compelling reason to take into account the difference between
the derivatives of y∗ and y. Also, as we already mentioned, requiring y to be a C1 curve is often
too restrictive. Specifically, we will want to allow curves y which are continuous everywhere on [a, b]
and whose derivative y′ exists everywhere except possibly a finite number of points in [a, b] and is
continuous and bounded between these points. Let us agree to call such curves piecewise C 1, to
reflect the fact that they are concatenations of finitely many C1 pieces. (We could define the class
of admissible curves more precisely using the notion of an absolutely continuous function; we will
revisit this issue in Section 3.3 as we make the transition to optimal control.) If we use the 0-norm,
then it makes no difference whether y is C1 or piecewise C1 or just C0; this is another advantage of
the 0-norm over the 1-norm.

In view of the above remarks, it seems natural to first obtain some basic tools for studying weak
minima and then proceed to develop more advanced tools for investigating strong minima. This
is essentially what we will do. The next example illustrates some of the points that we just made
regarding the 0-norm versus the 1-norm. The exercise that follows should help the reader to better
grasp the concepts of weak and strong minima; it is to be solved using only the definitions.

Example 2.1 Consider the three curves y0, y1, and y2 shown in Figure 2.6. We think of y1 and y2

as results of perturbations of y0 which are small in magnitude. Then y1 is close to y0 with respect to
both the 0-norm and the 1-norm, but y2 is close to y0 only with respect to the 0-norm. Indeed, the
1-norm of y2 − y0 is large because the derivative of y2 is large in magnitude due to the sharp spikes.
(Technically speaking, to be able to take the 1-norm we should smoothen the corners of y2.)PSfrag replacements
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Figure 2.6: Closeness in weak and strong sense

We can also consider another curve y3 (not shown in the figure) which is of the same form as y2

but slightly out of phase with it. Then y2 and y3 will be close with respect to the 0-norm but not
the 1-norm. We can think of y2 and y3 as solutions of the control system dy/dx = u ∈ {−1, 1}. A
small difference in phase amounts to a slight shift of the switching times of the control u. Such a
small perturbation of the control should be admissible, which is why the 0-norm and strong extrema
provide a more reasonable notion of local optimality.

Exercise 2.2 Consider the problem of minimizing the functional

J(y) =

∫ 1

0
(y′(x))2(1 − (y′(x))2)dx
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subject to the boundary conditions y(0) = y(1) = 0. Is the curve y ≡ 0 a weak minimum (over C 1

curves)? Is it a strong minimum (over piecewise C1 curves)? Is there another curve that is a strong
minimum?

2.3 First-order necessary conditions for weak extrema

In this section we will derive the most fundamental result in calculus of variations: the Euler-Lagrange
equation. Unless stated otherwise, we will be working with the Basic Calculus of Variations Problem
defined in Section 2.2. Thus our function space V is C1([a, b],R), the subset A consists of functions
y ∈ V satisfying the boundary conditions (2.8), and the functional J to be minimized takes the
form (2.9). The Euler-Lagrange equation provides a more explicit characterization of the first-order
necessary condition (1.37) for this situation.

In deriving the Euler-Lagrange equation, we will follow the basic variational approach presented
in Section 1.3.2 and consider nearby curves of the form

y + αη (2.10)

where the perturbation η : [a, b] → R is another C1 curve and α varies in an interval around 0 in R.
For α close to 0, these perturbed curves are close to y in the sense of the 1-norm. For this reason, the
resulting first-order necessary condition handles weak extrema. However, since a C 1 strong extremum
is automatically a weak extremum, every necessary condition for the latter is necessary for the former
as well. Therefore, the Euler-Lagrange equation will apply to both weak and strong extrema, as long
as we insist on working with C1 functions. As we know, using the 0-norm allows us to relax the C1

requirement, but this will in turn necessitate a different approach (i.e., a refined perturbation family)
when developing optimality conditions. We will thus refer to the conditions derived in this section
as necessary conditions for weak extrema, in order to distinguish them from sharper conditions to
be given later which apply specifically to strong extrema. Similar remarks apply to other necessary
conditions to be derived in this chapter. The sufficient condition of Section 2.6.2, on the other hand,
will apply to weak minima only.

2.3.1 Euler-Lagrange equation

We continue to follow the notational convention of Chapter 1 and denote by Lx, Ly, Lz, Lxx, Lxy,
etc. the partial derivatives of the Lagrangian L = L(x, y, z). To keep things simple, we assume that
all derivatives appearing in our calculations exist and are continuous. While we will not focus on
spelling out the weakest possible regularity assumptions on L, we will make some remarks to clarify
this issue in Section 2.3.3.

Let y = y(x) be a given test curve in A. For a perturbation η in (2.10) to be admissible, the new
curve (2.10) must again satisfy the boundary conditions (2.8). Clearly, this is true if and only if

η(a) = η(b) = 0. (2.11)

In other words, we must only consider perturbations vanishing at the endpoints. Now, the first-order
necessary condition (1.37) says that if y is a local extremum of J , then for every η satisfying (2.11)
we must have δJ |y (η) = 0. (We denoted extrema by y∗ in (1.37) but here we drop the asterisks to
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avoid overly cluttered notation.) In the present case we want to go further and use the specific form
of J given by (2.9) to arrive at a more explicit condition in terms of the Lagrangian L.

Recall that the first variation δJ |y was defined via

J(y + αη) = J(y) + δJ |y (η)α+ o(α). (2.12)

The left-hand side of (2.12) is

J(y + αη) =

∫ b

a
L(x, y(x) + αη(x), y′(x) + αη′(x))dx. (2.13)

We can write down its first-order Taylor expansion with respect to α by expanding the expression
inside the integral with the help of the chain rule:

J(y + αη) =

∫ b

a

(
L(x, y(x), y′(x)) + Ly(x, y(x), y

′(x))αη(x) + Lz(x, y(x), y
′(x))αη′(x) + o(α)

)
dx.

Matching this with the right-hand side of (2.12), we deduce that the first variation is

δJ |y (η) =

∫ b

a

(
Ly(x, y(x), y

′(x))η(x) + Lz(x, y(x), y
′(x))η′(x)

)
dx. (2.14)

Note that, proceeding slightly differently, we could arrive at the same result by remembering from (1.34)–
(1.36) that

δJ |y (η) = lim
α→0

J(y + αη) − J(y)

α
=

d

dα

∣∣∣∣
α=0

J(y + αη)

and using differentiation under the integral sign on the right-hand side of (2.13).

Exercise 2.3 Prove that δJ |y given by (2.14) also satisfies the alternative definition of the first
variation based on (1.38) in which the norm is the 1-norm. Is this true for the 0-norm as well?

We see that the first variation depends not just on η but also on η ′. This is not surprising since
L has y′ as one of its arguments. However, we can eliminate the dependence on η ′ if we apply
integration by parts to the second term on the right-hand side of (2.14):

δJ |y (η) =

∫ b

a

(
Ly(x, y(x), y

′(x))η(x) − d

dx
Lz(x, y(x), y

′(x))η(x)
)
dx+ Lz(x, y(x), y

′(x))η(x)
∣∣b
a

(2.15)
where the last term is 0 when η satisfies the boundary conditions (2.11). Thus we conclude that if
y is an extremum, then we must have

∫ b

a

(
Ly(x, y(x), y

′(x)) − d

dx
Lz(x, y(x), y

′(x))
)
η(x)dx = 0 (2.16)

for all C1 curves η vanishing at the endpoints x = a and x = b.

The condition (2.16) does not yet give us a practically useful test for optimality, because we
would need to check it for all admissible perturbations η. However, it is logical to suspect that the
only way (2.16) can hold is if the term inside the parentheses—which does not depend on η—equals
0 for all x. The next lemma shows that this is indeed the case.
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Lemma 2.1 If a continuous function ξ : [a, b] → R is such that

∫ b

a
ξ(x)η(x)dx = 0

for all C1 functions η : [a, b] → R with η(a) = η(b) = 0, then ξ ≡ 0.

Proof. Suppose that ξ(x̄) 6= 0 for some x̄ ∈ [a, b]. By continuity, ξ is then nonzero and maintains
the same sign on some subinterval [c, d] containing x̄. Just for concreteness, let us say that ξ is
positive on [c, d].
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Figure 2.7: The graph of η

Construct a function η ∈ C1([a, b],R) that is positive on (c, d) and 0 everywhere else (see Fig-
ure 2.7). For example, we can set η(x) = (x− c)2(x− d)2 for x ∈ [c, d] and η(x) = 0 otherwise. This

gives
∫ b
a ξ(x)η(x)dx > 0, and we reach a contradiction.

It follows from (2.16) and Lemma 2.1 that for y(·) to be an extremum, a necessary condition is

Ly(x, y(x), y
′(x)) =

d

dx
Lz(x, y(x), y

′(x)) ∀x ∈ [a, b]. (2.17)

This is the celebrated Euler-Lagrange equation providing the first-order necessary condition
for optimality. It is often written in the shorter form

Ly =
d

dx
Ly′ (2.18)

We must keep in mind, however, that the correct interpretation of the Euler-Lagrange equation
is (2.17): y and y′ are treated as independent variables when computing the partial derivatives Ly

and Ly′ , then one plugs in for these variables the position y(x) and velocity y ′(x) of the curve, and
finally the differentiation with respect to x is performed using the chain rule. Written out in detail,
the right-hand side of (2.17) is

d

dx
Lz(x, y(x), y

′(x)) = Lzx(x, y(x), y′(x))+Lzy(x, y(x), y
′(x))y′(x)+Lzz(x, y(x), y

′(x))y′′(x). (2.19)

It might not be necessary to actually perform all of these operations, though; sometimes a shortcut
is possible, as in the next example.
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Example 2.2 Let us find the shortest path between two points in the plane. Of course the answer is
obvious, but let us see how we can obtain it from the Euler-Lagrange equation. We already discussed
the functional that describes the length of a curve in Section 2.1, in the context of Dido’s problem and
the catenary problem (where it played the role of a side constraint rather than the cost functional).

This length functional is J(y) =
∫ b
a

√
1 + (y′(x))2dx, hence the Lagrangian is L(x, y, z) =

√
1 + z2.

Since Ly = 0, the Euler-Lagrange equation reads d
dxLz(x, y(x), y

′(x)) = 0. This implies that Lz stays

constant along the shortest path. We have Lz = z/
√

1 + z2, thus

Lz(x, y(x), y
′(x)) =

y′(x)√
1 + (y′(x))2

. (2.20)

For this to be constant, y′ must be constant, i.e., the path must be a straight line. The unique
straight line connecting two given points is clearly the shortest path between them. Note that we
did not need to compute d

dxLz(x, y(x), y
′(x)).

The functional J to be minimized is given by the integral of the Lagrangian L along a path,
while the Euler-Lagrange equation involves derivatives of L and must hold for every point on the
optimal path; observe that the integral has disappeared. The underlying reason is that if a path is
optimal, then every infinitesimally small portion of it is optimal as well (no “shortcuts” are possible).
The exact mechanism by which we pass from the statement that the integral is minimized to the
pointwise condition is revealed by Lemma 2.1 and its proof.

Trajectories satisfying the Euler-Lagrange equation (2.18) are called extremals. Since the Euler-
Lagrange equation is only a necessary condition for optimality, not every extremal is an extremum.
We see from (2.19) that the equation (2.18) is a second-order differential equation; thus we expect
that generically, the two boundary conditions (2.8) should be enough to specify a unique extremal.
When this is true—as is the case in the above example—and when an optimal curve is known to
exist, we can actually conclude that the unique extremal gives the optimal solution. In general, the
question of existence of optimal solutions is not trivial, and the following example should serve as a
warning. (We will come back to this issue later in the context of optimal control.)

Example 2.3 Consider the problem of minimizing J(y) =
∫ 1
0 y(x)(y

′(x))2dx subject to the bound-

ary conditions y(0) = y(1) = 0. The Euler-Lagrange equation is d
dx(2yy′) = (y′)2, and y ≡ 0 is a

solution. Actually, one can show that this is a unique extremal satisfying the boundary conditions
(we leave the proof of this fact to the reader). But y ≡ 0 is easily seen to be neither a minimum nor
a maximum.

2.3.2 Historical remarks

The equation (2.18) was derived by Euler around 1740. His original derivation was very different
from the one we gave, and relied on discretization. The idea is to approximate a general curve by
a piecewise linear one passing through N points, as in Figure 2.8. The problem of optimizing the
locations of these N points is finite-dimensional, hence it can be studied using standard tools. The
equation (2.18) is obtained in the limit as N → ∞.

An alternative way to arrive at the same result, free of geometric considerations and relying
on analysis alone, was proposed by Lagrange in 1755 (when he was only 19 years old). Lagrange
described his argument in a letter to Euler, who was quite impressed by it and subsequently coined
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Figure 2.8: Illustrating Euler’s derivation

the term “calculus of variations” for Lagrange’s method. Even though the problem formulation and
the solution given by Lagrange differ from the modern treatment in the notation and other details,
the main ideas behind our derivation of the Euler-Lagrange equation are essentially contained in his
work.

2.3.3 Technical remarks

It is straightforward to extend the necessary condition (2.18) to the multiple-degrees-of-freedom
setting, in which y = (y1, . . . , yn)T ∈ R

n. The same derivation is valid, provided that Ly and Lz are
interpreted as gradient vectors of L with respect to y and z, respectively, and by products of vector
quantities (such as Ly · η) one means inner products in R

n. The result is the same Euler-Lagrange
equation (2.18), which is now perhaps easier to apply and interpret if it is written componentwise:

Lyi
=

d

dx
Ly′

i
, i = 1, . . . , n. (2.21)

Returning to the single-degree-of-freedom case, let us examine more carefully under what differen-
tiability assumptions our derivation of the Euler-Lagrange equation is valid. We applied Lemma 2.1
to the function ξ given by the expression inside the large parentheses in (2.16), whose second term is
shown in more detail in (2.19). In the lemma, ξ must be continuous. The appearance of second-order
partial derivatives of L in (2.19) suggests that we should assume L ∈ C2. Somewhat more alarmingly,
the presence of the term Lzzy

′′ indicates that we should assume y ∈ C2, and not merely y ∈ C1 as
in our original formulation of the Basic Calculus of Variations Problem. Fortunately, we can avoid
making this assumption if we proceed more carefully, as follows. Let us apply integration by parts
to the first term rather than the second term on the right-hand side of (2.14):

δJ |y (η) =

∫ b

a

(
− η′(x)

∫ x

a
Ly(w, y(w), y′(w))dw + Lz(x, y(x), y

′(x))η′(x)
)
dx

+ η(x)

∫ x

a
Ly(w, y(w), y′(w))dw

∣∣∣∣
b

a

where the last term again vanishes for our class of perturbations η. Thus an extremum y must satisfy

∫ b

a

(
Lz(x, y(x), y

′(x)) −
∫ x

a
Ly(w, y(w), y′(w))dw

)
η′(x)dx = 0. (2.22)

We now need the following modification of Lemma 2.1.
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Lemma 2.2 If a continuous function ξ : [a, b] → R is such that

∫ b

a
ξ(x)η′(x)dx = 0

for all C1 functions η : [a, b] → R with η(a) = η(b) = 0, then ξ is a constant function.

Exercise 2.4 Prove Lemma 2.2.

From (2.22) and Lemma 2.2 we obtain that along an optimal curve we must have

Lz(x, y(x), y
′(x)) =

∫ x

a
Ly(w, y(w), y′(w))dw + C (2.23)

where C is a constant. It follows that the derivative d
dxLz(x, y(x), y

′(x)) indeed exists and equals
Ly(x, y(x), y

′(x)), and we do not need to make extra assumptions to guarantee the existence of this
derivative. In other words, curves on which the first variation vanishes automatically enjoy additional
regularity. Thus for the necessary condition described by the Euler-Lagrange equation to be valid,
it is enough to assume that y ∈ C1 and L ∈ C1. The integral form (2.23) of the Euler-Lagrange
equation actually applies to extrema over piecewise C1 curves as well, although we would need a
more general version of Lemma 2.2 to establish this fact.2 The C1 assumption on L can be further
relaxed; note, in particular, that the partial derivative Lx did not appear anywhere in our analysis.

It can be shown that the Euler-Lagrange equation is invariant under arbitrary changes of coor-
dinates, i.e., it takes the same form in every coordinate system. This allows one to pick convenient
coordinates when studying a specific problem. For example, in certain mechanical problems it is
natural to use polar coordinates; we will come across such a case in Section 2.4.3.

2.3.4 Two special cases

We know from the discussion given towards the end of Section 2.3.1—see the formula (2.19) in
particular—that the Euler-Lagrange equation (2.18) is a second-order differential equation for y(·);
indeed, it can be written in more detail as

Ly = Ly′x + Ly′yy
′ + Ly′y′y′′. (2.24)

Note that we are being somewhat informal in denoting the third argument of L by y ′, and also in
omitting the x-arguments. We now discuss two special cases in which (2.24) can be reduced to a
differential equation that is of first order, and therefore more tractable.

Special case 1 (“no y”). This refers to the situation where the Lagrangian does not depend on
y, i.e., L = L(x, y′). The Euler-Lagrange equation (2.18) becomes d

dxLy′ = 0, which means that Ly′

must stay constant. In other words, extremals are solutions of the first-order differential equation

Ly′(x, y′(x)) = c (2.25)

2Since we are discussing weak extrema, to accommodate piecewise C1 curves we need to slightly generalize the
definition of the 1-norm; see Section 3.1.1 for details. Also, the equation (2.23) holds away from the discontinuities
of y′. To prove this, we would need to modify the proof of Lemma 2.2 to cover functions ξ that are only piecewise
continuous (see page 67 for a precise definition of this class), while still working with η ∈ C1.
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for various values of c ∈ R. We already encountered such a situation in Example 2.2, where we
actually had L = L(y′). Due to the presence of the parameter c, we expect that the family of
solutions of (2.25) is rich enough to contain one (and only one) extremal that passes through two
given points.

The quantity Ly′ , evaluated along a given curve, is called the momentum. This terminology will
be justified in Section 2.4.

Special case 2 (“no x”). Suppose now that the Lagrangian does not depend on x, i.e., L = L(y, y ′).
In this case the partial derivative Ly′x vanishes from (2.24), and the Euler-Lagrange equation becomes

0 = Ly′yy
′ + Ly′y′y′′ − Ly.

Multiplying both sides by y′, we have

0 = Ly′y(y
′)2 + Ly′y′y′y′′ − Lyy

′ =
d

dx

(
Ly′y′ − L

)

where the last equality is easily verified (the Ly′y′′ terms cancel out). This means that Ly′y′ − L
must remain constant. Thus, similarly to Case 1, extremals are described by the family of first-order
differential equations

Ly′(y(x), y′(x))y′(x) − L(y(x), y′(x)) = c

parameterized by c ∈ R.

The quantity Ly′y′ − L is called the Hamiltonian. Although its significance is not yet clear at
this point, it will play a crucial role throughout the rest of the book.

Exercise 2.5 Use the above “no x” result to show that extremals for the brachistochrone problem
are indeed given by the equations (2.7).

2.3.5 Variable-endpoint problems

So far we have been considering the Basic Calculus of Variations Problem, in which the curves have
both their endpoints fixed by the boundary conditions (2.8). Accordingly, the class of admissible
perturbations is restricted to those vanishing at the endpoints. This fact, reflected in (2.11), was
explicitly used in the derivation of the Euler-Lagrange equation (2.18). Indeed, the first-order nec-
essary condition (1.37)—which serves as the basis for the Euler-Lagrange equation—need only hold
for admissible perturbations.

If we change the boundary conditions for the curves of interest, then the class of admissible
perturbations will also change, and in general the necessary condition for optimality will be different.
To give an example of such a situation, we now consider a simple variable-endpoint problem. Suppose
that the cost functional takes the same form (2.9) as before, the initial point of the curve is still
fixed by the boundary condition y(a) = y0, but the terminal point y(b) is free. The resulting family
of curves is depicted in Figure 2.9.

The perturbations η must still satisfy η(a) = 0 but η(b) can be arbitrary. In view of (2.15), the
first variation is then given by

δJ |y (η) =

∫ b

a

(
Ly(x, y(x), y

′(x)) − d

dx
Lz(x, y(x), y

′(x))
)
η(x)dx+ Lz(b, y(b), y

′(b))η(b) (2.26)
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Figure 2.9: Variable terminal point

and this must be 0 if y is to be an extremum. Perturbations such that η(b) = 0 are still allowed;
let us consider them first. They make the last term in (2.26) disappear, leaving us with (2.16).
Exactly as before, we deduce from this that the Euler-Lagrange equation must hold, i.e., it is still
a necessary condition for optimality. The Euler-Lagrange equation says that the expression in the
large parentheses inside the integral in (2.26) is 0. But this means that the entire integral is 0, for
all admissible η (not just those vanishing at x = b). The last term in (2.26) must then also vanish,
which gives us an additional necessary condition for optimality:

Lz(b, y(b), y
′(b))η(b) = 0

or, since η(b) is arbitrary,

Lz(b, y(b), y
′(b)) = 0. (2.27)

We can think of (2.27) as replacing the boundary condition y(b) = y1. Recall that we want to
have two boundary conditions to uniquely specify an extremal. Comparing with the Basic Calculus
of Variations Problem, here we have only one endpoint fixed a priori, but on the other hand we have
a richer perturbation family which allows us to obtain one extra condition (2.27).

Example 2.4 Consider again the length functional from Example 2.2, with Lagrangian L(x, y, z) =√
1 + z2. In other words, we are looking for a shortest path from a given point to a vertical line.

Using the formula (2.20), we see that the condition (2.27) amounts to y′(b) = 0. This means that the
optimal path must have a horizontal tangent at the final point. We already know that in order to
satisfy the Euler-Lagrange equation, the path must be a straight line. Thus the only path satisfying
the necessary conditions is a horizontal line, which is of course the optimal solution.

Exercise 2.6 Consider a more general version of the above variable-terminal-point problem, with
the vertical line replaced by a curve:

J(y) =

∫ xf

a
L(x, y(x), y′(x))dx

where y(a) = y0 is fixed, xf is unspecified, and y(xf ) = ϕ(xf ) for a given C1 function ϕ : R → R.
Derive a necessary condition for a weak extremum. Your answer should contain, besides the Euler-
Lagrange equation, an additional condition (“transversality condition”) which accounts for variations
in xf and which explicitly involves ϕ′.
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Working on this exercise, the reader will realize that obtaining a transversality condition in the
specified form requires a somewhat more advanced analysis than what we have done so far. We will
employ similar techniques again soon when deriving conditions for strong minima in Section 3.1.1.
The transversality condition itself is essentially a preview of what we will see later in the context
of the maximum principle. More general variable-endpoint problems in which the initial point is
allowed to vary as well, and the resulting transversality conditions, will also be mentioned in the
optimal control setting (at the end of Section 4.3).

2.4 Hamiltonian formalism and mechanics

We now present an alternative formulation of the results of Euler and Lagrange, proposed many
years later by Hamilton. These mathematical developments will be of great significance to us later
in the context of optimal control. We will also discuss the physical interpretation of the relevant
concepts and equations, which is somewhat secondary to our main goals but nevertheless interesting
and important.

2.4.1 Hamilton’s canonical equations

In Section 2.3.4 we came across two quantities, which we recall here and for which we now introduce
special symbols. The first one was the momentum

p := Ly′(x, y, y′) (2.28)

which we will usually regard as a function of x associated to a given curve y = y(x). The second
object was the Hamiltonian

H(x, y, y′, p) := p · y′ − L(x, y, y′) (2.29)

which is written here as a general function of four variables but also becomes a function of x alone
when evaluated along a curve. The inner product sign · in the definition of H reflects the fact that
in the multiple-degrees-of-freedom case, y ′ and p are vectors.

The variables y and p are called the canonical variables. Suppose now that y is an extremal, i.e.,
satisfies the Euler-Lagrange equation (2.18). It turns out that the differential equations describing
the evolution of y and p along such a curve, when written in terms of the Hamiltonian H, take a
particularly nice form. For y, we have

dy

dx
= y′(x) = Hp(x, y(x), y

′(x)).

For p, we have

dp

dx
=

d

dx
Ly′(x, y(x), y′(x)) = Ly(x, y(x), y

′(x)) = −Hy(x, y(x), y
′(x))

where the second equality is the Euler-Lagrange equation. In more concise form, the result is

y′ = Hp, p′ = −Hy (2.30)

which is known as the system of Hamilton’s canonical equations. This reformulation of the Euler-
Lagrange equation was proposed by Hamilton in 1835. Since we are not assuming here that we are
in the “no y” case or the “no x” case of Section 2.3.4, the momentum p and the Hamiltonian H need
not be constant along extremals.
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Exercise 2.7 Confirm directly from the equations (2.28)–(2.30) that in the “no y” case p is constant
along extremals and in the “no x” case H is constant along extremals.

An important additional observation is that the partial derivative of H with respect to y ′ is

Hy′(x, y, y′, p) = p− Ly′(x, y, y′) = 0 (2.31)

where the last equality follows from the definition (2.28) of p. This suggests that, in addition
to the canonical equations (2.30), another necessary condition for optimality should be that H
has a stationary point as a function of y ′ along an optimal curve. To make this statement more
precise, let us plug the following arguments into the Hamiltonian: an arbitrary x ∈ [a, b]; for y, the
corresponding position y(x) of the optimal curve; for p, the corresponding value of the momentum
p(x) = Ly′(x, y(x), y′(x)). Let us keep the last remaining argument, y ′, as a free variable, and relabel
it as z for clarity. This yields the function

H∗(z) := Ly′(x, y(x), y′(x)) · z − L(x, y(x), z). (2.32)

Our claim is that this function has a stationary point when z equals y ′(x), the velocity of the optimal
curve at x. Indeed, it is immediate to check that

dH∗

dz
(y′(x)) = 0. (2.33)

Later we will see that in the context of the maximum principle this stationary point is actually an
extremum, in fact, a maximum. Moreover, the statement about the maximum remains true when H
is not necessarily differentiable or when y ′ takes values in a set with a boundary and Hy′ 6= 0 on this
boundary; the basic property is not that the derivative vanishes but that H achieves the maximum
in the above sense.

Mathematically, the Lagrangian L and the Hamiltonian H are related via a construction known
as the Legendre transformation. Since this transformation is classical and finds applications in many
diverse areas (optimization, geometry, physics), we now proceed to describe it. However, we will see
that it does not quite provide the right point of view for our future developments, and it is included
here mainly for historical reasons.

2.4.2 Legendre transformation

Consider a function f : R → R, whose argument we denote by ξ (the curve in Figure 2.10 is a possible
graph of f). For simplicity we are considering the scalar case, but the extension to f : R

n → R is
straightforward. The Legendre transform of f will be a new function, f ∗, of a new variable, p ∈ R.

Let p be given. Draw a line through the origin with slope p. Take a point ξ = ξ(p) at which the
(directed) vertical distance from the graph of f to this line is maximized:

ξ(p) := arg max
ξ

{pξ − f(ξ)}. (2.34)

(Note that ξ(p) may not exist, so the domain of f ∗ is not known a priori. Also, ξ(p) is not necessarily
unique unless f is a strictly convex function.) Now, define f ∗(p) to be this maximal value of the gap
between pξ and f(ξ):

f∗(p) := pξ(p) − f(ξ(p)) = max
ξ

{pξ − f(ξ)}. (2.35)
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We can also write this definition more symmetrically as

f∗(p) + f(ξ) = pξ (2.36)

where p and ξ = ξ(p) are related via (2.34). When f is differentiable, the maximization condi-
tion (2.34) implies that the derivative of pξ − f(ξ) with respect to ξ must equal 0 at ξ(p):

p− f ′(ξ(p)) = 0. (2.37)

Geometrically, the tangent line to the graph of f at ξ(p) must have slope p, i.e., it must be parallel
to the original line through the origin (see Figure 2.10). If f is convex then (2.34) and (2.37) are
equivalent.

The Legendre transformation has some nice properties. For example, f ∗ is a convex function
even if f is not convex. The reason is that f ∗ is a pointwise maximum of functions that are affine in
p, as is clear from (2.35). Also, for convex functions the Legendre transformation is involutive: if f
is convex, then f ∗∗ = f .

Now let us return to the Hamiltonian H defined in (2.29). We claim that it can be obtained by
applying the Legendre transformation to the Lagrangian L. More precisely, for arbitrary fixed x and
y let us consider L(x, y, y′) as a function of ξ = y′. The relation (2.37) between p and ξ(p) = y′(p)
becomes

p− Ly′(x, y, y′(p)) = 0 (2.38)

which corresponds to our earlier definition (2.28) of the momentum p. Next, (2.35) gives

L∗(x, y, p) = py′(p) − L(x, y, y′(p)) (2.39)

which is essentially our earlier definition (2.29) of the Hamiltonian H. But there is a difference:
in (2.29) we had y′ as an independent argument of H, while in (2.39) y′ is a dependent variable
expressed in terms of x, y, p by the implicit relation (2.38). In other words, the Legendre transform
of L(x, y, y′) as a function of y′ (with x, y fixed) is H(x, y, p), which is a function of p (with x, y
fixed) and no longer has y′ as an argument. Note that the above derivation is formal, i.e., we are
ignoring the question of whether or not (2.38) can indeed be solved for y′. This issue did not arise
earlier when we were working with the Hamiltonian H = H(x, y, y ′, p).

The above approach has another, more important drawback. Recall the observation based
on (2.31) that H has a stationary point as a function of y ′ along an optimal curve. This property
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will be crucial later; combined with the canonical equations (2.30), it will lead us to the maximum
principle. But it only makes sense when we treat y ′ as an independent variable in the definition of H.
On the other hand, Hamilton and other 19th century mathematicians did not write the Hamiltonian
in this way; they followed the convention of viewing y ′ as a dependent variable defined implicitly
by (2.38). This is probably why it was not until the late 1950s that the maximum principle was
discovered.

2.4.3 Principle of least action and conservation laws

Newton’s second law of motion in the three-dimensional space can be written as the vector equation

d

dt
(mq̇) = −Uq (2.40)

where q = (x, y, z)T is the vector of coordinates, q̇ = dq/dt is the velocity vector, and U = U(q)
is the potential; consequently, mq̇ is the momentum and −Uq is the force. Note that we are only
considering situations where the force is conservative, i.e., corresponds to the negative gradient of
some potential function. Planar motion is obtained as a special case by dropping the z-coordinate.

It turns out that there is a direct relationship between (2.40) and the Euler-Lagrange equation.
This is difficult to see right now because the notation in (2.40) is very different from the one we have
been using. So, let us modify our earlier notation to better match (2.40). First, let us write t instead
of x for the independent variable. Second, let us write q instead of y for the dependent variable.
Then also y′ becomes q̇ and we have L = L(t, q, q̇). In the new notation, the Euler-Lagrange equation
becomes

d

dt
Lq̇ = Lq. (2.41)

Note that since q ∈ R
3, we are referring to the multiple-degrees-of-freedom version (2.21) of the

Euler-Lagrange equation, with n = 3.

Some remarks on the above change of notation are in order (as it is also a preview of things
to come). The change from x to t is conceptually significant, because it implies that the curves
are parameterized by time and thus describe some dynamic behavior (e.g., trajectories of a mov-
ing object). In problems such as Dido’s problem or catenary problem, where there is no motion
with respect to time, this notation would not be justified. Other variational problems, such as the
brachistochrone problem, do indeed deal with paths of a moving particle. (We did not, however, ex-
plicitly use time when formulating the brachistochrone problem, and it would not make sense to just
relabel x as t in our earlier formulation of that problem. Instead, we would need to reparameterize
the (x, y)-trajectories with respect to time, which yields a different Lagrangian; we will do this in
Section 3.2.) In mechanics, as well as in control theory, time is the default independent variable.
Accordingly, when we come to the optimal control part of the book, we will make this change of
notation permanent. For now, we adopt it just temporarily while we discuss applications of calculus
of variations in mechanics. As for the (time-)dependent coordinate variables, it is natural to denote
them by x and y for planar curves and by x, y and z for spatial curves. In general, the choice of a
label for the coordinate vector is just a matter of preference and convention; the mechanics literature
typically favors q or r, while in control theory it is customary to use x.

Let us now compare (2.41) with (2.40). Is there a choice of the Lagrangian L that would make
these two equations the same? The answer is yes, and the reader will have no difficulty in seeing
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that the following Lagrangian does the job:

L :=
1

2
m
(
ẋ2 + ẏ2 + ż2

)
− U(q) (2.42)

which is the difference between the kinetic energy T := 1
2m(q̇ · q̇) and the potential energy. We

conclude that Newton’s equations of motion can be recovered from a path optimization problem. This
important result is known as Hamilton’s principle of least action: Trajectories of mechanical
systems are extremals of the functional

∫ t1

t0

(T − U)dt

which is called the action integral. In general, these extremals are not necessarily minima. However,
they are indeed minima—hence the term “least action” is accurate—if the time horizon is sufficiently
short; this will follow from the second-order sufficient condition for optimality, to be derived in
Section 2.6.2.

For example, if the potential is 0, then the trajectories are the extremals of
∫ t1
t0

1
2m(q̇ · q̇)dt,

which are straight lines. We saw in Example 2.2 that straight lines arise as extremals when the
Lagrangian is the arclength; the kinetic energy gives the same extremals. In the presence of gravity,
the paths along which the action integral is minimized can be viewed as “straight lines” (shortest
paths, or geodesics) in a curved space whose metric is determined by gravitational forces. This view
of mechanics forms the basis for Einstein’s theory of general relativity.

Observe the difference between the law that the derivative of the momentum equals the force and
the principle that the action integral is minimized. The former condition holds pointwise in time,
while the latter is a statement about the entire trajectory. However, their relation is not surprising,
because if the action integral is minimized then every small piece of the trajectory must also deliver
minimal action. In the limit as the length of the piece approaches 0, we recover the differential
statement. We already discussed this point in the general context of the Euler-Lagrange equation
(see page 31).

Now, what is the physical meaning of the Hamiltonian? Substituting q for y in (2.28)–(2.29) and
using (2.42), we have

H = Lq̇ · q̇ − L = m(q̇ · q̇) −
(

1

2
m(q̇ · q̇) − U

)
=

1

2
m(q̇ · q̇) + U = T + U = E

which is the total energy (kinetic plus potential). We see that the Hamiltonian not only enables a
convenient rewriting of the Euler-Lagrange equation in the form of the canonical equations (2.30),
but also has a very clear mechanical interpretation.

Exercise 2.8 Reproduce all the derivations of this subsection (up to this point) for the more general
setting of N moving particles.

Recall that in Section 2.3.4 we studied two special cases for which we found conserved quantities,
i.e., functions that remain constant along extremals. We now revisit these two conservation laws—as
well as another related case—in the context of the principle of least action, which permits us to see
their physical meaning.



CALCULUS OF VARIATIONS AND OPTIMAL CONTROL 41

Conservation of energy. In a conservative system, the potential is fixed and does not change
with time. Since the kinetic energy does not explicitly depend on time either, we have L = L(q, q̇).
In other words, the Lagrangian is invariant under time shifting. In our old notation, this corresponds
to the “no x” case from Section 2.3.4, and we know that in this case the Hamiltonian is conserved.
We also just saw that the Hamiltonian is the total energy of the system. Therefore, this is nothing
but the well-known principle of conservation of energy.

Conservation of momentum. Suppose that no force is acting on the system (i.e., the system is
closed). Since the force is given by Lq = −Uq, this implies that U must be constant. The kinetic
energy T depends on q̇ but not on q. Thus the Lagrangian L = T − U does not explicitly depend
on q, which means that it is invariant under parallel translations. This situation corresponds to the
“no y” case from Section 2.3.4, where we saw that the momentum, Lq̇ = mq̇ in the present notation,
is conserved. A more general statement is that for each coordinate qi that does not appear in L, the
corresponding component Lq̇i

= mq̇i of the momentum is conserved.

Conservation of angular momentum. Consider a planar motion in a central field; in polar
coordinates (r, θ), this is defined by the property that U = U(r), i.e., the potential depends only on
the radius and not on the angle. This means that no torque is acting on the system, making the
Lagrangian L invariant under rotations. Now we can use the fact (noted at the end of Section 2.3.3)
that the Euler-Lagrange equation looks the same in all coordinate systems. In particular, in polar
coordinates we have

Lθ =
d

dt
Lθ̇ (2.43)

and the analogous equation for r (which we do not need here). Arguing exactly as before, we can show
that in the present “no θ” case the corresponding component of the momentum, L θ̇, is conserved.
Converting the kinetic energy from Cartesian to polar coordinates, we have

T =
1

2
m(ẋ2 + ẏ2) =

1

2
m(ṙ2 + r2θ̇2). (2.44)

Thus the conserved quantity, in polar and Cartesian coordinates, is

Lθ̇ = Tθ̇ = mr2θ̇ = m(xẏ − yẋ).

These are familiar expressions for the angular momentum.

We remark that all of the above examples are special instances of a general result known as
Noether’s theorem, which says that invariance of the action integral under some transformation
(e.g., time shift, translation, rotation) implies the existence of a conserved quantity.

2.5 Variational problems with constraints

In Section 2.3 we showed that the Euler-Lagrange equation is a necessary condition for optimality
in the context of the Basic Calculus of Variations Problem, where the boundary points are fixed but
the curves are otherwise unconstrained. In this section we generalize that result to situations where
equality constraints are imposed on the admissible curves. Before proceeding, the reader should
find it helpful to review the material in Section 1.2.2 devoted to constrained optimality and the
method of Lagrange multipliers for finite-dimensional problems. It is also useful to recall the general
definitions of an extremum from Section 1.3.1 and of an admissible perturbation from Section 1.3.2;
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here the function space V is the same as at the beginning of Section 2.3 while the subset A is smaller
because it reflects additional constraints (to be specified below). Finally, the explanation given at the
beginning of Section 2.3 applies here as well: the conditions in this section are developed mainly with
the 1-norm in mind, i.e., they are primarily designed to test for weak rather than strong minima.

2.5.1 Integral constraints

Suppose that we augment the Basic Calculus of Variations Problem with an additional constraint of
the form

C(y) :=

∫ b

a
M(x, y(x), y′(x))dx = C0 (2.45)

where C stands for the “constraint” functional, M is a function from the same class as L, and C0

is a given constant. In other words, the problem is to minimize the functional given by (2.9) over
C1 curves y(·) satisfying the boundary conditions (2.8) and subject to the integral constraint (2.45).
For simplicity, we are considering the case of only one constraint. We already saw examples of such
constrained problems, namely, Dido’s problem and the catenary problem.

Assume that a given curve y is an extremum. What follows is a heuristic argument motivated by
our earlier derivation of the first-order necessary condition for constrained optimality in the finite-
dimensional case (involving Lagrange multipliers). Let us consider perturbed curves of the familiar
form

y + αη.

To be admissible, the perturbation η must preserve the constraint (in addition to vanishing at the
endpoints as before). In other words, we must have C(y + αη) = C0 for all α sufficiently close to 0.
In terms of the first variation of C, this property is easily seen to imply that

δC|y (η) = 0. (2.46)

Repeating the same calculation as in our original derivation of the Euler-Lagrange equation, we
obtain from this that

∫ b

a

(
My(x, y(x), y

′(x)) − d

dx
My′(x, y(x), y′(x))

)
η(x)dx = 0. (2.47)

Now our basic first-order necessary condition (1.37) implies that for every η satisfying (2.47), we
must have

δJ |y (η) =

∫ b

a

(
Ly(x, y(x), y

′(x)) − d

dx
Ly′(x, y(x), y′(x))

)
η(x)dx = 0.

This conclusion can be summarized as follows:

∫ b

a

(
Ly −

d

dx
Ly′

)
η(x)dx = 0 ∀ η such that

∫ b

a

(
My −

d

dx
My′

)
η(x)dx = 0. (2.48)

The reader will note that (2.48) is quite similar to the condition (1.21) on page 10. It also has a
similar consequence, namely, that there exists a constant λ∗ (a Lagrange multiplier) such that

(
Ly −

d

dx
Ly′

)
+ λ∗

(
My −

d

dx
My′

)
= 0 (2.49)
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for all x ∈ [a, b]. Rearranging terms, we see that this is equivalent to

(L+ λ∗M)y =
d

dx
(L+ λ∗M)y′

which amounts to saying that the Euler-Lagrange equation holds for the augmented Lagrangian
L+ λ∗M . In other words, y is an extremal of the augmented cost functional

(J + λ∗C)(y) =

∫ b

a

(
L(x, y(x), y′(x)) + λ∗M(x, y(x), y′(x))

)
dx. (2.50)

A closer inspection of the above argument reveals, however, that we left a couple of gaps. First,
we did not justify the step of passing from (2.48) to (2.49). In the finite-dimensional case, we had to
make the corresponding step of passing from (1.21) to (1.22) which then gave (1.25); we would need
to construct a similar reasoning here, treating the integrals in (2.48) as inner products of η with the
functions in parentheses (inner products in L2). Second, there was actually a more serious logical
flaw: the condition (2.46) is necessary for the perturbation η to preserve the constraint (2.45), but
we do not know whether it is sufficient. Without this sufficiency, the validity of (2.48) is in serious
doubt. In the finite-dimensional case, to reach (1.21) we used the fact that (1.20) was a necessary and
sufficient condition for d to be a tangent vector; we did not, however, give a proof of the sufficiency
part (which is not trivial).

It is also important to recall that in the finite-dimensional case studied in Section 1.2.2, the first-
order necessary condition for constrained optimality in terms of Lagrange multipliers is valid only
when an additional technical assumption holds, namely, the extremum must be a regular point of the
constraint surface. This assumption is needed to rule out degenerate situations (see Exercise 1.2);
in fact, it enables precisely the sufficiency part mentioned in the previous paragraph. It turns out
that in the present case, a degenerate situation arises when the test curve y satisfies the constraint
but all nearby curves violate it. This can happen if y is an extremal of the constraint functional
C, i.e., satisfies the Euler-Lagrange equation for M . For example, consider the length constraint
C(y) :=

∫ 1
0

√
1 + (y′)2dx = 1 together with the boundary conditions y(0) = y(1) = 0. Clearly, y ≡ 0

is the only admissible curve (it is the unique global minimum of the constraint functional), hence it
automatically solves our constrained problem no matter what J is. The second integral in (2.48) is
0 for every η since y is an extremal of C. Thus if (2.48) were true, it would imply that y must be an
extremal of J , but as we just explained this is not necessary. We see that if we hope for (2.48) to be
a necessary condition for constrained optimality, we need to assume that y is not an extremal of C,
so that there exist nearby curves at which C takes values both larger and smaller than C0.

We can now conjecture the following first-order necessary condition for constrained opti-
mality: If y(·) is an extremum for the constrained problem and is not an extremal of the constraint
functional C (i.e., does not satisfy the Euler-Lagrange equation for M), then it is an extremal of the
augmented cost functional (2.50) for some λ∗ ∈ R. We can also state this condition more succinctly,
combining the nondegeneracy assumption and the conclusion into one statement: y must satisfy the
Euler-Lagrange equation for λ∗0L+ λ∗M , where λ∗0 and λ∗ are constants (not both 0). Indeed, this
means that either λ∗0 = 0 and y is an extremal of C, or λ∗0 6= 0 and y is an extremal of J +(λ∗/λ∗0)C.
The number λ∗0 is called the abnormal multiplier (it also has an analog in optimal control which will
appear in Section 4.1).

It turns out that this conjecture is correct. However, rather than fixing the above faulty argu-
ment, it is easier to give an alternative proof by proceeding along the lines of the second proof in
Section 1.2.2.
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Exercise 2.9 Write down a correct proof of the first-order necessary condition for constrained op-
timality by considering a two-parameter family of perturbed curves y + α1η1 + α2η2 and using the
Inverse Function Theorem.

In the unconstrained case, as we noted earlier, the general solution of the second-order Euler-
Lagrange differential equation depends on two arbitrary constants whose values are to be determined
from the two boundary conditions. Here we have one additional parameter λ∗ but also one additional
constraint (2.45), so generically we still expect to obtain a unique extremal.

The generalization of the above necessary condition to problems with several constraints is
straightforward: we need one Lagrange multiplier for each constraint (cf. Section 1.2.2). The
multiple-degrees-of-freedom setting also presents no complications.

Similarly to the finite-dimensional case, Lagrange’s original intuition was to replace constrained
minimization of J with respect to y by unconstrained minimization of

∫ b

a
Ldx+ λ

(∫ b

a
Mdx− C0

)
(2.51)

with respect to y and λ. For curves satisfying the constraint, the values of the two functionals
coincide. However, for the same reasons as in the discussion on page 13, considering this augmented
cost (which matches (2.50) except for an additive constant) does not lead to a rigorous justification
of the necessary condition.

Equipped with the above necessary condition for the case of integral constraints as well as our pre-
vious experience with the Euler-Lagrange equation, we can now study Dido’s isoperimetric problem
and the catenary problem.

Exercise 2.10 Show that optimal curves for Dido’s problem are circular arcs and that optimal
curves for the catenary problem satisfy (2.3).

2.5.2 Non-integral constraints

We now suppose that instead of the integral constraint (2.45) we have an equality constraint which
must hold pointwise:

M(x, y(x), y′(x)) = 0 (2.52)

for all x ∈ [a, b]. A vector-valued function M can be used to describe multiple constraints, but here
we assume for simplicity that there is only one constraint.

Let y be a test curve. It turns out that the first-order necessary condition for optimality in this
case is similar to that for integral constraints, but the Lagrange multiplier is now a function of x. In
other words, the Euler-Lagrange equation must hold for the augmented Lagrangian

L+ λ∗(x)M

where λ∗ : [a, b] → R is some function. As in Section 2.5.1, we need a technical assumption to rule
out degenerate cases. Here we need to assume that there are at least two degrees of freedom and
that everywhere along the curve we have My′ 6= 0 or, if y′ does not appear in (2.52), My 6= 0. (This
permits us, via the Implicit Function Theorem, to locally solve for one dependent variable component
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in (2.52) in terms of the others and to guarantee the existence of other curves near y satisfying the
constraint.)

We will not give a proof of the above result, and instead limit ourselves to an intuitive explanation.
The integral constraint (2.45) is global, in the sense that it applies to the entire curve. In contrast,
the non-integral constraint (2.52) is local, i.e., applies to each point on the curve. Locally around
each point, there is no difference between the two. This suggests that for each x there should exist
a Lagrange multiplier, and these can be pieced together to give the desired function λ∗ = λ∗(x).
Another way to see the correspondence between the two problems is to follow Lagrange’s idea of
considering an augmented cost functional which coincides with the original one for curves satisfying
the constraint. For integral constraints this was accomplished by (2.51), while here we can consider
the minimization of ∫ b

a
Ldx+

∫ b

a
λ(x)Mdx (2.53)

over y and λ. Note that λ no longer needs to be constant, since M is identically 0. (The role of
integration in the second term is simply to obtain a cost for the whole curve.)

What if we want to solve the constraint (2.52) for y′ as a function of x and y? In general, we
have fewer constraints than the dimension of y ′, i.e., the system of equations is under-determined.
This means that we will have some free parameters; denoting by u the vector of these parameters,
we can write the solution in the form

y′ = f(x, y, u).

The reader hopefully recognizes this as a control system, in the disguise of a somewhat unfamiliar
notation compared to (1.1). For example, if n = 2 (two degrees of freedom) and M(x, y, y ′) = y′1−y2,
then we have y′1 = y2 and y′2 = u (free). Incidentally, the case of no constraints (our Basic Calculus
of Variations Problem) corresponds to y ′ = u. We will turn our attention to control problems later
in the book, and the present lack of depth in our treatment of non-integral constraints will be amply
compensated for. In particular, the “distributed” Lagrange multiplier λ∗(·) will correspond to the
adjoint vector, or costate, in the maximum principle.

Holonomic constraints

Consider the special case when the constraint function M does not depend on y ′, so that the con-
straints take the form

M(x, y(x)) = 0. (2.54)

Alternatively, we might be able to integrate the constraints (2.52) to bring them to this form. We
then say that the constraints are holonomic. The equation (2.54) gives us a constraint surface in
the (x, y)-space, and we have two options for studying our constrained optimization problem. The
first one is to use the previous necessary condition involving a Lagrange multiplier function. The
second option is to find fewer independent variables that parameterize the constraint surface, and
reformulate the problem in terms of these variables. The problem then becomes an unconstrained
one, and can be studied via the usual Euler-Lagrange equation. Sometimes this latter approach turns
out to be more effective.

Example 2.5 Consider a simple planar pendulum depicted in Figure 2.11. The center of coordinates
is attached to the pivot point. The length of the pendulum is ` and the mass at the tip is m. We
want to derive trajectories of motion for this system, using the principle of least action. Since this
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is a mechanical example, we use the time t as the independent variable, treating x and y as the
dependent variables (see Section 2.4.3).

PSfrag replacements
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Figure 2.11: The pendulum

The constraint is M(x, y) := x2 + y2 − `2 = 0, which is holonomic. In polar coordinates (r, θ),
this means that r ≡ ` while the angle θ is free. Let us follow the second approach described above
and express everything in terms of θ as a single degree of freedom, writing θ̇ for dθ/dt. The kinetic
energy is T = 1

2m`
2θ̇2 (this follows from the formula (2.44) at the end of Section 2.4.3). The potential

energy is U = mg`(1 − cos θ), up to an additive constant (the present choice gives U = 0 at the
downward equilibrium). Thus the Lagrangian is L = T − U = 1

2m`
2θ̇2 + mg`(cos θ − 1) and the

Euler-Lagrange equation (2.43) gives

θ̈ = −g
`

sin θ (2.55)

which is the familiar pendulum equation.

Exercise 2.11 Study the above example directly in the (x, y)-coordinates, with the help of the
necessary condition for constrained optimality involving a Lagrange multiplier function. Go as far
as you can in deriving the equations of motion. Are you able to reproduce (2.55) using this method?

In control theory, one is often more interested in the opposite situation where the constraints are
nonholonomic, i.e., cannot be integrated. In this case, two arbitrary points in the (x, y)-space can be
connected by a path satisfying the constraints, and there is no lower-dimensional constraint surface.

2.6 Second-order conditions

In Section 2.3 we used the first variation to obtain the first-order necessary condition for optimality
expressed by the Euler-Lagrange equation. In this section we will work with the second variation and
derive first a necessary condition and then a sufficient condition for optimality. The setting is that
of the Basic Calculus of Variations Problem and weak minima (cf. the discussion at the beginning of
Section 2.3).

Recall from Section 1.3.3 the second-order expansion

J(y + αη) = J(y) + δJ |y (η)α + δ2J
∣∣
y
(η)α2 + o(α2) (2.56)
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which defines the quadratic form δ2J
∣∣
y

called the second variation. The basic second-order necessary

condition (1.40) says that if a curve y is a local minimum of J , then for all admissible perturbations η
we must have δ2J

∣∣
y
(η) ≥ 0. In the present context, the function space V and the subset A ⊂ V are

as at the beginning of Section 2.3, and so admissible perturbations are C1 functions satisfying (2.11).
Using the fact that the functional J takes the form (2.9), we will derive in Section 2.6.1 a more
explicit second-order necessary condition for this situation.

We also discussed in Section 1.3.3 that to develop a second-order sufficient condition for a local
minimum, we need to assume the first-order necessary condition, strengthen the second-order nec-
essary condition to δ2J

∣∣
y
(η) > 0, and then try to prove that the second-order term dominates the

higher-order term in the expansion (2.56). For the variational problem at hand, we will be able to
carry out this program in Section 2.6.2.

Of course, second-order conditions for a local maximum are easily obtained by reversing the
inequalities (or, equivalently, by replacing J with −J). For this reason, we confine our attention to
minima.

2.6.1 Legendre’s necessary condition for a weak minimum

Let us compute δ2J
∣∣
y

for a given test curve y. Since third-order partial derivatives of L will appear,

we assume that L ∈ C3. We work with the single-degree-of-freedom case for now. The left-hand side
of (2.56) is

J(y + αη) =

∫ b

a
L(x, y(x) + αη(x), y′(x) + αη′(x))dx.

We need to write down its second-order Taylor expansion with respect to α. We do this by expanding
the function inside the integral with respect to α (using the chain rule) and separating the terms of
different orders in α:

J(y + αη) =

∫ b

a
L(x, y(x), y′(x))dx +

∫ b

a

(
Ly(x, y(x), y

′(x))η(x) + Ly′(x, y(x), y′(x))η′(x)
)
dx · α

+
1

2

∫ b

a

(
Lyy(x, y(x), y

′(x))(η(x))2 + 2Lyy′(x, y(x), y′(x))η(x)η′(x) (2.57)

+ Ly′y′(x, y(x), y′(x))(η′(x))2
)
dx · α2 + o(α2).

Matching this expression with (2.56) term by term, we deduce that the second variation is given by

δ2J
∣∣
y
(η) =

1

2

∫ b

a

(
Lyyη

2 + 2Lyy′ηη′ + Ly′y′(η′)2
)
dx

where the integrand is evaluated along (x, y(x), y ′(x)). This is indeed a quadratic form as defined in
Section 1.3.3. Note that it explicitly depends on η ′ as well as on η. In contrast with the first variation
(analyzed in detail in Section 2.3.1), the dependence of the second variation on η ′ is essential and
cannot be eliminated. We can, however, simplify the expression for δ2J

∣∣
y
(η) by eliminating the

“mixed” term containing the product ηη ′. We do this by using—as we did in our earlier derivation
of the Euler-Lagrange equation—the method of integration by parts:

∫ b

a
2Lyy′ηη′dx =

∫ b

a
Lyy′

d

dx
(η2)dx = Lyy′η2

∣∣b
a
−
∫ b

a

d

dx
(Lyy′)η2dx.
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The first, non-integral term on the right-hand side vanishes due to the boundary conditions (2.11).
Therefore, the second variation can be written as

δ2J
∣∣
y
(η) =

∫ b

a

(
P (x)(η′(x))2 +Q(x)(η(x))2

)
dx (2.58)

where

P (x) :=
1

2
Ly′y′(x, y(x), y′(x)), Q(x) :=

1

2

(
Lyy(x, y(x), y

′(x)) − d

dx
Lyy′(x, y(x), y′(x))

)
. (2.59)

Note that P is continuous, and Q is also continuous at least when y ∈ C2.

When we come to the issue of sufficiency in the next subsection, we will also need a more precise
characterization of the higher-order term labeled as o(α2) in the expansion (2.57). The next exercise
invites the reader to go back to the derivation of (2.57) and analyze this term in more detail.

Exercise 2.12 Use Taylor’s theorem with remainder (see, e.g., [Rud76, Theorem 5.15]) to show that
the o(α2) term in (2.57) can be written in the form

o(α2) =

∫ b

a

(
P̄ (x, η(x), η′(x), α)(η′(x))2 + Q̄(x, η(x), η′(x), α)(η(x))2

)
dx · α2 (2.60)

where P̄ , Q̄ → 0 as α → 0. Moreover, show that this convergence is uniform over η with respect to
the 1-norm, in the sense that for every γ > 0 there exists an ε > 0 such that for |α| < ε we have
|P̄ (x, η(x), η′(x), α)|, |Q̄(x, η(x), η′(x), α)| < γ for all η with ‖η‖1 = 1 and all x ∈ [a, b], but the same
statement with respect to the 0-norm is in general false.

We know that if y is a minimum, then for all C1 perturbations η vanishing at the endpoints the
quantity (2.58) must be nonnegative:

∫ b

a

(
P (x)(η′(x))2 +Q(x)(η(x))2

)
dx ≥ 0. (2.61)

We would like to restate this condition in terms of P and Q only—which are defined directly from L
and y via (2.59)—so that we would not need to check it for all η. (Recall that we followed a similar
route earlier when passing from the condition (2.16) to the Euler-Lagrange equation via Lemma 2.1.)

What, if anything, does the inequality (2.61) imply about P and Q? Does it force at least one of
these two functions, or perhaps both, to be nonnegative on [a, b]? The two terms inside the integral
in (2.61) are of course not independent because η ′ and η are related. So, we should try to see if maybe
one of them dominates the other. More specifically, can it happen that η ′ is large (in magnitude)
while η is small, or the other way around?

To answer these questions, consider a family of perturbations ηε parameterized by small ε > 0,
depicted in Figure 2.12. The function ηε equals 0 everywhere outside some interval [c, d] ⊂ [a, b],
and inside this interval it equals 1 except near the endpoints where it rapidly goes up to 1 and back
down to 0. This rapid transfer is accomplished by the derivative η ′ε having a short pulse of width
approximately ε and height approximately 1/ε right after c, and a similar negative pulse right before
d. Here ε is small compared to d−c. We base the subsequent argument on this graphical description,
but it is not difficult to specify a formula for ηε and use it to verify the claims that follow; see, e.g.,
[GF63, p. 103] for a similar construction.
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Figure 2.12: The graphs of ηε and its derivative

We can see that ∣∣∣∣
∫ b

a
Q(x)(ηε(x))

2dx

∣∣∣∣ ≤
∫ d

c
|Q(x)|dx

and this bound is uniform over ε. On the other hand, for nonzero P the integral
∫ b
a P (x)(η′ε(x))

2dx
does not stay bounded as ε→ 0, because it is of order 1/ε. In particular, let us see this more clearly
for the case when P is negative on [c, d], so that for some δ > 0 we have P (x) ≤ −δ for all x ∈ [c, d].
Assume that there is an interval inside [c, c+ ε] of length at least ε/2 on which η ′ε is no smaller than
1/(2ε); this property is completely consistent with our earlier description of ηε and η′ε. We then have

∫ b

a
P (x)(η′ε(x))

2dx ≤
∫ c+ε

c
P (x)(η′ε(x))

2dx ≤ −δ 1

4ε2
ε

2
= − δ

8ε
.

As ε→ 0, the above expression tends to −∞, dominating the bounded Q-dependent term. It follows
that the inequality (2.61) cannot hold for all η if P is negative on some subinterval [c, d]. But this
means that for y to be a minimum, P must be nonnegative everywhere on [a, b]. Indeed, if P (x̄) < 0
for some x̄ ∈ [a, b], then by continuity of P we can find a subinterval [c, d] containing x̄ on which P
is negative, and the above construction can be applied.3

Recalling the definition of P in (2.59), we arrive at our second-order necessary condition
for optimality: For all x ∈ [a, b] we must have

Ly′y′(x, y(x), y′(x)) ≥ 0 (2.62)

3Note that while ‖ηε‖1 is large for small ε, once ε is fixed we have ‖αη‖1 → 0 as α → 0, so the perturbed curves
are still close to y in the sense of the 1-norm.
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This condition is known as Legendre’s condition, as it was obtained by Legendre in 1786. Note
that it places no restrictions on the sign of Q; intuitively speaking, the Q-dependent term in the
second variation is dominated by the P -dependent term, hence Q can in principle be negative along
the optimal curve (this point will become clearer in the next subsection). For multiple degrees of
freedom, the proof takes a bit more work but the statement of Legendre’s condition is virtually
unchanged: Ly′y′(x, y(x), y′(x)), which becomes a symmetric matrix, must be positive semidefinite
for all x, i.e., (2.62) must hold in the matrix sense along the optimal curve.

As a brief digression, let us recall our definition (2.29) of the Hamiltonian:

H(x, y, y′, p) = p · y′ − L(x, y, y′) (2.63)

where p = Ly′(x, y, y′). We already noted in Section 2.4.1 that when H is viewed as a function of y ′

with the other arguments evaluated along an optimal curve y, it should have a stationary point at
y′ = y′(x), the velocity of y at x. More, precisely, the function H ∗ defined in (2.32) has a stationary
point at z = y′(x), which is a consequence of (2.33). Legendre’s condition tells us that, in addition,
Hy′y′ = −Ly′y′ ≤ 0 along an optimal curve, which we can rewrite in terms of H ∗ as

d2H∗

dz2
(y′(x)) = −Ly′y′(x, y(x), y′(x)) ≤ 0.

Thus, if the above stationary point is an extremum, then it is necessarily a maximum. This interpre-
tation of necessary conditions for optimality moves us one step closer to the maximum principle. The
basic idea behind our derivation of Legendre’s condition will reappear in Section 3.4 in the context of
optimal control, but eventually (in Chapter 4) we will obtain a stronger result using more advanced
techniques.

2.6.2 Sufficient condition for a weak minimum

We are now interested in obtaining a second-order sufficient condition for proving optimality of a
given test curve y. Looking at the expansion (2.56) and recalling our earlier discussions, we know
that we want to have δ2J

∣∣
y
(η) > 0 for all admissible perturbations, which means having a strict

inequality in (2.61). In addition, we need some uniformity to be able to dominate the o(α2) term.
Since we saw that the P -dependent term inside the integral in (2.61) is the dominant term in the
second variation, it is natural to conjecture—as Legendre did—that having P (x) > 0 for all x ∈ [a, b]
should be sufficient for the second variation to be positive definite. Legendre tried to prove this
implication using the following clever approach. For every differentiable function w = w(x) we have

0 = wη2
∣∣b
a

=

∫ b

a

d

dx
(wη2)dx =

∫ b

a
(w′η2 + 2wηη′)dx

where the first equality follows from the constraint η(a) = η(b) = 0. This lets us rewrite the second
variation as
∫ b

a

(
P (x)(η′(x))2 +Q(x)(η(x))2

)
dx =

∫ b

a

(
P (x)(η′(x))2 + 2w(x)η(x)η′(x) + (Q(x) + w′(x))(η(x))2

)
dx.

Now, the idea is to find a function w that makes the integrand on the right-hand side into a perfect
square. Clearly, such a w needs to satisfy

P (Q+ w′) = w2. (2.64)
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This is a quadratic differential equation, of Riccati type, for the unknown function w.

Let us suppose that we found a function w satisfying (2.64). Then our second variation can be
written as

∫ b

a

(√
P (x)η′(x) +

w(x)√
P (x)

η(x)

)2

dx =

∫ b

a
P (x)

(
η′(x) +

w(x)

P (x)
η(x)

)2

dx (2.65)

(the division by P is permissible since we are operating under the assumption that P > 0). It is
obvious that the right-hand side of (2.65) is nonnegative, but we claim that it is actually positive for
every admissible perturbation η that is not identically 0. Indeed, if the integral is 0, then η ′+ w

P η ≡ 0.
We also know that η(a) = 0. But there is only one solution η : [a, b] → R of the first-order differential
equation η′ + w

P η = 0 with the zero initial condition, and this solution is η ≡ 0. So, it seems that
we have δ2J

∣∣
y
(η) > 0 for all η 6≡ 0. At this point we challenge the reader to see a gap in the above

argument.

The problem with the foregoing reasoning is that the Riccati differential equation (2.64) may
have a finite escape time, i.e., the solution w may not exist on the whole interval [a, b]. For example,
if P ≡ 1 and Q ≡ −1 then (2.64) becomes w′ = w2 + 1. Its solution w(x) = tan(x − c), where
the constant c depends on the choice of the initial condition, blows up when x− c is an odd integer
multiple of π/2. This means that w will not exist on all of [a, b] for any choice of w(a) if b− a ≥ π.

We see that a sufficient condition for optimality should involve, in addition to an inequality like
Ly′y′ > 0 holding pointwise along the curve, some “global” considerations applied to the entire curve.
In fact, this becomes intuitively clear if we observe that a concatenation of optimal curves is not
necessarily optimal. For example, consider the two great-circle arcs on a sphere shown in Figure 2.13.
Each arc minimizes the distance between its endpoints, but this statement is no longer true for their
concatenation—even when compared with nearby curves. At the same time, the concatenated arc
would still satisfy any pointwise condition fulfilled by the two pieces.

Figure 2.13: Concatenation of shortest-distance curves on a sphere is not shortest-distance

So, we need to ensure the existence of a solution for the differential equation (2.64) on the whole
interval [a, b]. This issue, which escaped Legendre’s attention, was pointed out by Lagrange in 1797.
However, it was only in 1837, after 50 years had passed since Legendre’s investigation, that Jacobi
closed the gap by providing a missing ingredient which we now describe. The first step is to reduce
the quadratic first-order differential equation (2.64) to another differential equation, linear but of
second order, by making the substitution

w(x) = −Pv
′(x)

v(x)
(2.66)
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where v is a new (unknown) function, twice differentiable and not equal to 0 anywhere. Rewrit-
ing (2.64) in terms of v, we obtain

P

(
Q−

d
dx(Pv′)v − P (v′)2

v2

)
=
P 2(v′)2

v2
.

Multiplying both sides of this equation by v (which is nonzero), dividing by P (which is positive),
and canceling terms, we can bring it to the form

Qv =
d

dx
(Pv′). (2.67)

This is the so-called accessory, or Jacobi, equation. We will be done if we can find a solution v of
the accessory equation (2.67) that does not vanish anywhere on [a, b], because then we can obtain a
desired solution w to the original equation (2.64) via the formula (2.66).

Since (2.67) is a second-order differential equation, the initial data at x = a needed to uniquely
specify a solution consists of v(a) and v ′(a). In addition, note that if v is a solution of (2.67) then
λv is also a solution for every constant λ. By adjusting λ appropriately, we can thus assume with
no loss of generality that v′(a) = 1 (since we are not interested in v being identically 0). Among
such solutions, let us consider the one that starts at 0, i.e., set v(a) = 0. A point c > a is said to be
conjugate to a if this solution v hits 0 again at c, i.e., v(c) = v(a) = 0 (see Figure 2.14). It is clear
that conjugate points are completely determined by P and Q, which in turn depend, through (2.59),
only on the test curve y and the Lagrangian L in the original variational problem.
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Figure 2.14: A conjugate point

Conjugate points have a number of interesting properties and interpretations, and their theory is
outside the scope of this book. We do mention the following interesting fact, which involves a concept
that we will see again later when proving the maximum principle. If we consider two neighboring
extremals (solutions of the Euler-Lagrange equation) starting from the same point at x = a, and if c
is a point conjugate to a, then at x = c the distance between these two extremals becomes small (an
infinitesimal of higher order) relative to the distance between the two extremals as well as between
their derivatives over [a, b]. As their distance over [a, b] approaches 0, the two extremals actually
intersect at a point whose x-coordinate approaches c. The reason behind this phenomenon is that
the Jacobi equation is, approximately, the differential equation satisfied by the difference between
two neighboring extremals; the next exercise makes this statement precise.

Exercise 2.13 Suppose that y and y+v are two neighboring extremals of the functional (2.9). Show
that then v must satisfy

Qv − d

dx
(Pv′) = o(‖v‖) (2.68)

where P and Q are as in (2.59) and ‖ · ‖ is a suitable norm (specify which one).

We see from (2.68) that v, which is the difference between the two extremals, satisfies the Jacobi
equation (2.67) modulo terms of higher order. A linear differential equation that describes, within
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terms of higher order, the propagation of the difference between two nearby solutions of a given
differential equation is called the variational equation (corresponding to the given differential equa-
tion). In this sense, the Jacobi equation is the variational equation for the Euler-Lagrange equation.
This property can be shown to imply the claims we made before the exercise. Intuitively speaking,
a conjugate point is where different neighboring extremals starting from the same point meet again
(approximately). If we revisit the example of shortest-distance curves on a sphere, we see that con-
jugate points correspond to diametrically opposite points: all extremals (which are great-circle arcs)
with a given initial point intersect after completing half a circle. We will encounter the concept of a
variational equation again in Section 4.2.4.

Now, suppose that the interval [a, b] contains no points conjugate to a. Let us see how this may
help us in our task of finding a solution v of the Jacobi equation (2.67) that does not equal 0 anywhere
on [a, b]. The absence of conjugate points means, by definition, that the solution with the initial
data v(a) = 0 and v′(a) = 1 never returns to 0 on [a, b]. This is not yet a desired solution because
we cannot have v(a) = 0. What we can do, however, is make v(a) very small but positive. Using
the property of continuity with respect to initial conditions for solutions of differential equations, it
is possible to show that such a solution will remain positive everywhere on [a, b].

In view of our earlier discussion, we conclude that the second variation δ2J
∣∣
y

is positive definite

(on the space of admissible perturbations) if P (x) > 0 for all x ∈ [a, b] and there are no points
conjugate to a on [a, b]. We remark in passing that the absence of points conjugate to a on [a, b]
is also a necessary condition for δ2J

∣∣
y

to be positive definite, and if δ2J
∣∣
y

is positive semidefinite

then no interior point of [a, b] can be conjugate to a. We are now ready to state the following
second-order sufficient condition for optimality: An extremal y(·) is a strict minimum if
Ly′y′(x, y(x), y′(x)) > 0 for all x ∈ [a, b] and the interval [a, b] contains no points conjugate to a.

Note that we do not yet have a proof of this result. Referring to the second-order expansion (2.56),
we know that under the conditions just listed δJ |y (η) = 0 (since y is an extremal) and δ2J

∣∣
y
(η)

given by (2.58) is positive, but we still need to show that δ2J
∣∣
y
(η)α2 dominates the higher-order term

o(α2) which has the properties established in Exercise 2.12. Since P (x) = 1
2Ly′y′(x, y(x), y′(x)) > 0

on [a, b], we can pick a small enough δ > 0 such that P (x) > δ for all x ∈ [a, b]. Consider the integral

∫ b

a

(
(P (x) − δ)(η′(x))2 +Q(x)(η(x))2

)
dx. (2.69)

Reducing δ further towards 0 if necessary, we can ensure that no points conjugate to a on [a, b] are
introduced as we pass from P to P − δ (thanks to continuity of solutions of the accessory equation
with respect to parameter variations). This guarantees that the functional (2.69) is still positive
definite, hence

∫ b

a

(
P (x)(η′(x))2 +Q(x)(η(x))2

)
dx > δ

∫ b

a
(η′(x))2dx (2.70)

for all admissible perturbations (not identically equal to 0).

In light of our earlier derivation of Legendre’s condition, we know that the term depending on
(η′)2 is in some sense the dominant term in (2.60), and the inequality (2.70) indicates that we are
in good shape. Formally, we can handle the other, η2-dependent term in (2.60) as follows. Use the
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Cauchy-Schwarz inequality with respect to the L2 norm4 to write

η2(x) =

(∫ x

a
1 · η′(z)dz

)2

≤ (x− a)

∫ x

a
(η′(z))2dz ≤ (x− a)

∫ b

a
(η′(z))2dz.

From this, we have

∫ b

a
η2(x)dx ≤

∫ b

a
(x− a)dx

∫ b

a
(η′(z))2dz =

(b− a)2

2

∫ b

a
(η′(x))2dx. (2.71)

Now, Exercise 2.12 tells us that the term o(α2) in (2.56) takes the form (2.60) where for α close
enough to 0 both |P̄ | and |Q̄(b− a)2/2| are smaller than δ/2 for all x ∈ [a, b] and all η with ‖η‖1 = 1.
Combined with (2.58), (2.70), and (2.71) this implies J(y+αη) > J(y) for these values of α (except
of course α = 0), proving that y is a (strict) weak minimum.

The above sufficient condition is not as constructive and practical as the first-order and second-
order necessary conditions, because to apply it one needs to study conjugate points. The simpler
necessary conditions can be exploited first, to see if they help narrow down candidates for an optimal
solution. It should be observed, though, that the existence of conjugate points can be ruled out if
the interval [a, b] is taken to be sufficiently small.

Exercise 2.14 Justify the term “principle of least action” by showing that extremals of the action
integral considered in Section 2.4.3 are automatically its minima on sufficiently small time intervals.

As for the multiple-degrees-of-freedom setting, let us make the simplifying assumption that Lyy′

is a symmetric matrix (i.e., Lyiy′

j
= Lyjy′

i
for all i, j ∈ {1, . . . , n}). Then it is not difficult to show,

following steps similar to those that led us to (2.58), that the second variation δ2J
∣∣
y

is given by the
formula

δ2J
∣∣
y
(η) =

∫ b

a

(
(η′)T (x)P (x)η′(x) + ηT (x)Q(x)η(x)

)
dx

where P (x) and Q(x) are symmetric matrices still defined by (2.59). In place of w introduced at the
beginning of this subsection we need to consider a symmetric matrix W , and a suitable modification
of our earlier square completion argument yields the Riccati matrix differential equation

Q+W ′ = WP−1W

(note that W ′ denotes the derivative of W , not the transpose). This quadratic differential equation
is reduced to the second-order linear matrix differential equation QV = d

dx(PV ′) by the substitution
W = −PV ′V −1, where V is a matrix. Conjugate points are defined in terms of V becoming singular.
Generalizing the previous results by following this route is straightforward. Riccati matrix differential
equations and their solutions play a central role in the linear quadratic regulator problem, which we
will study in detail in Chapter 6.

2.7 Notes and references for Chapter 2

Formulations and solutions of the problems of Dido, catenary, and brachistochrone, as well as related
historical remarks, are given in [GF63, You80, Mac05] and many other sources. For an enlightening

4I.e.,
(∫

f(x)g(x)dx
)2

≤
∫

f2(x)dx ·
∫

g2(x)dx.
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discussion of light reflection and refraction, see [FLS63, Chapter I-26], where there is also an amusing
(although perhaps not entirely politically correct) alternative description of refraction in terms of
choosing the fastest path from the beach to the water to save a drowning girl. A comprehensive,
insightful, and mathematically accurate account of the historical development of calculus of variations
is given in [Gol80]; this book traces the roots of the subject to Fermat’s principle of least time, which
allowed the use of calculus for analyzing light refraction and later inspired Johann Bernoulli’s solution
of the brachistochrone problem. For an in-depth treatment of the brachistochrone problem we also
recommend the paper [SW97]; it is explained there that this problem effectively marked the birth
of the field of optimal control, because it started a steady research activity on time-optimal and
related variational problems still studied today in optimal control theory. Regarding the catenary,
it is interesting to mention that the inverted catenary shape has been used for building arches
from ancient times to present day (notable examples include several buildings designed by Gaudi in
Catalonia and the Gateway Arch in St. Louis, Missouri).

Sections 2.2 and 2.3 follow Chapter 1 of [GF63], the text on which most of the present chapter
is based; see also [Mac05]. Exercise 2.2 is borrowed from [Jur96, p. 341]. Example 2.3 is treated
in [Vin00, p. 18], where it is followed by a discussion of existence of optimal solutions. Differentiability
assumptions under which the Euler-Lagrange equation is valid are discussed, in addition to [GF63]
and [Mac05], in [Sus00, Handout 2]. Invariance of the Euler-Lagrange equation under changes of
coordinates is demonstrated in [GF63] for a single degree of freedom and in [Sus00, Handout 2] for
multiple degrees of freedom. The treatment of variable-endpoint problems in [GF63] includes the
case of both endpoints lying on given vertical lines, as well as a variable-terminal-point version of the
brachistochrone problem. A more general study leading to transversality conditions can be found
in [GF63, Chapter 3] (although it relies on the general formula for the variation of a functional which
we do not give) and in [SW77, Chapter 3].

The material of Section 2.4 is covered in [GF63, Chapter 4]; the Hamiltonian and the canonical
variables also appear in [GF63, Chapter 3] in the general formula for the variation of a functional.
Other sources of relevant information include [Arn89], [Mac05], and [Sus00, Handout 3]. Section 14
of [Arn89] mentions several applications of the Legendre transformation, including an elegant deriva-
tion of Young’s inequality. Convexity of the Legendre transform (which is also called the conjugate
function) is used in dual optimization methods; see [BV04, Sections 3.3 and 5.1]. The symmetric
way of writing the Legendre transformation via the formula (2.36) is prompted by the presentation
in [YZ99, pp. 220–221]. All these references also cover the Legendre transformation for functions of
several variables. For an insightful discussion of how the Hamiltonian should be interpreted and why
the maximum principle was not discovered much earlier, see [Sus00, Handout 3] and [SW97]. A nice
exposition of the principle of least action can be found in [FLS63, Chapter II-19], and the reader
intrigued by our brief remark about Einstein’s theory of gravitation is advised to check Chapter II-42
of the same book. Conservation laws are derived in [GF63, Chapter 4] with the help of Noether’s
theorem, which is another application of the general formula for the variation of a functional. Con-
servation of angular momentum is also discussed in detail in [Arn89] (see in particular Example 2 in
Section 13).

Section 2.5 is based on [GF63, Section 12] and [Mac05, Chapter 5], where additional details (such
as the treatment of several integral constraints and multiple degrees of freedom, as well as a derivation
of the necessary condition for the case of holonomic non-integral constraints) can be found. The
book [You80] examines Lagrange’s naive argument in detail and criticizes “its reappearance, every
so often, in so-called accounts and introductions that claim to present the calculus of variations to
engineers and other supposedly uncritical persons” (see the preamble to Volume II). The pendulum
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example is discussed in [Mac05, pp. 37 and 83]. For more information on control systems with
nonholonomic constraints, including optimal control problems, the reader can consult [Blo03] and
the references therein.

Section 2.6 is largely subsumed by Chapter 5 of [GF63]. Among additional topics covered there
are a detailed study of conjugate points, a derivation of Legendre’s condition for multiple degrees of
freedom, and a connection with Sylvester’s positive definiteness criterion for quadratic forms. It is
possible to prove Legendre’s condition for multiple degrees of freedom differently from how it is done
in [GF63], without integrating by parts and without assuming that the matrix Lyy′ is symmetric;
namely, one can perturb y along directions of eigenvectors of Ly′y′ (at an arbitrary fixed point x) and
then invoke the scalar result, as in [LL50, pp. 94–95]. Our reasoning that the absence of conjugate
points leads to the existence of a nonzero solution of the Jacobi equation is close to the argument
given in [Mac05, Section 9.4], where the reader can find some missing details.



Chapter 3

From Calculus of Variations to

Optimal Control

3.1 Necessary conditions for strong extrema

As explained at the beginning of Section 2.3 and elsewhere in Chapter 2, the methods and results
discussed in that chapter apply primarily to weak minima over C1 curves. On the other hand, we
illustrated in Section 2.2.1 that ultimately—especially in the context of optimal control—we are
more interested in studying stronger notions of local optimality over less regular curves. In the next
chapter we will realize this objective with the help of the maximum principle. The present chapter
serves as a bridge between calculus of variations and the maximum principle. In this section, we
present two results on strong minima over piecewise C1 curves for the Basic Calculus of Variations
Problem. In deriving these results we will depart, for the first time, from the familiar family of
perturbed curves (2.10). The maximum principle will require a somewhat more advanced technical
machinery than what we have seen so far, and we will now start “warming up” for it. An added
benefit is that we will be able to maintain continuity in tracing the historical development of the
subject. As we will see, from the maximum principle we will be able to recover the results given
here, and more.

3.1.1 Weierstrass-Erdmann corner conditions

Recall from Section 2.2.1 that a piecewise C1 curve y on [a, b] is C1 everywhere except possibly
at a finite number of points where it is continuous but its derivative y ′ is discontinuous. Such
points of discontinuity of y′ are known as corner points. A corner point c ∈ [a, b] is characterized
by the property that the left-hand derivative y ′(c−) := limx↗c y

′(x) and the right-hand derivative
y′(c+) := limx↘c y

′(x) both exist but have different values. For example, if a hanging chain (catenary)
is suspended too close to the ground, then it will not look as in Figure 2.3 on page 23 but will instead
touch the ground and have two corner points; see Figure 3.1. Below is another example in which a
corner point arises.

Example 3.1 Consider the problem of minimizing J(y) =
∫ 1
−1 y

2(x)(y′(x) − 1)2dx subject to the

boundary conditions y(−1) = 0, y(1) = 1. It is clear that J(y) ≥ 0 for all curves y. We can find C 1

57
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Figure 3.1: An extremal with two corners for the catenary problem

curves giving values of J(y) arbitrarily close to 0, but cannot achieve J(y) = 0. On the other hand,
the curve

y(x) =

{
0 if − 1 ≤ x < 0

x if 0 ≤ x ≤ 1

gives J(y) = 0. This curve is piecewise C1 with a corner point at x = 0.

Suppose that a piecewise C1 curve y is a strong extremum for the Basic Calculus of Variations
Problem, under the same assumptions as in Section 2.3. Clearly, y is then also a weak extremum,
with respect to the generalized 1-norm

‖y‖1 := max
a≤x≤b

|y(x)| + max
a≤x≤b

max{|y′(x−)|, |y′(x+)|}. (3.1)

As we stated in Section 2.3.3 (see in particular footnote 2 there), such an extremum must satisfy the
integral form (2.23) of the Euler-Lagrange equation almost everywhere, i.e., at all noncorner points.
Extending our previous terminology to the present setting, we will refer to piecewise C 1 solutions
of (2.23) as extremals (sometimes extremals with corner points are also called broken extremals).
We now want to investigate what additional conditions must hold at corner points in order for y to
be a strong extremum. We give a direct analysis1 below; later we will mention an alternative way of
deriving these conditions (see Exercise 3.3).

For simplicity, we assume that y has only one (unspecified) corner point c ∈ [a, b]. As a gen-
eralization of (2.10), we will let two separate perturbations η1 and η2 act on the two portions of y
(before and after the corner point). To make this construction precise, denote these two portions by
y1 : [a, c] → R and y2 : [c, b] → R; their perturbed versions will then be y1+αη1 and y2+αη2. Clearly,
we must have η1(a) = η2(b) = 0 to preserve the endpoints. Furthermore, since the location of the
corner point is not fixed, we should allow the corner point of the perturbed curve to deviate from c.
Let this new corner point be c+ α∆x for some ∆x ∈ R, with the same α as before for convenience.
Our family of perturbed curves (parameterized by α) is thus determined by the two curves η1, η2

and one real number ∆x. We label these new curves as y(·, α), with y(·, 0) = y. There will be an
additional condition on η1 and η2 to guarantee that y(·, α) is continuous for each α; see (3.4) below.
We take both η1 and η2 to be C1, to ensure that y(·, α) is piecewise C1 with a single corner point at
c + α∆x. (Note that the difference y(·, α) − y is piecewise C1 with two corner points, one at c and
the other at c+α∆x.) Figure 3.2 should help visualize this situation and the argument that follows.

1The reader who finds this derivation difficult to follow might wish to skip it at first reading. We also note that the
insight gained from solving Exercise 2.6 should be helpful here.
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Figure 3.2: A perturbation of an extremal with a corner

The reader might have noticed a small problem which we need to fix before proceeding. The
domain of y1 is [a, c], whereas we want the domain of y1 + αη1 to be [a, c + α∆x]. For α∆x > 0,
such a perturbed curve is ill defined. To deal with this issue, let us agree to extend y1 beyond c via
linear continuation: define y1 for x > c by y1(x) := y(c)+ y′(c−)(x− c). The linearity is actually not
crucial, all we need is that the function y1 be C1 at x = c, with

y1(c) = y(c), y′1(c) = y′(c−). (3.2)

If the perturbation η1 is also defined on an interval extending to the right of c, then the earlier
construction makes sense (at least for α close enough to 0). Of course we need to make a similar
modification to y2, extending it linearly to the left of c.

Let us write the functional to be minimized as a sum of two components:

J(y) =

∫ b

a
L(x, y(x), y′(x))dx =

∫ c

a
L(x, y1(x), y

′
1(x))dx+

∫ b

c
L(x, y2(x), y

′
2(x))dx =: J1(y1)+J2(y2).

After the perturbation, the first functional becomes

J1(y1 + αη1) =

∫ c+α∆x

a
L(x, y1 + αη1, y

′
1 + αη′1)dx

(note that ∆x should also be an argument on the left-hand side, but we omit it for simplicity). We
can now compute the corresponding first variation:

δJ1|y1
(η1) =

d

dα

∣∣∣∣
α=0

J1(y1 + αη1)

=

∫ c

a

(
Ly(x, y1(x), y

′
1(x))η1(x) + Ly′(x, y1(x), y

′
1(x))η

′
1(x)

)
dx+ L(c, y1(c), y

′
1(c))∆x.

Applying integration by parts and recalling (3.2) and the constraint η1(a) = 0, we can bring the
above expression to the form

δJ1|y1
(η1) =

∫ c

a

(
Ly(x, y1(x), y

′
1(x)) −

d

dx
Ly′(x, y1(x), y

′
1(x))

)
η1(x)dx

+ Ly′(c, y(c), y′(c−))η1(c) + L(c, y(c), y′(c−))∆x.
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Similarly, for the second functional we have

J2(y2 + αη2) =

∫ b

c+α∆x
L(x, y2 + αη2, y

′
2 + αη′2)dx

and the first variation of J2 at y2 is

δJ2|y2
(η2) =

∫ b

c

(
Ly(x, y2(x), y

′
2(x)) −

d

dx
Ly′(x, y2(x), y

′
2(x))

)
η2(x)dx

− Ly′(c, y(c), y′(c+))η2(c) − L(c, y(c), y′(c+))∆x.

For α close to 0, the perturbed curve y(·, α) is close to the original curve y in the sense of the
0-norm. Therefore, the function α 7→ J(y(·, α)) must attain a minimum at α = 0, implying that

0 =
d

dα

∣∣∣∣
α=0

J(y(·, α)) =
d

dα

∣∣∣∣
α=0

(
J1(y1 + αη1) + J2(y2 + αη2)

)
= δJ1|y1

(η1) + δJ2|y2
(η2).

Next, observe that each of the two portions yi, i = 1, 2 of the optimal curve y must be an extremal
of the corresponding functional Ji. Indeed, this becomes clear if we consider the special case when
the perturbation ηi vanishes at c and ∆x = 0. Therefore, the integrals in the preceding expressions
for δJ1|y1

(η1) and δJ2|y2
(η2) should both vanish, and we are left with the condition

Ly′(c, y(c), y′(c−))η1(c) − Ly′(c, y(c), y′(c+))η2(c) + L(c, y(c), y′(c−))∆x− L(c, y(c), y′(c+))∆x = 0.
(3.3)

Now we need to take into account the fact that the two perturbations η1 and η2 are not independent:
they have to be such that the perturbed curve remains continuous at x = c + α∆x. This provides
the additional relation

y1(c+ α∆x) + αη1(c+ α∆x) = y2(c+ α∆x) + αη2(c+ α∆x) =: y(c) + α∆y + o(α). (3.4)

The quantity ∆y describes the first-order (in α) vertical displacement of the corner point, in much
the same sense that ∆x describes the first-order horizontal displacement; ∆y and ∆x are independent
of each other. Equating the first-order terms with respect to α in (3.4) and using the second equality
in (3.2) along with its counterpart y′2(c) = y′(c+), we obtain

y′(c−)∆x+ η1(c) = y′(c+)∆x+ η2(c) = ∆y. (3.5)

Using (3.5), we can eliminate η1(c) and η2(c) from (3.3) and rewrite that formula in terms of ∆y and
∆x as follows:

(
Ly′(c, y(c), y′(c−)) − Ly′(c, y(c), y′(c+))

)
∆y

−
((
Ly′(c, y(c), y′(c−)y′(c−) − L(c, y(c), y′(c−))

)
−
(
Ly′(c, y(c), y′(c+))y′(c+) − L(c, y(c), y′(c+))

))
∆x

= − Ly′(x, y(x), y′(x))
∣∣c+
c−

∆y +
(
Ly′(x, y(x), y′(x))y′(x) − L(x, y(x), y′(x))

)∣∣∣
c+

c−
∆x = 0.

Since ∆x and ∆y are independent and arbitrary, we conclude that the terms multiplying them must
be 0. This means that Ly′ and y′Ly′ − L are in fact continuous at x = c.

The above reasoning can be extended to multiple corner points, yielding the necessary conditions
for optimality known as the Weierstrass-Erdmann corner conditions: If a curve y is a strong



CALCULUS OF VARIATIONS AND OPTIMAL CONTROL 61

extremum, then Ly′ and y′Ly′ − L must be continuous at each corner point of y. More precisely,
their discontinuities (due to the fact that y ′ does not exist at corner points) must be removable. The
quantities Ly′ and y′Ly′ − L are of course familiar to us from Chapter 2; they are, respectively, the
momentum and the Hamiltonian. Weierstrass presented these conditions in 1865 during his lectures
on calculus of variations, but never formally published them. They were independently derived and
published by Erdmann in 1877.

Exercise 3.1 Let y be a weak extremum (with (3.1) serving as the 1-norm) but not a strong ex-
tremum. Carefully explain where the above proof breaks down. Show that, nevertheless, the first
Weierstrass-Erdmann condition (the one that asserts continuity of Ly′) can still be established by
suitably specializing the proof.

For the case of a single corner point, the two Weierstrass-Erdmann corner conditions together
with the two boundary conditions provide four relations, which is the correct number to uniquely
specify two portions of the extremal (each satisfying the second-order Euler-Lagrange differential
equation). In general, to uniquely specify an extremal consisting of m portions (i.e., having m − 1
corner points) we need 2m conditions, and these are provided by 2(m−1) corner conditions plus the
two boundary conditions.

Exercise 3.2 Consider the problem of minimizing J(y) =
∫ 1
−1(y

′(x))3dx subject to the boundary

conditions y(−1) = y(1) = 0. Characterize all piecewise C1 extremals of J . Do any of them satisfy
the Weierstrass-Erdmann corner conditions? For each one that does, check if it is a minimum (weak
or strong).

3.1.2 Weierstrass excess function

To continue our search for additional conditions (besides being an extremal) which are necessary
for a piecewise C1 curve y to be a strong minimum, we now introduce a new concept. For a given
Lagrangian L = L(x, y, z), the Weierstrass excess function, or E-function, is defined as

E(x, y, z, w) := L(x, y, w) − L(x, y, z) − (w − z) · Lz(x, y, z). (3.6)

The above formula is written to suggest multiple degrees of freedom, but from now on we specialize
to the single-degree-of-freedom case for simplicity. Note that L(x, y, z) + (w − z)Lz(x, y, z) is the
first-order Taylor approximation of L(x, y, w), viewed as a function of w, around w = z. This gives
the geometric interpretation of the E-function as the distance between the Lagrangian and its linear
approximation around w = z; see Figure 3.3.

The Weierstrass necessary condition for a strong minimum states that if y(·) is a strong
minimum, then

E(x, y(x), y′(x), w) ≥ 0 (3.7)

for all noncorner points x ∈ [a, b] and all w ∈ R. The geometric meaning of this condition is that
for each x, the graph of the function L(x, y(x), ·) lies above its tangent line at y ′(x), which can be
interpreted as a local convexity property of this function.

The Weierstrass necessary condition can be proved as follows. Suppose that a curve y is a strong
minimum. Let x̄ ∈ [a, b] be a noncorner point of y, let d ∈ (x̄, b] be such that the interval [x̄, d]
contains no corner points of y, and pick some w ∈ R. We construct a family of perturbed curves
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Figure 3.3: Weierstrass excess function

y(·, ε), parameterized by ε ∈ [0, d − x̄), which are continuous, coincide with y on the complement of
[x̄, d], are linear with derivative w on [x̄, x̄ + ε], and differ from y by a linear function on [x̄ + ε, d].
The precise definition is

y(x, ε) :=





y(x) if a ≤ x ≤ x̄ or d ≤ x ≤ b

y(x̄) + w(x− x̄) if x̄ ≤ x ≤ x̄+ ε

y(x) +
d− x

d− (x̄+ ε)

(
y(x̄) + wε− y(x̄+ ε)

)
if x̄+ ε ≤ x ≤ d

(3.8)

Such a perturbed curve y(·, ε) is shown in Figure 3.4.
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Figure 3.4: The graphs of y and y(·, ε)

It is clear that

y(·, 0) = y (3.9)

and that for ε close to 0 the perturbed curve y(·, ε) is close to the original curve y in the sense of the
0-norm. Therefore, the function ε 7→ J(y(·, ε)) must have a minimum at ε = 0. We will now show
that the right-sided derivative of this function at ε = 0 exists and equals E(x̄, y(x̄), y ′(x̄), w). Then,
since this derivative must be nonnegative and x̄ and w are arbitrary, the proof will be complete.

Noting that the behavior of y(·, ε) outside the interval [x̄, d] does not depend on ε, we have

d

dε
J(y(·, ε)) =

d

dε

(∫ x̄+ε

x̄
L(x, y(x, ε), yx(x, ε))dx +

∫ d

x̄+ε
L(x, y(x, ε), yx(x, ε))dx

)
. (3.10)
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By (3.8), the first integral in (3.10) is
∫ x̄+ε
x̄ L(x, y(x̄) + w(x− x̄), w)dx and its derivative is simply

L(x̄+ ε, y(x̄) + wε,w). (3.11)

The differentiation of the second integral in (3.10) gives

− L(x̄+ ε, y(x̄+ ε, ε), yx(x̄+ ε, ε)) +

∫ d

x̄+ε
Ly(x, y(x, ε), yx(x, ε))yε(x, ε)dx (3.12)

+

∫ d

x̄+ε
Ly′(x, y(x, ε), yx(x, ε))yxε(x, ε)dx (3.13)

(it is straightforward to check that the partial derivatives yx(x, ε), yε(x, ε), yxε(x, ε) exist inside the
relevant intervals). Since yxε(x, ε) = yεx(x, ε) = d

dxyε(x, ε), we can use integration by parts to bring
the integral in (3.13) to the form

Ly′(x, y(x, ε), yx(x, ε))yε(x, ε)
∣∣d
x̄+ε

−
∫ d

x̄+ε

d

dx

(
Ly′(x, y(x, ε), yx(x, ε))

)
yε(x, ε)dx. (3.14)

In more detail, the first term in (3.14) is

Ly′(d, y(d, ε), yx(d, ε))yε(d, ε) − Ly′(x̄+ ε, y(x̄+ ε, ε), yx(x̄+ ε, ε))yε(x̄+ ε, ε). (3.15)

We have from (3.8) that y(d, ε) = y(d) for all ε, hence yε(d, ε) = 0 and so the first term in (3.15)
is 0. Another consequence of (3.8) is the relation y(x̄ + ε, ε) = y(x̄) + wε. Differentiating it with
respect to ε, we obtain yx(x̄ + ε, ε) + yε(x̄ + ε, ε) = w, or yε(x̄ + ε, ε) = w − yx(x̄ + ε, ε). When we
substitute this expression for yε(x̄+ ε, ε) into the second term in (3.15), that term becomes

− Ly′(x̄+ ε, y(x̄+ ε, ε), yx(x̄+ ε, ε))(w − yx(x̄+ ε, ε)). (3.16)

We see that d
dεJ(y(·, ε)) is given by the sum of (3.11), (3.12), the integral (with the minus sign)

in (3.14), and (3.16). Setting ε = 0 and rearranging terms, we arrive at

d

dε

∣∣∣∣
ε=0+

J(y(·, ε)) = L(x̄, y(x̄), w) − L(x̄, y(x̄, 0), yx(x̄, 0)) − Ly′(x̄, y(x̄, 0), yx(x̄, 0))(w − yx(x̄, 0))

+

∫ d

x̄

(
Ly(x, y(x, 0), yx(x, 0)) − d

dx
Ly′(x, y(x, 0), yx(x, 0))

)
yε(x, 0)dx.

Now, recall (3.9) which also implies that yx(·, 0) = y′. The integral on the second line of the previous
formula thus equals

∫ d

x̄

(
Ly(x, y(x), y

′(x)) − d

dx
Ly′(x, y(x), y′(x))

)
yε(x, 0)dx = 0

because y as a strong (hence also weak) minimum must satisfy the Euler-Lagrange equation. We are
left with

d

dε

∣∣∣∣
ε=0+

J(y(·, ε)) = L(x̄, y(x̄), w) − L(x̄, y(x̄), y ′(x̄)) − Ly′(x̄, y(x̄), y′(x̄))(w − y′(x̄))

= E(x̄, y(x̄), y′(x̄), w)
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as desired, and the Weierstrass necessary condition is established. A necessary condition for a strong
maximum is analogous but with the reversed inequality sign; this can be verified by passing from L
to −L or by modifying the proof in the obvious way. The Weierstrass necessary condition can also
be extended to corner points, either by refining the proof or via a limiting argument (cf. Exercise 3.3
below.)

Weierstrass introduced the above necessary condition during his 1879 lectures on calculus of
variations. His original proof relied on an additional assumption (normality) which was subsequently
removed by McShane in 1939. Let us now take a few moments to reflect on the perturbation used
in the proof we just gave. First, it is important to observe that the perturbed curve y(·, ε) is close
to the original curve y in the sense of the 0-norm, but not necessarily in the sense of the 1-norm.
Indeed, it is clear that ‖y(·, ε) − y‖0 → 0 as ε → 0; on the other hand, the derivative of y(·, ε)
for x immediately to the right of x̄ equals w, hence ‖y(·, ε) − y‖1 ≥ |w − y′(x̄)| for all ε > 0, no
matter how small. For this reason, the necessary condition applies only to strong minima, unless
we restrict w to be sufficiently close to y ′(x̄). Note also that the first variation was not used in the
proof. Thus we have already departed significantly from the variational approach which we followed
in Chapter 2. Derived using a richer class of perturbations, the Weierstrass necessary condition turns
out to be powerful enough to yield as its corollaries the Weierstrass-Erdmann corner conditions from
Section 3.1.1 as well as Legendre’s condition from Section 2.6.1.

Exercise 3.3 Use the Weierstrass necessary condition to prove that a piecewise C 1 strong minimum
must satisfy the Weierstrass-Erdmann corner conditions and Legendre’s condition.

When solving this exercise, the reader should keep the following points in mind. First, we
know from Exercise 3.1 that the first Weierstrass-Erdmann corner condition is necessary for weak
extrema as well. This condition should thus follow directly from the fact that y is an extremal—i.e.,
satisfies the integral form (2.23) of the Euler-Lagrange equation—without the need to apply the
Weierstrass necessary condition. The second Weierstrass-Erdmann corner condition, on the other
hand, is necessary only for strong extrema, and deducing it requires the full power of the Weierstrass
necessary condition (including a further analysis of what the latter implies for corner points). As for
Legendre’s condition, it can be derived from the local version of the Weierstrass necessary condition
with w restricted to be close to y′(x) for a given x, thus confirming that Legendre’s condition is also
necessary for weak extrema. Finally, when x is a corner point, Legendre’s condition should read
Ly′y′(x, y(x), y′(x±)) ≥ 0.

The perturbation used in the above proof of the Weierstrass necessary condition is already quite
close to the ones we will use later in the proof of the maximum principle. The main difference is
that in the proof of the maximum principle, we will not insist on bringing the perturbed curve back
to the original curve after the perturbation stops acting. Instead, we will analyze how the effect of
a perturbation applied on a small interval propagates up to the terminal point.

There is a very insightful reformulation of the Weierstrass necessary condition which reveals its
direct connection to the Hamiltonian maximization property discussed at the end of Section 2.6.1
(and thus to the maximum principle which we are steadily approaching). Let us write our Hamilto-
nian (2.63) as

H(x, y, z, p) = zp− L(x, y, z).

Then a simple manipulation of (3.6) allows us to bring the E-function and the condition (3.7) to the
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form

E(x, y(x), y′(x), w) =
(
y′(x)Lz(x, y(x), y

′(x)) − L(x, y(x), y′(x))
)

−
(
wLz(x, y(x), y

′(x)) − L(x, y(x), w)
)

= H(x, y(x), y′(x), p(x)) −H(x, y(x), w, p(x)) ≥ 0

where we used the formula

p(x) = Lz(x, y(x), y
′(x))

consistent with our earlier definition of the momentum (see Section 2.4.1). Therefore, the Weierstrass
necessary condition simply says that if y(·) is an optimal trajectory and p(·) is the corresponding
momentum, then for every x the function H(x, y(x), ·, p(x)), which is the same as the function H ∗

defined in (2.32), has a maximum at y′(x). This interpretation escaped Weierstrass, not just because
it requires bringing in the Hamiltonian but because it demands treating z and p as independent
arguments of the Hamiltonian (we already discussed this point at the end of Section 2.4.2).

Combining the Weierstrass necessary condition with the sufficient condition for a weak mini-
mum from Section 2.6.2, one can obtain a sufficient condition for a strong minimum. The precise
formulation of this condition requires a new concept (that of a field) and we will not develop it.
While sufficient conditions for optimality are theoretically appealing, they tend to be less practical
to apply compared to necessary conditions; we already saw this in Section 2.6.2 and will see again
in Chapter 5.

3.2 Calculus of variations versus optimal control

Problems in calculus of variations that we have treated so far are concerned with minimizing a cost
functional of the form J(y) =

∫ b
a L(x, y(x), y′(x))dx over a given family of curves y(·)—such as, e.g.,

all C1 curves with fixed endpoints. Optimal control theory studies similar problems but from a more
dynamic viewpoint, which can be explained as follows. Rather than regarding the curves as given a
priori, let us imagine a particle moving in the (x, y)-space and “drawing a trace” of its motion. The
choice of the slope y′(x) at each point on the curve can be thought of as an infinitesimal decision, or
control. The resulting curve is thus a trajectory of a simple control system, which we can write as
y′ = u. In order for this curve to minimize the overall integral cost, optimal control decisions must
be taken everywhere along the curve; this is simply a restatement of a principle that we have already
discussed several times in Chapter 2 (see, in particular, pages 31 and 40).

In realistic scenarios, not all velocities may be feasible everywhere. In calculus of variations,
constraints on available velocities may be modeled as equalities of the form M(x, y(x), y ′(x)) = 0.
We already know from Section 2.5.2 that if we solve such a constraint for y ′ and parameterize the
solution in terms of free variables u, we arrive at a control system y ′ = f(x, y, u). This dynamic
description is consistent with the idea of moving along the curve (and incurring a cost along the
way).

The set in which the controls u take values might also be constrained by some practical consider-
ations, such as inherent bounds on physical quantities (velocities, forces, and so on). In the optimal
control formulation, such constraints are incorporated very naturally by working with an appropriate
control set. In calculus of variations, on the other hand, they would make the description of the space
of admissible curves quite cumbersome.
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Finally, once we adopt the dynamic viewpoint of a moving particle, it is natural to consider
another transformation which we already encountered in Section 2.4.3. Namely, it makes sense
to parameterize the curves by time rather than by the spatial variable x. Besides being more
intuitive, this new formulation is also more descriptive because it allows us to distinguish between
two geometrically identical curves traversed with different speeds. In addition, the curves no longer
need to be graphs of single-valued functions of x.

Example 3.2 (Brachistochrone revisited) The brachistochrone problem provides a great ex-
ample in which the two formulations—the earlier one of calculus of variations and the new one of
optimal control—are both meaningful and can be clearly compared. Our old formulation, given
in Section 2.1.4, was in terms of minimizing the cost functional (2.6). The Lagrangian inside that
integral is the ratio of the arclength to the speed, where we used the fact that the speed satisfies the
equation (2.5) as a consequence of the conservation of energy law (2.4).

Let us now adopt a different approach and parameterize the curves by time. In other words,
represent each point on a given curve as (x(t), y(t)), where the x-axis and the y-axis are as shown in
Figure 2.4 and t is the time at which the particle arrives at this point; we assume that at time t0 the
particle is resting at the initial point (a, 0). The speed constraint (2.5) then becomes ẋ2 + ẏ2 = y.
Defining u1 := ẋ/

√
y and u2 := ẏ/

√
y, we can describe the motion by the control system

ẋ = u1
√
y

ẏ = u2
√
y

subject to the constraint u2
1 + u2

2 = 1 (i.e., the control set is the unit circle).

Now, the quantity to be minimized is the time it takes for the particle to arrive at a specified
destination (b, y1). If the curve is parameterized by t ∈ [t0, t1], then this is simply

J = t1 − t0 =

∫ t1

t0

1dt. (3.17)

Thus the Lagrangian is L ≡ 1. Note that we avoided writing J(y) since we are no longer working
with a curve y = y(x); in fact, it makes more sense to write J(u1, u2) because the curve is determined
by the choice of controls as functions of time.

The new problem formulation is equivalent to the original one, except that it is more general in
one aspect: as we already mentioned, it avoids the (sometimes tacit) assumption made in calculus of
variations that admissible curves are graphs of functions of x. Observe that in terms of complexity
of the problem description, the burden has shifted from the cost functional to the right-hand side of
the control system.

From this point onward, we will start using t as the independent variable. We will write x =
(x1, . . . , xn)T for the (dependent) state variables, ẋ = (ẋ1, . . . , ẋn)T for their time derivatives, and
u = (u1, . . . , um)T for the controls. The controls will take values in some control set, such as the unit
circle in the above example. Of course, the simplicity of the Lagrangian in (3.17) is due to the fact
that the cost being minimized is the time (this is a time-optimal control problem); in general, both
the control system and the cost functional may be complex.
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3.3 Optimal control problem formulation and assumptions

Having completed our study of calculus of variations, we have now come full circle and are ready
to tackle the optimal control problem posed at the very beginning of the book, in Section 1.1. The
purpose of this section is to give a more detailed formulation of that problem, by discussing and
comparing its several specific variants and spelling out necessary technical assumptions.

3.3.1 Control system

In the notation announced at the end of the previous section, control systems that we want to study
take the form

ẋ = f(t, x, u), x(t0) = x0 (3.18)

which is an exact copy of (1.1). Here x ∈ R
n is the state, u ∈ U ⊂ R

m is the control, t ∈ R is the
time, t0 is the initial time, and x0 is the initial state. Both x and u are functions of time: x = x(t),
u = u(t). The control set U is usually a closed subset of Rm and can be the entire R

m; in principle
it can also vary with time, but here we take it to be fixed.

We want to know that for every choice of the initial data (t0, x0) and every admissible control
u(·), the system (3.18) has a unique solution x(·) on some time interval [t0, t1]. If this property
holds, we will say that the system is well posed. To guarantee local existence and uniqueness of
solutions for (3.18), we need to impose some regularity conditions on the right-hand side f and on
the admissible controls u. For the sake of simplicity, we will usually be willing to make slightly
stronger assumptions than necessary; when we do this, we will briefly indicate how our assumptions
can be relaxed.

Let us first consider the case of no controls:

ẋ = f(t, x). (3.19)

First, to assure sufficient regularity of f with respect to t, we take f(·, x) to be piecewise continuous
for each fixed x. Here, by a piecewise continuous function we mean a function having at most a finite
number of discontinuities on every bounded interval, and possessing the limits from the right and
from the left at each of these discontinuities. For convenience, we assume that the value of such a
function at each discontinuity is equal to one of these one-sided limits (i.e., the function is either left-
continuous or right-continuous at each point). The assumption of a finite number of discontinuities
on each bounded interval is actually not crucial; we can allow discontinuities to have accumulation
points, as long as the function remains locally bounded (or at least locally integrable).

Second, we need to specify how regular f should be with respect to x. A standard assumption
in this regard is that f is locally Lipschitz in x, uniformly over t. Namely, for every (t0, x0) there
should exist a constant L such that we have

|f(t, x1)− f(t, x2)| ≤ L|x1 − x2|

for all (t, x1) and (t, x2) in some neighborhood of (t0, x0) in R×R
n. We can in fact be more generous

and assume the following instead: the partial derivative fx(·, ·) exists and is locally bounded as a
function of (t, x). It is easy to verify using the Mean Value Theorem that such a function f satisfies the
previous Lipschitz condition. Note that here and below, we extend our earlier notation fx := ∂f/∂x
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to the vector case, so that fx stands for the Jacobian matrix of partial derivatives of f with respect
to x.

If f satisfies the above regularity assumptions, then on some interval [t0, t1] there exists a unique
solution x(·) of the system (3.19). Since we did not assume that f is continuous with respect to t,
some care is needed in interpreting what we mean by a solution of (3.19). In the present situation,
it is reasonable to call a function x(·) a solution of (3.19) if it is continuous everywhere, C1 almost
everywhere, and satisfies the corresponding integral equation

x(t) = x0 +

∫ t

t0

f(s, x(s))ds.

A function x(·) that can be represented as an integral of another function g(·), and thus automatically
satisfies ẋ = g almost everywhere, is called absolutely continuous. This class of functions generalizes
the piecewise C1 functions that we considered earlier. Basically, the extra generality here is that the
derivative can be discontinuous on a set of points that has measure zero (e.g., a countable set) rather
than at a finite number of points on a bounded interval, and can approach infinity near these points.
If we insist that the derivative be locally bounded, we arrive at the slightly smaller class of locally
Lipschitz functions.

We are now ready to go back to the control system (3.18). To guarantee local existence and
uniqueness of its solutions, we can impose assumptions on f and u that would let us invoke the
previous existence and uniqueness result for the right-hand side

f̄(t, x) := f(t, x, u(t)). (3.20)

Here is one such set of assumptions which, although not the weakest possible, is adequate for our
purposes: f is continuous in t and u and C1 in x; fx is continuous in t and u; and u(·) is piecewise
continuous as a function of t. Another, weaker set of hypotheses is obtained by replacing the
assumptions of existence of fx and its continuity with respect to all variables with the following
Lipschitz property: for every bounded subset D of R×R

n ×U , there exists an L such that we have

|f(t, x1, u) − f(t, x2, u)| ≤ L|x1 − x2|

for all (t, x1, u), (t, x2, u) ∈ D. Note that in either case, differentiability of f with respect to u is not
assumed.

Exercise 3.4 Verify that each of the two sets of hypotheses just described guarantees local existence
and uniqueness of solutions of (3.18), by applying the result stated earlier to the system with no
controls defined by (3.20). Explain which hypotheses can be further relaxed.

When the right-hand side does not explicitly depend on time, i.e., when we have f = f(x, u), a
convenient way to guarantee that the above conditions hold is to assume that f is locally Lipschitz
(as a function from R

n × U to R
n). In general, f depends on t in two ways: directly through the t

argument, and indirectly through u. Regarding the first dependence, we are willing to be generous
by assuming that f is at least continuous in t. In fact, we can always eliminate the direct dependence
of f on t by introducing the extra state variable xn+1 := t, with the dynamics ẋn+1 = 1. Note that in
order for the new system obtained in this way to satisfy our conditions for existence and uniqueness
of solutions, continuity of f in t is not enough and we need f to be C1 in t (or satisfy an appropriate
Lipschitz condition).
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On the other hand, as far as regularity of u with respect to t is concerned, it would be too
restrictive to assume anything stronger than piecewise continuity. In fact, occasionally we may
even want to relax this assumption and allow u to be a locally bounded function with countably
many discontinuities. More precisely, the class of admissible controls can be defined to consist of
functions u that are measurable2 and locally bounded. In view of the remarks made earlier about
the system (3.19), local existence and uniqueness of solutions is still guaranteed for this larger class
of controls. We will rarely need this level of generality, and piecewise continuous controls will be
adequate for most of our purposes (with the exception of some of the material to be discussed in
Sections 4.4 and 4.5—specifically, Fuller’s problem and Filippov’s theorem). Similarly to the case of
the system (3.19), by a solution of (3.18) we mean an absolutely continuous function x(·) satisfying

x(t) = x0 +

∫ t

t0

f(s, x(s), u(s))ds.

In what follows, we will always assume that the property of local existence and uniqueness of
solutions holds for a given control system. This of course does not guarantee that solutions exist
globally in time. Typically, we will consider a candidate optimal trajectory defined on some time
interval [t0, t1], and then existence over the same time interval will be automatically ensured for
nearby trajectories.

3.3.2 Cost functional

We will consider cost functionals of the form

J(u) :=

∫ tf

t0

L(t, x(t), u(t))dt +K(tf , xf ) (3.21)

which is an exact copy of (1.2). Here tf and xf := x(tf ) are the final (or terminal) time and state,
L : R × R

n × U → R is the running cost (or Lagrangian), and K : R × R
n → R is the terminal

cost. We will explain how the final time tf is defined in Section 3.3.3 below. Since the cost depends
on the initial data and the final time as well as on the control, it would be more accurate to write
J(t0, x0, tf , u), but we write J(u) for simplicity and to reflect the fact that the cost is being minimized
over the space of control functions. Note that even if L does not depend on u, the cost J depends on
the control u(·) through x(·) which is the trajectory that this control generates. The reader might
have remarked that our present choice of arguments for L deviates from the one we made in calculus
of variations; it seems that L(t, x, ẋ) would have been more consistent. However, we can always pass
from (t, x, ẋ) to (t, x, u) by substituting f(t, x, u) for ẋ, while it may not be possible to go in the
opposite direction. Thus it is more general, as well as more natural, to let L depend explicitly on
u. In contrast with Section 3.3.1, where the regularity conditions on f and u were dictated by the
goal of having a well-posed control system, there are no such a priori requirements on the functions
L and K. All derivatives that will appear in our subsequent derivations will be assumed to exist,
and depending on the analysis method we will eventually see what differentiability assumptions on
L and K are needed.

Optimal control problems in which the cost is given by (3.21) are known as problems in the
Bolza form, or collectively as the Bolza problem. There are two important special cases of the Bolza

2The class of measurable functions is obtained from that of piecewise continuous functions by taking the closure
with respect to almost-everywhere convergence.
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problem. The first one is the Lagrange problem, in which there is no terminal cost: K ≡ 0. This
problem—and its name—of course come from calculus of variations. The second special case is the
Mayer problem, in which there is no running cost: L ≡ 0. We can pass back and forth between these
different forms by means of simple transformations. Indeed, given a problem with a terminal cost
K, we can write

K(tf , xf ) = K(t0, x0) +

∫ tf

t0

d

dt
K(t, x(t))dt

= K(t0, x0) +

∫ tf

t0

(
Kt(t, x(t)) +Kx(t, x(t)) · f(t, x(t), u(t))

)
dt.

Since K(t0, x0) is a constant independent of u, we arrive at an equivalent problem in the Lagrange
form with Kt(t, x)+Kx(t, x) · f(t, x, u) added to the original running cost. On the other hand, given
a problem with a running cost L satisfying the same regularity conditions as f , we can introduce an
extra state variable x0 via

ẋ0 = L(t, x, u), x0(t0) = 0

(we use a superscript instead of a subscript to avoid confusion with the initial state). This yields

∫ tf

t0

L(t, x(t), u(t))dt = x0(tf )

thus converting the problem to the Mayer form. (The value of x0(t0) can actually be arbitrary,
since it only changes the cost by an additive constant.) Note that the similar trick of introducing
the additional state variable xn+1 := t, which we already mentioned in Section 3.3.1, eliminates the
dependence of L and/or K on time; for the Bolza problem this gives J(u) =

∫ tf
t0
L(x(t), u(t))dt +

K(xf ) with x ∈ R
n+1.

3.3.3 Target set

As we noted before, the cost functional (3.21) depends on the choice of t0, x0, and tf . We take the
initial time t0 and the initial state x0 to be fixed as part of the control system (3.18). We now need
to explain how to define the final time tf (which in turn determines the corresponding final state
xf ). Depending on the control objective, the final time and final state can be free or fixed, or can
belong to some set. All these possibilities are captured by introducing a target set S ⊂ [t0,∞) ×R

n

and letting tf be the smallest time such that (tf , xf ) ∈ S. It is clear that tf defined in this way in
general depends on the choice of the control u. We will take S to be a closed set; hence, if (t, x(t))
ever enters S, the time tf is well defined. If a trajectory is such that (t, x(t)) does not belong to S
for any t, then we consider its cost as being infinite (or undefined). Note that here we do not allow
the option that tf = ∞ may give a valid finite cost, although we will study such “infinite-horizon”
problems later (in Chapters 5 and 6). Below are some examples of target sets that we will encounter
in the sequel.

The target set S = [t0,∞)×{x1}, where x1 is a fixed point in R
n, gives a free-time, fixed-endpoint

problem. A generalization of this is to consider a target set of the form S = [t0,∞) × S1, where S1

is a surface (manifold) in R
n. Another natural target set is S = {t1} × R

n, where t1 is a fixed time
in [t0,∞); this gives a fixed-time, free-endpoint problem. It is useful to observe that if we start with
a fixed-time, free-endpoint problem and consider again the auxiliary state xn+1 := t, we recover the
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previous case with S1 ⊂ R
n+1 given by {x ∈ R

n+1 : xn+1 = t1}. A target set S = T × S1, where T
is some subset of [t0,∞) and S1 is some surface in R

n, includes as special cases all the target sets
mentioned above. It also includes target sets of the form S = {t1} × {x1}, which corresponds to
the most restrictive case of a fixed-time, fixed-endpoint problem. As the opposite extreme, we can
have S = [t0,∞) × R

n, i.e., a free-time, free-endpoint problem. (The reader may wonder about the
sensibility of this latter problem formulation: when will the motion stop, or why would it even begin
in the first place? To answer these questions, we have to keep in mind that the control objective is
to minimize the cost (3.21). In the case of the Mayer problem, for example, (tf , xf ) will be a point
where the terminal cost is minimized, and if this minimum is unique then we do not need to specify
a target set a priori. In the presence of a running cost L taking both positive and negative values,
it is clear that remaining at rest at the initial state may not be optimal—and we also know that we
can always bring such a problem to the Mayer form. When one says “cost” one may often think of it
implicitly as a positive quantity, but remember that this need not be the case; we may be making a
“profit” instead.) Many other target sets can be envisioned. For example, S = {(t, g(t)) : t ∈ [t0,∞)}
for some continuous function g : R → R

n corresponds to hitting a moving target. A point target can
be generalized to a set by making g set-valued. The familiar trick of incorporating time as an extra
state variable allows us to reduce such target sets to the ones we already discussed, and so we will
not specifically consider them.

We now have a refined formulation of the optimal control problem: given a control system (3.18)
satisfying the assumptions of Section 3.3.1, a cost functional given by (3.21), and a target set S ⊂
[t0,∞) × R

n, find a control u(·) that minimizes the cost. Unlike in calculus of variations, we will
usually interpret optimality in the global sense. (The necessary conditions for optimality furnished
by the maximum principle apply to locally optimal controls as well, provided that we work with an
appropriate norm; see Section 4.3 for details.)

3.4 Variational approach to the fixed-time, free-endpoint problem

We now want to see how far a variational approach—i.e., an approach based on analyzing the first
(and second) variation of the cost functional—can take us in studying the optimal control problem
formulated in Section 3.3. We will find that with minimal extra work, this familiar approach allows
us to arrive at the correct statement of the maximum principle for a specific problem setting. We
will also discover that in general, this approach has serious shortcomings which will force us to turn
our attention to a different, richer class of perturbations.

3.4.1 Preliminaries

Consider the optimal control problem from Section 3.3 with the following additional specifications:
the target set is S = {t1} × R

n, where t1 is a fixed time (so this is a fixed-time, free-endpoint
problem); U = R

m (the control is unconstrained); and the terminal cost is K = K(xf ), with no
direct dependence on the final time (just for simplicity). We can rewrite the cost in terms of the
fixed final time t1 as

J(u) =

∫ t1

t0

L(t, x(t), u(t))dt +K(x(t1)). (3.22)

Our goal is to derive necessary conditions for optimality. Let u∗(·) be an optimal control, by which
we presently mean that it provides a global minimum: J(u∗) ≤ J(u) for all piecewise continuous
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controls u. Let x∗(·) be the corresponding optimal trajectory. We would like to consider nearby
trajectories of the familiar form

x = x∗ + αη (3.23)

but we must make sure that these perturbed trajectories are still solutions of the system (3.18), for
suitably chosen controls. Unfortunately, the class of perturbations η that are admissible in this sense
is difficult to characterize if we start with (3.23). Note also that the cost J , whose first variation we
will be computing, is a function of u and not of x. Thus, in the optimal control context it is more
natural to directly perturb the control instead, and then define perturbed state trajectories in terms
of perturbed controls. To this end, we consider controls of the form

u = u∗ + αξ (3.24)

where ξ is a piecewise continuous function from [t0, t1] to R
m and α is a real parameter as usual.

We now want to find (if possible) a function η : [t0, t1] → R
n for which the solutions of (3.18)

corresponding to the controls (3.24), for a fixed ξ, are given by (3.23). Actually, we do not have any
reason to believe that the perturbed trajectory depends linearly on α. Thus we should replace (3.23)
by the more general (and more realistic) expression

x = x∗ + αη + o(α). (3.25)

It is obvious that η(t0) = 0 since the initial condition does not change. Next, we derive a differential
equation for η. Let us use the more detailed notation x(t, α) for the solution of (3.18) at time t
corresponding to the control (3.24). The function x(·, α) coincides with the right-hand side of (3.25)
if and only if

xα(t, 0) = η(t) (3.26)

for all t. (We are assuming here that the partial derivative xα exists, but its existence can be
shown rigorously; cf. Section 4.2.4.) Differentiating the quantity (3.26) with respect to time and
interchanging the order of partial derivatives, we have

η̇(t) =
d

dt
xα(t, 0) = xαt(t, 0) = xtα(t, 0) =

d

dα

∣∣∣∣
α=0

ẋ(t, α) =
d

dα

∣∣∣∣
α=0

f(t, x(t, α), u∗(t) + αξ(t))

= fx(t, x(t, 0), u
∗(t))xα(t, 0) + fu(t, x(t, 0), u∗(t))ξ(t)

= fx(t, x
∗(t), u∗(t))η(t) + fu(t, x∗(t), u∗(t))ξ(t)

which we write more compactly as

η̇ = fx(t, x
∗, u∗)η + fu(t, x∗, u∗)ξ =: fx|∗ η + fu|∗ ξ. (3.27)

Here and below, we use the shorthand notation |∗ to indicate that a function is being evaluated along
the optimal trajectory. The linear time-varying system (3.27) is nothing but the linearization of the
original system (3.18) around the optimal trajectory. To emphasize the linearity of the system (3.27)
we can introduce the notation A∗(t) := fx|∗ (t) and B∗(t) := fu|∗ (t) for the matrices appearing in
it, bringing it to the form

η̇ = A∗(t)η +B∗(t)ξ. (3.28)

The optimal control u∗ minimizes the cost given by (3.22), and the control system (3.18) can
be viewed as imposing the pointwise-in-time (non-integral) constraint ẋ(t) − f(t, x(t), u(t)) = 0.
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Motivated by Lagrange’s idea for treating such constraints in calculus of variations, expressed by the
augmented cost (2.53) on page 45, let us rewrite our cost as

J(u) =

∫ t1

t0

(
L(t, x(t), u(t)) + p(t) · (ẋ(t) − f(t, x(t), u(t)))

)
dt+K(x(t1))

for some C1 function p : [t0, t1] → R
n to be selected later. Clearly, the extra term inside the integral

does not change the value of the cost. The function p(·) is reminiscent of the Lagrange multiplier
function λ(·) in Section 2.5.2 (the exact relationship between the two will be clarified in Exercise 3.6
below). As we will see momentarily, p is also closely related to the momentum from Section 2.4. We
will be working in the Hamiltonian framework, which is why we continue to use the same symbol p
by which we denoted the momentum earlier (while some other sources prefer λ).

We will henceforth use the more explicit notation 〈·, ·〉 for the inner product in R
n. Let us

introduce the Hamiltonian

H(t, x, u, p) := 〈p, f(t, x, u)〉 − L(t, x, u). (3.29)

Note that this definition matches our earlier definition of the Hamiltonian in calculus of variations,
where we had H(x, y, y′, p) = 〈p, y′〉 − L(x, y, y′); we just need to remember that after we changed
the notation from calculus of variations to optimal control, the independent variable x became t,
the dependent variable y became x, its derivative y ′ became ẋ and is given by (3.18), and the third
argument of L is taken to be u rather than ẋ (which with the current definition of H makes even
more sense). We can rewrite the cost in terms of the Hamiltonian as

J(u) =

∫ t1

t0

(
〈p(t), ẋ(t)〉 −H(t, x(t), u(t), p(t))

)
dt+K(x(t1)). (3.30)

3.4.2 First variation

We want to compute and analyze the first variation δJ |u∗ of the cost functional J at the optimal
control function u∗. To do this, in view of the definition (1.33), we must isolate the first-order terms
with respect to α in the cost difference between the perturbed control (3.24) and the optimal control
u∗:

J(u) − J(u∗) = J(u∗ + αξ) − J(u∗) = δJ |u∗ (ξ)α+ o(α). (3.31)

The formula (3.30) suggests regarding the difference J(u)−J(u∗) as being composed of three distinct
terms, which we now inspect in more detail. We will let ≈ denote equality up to terms of order o(α).
For the terminal cost, we have

K(x(t1)) −K(x∗(t1)) = K(x∗(t1) + αη(t1) + o(α)) −K(x∗(t1)) ≈ 〈Kx(x∗(t1)), αη(t1)〉 . (3.32)

For the Hamiltonian, omitting the t-arguments inside x and u for brevity, we have

H(t, x, u, p) −H(t, x∗, u∗, p) = H(t, x∗ + αη + o(α), u∗ + αξ, p) −H(t, x∗, u∗, p)

≈ 〈Hx(t, x∗, u∗, p), αη〉 + 〈Hu(t, x∗, u∗, p), αξ〉 . (3.33)

As for the inner product 〈p, ẋ − ẋ∗〉, we use integration by parts as we did several times in calculus
of variations:

∫ t1

t0

〈p(t), ẋ(t) − ẋ∗(t)〉dt = 〈p(t), x(t) − x∗(t)〉|t1t0 −
∫ t1

t0

〈ṗ(t), x(t) − x∗(t)〉dt

≈ 〈p(t1), αη(t1)〉 −
∫ t1

t0

〈ṗ(t), αη(t)〉dt
(3.34)
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where we used the fact that x(t0) = x∗(t0). Combining the formulas (3.30)–(3.34), we readily see
that the first variation is given by

δJ |u∗ (ξ) = −
∫ t1

t0

(
〈ṗ+Hx(t, x∗, u∗, p), η〉 + 〈Hu(t, x∗, u∗, p), ξ〉

)
dt+ 〈Kx(x∗(t1)) + p(t1), η(t1)〉

(3.35)
where η is related to ξ via the differential equation (3.27) with the zero initial condition.

The familiar first-order necessary condition for optimality (from Section 1.3.2) says that we must
have δJ |u∗ (ξ) = 0 for all ξ. This condition is true for every function p, but becomes particularly
revealing if we make a special choice of p. Namely, let p be the solution of the differential equation

ṗ = −Hx(t, x
∗, u∗, p) (3.36)

satisfying the boundary condition

p(t1) = −Kx(x∗(t1)). (3.37)

Note that this boundary condition specifies the value of p at the end of the interval [t0, t1], i.e., it is
a final (or terminal) condition rather than an initial condition. In case of no terminal cost we treat
K as being equal to 0, which corresponds to p(t1) = 0. We label the function p defined by (3.36)
and (3.37) as p∗ from now on, to reflect the fact that it is associated with the optimal trajectory. We
also extend the notation |∗ to mean evaluation along the optimal trajectory with p = p∗, so that, for
example, H|∗ (t) = H(t, x∗(t), u∗(t), p∗(t)). Setting p = p∗ and using the equations (3.36) and (3.37)
to simplify the right-hand side of (3.35), we are left with

δJ |u∗ (ξ) = −
∫ t1

t0

〈Hu|∗ , ξ〉 dt = 0 (3.38)

for all ξ. We know from Lemma 2.13 that this implies Hu|∗ ≡ 0 or, in more detail,

Hu(t, x∗(t), u∗(t), p∗(t)) = 0 ∀ t ∈ [t0, t1]. (3.39)

The meaning of this condition is that the Hamiltonian has a stationary point as a function of u along
the optimal trajectory. More precisely, the function H(t, x∗(t), ·, p∗(t))) has a stationary point at
u∗(t) for all t. This is just a reformulation of the property already discussed in Section 2.4.1 in the
context of calculus of variations.

In light of the definition (3.29) of the Hamiltonian, we can rewrite our control system (3.18) more
compactly as ẋ = Hp(t, x, u). Thus the joint evolution of x∗ and p∗ is governed by the system

ẋ∗ = Hp|∗
ṗ∗ = −Hx|∗

(3.40)

which the reader will recognize as the system of Hamilton’s canonical equations (2.30) from Sec-
tion 2.4.1. Let us examine the differential equation for p∗ in (3.40) in more detail. We can expand
it with the help of (3.29) as

ṗ∗ = − (fx)T
∣∣
∗
p∗ + Lx|∗

3That lemma, translated to the present notation, requires Hu|
∗

to be continuous; however, it is clear from its proof
that piecewise continuity is enough.
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where we recall that fx is the Jacobian matrix of f with respect to x. This is a linear time-varying
system of the form ṗ∗ = −AT

∗ (t)p∗+Lx|∗ where A∗(·) is the same as in the differential equation (3.28)
derived earlier for the first-order state perturbation η. Two linear systems ẋ = Ax and ż = −AT z
are said to be adjoint to each other, and for this reason p is called the adjoint vector ; the system-
theoretic significance of this concept will become clearer in Section 4.2.8. Note also that we can think
of p as acting on the state or, more precisely, on the state velocity vector, since it always appears
inside inner products such as 〈p, ẋ〉; for this reason, p is also called the costate (this notion will be
further explored in Section 7.1).

The purpose of the next two exercises is to recover earlier conditions from calculus of variations,
namely, the Euler-Lagrange equation and the Lagrange multiplier condition (for multiple degrees of
freedom and several constraints) from the preliminary necessary conditions for optimality derived so
far, expressed by the existence of an adjoint vector p∗ satisfying (3.39) and (3.40).

Exercise 3.5 The standard (unconstrained) calculus of variations problem with n degrees of freedom
can be rewritten in the optimal control language by considering the control system

ẋi = ui, i = 1, . . . n

together with the cost J(x) =
∫ tf
t0
L(t, x(t), ẋ(t))dt. Assuming that a given trajectory satisfies (3.39)

and (3.40) for this system, prove that the Euler-Lagrange equations, d
dtLẋi

= Lxi
, are satisfied along

this trajectory.

Exercise 3.6 Consider now a calculus of variations problem with n degrees of freedom and k < n
non-integral constraints, represented by the control system

ẋi = fi(t, x1, . . . , xn, u1, . . . , un−k), i = 1, . . . , k

ẋk+i = ui, i = 1, . . . , n− k

with the same cost as in Exercise 3.5. Assuming that a given trajectory satisfies (3.39) and (3.40)
for this system, prove that there exist functions λ∗

i : [t0, t1] → R, i = 1, . . . , k such that the Euler-
Lagrange equations for the augmented Lagrangian

L(t, x, ẋ) +
k∑

i=1

λ∗i (t)
(
ẋi − fi(t, x1, . . . , xn, ẋk+1, . . . , ẋn)

)

are satisfied along this trajectory.

We caution the reader that the transition between the Hamiltonian and the Lagrangian requires
some care, especially in the context of Exercise 3.6. The Lagrangian explicitly depends on ẋ (and the
partial derivatives Lẋi

appear in the Euler-Lagrange equations), whereas the Hamiltonian should not
(it should be a function of t, x, u, and p). The differential equations can be used to put H into the
right form. A consequence of this, in Exercise 3.6, is that x will appear inside H in several different
places. The Lagrange multipliers λ∗i are related to the components of the adjoint vector p∗, but they
are not the same.
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3.4.3 Second variation

To better understand the behavior of H as a function of u along the optimal trajectory, let us bring
in the second variation. To do this, we must first augment the description (3.25) of the perturbed
state trajectory with the second-order term in α, writing x = x∗ + αη + α2ζ + o(α2). We then need
to go back to the expressions (3.32)–(3.34) and expand them by adding second-order terms in α.
With p already set equal to p∗ as defined above, it is relatively straightforward to check that the
ζ-dependent terms drop out—exactly in the same way as the η-dependent terms dropped out of the
first variation (3.35)—and that the second variation is given by

δ2J
∣∣
u∗

(ξ) = −1

2

∫ t1

t0

(
ηT ξT

) (Hxx Hxu

Hxu Huu

)∣∣∣∣
∗

(
η
ξ

)
dt+

1

2
ηTKxx(x∗(t1))η (3.41)

where we recall that η is obtained as the state of the system (3.27) driven by ξ with the initial
condition η(t0) = 0.

Exercise 3.7 Verify the formula (3.41).

We know from the second-order necessary condition for optimality (see Section 1.3.3) that we
must have δ2J

∣∣
u∗

(ξ) ≥ 0 for all ξ. Let us concentrate on the integrand in (3.41) and ask the following
question: does one term in the Hessian matrix of H dominate the other terms? If yes, then this
term should be nonpositive to ensure the correct sign of δ2J

∣∣
u∗

(ξ). We encountered a very similar
issue in Section 2.6.1 in relation to the inequality (2.61). We found there that for the overall integral
to be nonnegative, the function multiplying (η ′(x))2 must be nonnegative, because η′ may be large
while η itself is small. The present situation is a bit different since ξ is not just the derivative of η,
i.e., the system relating the two is not a simple integrator. However, the corresponding conclusion
is still valid: ξT Huu|∗ ξ is the dominant term because we may have a large ξ producing a small η
(but not vice versa), as illustrated in Figure 3.5. Thus, in order for the second variation (3.41) to
be nonnegative, we must have ξT Huu|∗ ξ ≤ 0 for all ξ, which can only happen if the matrix Huu|∗
is negative semidefinite:

Huu(t, x∗(t), u∗(t), p∗(t)) ≤ 0 ∀ t ∈ [t0, t1]. (3.42)

This condition is known as the Legendre-Clebsch condition (in its Hamiltonian formulation).

PSfrag replacements tt η̇ = Aη +Bξ

ξ(t) η(t)

Figure 3.5: Large ξ can produce small η

We already know from (3.39) that for each t ∈ [t0, t1], the function H(t, x∗(t), ·, p∗(t))) must have
a stationary point at u∗(t). Now the Legendre-Clebsch condition (3.42) tells us that if this stationary



CALCULUS OF VARIATIONS AND OPTIMAL CONTROL 77

point is an extremum, then it is necessarily a maximum. Even though we have not proved that the
stationary point must indeed be an extremum, it is tempting to conjecture that this Hamiltonian
maximization property is true. In other words, our findings up to this point are very suggestive of
the following (not yet proved) necessary conditions for optimality: If u∗(·) is an optimal control
and x∗(·) is the corresponding optimal state trajectory, then there exists an adjoint vector (costate)
p∗(·) such that:

1) x∗ and p∗ satisfy the canonical equations (3.40) with the boundary conditions x∗(t0) = x0,
p∗(t1) = −Kx(x

∗(t1)).

2) For each fixed t, the function u 7→ H(t, x∗(t), u, p∗(t)) has a (local) maximum at u = u∗(t):

H(t, x∗(t), u∗(t), p∗(t)) ≥ H(t, x∗(t), u, p∗(t)) ∀u near u∗(t), ∀ t ∈ [t0, t1].

3.4.4 Some comments

We remark that we could define the Hamiltonian and the adjoint vector using a different sign con-
vention, as follows:

Ĥ(t, x, u, p) := 〈p, f(t, x, u)〉 + L(t, x, u), p̂ := −p∗.

Then the function

Ĥ(t, x∗(t), ·, p̂(t)) = −〈p∗(t), f(t, x∗(t), ·)〉 + L(t, x∗(t), ·) = −H(t, x∗(t), ·, p∗(t))

would have a minimum at u∗(t), while x∗, p̂ would still satisfy the correct canonical equations with
respect to Ĥ:

ẋ∗ = f(t, x∗, u∗) = Ĥp(t, x
∗, u∗)

and

˙̂p = −ṗ∗ = Hx(t, x
∗, u∗, p∗) = (fx)T

∣∣
∗
p∗ − Lx|∗ = −(fx)

T
∣∣
∗
p̂− Lx|∗ = −Ĥx(t, x

∗, u∗, p̂).

At first glance, this reformulation in terms of Hamiltonian minimization (rather than maximization)
might seem more natural, because we are solving the minimization problem for the cost functional J .
However, our problem is equivalent to the maximization problem for the functional −J (defined by
the running cost −L and the terminal cost −K). So, whether we arrive at a minimum principle or a
maximum principle is determined just by the sign convention, and has nothing to do with whether
the cost functional is being minimized or maximized. There is no consensus in the literature on this
choice of sign. The convention we follow here is consistent with our definition of the Hamiltonian
in calculus of variations and its mechanical interpretation as the total energy of the system; see
Sections 2.4.1 and 2.4.3. (In general, however, the cost in the optimal control problem is artificial
from the physical point of view and is not related to Hamilton’s action integral.)

Note that the necessary conditions for optimality from Section 3.4.3 are formulated as an existence
statement for the adjoint vector p∗ which arises directly as a solution of the second differential
equation in (3.40); this is in contrast with Section 2.4.1 where the momentum p was first defined by the
formula (2.28) and then a differential equation for it was obtained from the Euler-Lagrange equation.
In the present setting, (3.39) and (3.40) encode all the necessary information about p∗, and we will
find this approach more fruitful in optimal control. Observe that in the special case of the system
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ẋ = u which corresponds to the unconstrained calculus of variations setting, we immediately obtain
from (3.29) and (3.39) that p∗ must be given by p∗ = Lu(t, x∗, u∗), and the momentum definition is
recovered (up to the change of notation). This implies, in particular, that the Weierstrass necessary
condition must also hold, in view of the calculation at the end of Section 3.1.2 (again modulo the
change of notation).

The total derivative of the Hamiltonian with respect to time along an optimal trajectory is given
by

d

dt
H|∗ = Ht|∗ + 〈Hx|∗ , ẋ∗〉 +

〈
Hp|∗ , ṗ∗

〉
+ 〈Hu|∗ , u̇∗〉 = Ht|∗ (3.43)

because the canonical equations (3.40) and the Hamiltonian stationarity condition (3.39) guarantee
that the first two inner products cancel each other and the third one equals 0. In particular, if the
problem is time-invariant in the sense that both f and L are independent of t, then Ht = 0 and we
conclude that H(x∗(t), u∗(t), p∗(t)) must remain constant. If we want to think of H as the system’s
energy, the last statement says that this energy must be conserved along optimal trajectories.

We know that, at least in principle, we can obtain a second-order sufficient condition for optimal-
ity if we make appropriate assumptions to ensure that the second variation δ2J

∣∣
u∗

is positive definite
and dominates terms of order o(α2) in J(u∗ +αξ)− J(u∗). While in general these assumptions take
some work to write down and verify, the next exercise points to a case in which such a sufficient
condition is easily established and applied (and the necessary condition becomes more tractable as
well). This is the case when the system is linear and the cost is quadratic; we will study this class of
problems in detail in Chapter 6.

Exercise 3.8 For the fixed-time, free-endpoint optimal control problem studied in this section,
assume in addition the following: the right-hand side of the control system takes the form f(t, x, u) =
A(t)x+ B(t)u for arbitrary matrix functions A and B; the running cost takes the form L(t, x, u) =
xTQ(t)x + uTR(t)u where Q(t) is symmetric positive semidefinite and R(t) is symmetric positive
definite for all t; and there is no terminal cost (K ≡ 0).

a) Write down the canonical equations (3.40) for this case, and find a formula for the control satisfying
the condition (3.39).

b) By analyzing the second variation, show that this control is indeed optimal (specify in what sense).

3.4.5 Critique of the variational approach and preview of the maximum principle

The variational approach presented in Sections 3.4.1–3.4.3 has led us, quite quickly, to the necessary
conditions for optimality expressed by the canonical equations and the Hamiltonian maximization
property (we did not actually prove the latter property, but we will see that it is indeed correct).
While it helps us build intuition for what the correct statement of the maximum principle should
look like, the variational approach has several limitations which, upon closer inspection, turn out to
be quite severe.

Control set. Recall that our starting point was to consider perturbed controls of the form (3.24).
Such perturbations make sense when the values of u∗ are interior points of the control set U . This
may not be the case, though, if U has a boundary, and bounded (or even finite) control sets are
common in control applications. As we will see in the next chapter, the statement that the function
u 7→ H(t, x∗(t), u, p∗(t)) must have a maximum at u∗(t) is true even in such situations and, moreover,
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this maximum is in fact global. However, we cannot hope to establish this fact using the variational
approach, because Hu|∗ need not be 0 when the maximum is achieved at a boundary point of U .

Final state. In the preceding we treated the case when the final state xf is free, but we know (see
Section 3.3.3) that in general we may have some target set S. Consider, for example, the case of a
fixed endpoint: S = {t1} × {x1}. Then the control perturbation ξ is no longer arbitrary, since the
resulting state perturbation η must satisfy η(t1) = 0. In view of the fact that η and ξ are related by
the system (3.28) with η(t0) = 0, it is easy to show that admissible perturbations ξ must satisfy the
constraint ∫ t1

t0

Φ∗(t1, t)B(t)ξ(t)dt = 0

where Φ∗(·, ·) is the transition matrix for A∗(·) in (3.28). The second equation in (3.38) needs to
hold only for admissible perturbations, and not for all ξ. This condition is no longer strong enough
to let us conclude that Hu|∗ ≡ 0. We see that the prospects of extending the variational approach
beyond free-endpoint problems do not look very promising.

Differentiability. When developing the first variation, we were tacitly assuming that H is
differentiable with respect to u (as well as x). Since the Hamiltonian H is defined via (3.29),
both f and L must thus be differentiable with respect to u. The reader can readily check that
differentiability of f with respect to u was not one of the assumptions we made in Section 3.3.1 to
ensure existence and uniqueness of solutions for our control system. In other words, the variational
approach requires extra regularity assumptions to be imposed on the system. Having to assume
differentiability of L with respect to u is also undesirable, as it rules out otherwise quite reasonable
cost functionals like J(u) =

∫ t1
t0

|u(t)|dt. Furthermore, the analysis based on the second variation—
which is needed to distinguish between a minimum and a maximum—involves second-order partial
derivatives of H with respect to u. It is clear that the variational approach would take us on a path
of overly restrictive regularity assumptions. Instead, we would like to establish the Hamiltonian
maximization property more directly, not by working with derivatives.

Control perturbations. When considering the control and state perturbations as in (3.24)
and (3.25) with α near 0, we are allowing only small deviations in both x and u. For the system
ẋ = u, this would correspond exactly to the notion of a weak minimum from calculus of variations.
However, as we already discussed as early as Section 2.2.1 (see in particular Example 2.1), we would
like to have a larger family of control perturbations. More precisely, we want to capture optimality
with respect to control perturbations that may be large, as long as the corresponding state trajectories
are close to the given one. For example, Figure 3.6 illustrates a particular control perturbation (for
controls that switch between only two values) which is very reasonable but falls outside the scope of
the variational approach. As we will soon see, working with a richer perturbation family is crucial
for obtaining sharper necessary conditions for optimality.

In summary, while the basic form of the necessary conditions provided by the maximum principle
will be similar to what we obtained using the variational approach, several shortcomings of the
variational approach must be overcome in order to obtain a more satisfactory result. Specifically,
we need to accommodate constraints on the control set, constraints on the final state, and weaker
differentiability assumptions. A less restrictive notion of “closeness” of controls will be the key to
achieving these goals. Borrowing a colorful expression from [PB94], we can describe the task ahead
of us as “the cutting of the umbilical cord between the calculus of variations and optimal control
theory.” The maximum principle is a very nontrivial extension of the variational approach, and was
developed many years later. The proof of the maximum principle is quite different from the argument
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given in this section; in particular, it is much more geometric in nature. We are now ready, in terms
of both technical preparation and conceptual motivation, to tackle this proof in the next chapter.

3.5 Notes and references for Chapter 3

Our derivation of the Weierstrass-Erdmann corner conditions is similar to the one given in [GF63,
Section 15] (except that in [GF63] it is deduced from the general formula for the variation of a
functional, while we present a self-contained argument). However, the discussion of these conditions
in [GF63] does not correctly distinguish between weak and strong minima; see [Mac05, Chapter 11]
for a more accurate treatment of this issue. The Weierstrass E-function is introduced in [GF63,
Section 34] as well as [Mac05, Section 11.3]. A proof of the Weierstrass necessary condition is only
sketched in [GF63]; a complete proof similar to ours can be found, e.g., in [Lei81] or [BM91]. The in-
terested reader should also peruse McShane’s paper [McS39], which is based on the monograph [Bli30]
by Bliss. Both [Bli30] and [McS39] actually discuss more general constrained problems, and [Bli30]
offers nice historical remarks at the end. For a careful look at the Hamiltonian reformulation of the
Weierstrass necessary condition, see [Sus00, Handout 3]. A sufficient condition for a strong minimum
based on the concept of a field is developed in [GF63, Sections 32–34].

The brachistochrone problem (Example 3.2 in Section 3.2) is studied in detail from both the
calculus of variations and the optimal control viewpoints in the paper [SW97], which we already
mentioned in the notes and references for Chapter 2. Conditions for existence and uniqueness of
solutions, along the lines of Section 3.3.1, can be found in standard texts; see, e.g., [Kha02, Sec-
tion 3.1] or [Son98, Appendix C.3] for ordinary differential equations without controls and [AF66,
Section 3-18] or [Son98, Section 2.6] for control systems. The conditions given in [Son98] are sharper
than those in [Kha02] and [AF66] but the proofs are essentially the same. Appendix C of [Son98]
can also be consulted for more information on absolutely continuous and measurable functions.

From Section 3.3.2 until the end of the chapter, our primary reference was [AF66] (which, by the
way, was the first textbook on optimal control ever written). Cost functionals and transformations
between their various forms are presented in [AF66, Sections 4-12, 5-14, 5-16]. The discussion
on target sets is compiled from [AF66, Sections 4-12, 4-13, 5-12, 5-14]. Our presentation of the
variational approach follows [AF66, Section 5-7], although the sign convention in [AF66] is the
opposite of ours (see the explanation on page 77 above). Sufficient conditions for optimality—the
subject that we only touched in Exercise 3.8—are developed in [AF66, Section 5-8]. The material of
Sections 3.4.4 and 3.4.5 is elaborated upon in [AF66, Sections 5-9, 5-10].



Chapter 4

The Maximum Principle

4.1 Statement of the maximum principle

Let us consider the optimal control problem formulated in Section 3.3 and adopt as standing as-
sumptions all the regularity requirements imposed in that section on the control system and the cost
functional. We will now describe two special instances of this optimal control problem, for which we
want to state and then (in Section 4.2) prove the maximum principle. Afterwards (in Section 4.3.1)
we will explain how the maximum principle for other cases of interest can be deduced from these
two special results.

4.1.1 Basic fixed-endpoint control problem

We will label as the Basic Fixed-Endpoint Control Problem the optimal control problem from Sec-
tion 3.3 with the following additional specifications: f = f(x, u) and L = L(x, u), with no t-argument
(the control system and the running cost are time-independent); f , fx, L, and Lx are continuous
(in other words, both f and L satisfy the stronger set of regularity conditions from Section 3.3.1);
the target set is S = [t0,∞) × {x1} (this is a free-time, fixed-endpoint problem); and K ≡ 0 (the
terminal cost is absent). For this special problem, the maximum principle takes the following form.

Maximum Principle for the Basic Fixed-Endpoint Control Problem Let u∗ : [t0, tf ] → U
be an optimal control (in the global sense) and let x∗ : [t0, tf ] → R

n be the corresponding optimal
state trajectory. Then there exist a function p∗ : [t0, tf ] → R

n and a constant p∗0 ≤ 0 satisfying
(p∗0, p

∗(t)) 6= (0, 0) for all t ∈ [t0, tf ] and having the following properties:

1) x∗ and p∗ satisfy the canonical equations

ẋ∗ = Hp(x
∗, u∗, p∗, p∗0)

ṗ∗ = −Hx(x
∗, u∗, p∗, p∗0)

(4.1)

with the boundary conditions x∗(t0) = x0 and x∗(tf ) = x1, where the Hamiltonian H : R
n ×

U × R
n × R → R is defined as

H(x, u, p, p0) := 〈p, f(x, u)〉 + p0L(x, u). (4.2)

81
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2) For each fixed t, the function u 7→ H(x∗(t), u, p∗(t), p∗0) has a global maximum at u = u∗(t),
i.e.,

H(x∗(t), u∗(t), p∗(t), p∗0) ≥ H(x∗(t), u, p∗(t), p∗0) ∀ t ∈ [t0, tf ], ∀u ∈ U.

3) H(x∗(t), u∗(t), p∗(t), p∗0) = 0 for all t ∈ [t0, tf ].

A few clarifications are in order. First, the maximum principle, as stated here, describes necessary
conditions for global optimality. However, we announced in Section 3.4.5 that one of our goals is to
capture an appropriate notion of local optimality. The proof of the maximum principle will make
it clear that the same conditions are indeed necessary for local optimality in the sense outlined in
Section 3.4.5. We thus postpone further discussion of this issue until after the proof (see Section 4.3).
Second, while the adjoint vector, or costate, p∗ is already familiar from Section 3.4, one difference with
the necessary conditions derived using the variational approach is the presence of p∗0. This nonpositive
scalar is called the abnormal multiplier. Similarly to the abnormal multiplier λ∗

0 from Section 2.5, it
equals 0 in degenerate cases; otherwise p∗0 6= 0 and we can recover our earlier definition (3.29) of the
Hamiltonian by normalizing (p∗0, p

∗(t)) so that p∗0 = −1 (note that such scaling does not affect any of
the properties listed in statement of the maximum principle). In the future, whenever the abnormal
multiplier is not explicitly written, it is assumed to be equal to −1. Finally, in Section 3.4.4 we saw
another scenario where H was constant, but the claim that H ≡ 0 may seem surprising. We will see
later (in Section 4.3.1) that this is a special feature of free-time problems. The next exercise provides
an early illustration of the usefulness of the above result.

Exercise 4.1 Consider the optimal control formulation of the brachistochrone problem presented
in Example 3.2 in Section 3.2. Use the maximum principle to confirm the fact (already known from
Exercise 2.5) that optimal curves are cycloids given by (2.7).

Let us now ask ourselves how restricted the Basic Fixed-Endpoint Control Problem really is.
Time-independence of f and L and the absence of the terminal cost do not really introduce a loss
of generality. Indeed, we know from Section 3.3 that we can eliminate t and K from the problem
formulation by introducing the extra state variable xn+1 := t (although this entails stronger regularity
assumptions on the original right-hand side as a function of t) and passing to the new running cost
L̂ := L+Kt +Kx · f . On the other hand, the target set S = [t0,∞)×{x1} is not very general, as it
does not allow any flexibility in choosing the final state. This motivates us to consider the following
refined problem formulation.

4.1.2 Basic variable-endpoint control problem

The Basic Variable-Endpoint Control Problem is the same as the Basic Fixed-Endpoint Control
Problem except the target set is now of the form S = [t0,∞) × S1, where S1 is a k-dimensional
surface in R

n for some nonnegative integer k ≤ n. As in Section 1.2.21 we define such a surface via
equality constraints:

S1 = {x ∈ R
n : h1(x) = h2(x) = · · · = hn−k(x) = 0}

1The reader might need to revisit that section, as its terminology and notation will be freely used here.
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where hi, i = 1, . . . , n − k are C1 functions from R
n to R. We also assume that every x ∈ S1 is a

regular point. As two extreme special cases, for k = n we obtain S1 = R
n (which gives a free-time,

free-endpoint problem) while for k = 0 the surface S1 reduces either to a single point (as in the Basic
Fixed-Endpoint Control Problem) or to a set consisting of isolated points. The difference between
the maximum principle for this problem and the previous one lies only in the boundary conditions
for the system of canonical equations.

Maximum Principle for the Basic Variable-Endpoint Control Problem Let u∗ : [t0, tf ] →
U be an optimal control and let x∗ : [t0, tf ] → R

n be the corresponding optimal state trajectory. Then
there exist a function p∗ : [t0, tf ] → R

n and a constant p∗0 ≤ 0 satisfying (p∗0, p
∗(t)) 6= (0, 0) for all

t ∈ [t0, tf ] and having the following properties:

1) x∗ and p∗ satisfy the canonical equations (4.1) with respect to the Hamiltonian (4.2) with the
boundary conditions x∗(t0) = x0 and x∗(tf ) ∈ S1.

2) H(x∗(t), u∗(t), p∗(t), p∗0) ≥ H(x∗(t), u, p∗(t), p∗0) for all t ∈ [t0, tf ] and all u ∈ U .

3) H(x∗(t), u∗(t), p∗(t), p∗0) = 0 for all t ∈ [t0, tf ].

4) The vector p∗(tf ) is orthogonal to the tangent space to S1 at x∗(tf ):

〈p∗(tf ), d〉 = 0 ∀ d ∈ Tx∗(tf )S1. (4.3)

The additional necessary condition (4.3) is called the transversality condition (we encountered
its loose analog in Example 2.4 and Exercise 2.6 in Section 2.3.5). We know from Section 1.2.2 that
the tangent space can be characterized as

Tx∗(tf )S1 = {d ∈ R
n : 〈∇hi(x

∗(tf )), d〉 = 0, i = 1, . . . , n− k} (4.4)

and that (4.3) is equivalent to saying that p∗(tf ) is a linear combination of the gradient vectors
∇hi(x

∗(tf )), i = 1, . . . , n−k. Note that when k = n and hence S1 = R
n, the transversality condition

reduces to p∗(tf ) = 0 (because the tangent space is the entire R
n). On the other hand, the previous

version of the maximum principle is a special case of the present result: when S1 = {x1}, its tangent
space is 0 and (4.3) is true for all p∗(tf ). In general, here as well as in the Basic Fixed-Endpoint
Control Problem, we have n boundary conditions imposed on (x∗, p∗) at t = t0 and n more at t = tf .
This gives the correct total number of boundary conditions to specify a solution of the 2n-dimensional
system (4.1). However, in the Basic Fixed-Endpoint Control Problem x∗(tf ) was fixed and p∗(tf )
was free, while here we have k degrees of freedom for x∗(tf ) ∈ S1 but only n− k degrees of freedom
for p∗(tf ) ⊥ Tx∗(tf )S1. We see that the freer the state, the less free the costate: each additional
degree of freedom for x∗(tf ) eliminates one degree of freedom for p∗(tf ).

The maximum principle was developed by the Pontryagin school in the Soviet Union in the
late 1950s. It was presented to the wider research community at the first IFAC World Congress in
Moscow in 1960 and in the celebrated book [PBGM62]. It is worth reflecting that the developments
we have covered so far in this book—starting from the Euler-Lagrange equation, continuing to the
Hamiltonian formulation, and culminating in the maximum principle—span more than 200 years.
The progress made during this time period is quite remarkable, yet the origins of the maximum
principle are clearly traceable to the early work in calculus of variations.
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4.2 Proof of the maximum principle

Our proof of the two versions of the maximum principle stated in the previous section will be divided
into the following steps.

Step 1: From Lagrange to Mayer form As the first step, we will pass from the given Lagrange
problem to an equivalent problem in the Mayer form by appending an additional state (this
technique was already discussed in Section 3.3.2).

Step 2: Temporal control perturbation In the next step, we will apply a small perturbation to
the length of the time interval over which the optimal control is acting, and will characterize
the resulting perturbation of the terminal state.

Step 3: Spatial control perturbation In this step, we will replace the optimal control on a small
time interval by an arbitrary constant control, and will study how the resulting state trajectory
deviates from the optimal one at the end of this time interval. (This perturbation will be remi-
niscent of the one we used in the proof of the Weierstrass necessary condition in Section 3.1.2.)

Step 4: Variational equation We will then derive a linear differential equation which propagates,
modulo terms of higher order, the effect of spatial control perturbations up to the terminal time.
This is the variational equation (we already encountered this terminology in Section 2.6.2).

Step 5: Terminal cone Combining the effects of temporal and spatial control perturbations, we
will construct a convex cone, with vertex at the terminal state of the optimal trajectory, which
describes infinitesimal directions of all possible perturbations of the terminal state.

Step 6: Key topological lemma Next, we will use optimality to show that the terminal cone
does not contain in its interior the direction of decreasing cost.

Step 7: Separating hyperplane We will invoke the separating hyperplane theorem to establish
the existence of a hyperplane that passes through the terminal state and separates the terminal
cone from the direction of decreasing cost. We will define the adjoint vector at the terminal
time as the normal to this separating hyperplane.

Step 8: Adjoint equation We will then introduce the adjoint equation which propagates the ad-
joint vector up to the terminal time; it will match the second canonical equation, as required
by the maximum principle.

Step 9: Properties of the Hamiltonian We will verify that the Hamiltonian maximization con-
dition holds and that the Hamiltonian is identically 0 along the optimal trajectory. This will
conclude the proof of the maximum principle for the Basic Fixed-Endpoint Control Problem.

Step 10: Transversality condition Finally, we will prove the maximum principle for the Basic
Variable-Endpoint Control Problem by refining the separation property from steps 6 and 7 and
arriving at the transversality condition.

Each of the subsections that follow corresponds to one step in the proof. Until we reach step 10
in Section 4.2.10, we assume that we are dealing with the Basic Fixed-Endpoint Control Problem,
i.e., S = [t0,∞) × {x1}. The next exercise is meant to be worked on in parallel with following the
proof.
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Exercise 4.2 Consider the double integrator ẋ1 = x2, ẋ2 = u with u ∈ [−1, 1]. Let the initial

condition be x(0) =
(

0
0

)
, let the final state be

(
2
2

)
, and let the running cost be L ≡ 1 so that

we have a time-optimal control problem. It is easy to check that the control u∗(t) = 1, t ∈ [0, 2] is
optimal. Specialize the main steps of the proof of the maximum principle to this problem and this
control. Bring the relevant concepts and conclusions to the level of explicit numerical formulas, and
draw figures wherever appropriate.

4.2.1 From Lagrange to Mayer form

As in Section 3.3.2, we define an additional state variable, x0 ∈ R, to be the solution of

ẋ0 = L(x, u), x0(t0) = 0

and arrive at the augmented system

ẋ0 = L(x, u)

ẋ = f(x, u)
(4.5)

with the initial condition
(

0
x0

)
. The cost can then be rewritten as

J(u) =

∫ tf

t0

ẋ0(t)dt = x0(tf ) (4.6)

which means that in the new coordinates the problem is in the Mayer form (there is a terminal cost
and no running cost). Also, the target set becomes [t0,∞)×R× {x1} =: [t0,∞) × S′; here S′ is the

line in R
n+1 that passes through

(
0
x1

)
and is parallel to the x0-axis. To simplify the notation, we

define

y :=

(
x0

x

)
∈ R

n+1

and write the system (4.5) more compactly as

ẏ =

(
L(x, u)
f(x, u)

)
=: g(y, u) (4.7)

(the right-hand side actually does not depend on x0). Note that this system is well posed because
we assumed that L has the same regularity properties as f .

An optimal trajectory x∗(·) of the original system in R
n corresponds in an obvious way to an

optimal trajectory y∗(·) of the augmented system in R
n+1. The first component x0,∗ of y∗ describes

the evolution of the cost in the original problem, and x∗ is recovered from y∗ by projection onto
R

n parallel to the x0-axis. This situation is depicted in Figure 4.1 (note that L is not necessarily
positive, so x0 need not actually be increasing along y∗). In this and all subsequent figures, the
x0-axis will be vertical.

From now on, we let t∗ denote the terminal time of the optimal trajectory x∗ (or, what is the
same, of y∗). The next exercise offers a geometric interpretation of optimality; it will not be directly
used in the current proof, but we will see a related idea in Section 4.2.6.
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Figure 4.1: The optimal trajectory of the augmented system

Exercise 4.3 Let t1 and t2 be arbitrary time instants satisfying t0 ≤ t1 < t2 ≤ t∗. Let S′′ be the

line passing through
(

0
x∗(t2)

)
and parallel to the x0-axis. Show that no trajectory y starting at

y∗(t1) =
(x0,∗(t1)
x∗(t1)

)
can meet S ′′ below the point y∗(t2) =

(x0,∗(t2)
x∗(t2)

)
at any time t3, even different

from t2.

In the particular case when t2 = t∗, the claim in the exercise should be obvious: no other
trajectory starting from some point y∗(t1) on the optimal trajectory can hit the line S ′ at a point
lower than y∗(t∗). In other words, a final portion of the optimal trajectory must itself be optimal with
respect to its starting point as the initial condition. This idea, known as the principle of optimality, is
illustrated in Figure 4.2. (The reader will notice that we are using different axes in different figures.)

impossible
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Figure 4.2: Principle of optimality

Another simple observation, which will be useful later, is that the Hamiltonian (4.2) can be
equivalently represented as the following inner product in R

n+1:

H(x, u, p, p0) =

〈(
p0

p

)
,

(
L(x, u)
f(x, u)

)〉
. (4.8)
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4.2.2 Temporal control perturbation

Let us see what happens if we introduce a small change in the terminal time t∗ of the optimal
trajectory, i.e., let the optimal control act on a little longer or a little shorter time interval. We
formalize this as follows: for an arbitrary τ ∈ R and a small ε > 0, we consider the perturbed control

uτ (t) := u∗(min{t, t∗}), t ∈ [t0, t
∗ + ετ ]

which is illustrated by the thick curves in Figure 4.3 (for the two cases depending on the sign of τ).
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Figure 4.3: A temporal perturbation

We are interested in the value of the resulting perturbed trajectory y at the new terminal time
t∗ + ετ . For τ > 0, the first-order Taylor expansion of y around t = t∗ gives

y(t∗ + ετ) = y∗(t∗) + ẏ(t∗)ετ + o(ε)

= y∗(t∗) + g(y∗(t∗), u∗(t∗))ετ + o(ε) =: y∗(t∗) + εδ(τ) + o(ε).
(4.9)

For τ < 0, we have y(t∗ + ετ) = y∗(t∗ + ετ) and the first-order Taylor expansion of y∗ around t = t∗

gives the same result. The vector εδ(τ) describes the infinitesimal (first-order in ε) perturbation of
the terminal point. By definition, δ(τ) depends linearly on τ . As we vary τ over R, keeping ε fixed,
the points y∗(t∗) + εδ(τ) form a line through y∗(t∗). We denote this line by ~ρ; see Figure 4.4. Every
point on ~ρ corresponds to a control uτ for some τ . On the other hand, the approximation of y(t∗+ετ)
by y∗(t∗) + εδ(τ) is valid only in the limit as ε → 0. So, δ(τ) tells us the direction—but not the
magnitude—of the terminal point deviation caused by an infinitesimal change in the terminal time.
The arrow over ρ is meant to indicate that points on the line correspond to perturbation directions.
Note that we are describing deviations of the terminal point in the (x0, x)-space only, ignoring the
differences in the terminal times; accordingly, the time axis is not included in the figures.

4.2.3 Spatial control perturbation

We now construct control perturbations known as “needle” perturbations, or Pontryagin-McShane
perturbations. As the first name suggests, they will be represented by pulses of short duration;
the reason for the second name is that perturbations of this kind were first used by McShane in
calculus of variations (see Section 3.1.2) and later adopted by Pontryagin’s school for the proof of
the maximum principle.

Let w be an arbitrary element of the control set U . Consider the interval I := (b−εa, b] ⊂ (t0, t
∗),

where b 6= t∗ is a point of continuity2 of u∗, a > 0 is arbitrary, and ε > 0 is small. We define the

2The reason for this assumption is that the subsequent Taylor expansions rely on y being differentiable at t = b.
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Figure 4.4: The effect of a temporal control perturbation

perturbed control

uw,I(t) :=

{
u∗(t) if t /∈ I
w if t ∈ I

Figure 4.5 illustrates this control perturbation and the resulting state trajectory perturbation. As
the figure suggests, the perturbed trajectory y corresponding to uw,I will deviate from y∗ on the
interval I and afterwards will “run parallel” to y∗. We now proceed to formally characterize the
deviation over I; the behavior of y over the interval [b, t∗] will be studied in Section 4.2.4.
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Figure 4.5: A spatial control perturbation and its effect on the trajectory

We will let ≈ denote equality up to terms of order o(ε). The first-order Taylor expansion of y∗

around t = b gives
y∗(b− εa) ≈ y∗(b) − ẏ∗(b)εa. (4.10)

Rearranging terms and using the fact that y∗ satisfies the differential equation (4.7) with u = u∗, we
have

y∗(b) ≈ y∗(b− εa) + g(y∗(b), u∗(b))εa. (4.11)

On the other hand, the first-order Taylor expansion of the perturbed solution y around t = b − εa
yields

y(b) ≈ y(b− εa) + ẏ(b− εa)εa

where by ẏ(b− εa) we mean the right-sided derivative of y at t = b− εa. Since y(b− εa) = y∗(b− εa)
by construction and y satisfies (4.7) with u = uw,I , we obtain

y(b) ≈ y∗(b− εa) + g(y∗(b− εa), w)εa. (4.12)
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We now apply the Taylor expansion to the last term in (4.12):

g(y∗(b− εa), w)εa ≈ g(y∗(b), w)εa + gy(y
∗(b), w)(y∗(b− εa) − y∗(b))εa. (4.13)

In view of (4.10), the second term on the right-hand side of (4.13) is of order ε2; hence we can omit
it and the approximation will remain valid. Thus (4.12) simplifies to

y(b) ≈ y∗(b− εa) + g(y∗(b), w)εa.

Comparing this formula with (4.11), we arrive at

y(b) ≈ y∗(b) + νb(w)εa (4.14)

where

νb(w) := g(y∗(b), w) − g(y∗(b), u∗(b)). (4.15)

Intuitively, this result makes sense: up to terms of order o(ε), the difference between the two states
y(b) and y∗(b) is the difference (4.15) between the state velocities at y = y∗(b) corresponding to
u = w and u = u∗(b), multiplied by the length εa of the time interval on which the perturbation is
acting.

4.2.4 Variational equation

We are now interested in how the difference between the trajectory y arising from a spatial (needle)
perturbation and the optimal trajectory y∗ propagates after the perturbation stops acting, i.e., for
t ≥ b. To study this question, let us begin by writing

y(t) = y∗(t) + εψ(t) + o(ε) =: y(t, ε) (4.16)

for b ≤ t ≤ t∗, where ψ : [b, t∗] → R
n+1 is a quantity that we want to characterize and ε is the same

as in Section 4.2.3. We know from (4.14) that ψ(b) exists and is given by

ψ(b) = νb(w)a. (4.17)

We now derive a differential equation that ψ must satisfy on the time interval (b, t∗], where both y
and y∗ have the same corresponding control u∗. It is clear from (4.16) that

ψ(t) = yε(t, 0) (4.18)

(the existence of this partial derivative, and therefore of ψ, for t > b will become evident in a
moment). Let us rewrite the system (4.7) as an integral equation:

y(t, ε) = y(b, ε) +

∫ t

b
g(y(s, ε), u∗(s))ds.

Differentiating both sides of this equation with respect to ε at ε = 0 and using (4.16) with t = b
and (4.17), we obtain

yε(t, 0) = νb(w)a+

∫ t

b
gy(y(s, 0), u

∗(s))yε(s, 0)ds
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which, in view of (4.16) and (4.18), amounts to

ψ(t) = νb(w)a+

∫ t

b
gy(y

∗(s), u∗(s))ψ(s)ds.

Taking the derivative with respect to t, we conclude that ψ satisfies the differential equation

ψ̇ = gy(y
∗, u∗)ψ = gy|∗ ψ. (4.19)

We will use this equation to describe how spatial perturbations propagate with time. Pictorially, the
role of ψ is illustrated in Figure 4.6, with the understanding that the labels involving ψ are accurate
only up to terms of order o(ε).
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Figure 4.6: Propagation of a spatial perturbation

The equation (4.19) can be written in the form

ψ̇ = A∗(t)ψ (4.20)

where A∗(t) := gy|∗ (t). This system is simply the linearization of the original system (4.7) around
the optimal trajectory y∗. Recall that a more detailed description of the system (4.7) is given by (4.5).
Letting (η0, η) be the corresponding components of ψ and writing out the variational equation (4.19)
in terms of these components, we easily arrive at

η̇0 = (Lx)T
∣∣
∗
η

η̇ = fx|∗ η

(because L and f do not depend on x0). Here (Lx)T is a row vector (the transpose of the gradient
of L with respect to x) and fx is an n× n matrix (the Jacobian matrix of f with respect to x). The
resulting more explicit formula for A∗ is

A∗(t) =

(
0 (Lx)T

∣∣
∗

0 fx|∗

)
. (4.21)

The equation (4.19) is in fact the variational equation corresponding to the system (4.7), according
to the terminology introduced in Section 2.6.2. The equation (3.27) in Section 3.4 is also similar and
was similarly derived, although it served a different purpose (it described the effect of a small control
perturbation on a given trajectory, while here we are studying the difference between two nearby
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trajectories with the same control). Also, we see that ε in the definition of a needle perturbation
essentially corresponds to α in the variational approach; we chose to use different symbols for these
two parameters because of the different specific ways in which they are introduced.

The value of ψ at the terminal time t∗ gives us an approximation of the terminal point y(t∗) of
the perturbed trajectory. Namely, from (4.16) evaluated at t = t∗ we have

y(t∗) = y∗(t∗) + εψ(t∗) + o(ε). (4.22)

Let us denote by Φ∗(·, ·) the transition matrix for the linear time-varying system (4.20), so that

ψ(t∗) = Φ∗(t
∗, b)ψ(b).

The initial value ψ(b) is given by (4.17), hence

ψ(t∗) = Φ∗(t
∗, b)νb(w)a

where νb(w) was defined in (4.15). Plugging this expression into (4.22), we obtain

y(t∗) = y∗(t∗) + εΦ∗(t
∗, b)νb(w)a + o(ε). (4.23)

Let us introduce the notation
δ(w, I) := Φ∗(t

∗, b)νb(w)a (4.24)

to arrive at the more compact formula

y(t∗) = y∗(t∗) + εδ(w, I) + o(ε)

(here the interval I used for constructing the needle perturbation encodes information about the
values of a and b).

4.2.5 Terminal cone

We now want to describe geometrically the combined effect of the temporal and spatial control
perturbations on the terminal state. The vector εδ(w, I) describes the infinitesimal (first-order in
ε) perturbation of the terminal state caused by the needle perturbation with parameters w and I.
(It corresponds to the vector labeled as εψ(t∗) in Figure 4.6.) From the definition (4.24) of δ(w, I),
it is clear that its direction depends only on w and b, but not on a. We let ~ρ(w, b) denote the ray
in this direction originating at y∗(t∗). If we keep w, b, and ε fixed, ~ρ(w, b) consists of the points
y∗(t∗) + εδ(w, I) for various values of a. The construction of ~ρ(w, b) is analogous to that of ~ρ in
Section 4.2.2, except that ~ρ(w, b) is unidirectional (because both a and ε are positive) whereas ~ρ was
bidirectional. We also let ~P denote the union of the rays ~ρ(w, b) for all possible values of w and b.
Then ~P is a cone with vertex at y∗(t∗). Note that this cone is not convex; for example, if the control
set U (in which w takes values) is finite, then ~P will in general be a union of isolated rays starting
at y∗(t∗).

Let us now ask ourselves the following question: is there a spatial control perturbation such that
the corresponding first-order perturbation of the terminal point is, say, εδ(w1, I1) + εδ(w2, I2) for
some control values w1, w2 and intervals I1 = (b1 − εa1, b1] and I2 = (b2 − εa2, b2]? We will now see
that the right way to “add” two needle perturbations is to concatenate them, i.e., to perturb u∗ both
on I1 (by setting it equal to w1 there) and on I2 (by setting it equal to w2). Here we are assuming
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Figure 4.7: “Adding” spatial perturbations

that b1 < b2, so that for ε small enough I1 and I2 do not overlap. Such a spatial perturbation is
shown in Figure 4.7.

The resulting first-order perturbation of the terminal point will then be the sum εδ(w1, I1) +
εδ(w2, I2). This is true simply because the variational equation, which propagates first-order state
perturbations up to the terminal time, is linear. Indeed, according to the formulas derived in the
two previous subsections, we will have

y(b1) = y∗(b1) + νb1(w1)εa1 + o(ε)

at the end of the first perturbation interval, then

y(b2) = y∗(b2) + ε
(
Φ∗(b2, b1)νb1(w1)a1 + νb2(w2)a2

)
+ o(ε)

at the end of the second perturbation interval, and finally, since Φ∗(t
∗, b2)Φ∗(b2, b1) = Φ∗(t

∗, b1) by
the semigroup property of the transition matrix,

y(t∗) = y∗(t∗) + εΦ∗(t
∗, b2)

(
Φ∗(b2, b1)νb1(w1)a1 + νb2(w2)a2

)
+ o(ε)

= y∗(t∗) + εΦ∗(t
∗, b1)νb1(w1)a1 + εΦ∗(t

∗, b2)νb2(w2)a2 + o(ε)

= y∗(t∗) + εδ(w1, I1) + εδ(w2, I2) + o(ε).

Exercise 4.4 Explain how to “add” two needle perturbations with b1 = b2. In other words, given
two control values w1 and w2 and two intervals I1 = (b − εa1, b] and I2 = (b − εa2, b] with the
same right endpoint, construct a spatial control perturbation such that the resulting terminal point
satisfies y(t∗) = y∗(t∗) + εδ(w1, I1) + εδ(w2, I2) + o(ε). (Keep in mind that w1 +w2 might not be an
admissible control value.)

More generally, if we want to generate the infinitesimal perturbation εβ1δ(w1, I1) + εβ2δ(w2, I2)
for some β1, β2 > 0, then it is easy to see that we need to adjust the lengths of the intervals on
which the two needle perturbations are acting: we need to set u(t) = w1 on Ī1 := (b1 − εβ1a1, b1]
and u(t) = w2 on Ī2 := (b2 − εβ2a2, b2]. It is also clear that this construction immediately extends
to linear combinations (with positive coefficients) of more than two terms.

Recall that ~P is the cone with vertex at y∗(t∗) formed by the rays ~ρ(w, b) corresponding to all
simple (individual) needle perturbations. The preceding discussion demonstrates that by concatenat-
ing different needle perturbations, we generate a larger cone (with the same vertex) which consists
exactly of convex combinations of points in ~P . We denote this convex cone by co( ~P ).
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In Section 4.2.2 we also constructed the line ~ρ of perturbation directions arising from the temporal
perturbations of u∗. We now add this line to the convex cone co( ~P ), in the sense of adding vectors
attached to the point y∗(t∗). More precisely, we consider the set of points of the form

y = y∗(t∗) + ε
(
β0δ(τ) +

m∑

i=1

βiδ(wi, Ii)
)

(4.25)

where ε > 0, δ(τ) comes from (4.9) for some τ , δ(wi, Ii) comes from (4.24) for some wi and Ii, and
β0, β1, . . . , βm are arbitrary nonnegative numbers. We denote this set by Ct∗ and call it the terminal
cone. It is easy to check that Ct∗ is again a convex cone, with vertex at y∗(t∗). This construction is
illustrated in Figure 4.8, where Ct∗ is the infinite “wedge” between the two half-planes.
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Figure 4.8: The terminal cone

By the same reasoning as before, we can show that for every point y ∈ Ct∗ given by (4.25) there
exists a perturbation of u∗ such that the terminal point of the perturbed trajectory satisfies

y(tf ) = y + o(ε).

To obtain the desired control perturbation, we need to apply a concatenated spatial perturbation
as explained above, followed by the temporal perturbation that adjusts the terminal time by β0ετ .
Since the intervals Ii are strictly inside [t0, t

∗], they do not interfere with the temporal perturbation
(for small enough ε). The fact that the resulting total first-order perturbation of the terminal point is
indeed the correct one hinges on the linearity of the variational equation and on the linear dependence
of δ(τ) on τ .

4.2.6 Key topological lemma

Up until now, we have not yet used the fact that u∗ is an optimal control and y∗ is an optimal
trajectory. As discussed in Section 4.2.1 and demonstrated in Figure 4.2, optimality means that no
other trajectory y corresponding to another control u can reach the line S ′ (the vertical line through(

0
x1

)
in the y-space) at a point below y∗(t∗). Since the terminal cone Ct∗ is a linear approximation

of the set of points that we can reach by applying perturbed controls, we expect that the terminal
cone should face “upward.”

To formalize this observation, consider the vector

µ :=
(
−1 0 · · · 0

)T ∈ R
n+1 (4.26)

and let ~µ be the ray generated by this vector (which points downward) originating at y∗(t∗). Opti-
mality suggests that ~µ should be directed outside of Ct∗ , a situation illustrated in Figure 4.9. Since
Ct∗ is only an approximation, the correct claim is actually slightly weaker.
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Lemma 4.1 ~µ does not intersect the interior of the cone Ct∗.

In other words, ~µ can in principle touch Ct∗ along the boundary, but it cannot lie inside it. We
note that since Ct∗ is a cone, ~µ intersects its interior if and only if all points of ~µ except y∗(t∗) are
interior points of Ct∗ .

Let us see what would happen if the statement of the lemma were false and ~µ were inside Ct∗ .
By construction of the terminal cone, as explained at the end of Section 4.2.5, there would exist a
(spatial plus temporal) perturbation of u∗ such that the terminal point of the perturbed trajectory
y would be given by

y(tf ) = y∗(t∗) + εβµ+ o(ε)

for some (arbitrary) β > 0. Writing this out in terms of the components (x0, x) of y and recalling
the definition (4.26) of µ and the relation (4.6) between x0 and the cost, we obtain

J(u) = J(u∗) − εβ + o(ε)

x(tf ) = x1 + o(ε)

where u is the perturbed control that generates y. Presently there is no direct contradiction with
optimality of u∗ yet, because the terminal point x(tf ) of the perturbed trajectory x is different from
the prescribed terminal point x1, i.e., x need not hit the target set. Thus we see that although
Lemma 4.1 certainly seems plausible, it is not obvious.

Let us try to build a more convincing argument in support of Lemma 4.1. If the statement of the
lemma is false, then we can pick a point ŷ on the ray ~µ below y∗(t∗) such that ŷ is contained in Ct∗

together with a ball of some positive radius ε around it; let us denote this ball by Bε. For a suitable
value of β > 0, we have ŷ = y∗(t∗) + εβµ. Since the points in Bε belong to Ct∗ , they are of the
form (4.25) and can be written as y∗(t∗) + εν where the vectors εν are first-order perturbations of
the terminal point arising from control perturbations constructed earlier. We know that the actual
terminal points of trajectories corresponding to these control perturbations are given by

y∗(t∗) + εν + o(ε). (4.27)

We denote the set of these terminal points by B̃ε; we can think of it as a “warped” version of Bε,
since it is o(ε) away from Bε.

In the above discussion, ε > 0 was fixed; we now make it tend to 0. The point y∗(t∗)+εβµ, which
we relabel as ŷε to emphasize its dependence on ε, will approach y∗(t∗) along the ray ~µ as ε→ 0 (here
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β is the same fixed positive number as in the original expression for ŷ). The ball Bε, which now stands
for the ball of radius ε around ŷε, will still belong to Ct∗ and consist of the points y∗(t∗)+εν for each
value of ε. Terminal points of perturbed state trajectories (the perturbations being parameterized
by ε) will still generate a “warped ball” B̃ε consisting of points of the form (4.27). Figure 4.10 should
help visualize this construction.
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Figure 4.10: Proving Lemma 4.1

Since the center of Bε is on ~µ below y∗(t∗), the radius of Bε is ε, and the “warping” is of order
o(ε), for sufficiently small ε the set B̃ε will still intersect the ray ~µ below y∗(t∗). But this means that
there exists a perturbed trajectory x which hits the desired terminal point x1 with a lower value of
the cost. The resulting contradiction proves the lemma.

The above claim about a nonempty intersection between B̃ε and ~µ seems intuitively obvious.
The original proof of the maximum principle in [PBGM62] states that this fact is obvious, but then
adds a lengthy footnote explaining that a rigorous proof can be given using topological arguments.
A conceivable scenario that must be ruled out is one in which the set B̃ε has a hole (or dent) in it
and the ray ~µ goes through this hole. It turns out that this is indeed impossible, thanks to continuity
of the “warping” map that transforms Bε to B̃ε. In fact, it can be shown that B̃ε contains, for ε
small enough, a ball centered at ŷε whose radius is of order ε− o(ε). One quick way to prove this is
by applying Brouwer’s fixed point theorem (which states that a continuous map from a ball to itself
must have a fixed point).

Exercise 4.5 Prove rigorously that B̃ε and ~µ must have a nonempty intersection for sufficiently
small ε.

4.2.7 Separating hyperplane

A standard result in convex analysis known as the Separating Hyperplane Theorem (see, e.g., [Ber99,
Proposition B.13] or [BV04, Section 2.5.1]) says that if C and D are two nonempty disjoint convex
sets then there exists a hyperplane that separates them; by this we mean that C is contained in one
of the two closed half-spaces created by the hyperplane and D is contained in the other. The ray ~µ
is a convex set, and from the convexity of the terminal cone Ct∗ it is easy to see that its interior is
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convex as well. Lemma 4.1 guarantees that ~µ does not intersect the interior of Ct∗ . Therefore, we
can apply the Separating Hyperplane Theorem to conclude the existence of a hyperplane separating
~µ from the interior of Ct∗ , and hence from Ct∗ itself.3 Obviously, this separating hyperplane must
pass through the point y∗(t∗) which is a common point of Ct∗ and ~µ. Such a hyperplane need not
be unique. The normal to the hyperplane is a nonzero vector in R

n+1 (it is defined up to a constant
multiple once we fix the hyperplane). Let us denote this normal vector by

(
p∗0

p∗(t∗)

)
(4.28)

where p∗0 ∈ R and p∗(t∗) ∈ R
n are, by definition, its x0-component and x-component, respectively.

Then the equation of the hyperplane is
〈(

p∗0
p∗(t∗)

)
, y

〉
=

〈(
p∗0

p∗(t∗)

)
, y∗(t∗)

〉

and the separation property is formally written as
〈(

p∗0
p∗(t∗)

)
, δ

〉
≤ 0 ∀ δ such that y∗(t∗) + δ ∈ Ct∗ (4.29)

and 〈(
p∗0

p∗(t∗)

)
, µ

〉
≥ 0 (4.30)

where µ is the vector (4.26) which generates the ray ~µ. Note that if we were to flip the direction
of the normal vector (4.28), the inequality signs in (4.29) and (4.30) would be reversed; the present
choice is simply a matter of sign convention (cf. Section 3.4.4). For an illustration, see Figure 4.11
in which the shaded object represents the separating hyperplane.
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Figure 4.11: A separating hyperplane for the Basic Fixed-Endpoint Control Problem

In view of the definition (4.26) of µ, the inequality (4.30) simply says that p∗0 ≤ 0, as required by
the statement of the maximum principle. This will be the only use of (4.30). The normal vector (4.28)
will serve as the terminal condition for the adjoint system, to be defined next.

3There is one degenerate case in which we cannot directly apply the Separating Hyperplane Theorem as described,
namely, the case when the interior of Ct∗ is empty. However, it can be shown that if the interior of the convex set
Ct∗ is empty then there exists a hyperplane that contains Ct∗ (see, e.g., [dlF00, p. 238]), and this hyperplane trivially
separates ~µ and Ct∗ .
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4.2.8 Adjoint equation

As we already mentioned on page 75, two (time-varying) linear systems of the form ẋ = Ax and
ż = −AT z are called adjoint to each other. Solutions of adjoint systems are linked by the property
that their inner product 〈z(t), x(t)〉 remains constant, as shown by the following simple calculation:

d

dt
〈z, x〉 = 〈ż, x〉 + 〈z, ẋ〉 = (−AT z)Tx+ zTAx = 0.

We now consider a specific pair of adjoint systems on the time interval [t0, t
∗]. As the first system

(the x-system in the above discussion) we take the variational equation (4.19), described in more
detail by the equations (4.20) and (4.21). The second, adjoint system is then

ż = −AT
∗ (t)z =

(
0 0

− Lx|∗ −(fx)
T
∣∣
∗

)
z (4.31)

where in the last expression, obtained from (4.21), Lx is a column vector (it is the gradient of L with
respect to x) and (fx)T is the transpose of the Jacobian matrix of f with respect to x. Let us denote
the first component of z by p0 and the vector of the remaining n components of z by p. Then the
first differential equation in (4.31) reads ṗ0 = 0 while the rest of the system (4.31) becomes

ṗ = − Lx|∗ p0 − (fx)
T
∣∣
∗
p

which, in view of the definition (4.2) of the Hamiltonian, is equivalent to

ṗ = −Hx(x
∗, u∗, p, p0).

Now, let us specify the terminal condition for the system (4.31) at time t∗ by setting z(t∗) equal
to the vector (4.28). Further, we relabel the p-component of the solution z corresponding to this
terminal condition as p∗. This gives p0(t) = p∗0 for all t and

ṗ∗ = −Hx(x
∗, u∗, p∗, p∗0)

which is the second canonical equation in (4.1). With a slight abuse of terminology, we will sometimes
refer to this differential equation as the adjoint equation. It is easy to see that the first canonical
equation in (4.1) also holds by the definition of H; thus statement 1 of the maximum principle has
been established. By the aforementioned property of adjoint systems, we have

〈(
p∗0
p∗(t)

)
, ψ(t)

〉
=

〈(
p∗0

p∗(t∗)

)
, ψ(t∗)

〉
∀ t ∈ [t0, t

∗] (4.32)

for every solution ψ of the variational equation (4.19).

The vector (4.28), which is normal to the separating hyperplane, is nonzero. Since (4.31) is a
homogeneous (unforced) linear time-varying system, we have

(
p∗0
p∗(t)

)
6= 0 ∀ t ∈ [t0, t

∗] (4.33)

as required in the statement of the maximum principle. Geometrically, we can think of the vector
in (4.33) as the normal vector to a hyperplane passing through y∗(t). We can then associate the
solution of the adjoint system to a family of hyperplanes that is “flowing back” along the optimal
trajectory. In view of (4.32), the perturbed trajectory associated with ψ always remains on the same
side of the hyperplane.
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4.2.9 Properties of the Hamiltonian

We are now ready to prove the remaining properties of the Hamiltonian, namely, statements 2 and 3
of the maximum principle for the Basic Fixed-Endpoint Control Problem (see Section 4.1.1).

Statement 2: Hamiltonian maximization condition

Let us go back to the formula (4.23), which says that the infinitesimal perturbation of the terminal
point caused by a needle perturbation of the optimal control with parameters w, b, a is described by
the vector εΦ∗(t

∗, b)νb(w)a. This vector was subsequently labeled as εδ(w, I), and by construction
y∗(t∗)+ εδ(w, I) belongs to the terminal cone Ct∗ . Applying the inequality (4.29) which encodes the
separating hyperplane property, and noting that ε and a are both positive, we have

〈(
p∗0

p∗(t∗)

)
,Φ∗(t

∗, b)νb(w)

〉
≤ 0.

Next, since Φ∗ is the transition matrix for the variational equation (4.19), we know that Φ∗(t
∗, b)νb(w)

is the value at time t∗ of the solution of the variational equation passing through νb(w) at time b.
Invoking the adjoint property (4.32), we obtain

〈(
p∗0
p∗(b)

)
, νb(w)

〉
≤ 0. (4.34)

Since νb(w) was defined in (4.15) and g(y, u) was defined in (4.7), we have

νb(w) = g(y∗(b), w) − g(y∗(b), u∗(b)) =

(
L(x∗(b), w) − L(x∗(b), u∗(b))
f(x∗(b), w) − f(x∗(b), u∗(b))

)
.

We can thus expand (4.34) as follows:
〈(

p∗0
p∗(b)

)
,

(
L(x∗(b), w)
f(x∗(b), w)

)〉
≤
〈(

p∗0
p∗(b)

)
,

(
L(x∗(b), u∗(b))
f(x∗(b), u∗(b))

)〉
.

Recalling the expression (4.8) for the Hamiltonian, we see that this is equivalent to

H(x∗(b), w, p∗(b), p∗0) ≤ H(x∗(b), u∗(b), p∗(b), p∗0). (4.35)

In the above derivation, w was an arbitrary element of the control set U and b was an arbitrary
time in the interval (t0, t

∗) at which the optimal control u∗ is continuous. Thus we have established
that the Hamiltonian maximization condition holds everywhere except possibly a finite number of
time instants (discontinuities of u∗). Additionally, recall that u∗ is piecewise continuous and we
adopted the convention (see page 67) that the value of a piecewise continuous function at each
discontinuity is equal to the limit either from the left or from the right. Letting b in (4.35) approach
a discontinuity of u∗ or an endpoint of [t0, t

∗] from an appropriate side, and using continuity of x∗ and
p∗ in time and continuity of H in all variables, we see that the Hamiltonian maximization condition
must actually hold everywhere.

This conclusion can be understood intuitively as follows. The Hamiltonian is the inner product

of the augmented adjoint vector
(
p∗0
p∗
)

with the right-hand side of the augmented control system (the

velocity of y). When the optimal control is perturbed, the state trajectory deviates from the optimal
one in a direction that makes a nonpositive inner product with the augmented adjoint vector (at the
time when the perturbation stops acting). Therefore, such control perturbations can only decrease
the Hamiltonian, regardless of the value of the perturbed control during the perturbation interval.
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Statement 3: H|∗ ≡ 0

The separation property (4.29) applies, in particular, to δ = δ(τ) ∈ Ct∗ , the terminal state perturba-
tion vector corresponding to a temporal perturbation of the control. We know from (4.9) and (4.7)
that this vector is given by

δ(τ) =

(
L(x∗(t∗), u∗(t∗))
f(x∗(t∗), u∗(t∗))

)
τ.

Since τ can be either positive or negative, the inequality (4.29) can be satisfied only if

〈(
p∗0

p∗(t∗)

)
,

(
L(x∗(t∗), u∗(t∗))
f(x∗(t∗), u∗(t∗))

)〉
= 0.

By virtue of (4.8), this is equivalent to

H(x∗(t∗), u∗(t∗), p∗(t∗), p∗0) = 0.

In other words, H|∗ equals 0 at the terminal time.4 We need to prove that it is 0 everywhere.

Let us show that H|∗ (·) = H(x∗(·), u∗(·), p∗(·), p∗0) is a continuous function of time, even though
the optimal control u∗ need not be continuous. The argument that follows is very similar to the
one that the reader presumably used a while ago to solve Exercise 3.3 on page 64. Let t be a point
of discontinuity of u∗. Of course, x∗ and p∗ are continuous everywhere. Applying the Hamiltonian
maximization condition (4.35) with b < t and w = u∗(t+) and making b approach t from the left, we
have

H(x∗(t), u∗(t+), p∗(t), p∗0) ≤ H(x∗(t), u∗(t−), p∗(t), p∗0).

Similarly, applying (4.35) with b > t and w = u∗(t−), in the limit as b approaches t from the right
we obtain

H(x∗(t), u∗(t+), p∗(t), p∗0) ≥ H(x∗(t), u∗(t−), p∗(t), p∗0).

Thus the two quantities must actually be equal, and the continuity claim is established.

Next, let us show that the function H|∗ is constant. In Section 3.4.4, in the context of the
variational approach, we established this property by simply differentiating the Hamiltonian with
respect to time, but here we need to be more careful because the existence of Hu has not been
assumed. In view of the Hamiltonian maximization condition, we can write

H(x∗(t), u∗(t), p∗(t), p∗0) = m(x∗(t), p∗(t))

where

m(x, p) := max
u∈U

H(x, u, p, p∗0).

We just saw that m(x∗(·), p∗(·)) is a continuous function of time. For an arbitrary pair of times t, t′,
we have the inequalities

H(x∗(t′), u∗(t), p∗(t′), p∗0) −H(x∗(t), u∗(t), p∗(t), p∗0)

≤ m(x∗(t′), p∗(t′)) −m(x∗(t), p∗(t))

≤ H(x∗(t′), u∗(t′), p∗(t′), p∗0) −H(x∗(t), u∗(t′), p∗(t), p∗0).

(4.36)

4Here and below, when using the notation |
∗

we also mean that p0 = p∗

0.
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In view of the standing assumptions made at the beginning of Section 4.1.1 and the canonical
equations (4.1), it is straightforward to show that the functionH(x∗(·), u∗(t̄), p∗(·), p∗0) is continuously
differentiable for each fixed t̄ ∈ [t0, t

∗], with an upper bound on the magnitude of its derivative
independent of t̄. From this fact and (4.36) we easily conclude that the function m(x∗(·), p∗(·)) is
locally Lipschitz. Therefore, it is absolutely continuous, and hence differentiable for almost all t (see
page 68). We can now study its derivative.

Exercise 4.6 Show that m(x∗(·), p∗(·)) has zero derivative (wherever the derivative exists). Do this
by considering, for a pair of nearby times t, t′, the limit

lim
t′→t

m(x∗(t′), p∗(t′)) −m(x∗(t), p∗(t))

t′ − t

and using the Hamiltonian maximization condition.

We have shown that the function H(x∗(·), u∗(·), p∗(·), p∗0) equals 0 at t = t∗, is continuous every-
where, and has zero derivative almost everywhere. Thus it is identically 0, as claimed. Our proof
of the maximum principle for the Basic Fixed-Endpoint Control Problem is now complete. At this
point the reader should also finish Exercise 4.2.

4.2.10 Transversality condition

We now turn to the Basic Variable-Endpoint Control Problem. In this case there is an additional
statement to be proved, which is the transversality condition (4.3). In Section 4.2.6 we had that the
terminal cone Ct∗ was separated from the ray ~µ; the reason for this was that hitting a point on ~µ
below y∗(t∗) contradicted optimality. When the fixed endpoint x1 is replaced by the surface S1, we
would instead have a contradiction with optimality if we were able to hit a point with a cost lower
than x0,∗(t∗) whose x-component is in S1 (but is not necessarily x∗(t∗)). Let us denote the set of
such points by D. We are looking to establish separation between convex sets; for this reason, just
as we replace the actual set of terminal points with its linear approximation Ct∗ , we will consider the
linear approximation of D given by the linear span of ~µ and the tangent space Tx∗(t∗)S1, i.e., the set

T :=

{
y ∈ R

n+1 : y = y∗(t∗) +

(
0
d

)
+ βµ, d ∈ Tx∗(t∗)S1, β ≥ 0

}
. (4.37)

In Figure 4.12, T is the shaded “semi-plane.” The subspace Tx∗(t∗)S1, when translated to y∗(t∗),
gives the upper line in the figure. D is the surface (more precisely, the open semi-surface) consisting
of points which lie “directly under” the upper curve in the figure. T is tangent to D along ~µ; both T
and D are bounded from above but extend infinitely far down (and T includes its upper boundary
while D does not).

Lemma 4.2 T does not intersect the interior of the cone Ct∗.

This lemma is proved by an appropriate generalization of the argument we used to prove Lemma 4.1.
Suppose that the statement is not true. Then we can find a point in T which is contained in Ct∗

together with some ε-ball Bε around it. We can write this point as

ŷε = y∗(t∗) + ε

(
0
d

)
+ εβµ
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Figure 4.12: Illustrating the construction of the set T

for suitable d ∈ Tx∗(t∗)S1 and β > 0 (moving ŷε slightly down if necessary, we can ensure that it does
not lie on the upper boundary of T ). Since Bε belongs to Ct∗ , each point in Bε is given by y∗(t∗)+εν
where εν is a first-order terminal state perturbation arising from a temporal and/or spatial control
perturbation. We know that the corresponding exact terminal states are of the form y∗(t∗)+εν+o(ε)
and form a “warped” version of Bε, which we denote by B̃ε.

This construction remains valid as ε → 0. The ball Bε is centered at ŷε ∈ T , its radius is ε, and
the “warping” that produces B̃ε is of order o(ε). As in Exercise 4.5, it can be shown that B̃ε contains
a ball centered at ŷε whose radius is of order ε − o(ε). Furthermore, since T and D are tangent to
each other along ~µ, the distance from ŷε to D is also of order o(ε). Hence, for ε small enough, B̃ε

actually intersects D. But this, as we already noted, contradicts optimality of y∗, and the lemma is
established. The preceding argument is illustrated in Figure 4.13, where the plane and the curved
surface represent T and D, respectively, the shaded object is the portion of B̃ε that lies between T
and D, and the ray in T containing ŷε, ε > 0 is also shown.

By Lemma 4.2 and the Separating Hyperplane Theorem, there exists a hyperplane that separates
T and Ct∗ . We denote its normal vector by (4.28) as before. In view of the definition (4.37) of T and
the fact that d = 0 belongs to Tx∗(t∗)S1, the separation property still gives us the inequalities (4.29)
and (4.30). Thus all the constructions and conclusions of Sections 4.2.8 and 4.2.9 still apply, and
so we know that the first three statements of the maximum principle are true. On the other hand,
writing the separation property for vectors in T with β (the ~µ-component) equal to 0, we obtain the
additional inequality

〈(
p∗0

p∗(t∗)

)
,

(
0
d

)〉
= 〈p∗(t∗), d〉 ≥ 0 ∀ d ∈ Tx∗(t∗)S1. (4.38)
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For each d ∈ Tx∗(t∗)S1 we also have −d ∈ Tx∗(t∗)S1, as is clear from (4.4). This fact and (4.38) imply
that actually 〈p∗(t∗), d〉 = 0 for all d ∈ Tx∗(t∗)S1, which is precisely the desired transversality condi-
tion (4.3). Figure 4.14 depicts Ct∗ , T , and the separating hyperplane. Our proof of the maximum
principle for the Basic Variable-Endpoint Control Problem is now complete.

Note that in the special case when S1 = R
n (a free-time, free-endpoint problem), the hyperplane

must separate Ct∗ from the entire (n+1)-dimensional half-space that lies below y∗(t∗). Clearly, this
hyperplane must be horizontal, hence its normal must be vertical and we conclude that p∗(t∗) = 0.
This is consistent with (4.3) because Tx∗(t∗)S1 = R

n in this case.

4.3 Discussion of the maximum principle

Our main objective in the remainder of this chapter is to gain a better understanding of the maxi-
mum principle by discussing and interpreting its statement and by applying it to specific classes of
problems. We begin this task here by making a few technical remarks.

One should always remember that the maximum principle provides necessary conditions for
optimality. Thus it only helps single out optimal control candidates, each of which needs to be further
analyzed to determine whether it is indeed optimal. The reader should also keep in mind that an
optimal control may not even exist (the existence issue will be addressed in detail in Section 4.5).
For many problems of interest, however, the optimal solution does exist and the conditions provided
by the maximum principle are strong enough to help identify it, either directly or after a routine
additional elimination process. We already saw an example supporting this claim in Exercise 4.1 and
will study other important examples in Section 4.4.

When stating the maximum principle, we ignored the distinction between different kinds of local
minima by working with a globally optimal control u∗, i.e., by assuming that J(u∗) ≤ J(u) for all
other admissible controls u that produce state trajectories satisfying the given endpoint constraint.
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Figure 4.14: A separating hyperplane for the Basic Variable-Endpoint Control Problem

However, it is clear from the proof that global optimality was not used. The control perturbations
used in the proof produced controls u which differ from u∗ on a small interval of order ε in length,
making the L1 norm of the difference,

∫ tf
t0

|u(t)−u∗(t)|dt, small for small ε. The resulting perturbed
trajectory x, on the other hand, was close to the optimal trajectory x∗ in the sense of the 0-norm, i.e.,
maxt0≤t≤tf |x(t)−x∗(t)| was small for small ε (as is clear from the calculations given in Sections 4.2.2–
4.2.4). It can be shown that the conditions of the maximum principle are in fact necessary for local
optimality when closeness in the (x, u)-space is measured by the 0-norm for x and L1 norm for u; we
stress that the Hamiltonian maximization condition (statement 2 of the maximum principle) remains
global. At this point it may be instructive to think of the system ẋ = u as an example and to recall
the discussion in Section 3.4.5 related to Figure 3.6. In that context, the notion of a local minimum
with respect to the norm we just described is in between the notions of weak and strong minima;
indeed, weak minima are defined with respect to the 0-norm for both x and u, while strong minima
are with respect to the 0-norm for x with no constraints on u. For strong minima, the necessary
conditions provided by the maximum principle are still valid. This is not the case for weak minima,
because in a needle perturbation the control value w is no longer arbitrary: it must be close to u∗(b).

The statement of the maximum principle contains the condition (justified in Section 4.2.8) that
(p∗0, p

∗(t)) 6= (0, 0) for all t. In fact, since the origin in R
n+1 is an equilibrium of the linear adjoint

equation (4.31), if p∗0, p
∗(t) vanish for some t then they must vanish for all t. Thus, the above

condition could be equivalently stated as (p∗0, p
∗(t)) 6= (0, 0) for some t. This condition is sometimes

called the nontriviality condition, because with (p∗0, p
∗) ≡ (0, 0) all the statements of the maximum

principle are trivially satisfied. In some cases, it is possible to show that the adjoint vector itself,
p∗(t), is nonzero for all t. For example, suppose that the running cost L is everywhere nonzero (this
is true, for instance, in time-optimal control problems, where L ≡ 1). The Hamiltonian satisfies
H|∗ = 〈p∗, f |∗〉 + p∗0 L|∗ ≡ 0 (by statement 3 of the maximum principle). If p∗(t) = 0 for some
t, then we have p∗0 L|∗ (t) = 0, hence p∗0 = 0 and we reach a contradiction with the nontriviality
condition. We will give another example later involving a terminal cost; see Exercise 4.7 below.
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As for the abnormal multiplier p∗0, since it is the vertical coordinate of the normal to the separating
hyperplane, p∗0 = 0 corresponds to the case when the separating hyperplane is vertical (and cannot be
tilted). The projection of such a hyperplane onto the x-space is a hyperplane in R

n, and all perturbed
controls must bring the state x to the same side of this projected hyperplane. In a majority of control
problems this does not happen and we can set p∗0 = −1. We also know that the separating hyperplane
cannot be vertical and p∗0 cannot be 0 in the free-endpoint case (see the end of Section 4.2.10).

4.3.1 Changes of variables

Some control problems that we are interested in do not fit into the setting of the Basic Fixed-Endpoint
or Variable-Endpoint Control Problem. We now want to discuss several such scenarios and, for each
one, to arrive at the correct statement of the maximum principle. One way to do this is to formally
reduce a problem at hand to one of the two basic problems considered above by changing variables;
the changes of variables that we will use were already discussed in Section 3.3. Another approach
is to adapt the proof of the maximum principle to these new situations; this task can be somewhat
more challenging but also more insightful as it helps us better understand the proof. These various
cases also help clarify why we say “maximum principle” (rather than calling it a theorem): this
terminology reflects the fact that specific versions of the result for different problems are different,
but share the same basic features.

Fixed terminal time

Suppose that the terminal time tf is fixed, so that the terminal time t∗ of the optimal trajectory
x∗ considered in the proof must equal a given value t1. Temporal control perturbations are then no
longer admissible. Accordingly, the line ~ρ formed by the perturbation directions δ(τ) defined in (4.9)
must not be used when generating the terminal cone Ct∗ . We now invite the reader to check exactly
where these perturbation directions δ(τ) were used in the proof of the maximum principle. As a
matter of fact, they were used in one place only: to show that H|∗ (t∗) = 0. Thus we conclude that
the Hamiltonian will now be constant but not necessarily 0 along the optimal trajectory, while all
the other conditions remain unchanged.

Let us confirm this fact by reducing the fixed-time problem to a free-time one via the familiar
trick of introducing the extra state variable xn+1 := t. The system becomes

ẋ = f(x, u), x(t0) = x0

ẋn+1 = 1, xn+1(t0) = t0
(4.39)

If the original target set was {t1} × S1, then for the new system we can write the target set as
[t0,∞)×S1 ×{t1}, with the terminal time no longer explicitly constrained. The maximum principle
for the Basic Variable-Endpoint Control Problem can now be applied. The Hamiltonian for the
new problem is H = 〈p, f〉 + pn+1 + p0L = H + pn+1, where H = 〈p, f〉 + p0L is the Hamiltonian
for the original fixed-time problem. Clearly, the differential equation for p∗ is the same as before
and the Hamiltonian maximization condition for H implies the one for H. We know that H

∣∣
∗

=

H|∗ + p∗n+1 ≡ 0. Moreover, we have ṗ∗n+1 = −Hxn+1

∣∣
∗

= −Ht|∗ = 0 (since H does not depend on
t) hence p∗n+1 is constant. Thus H|∗ is indeed equal to a constant, namely, −p∗n+1. It is no longer
guaranteed to be 0; in fact, since the final value of xn+1 is fixed, the transversality condition gives us
no information about p∗n+1. This property of the Hamiltonian is also consistent with what we saw
in Section 3.4.4.
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Time-dependent system and cost

The same idea of appending the state variable xn+1 = t and passing to the system (4.39) can be
applied when the original system’s right-hand side f and/or the running cost L depend on t. The
Hamiltonian is now time-dependent:

H(t, x, u, p, p0) := 〈p, f(t, x, u)〉 + p0L(t, x, u). (4.40)

The previous discussion remains valid up to and including the equation ṗ∗n+1 = −Ht|∗ but the latter
no longer equals 0. Thus, p∗n+1 and H|∗ = −p∗n+1 are not constant any more. Instead, we have the
differential equation

d

dt
H|∗ = Ht|∗ (4.41)

with the boundary condition H|∗ (tf ) = −p∗n+1(tf ). If the terminal time tf in the original problem is
free, then the final value of xn+1 is free and the transversality condition yields p∗n+1(tf ) = 0. In this

case we obtain H|∗ (tf ) = 0 and, integrating (4.41), H|∗ (t) = −
∫ tf
t Ht|∗ (s)ds. Note that (4.41) is

consistent with the equation obtained in (3.43) in the context of the variational approach (although
the middle portion of (3.43) does not apply here).

The same conclusion can be reached by following the proof of the maximum principle and verifying
that it carries over to the time-varying scenario without major changes, except that the claim of
Exercise 4.6 becomes invalid and only (4.41) can be established. We can appreciate, however, that
in the present case the method of changing the variables is much simpler and more reliable.

Terminal cost

Let us now consider a situation where a terminal cost of the form K = K(xf ) is present. To illustrate
just one simple case, we suppose that we are dealing with a free-time, free-endpoint problem in the
Mayer form, i.e., there is no running cost (L ≡ 0). We assume the function K to be differentiable as
many times as desired; everything else is as in the Basic Variable-Endpoint Control Problem.

Since L ≡ 0, there is no need to consider the x0-coordinate. Temporal and spatial control
perturbations can be used to construct the terminal cone Ct∗ as before, except that it now lives in
the original x-space: Ct∗ ⊂ R

n. By optimality, and since the terminal state is free, no perturbed
state trajectory can have a terminal cost lower than K(x∗(t∗)), the terminal cost of the candidate
optimal trajectory. Thus we expect that K should not decrease along any direction in Ct∗ , a property
that we can write as

〈−Kx(x∗(t∗)), δ〉 ≤ 0 ∀ δ such that x∗(t∗) + δ ∈ Ct∗ . (4.42)

Geometrically, this means that Ct∗ lies on one side of the hyperplane passing through x∗(t∗) with
normal −Kx(x∗(t∗)), which we henceforth assume to be a nonzero vector. A comparison of (4.42)
with (4.29) unmistakably suggests that we should define

p∗(t∗) := −Kx(x∗(t∗)). (4.43)

Indeed, we know that in a free-endpoint problem the final value of the costate should be completely
constrained (to give the correct total number of boundary conditions for the system of canonical
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equations). With the above definition of p∗(t∗) the inequality (4.42) matches (4.29), following which
the adjoint equation and the analysis of the Hamiltonian

H(x, u, p) = 〈p, f(x, u)〉 (4.44)

are developed in the same fashion as before. The companion inequality (4.30) in our earlier proof of
the maximum principle was only needed to show that p∗0 ≤ 0; here we do not have such an inequality,
and we do not need it because there is no p∗0.

The above argument is of course not rigorous, so let us again validate our conjecture by formally
reducing the present scenario to the Basic Variable-Endpoint Control Problem. A transformation
that accomplishes this goal is provided by the formula

K(xf ) = K(x0) +

∫ tf

t0

〈Kx(x(t)), f(x(t), u(t))〉 dt.

Ignoring K(x0) which is a known constant, we arrive at an equivalent problem in the Lagrange
form with L = 〈Kx, f〉. For this modified problem, the Hamiltonian is H = 〈p̄, f〉 + p0 〈Kx, f〉 =
〈p̄+ p0Kx, f〉 where p̄ is the costate. Applying the maximum principle, we obtain the differential
equation ˙̄p∗ = −Hx

∣∣
∗

= −(fx)T
∣∣
∗
p̄∗ − p∗0 Kxx|∗ f |∗ − p∗0(fx)T

∣∣
∗
Kx|∗ with the boundary condition

p̄∗(tf ) = 0. The latter tells us, by the way, that p∗0 6= 0, hence from now on we assume p∗0 and p̄∗

to have been normalized so that p∗0 = −1. Now, matching the expression for H with (4.44), let us
define the costate for our original problem to be

p∗(t) := p̄∗(t) −Kx(x∗(t)). (4.45)

Its final value is consistent with (4.43). We can check that p∗ defined in this way satisfies the correct
canonical equation.

Exercise 4.7 Verify that p∗ given by (4.45) satisfies the differential equation ṗ∗ = −Hx|∗ with
respect to the Hamiltonian (4.44). Show also that p∗(t) 6= 0 for all t.

By construction, H is maximized and equals 0 along the optimal trajectory because these proper-
ties hold for H. We thus conclude that the statement of the maximum principle for the present case,
with respect to the Hamiltonian (4.44), is obtained from that for the Basic Variable-Endpoint Con-
trol Problem by eliminating p∗0 and changing the transversality condition to p∗(tf ) = −Kx(x∗(tf )).
Recall that we already saw such a boundary condition for the costate in (3.37).

Exercise 4.8 Consider the following more general problem: the system is ẋ = f(t, x, u), the cost is
J(u) =

∫ tf
t0
L(t, x(t), u(t))dt+K(xf ), and the target set is S = [t0,∞)×S1 where S1 is a k-dimensional

surface in R
n (the terminal time tf is free). Reduce this problem by a change of variables to the Basic

Variable-Endpoint Control Problem and arrive at a precise statement of the maximum principle for
it.

Initial sets

We now want to mention how the maximum principle can be extended in another direction. We
usually assume that the initial state x0 is fixed, while the final state xf may vary within some set S1.
Here, let us briefly consider the possibility that x0 may vary as well, so that we have an initial set
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instead of a fixed initial state. We can impose separate constraints on x0 and xf or, more generally,

we can require that
(
x0
xf

)
belong to some surface S2 in R

2n. The latter formulation allows us to

capture situations where there is a joint constraint on x0 and xf ; for example, if the trajectory is to
be closed—i.e., the initial state is free but the trajectory must return to it—then S2 is the “diagonal”
in R

2n. The terminal time tf can be either free or fixed, as before.

It turns out that this more general set-up can be easily handled by modifying the transversality
condition, which will now involve the values of the costate both at the initial time and at the

final time. Namely, the transversality condition will now say that the vector
(
p∗(t0)
−p∗(tf )

)
must be

orthogonal to the tangent space to S2 at
(
x∗(t0)
x∗(tf )

)
:

〈(
p∗(t0)
−p∗(tf )

)
, d

〉
= 0 ∀ d ∈ T(x∗(t0)

x∗(tf )

)S2. (4.46)

The total number of boundary conditions for the system of canonical equations is still 2n, since each
additional degree of freedom for x∗(t0) leads to one additional constraint on p∗(t0).

Exercise 4.9 Give a heuristic argument in support of the transversality condition (4.46), based on
an appropriate modification of the proof of the maximum principle.

4.4 Time-optimal control problems

Time-optimal control problems not only provide a useful illustration of the maximum principle, but
also have several important features that make them interesting in their own right. Among these
are the bang-bang principle and connections with Lie brackets, to be discussed in this section. We
organize the material so as to progress from more specific to more general settings, and we begin by
revisiting Example 1.1 from Section 1.1.

4.4.1 Example: double integrator

Consider the system

ẍ = u, u ∈ [−1, 1] (4.47)

which can represent a car with position x ∈ R and with bounded acceleration u acting as the control
(negative acceleration corresponds to braking). Let us study the problem of “parking” the car at
the origin, i.e., bringing it to rest at x = 0, in minimal time. It is clear—and will follow from the
analysis we give below—that the system can indeed be brought to rest at the origin from every initial
condition. However, since the control is bounded, we cannot do this arbitrarily fast (we are ignoring
the trivial case when the system is initialized at the origin). Thus we expect that there exists an
optimal control u∗ which achieves the transfer in the smallest amount of time. (As we have already
mentioned, the issue of existence of optimal controls is important and nontrivial in general; it will
be treated in Section 4.5.)
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We know that the dynamics of the double integrator (4.47) are equivalently described by the
state-space equations

ẋ1 = x2

ẋ2 = u
(4.48)

where we assume that the initial values x1(t0) and x2(t0) are given. The running cost is L ≡ 1 (cf.
Example 3.2 in Section 3.2 where we discussed another time-optimal control problem). Accordingly,
the Hamiltonian is H = p1x2 + p2u + p0. Let u∗ be an optimal control. Our problem is a special
case of the Basic Fixed-Endpoint Control Problem, and we now apply the maximum principle to

characterize u∗. The costate p∗ =
(
p∗1
p∗2

)
must satisfy the adjoint equation

(
ṗ∗1
ṗ∗2

)
=

(
−Hx1 |∗
−Hx2 |∗

)
=

(
0

−p∗1

)
. (4.49)

The first line of (4.49) implies that p∗1 is equal to a constant, say c1. The second line of (4.49) then
says that p∗2 is given by p∗2(t) = −c1t+ c2, where c2 is another constant.

Next, from the Hamiltonian maximization condition and the fact that U = [−1, 1] we have

u∗(t) = sgn(p∗2(t)) :=





1 if p∗2(t) > 0

−1 if p∗2(t) < 0

? if p∗2(t) = 0

(4.50)

The third case in (4.50) is meant to indicate that when p∗2 equals 0, making the Hamiltonian inde-
pendent of u, the value of u∗ can in principle be arbitrary. (By our convention that u∗ is continuous
either from the left or from the right everywhere, we know that u∗ actually cannot take any values
other than 1 or −1.) Can p∗2 be identically 0 over some time interval? If this happens, then ṗ∗2 = −p∗1
must also be identically 0 on that interval. However, we already saw (on page 103) that p∗ cannot
vanish in a time-optimal control problem, because the fact that H ≡ 0 (statement 3 of the maximum
principle) would then imply that p∗0 = 0 and the nontriviality condition would be violated. Therefore,
p∗2 may only equal 0 at isolated points in time, and the formula (4.50) defines u∗ uniquely everywhere
away from these times. How many zero crossings can p∗2 have? We derived a little while ago that p∗2
is a linear function of time. Thus p∗2 can cross the value 0 at most once.

We conclude that the optimal control u∗ takes only the values ±1 and switches between these
values at most once. Interpreted in terms of bringing a car to rest at the origin, the optimal control
strategy consists in switching between maximal acceleration and maximal braking. The initial sign
and the switching time of course depend on the initial condition. The property that u∗ only switches
between the extreme values ±1 is intuitively natural and important; such controls are called bang-
bang.

It turns out that for the present problem, the pattern identified above uniquely determines
the optimal control law for every initial condition. To see this, let us plot the solutions of the
system (4.47) in the (x, ẋ)-plane for u ≡ ±1. For u ≡ 1, repeated integration gives ẋ(t) = t + a
and then x(t) = 1

2 t
2 + at+ b for some constants a and b. The resulting relation x = 1

2 ẋ
2 + c (where

c = b − a2/2) defines a family of parabolas in the (x, ẋ)-plane parameterized by c ∈ R. Similarly,
for u ≡ −1 we obtain the family of parabolas x = − 1

2 ẋ
2 + c, c ∈ R. These curves are shown in

Figure 4.15 (a,b), with the arrows indicating the direction in which they are traversed. It is easy to
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see that only two of these trajectories hit the origin (which is the prescribed final point). Their union
is the thick curve in Figure 4.15 (c), which we call the switching curve and denote by Γ; it is defined
by the relation x = − 1

2 |ẋ|ẋ. The optimal control strategy thus consists in applying u = 1 or u = −1
depending on whether the initial point is below or above Γ, then switching the control value exactly
on Γ and subsequently following Γ to the origin; no switching is needed if the initial point is already
on Γ. (Thinking slightly differently, we can generate all possible optimal trajectories—which cover
the entire plane—by starting at the origin and flowing backward in time, first following Γ and then
switching at an arbitrary point on Γ.) Recalling the interpretation of our problem as that of parking
a car using bounded acceleration/braking, the reader can easily relate the optimal trajectories in
the (x, ẋ)-plane with the corresponding motions of the car along the x-axis. Note that if the car is
initially moving away from the origin, then it begins braking until it stops, turns around, and starts
accelerating (this is a “false” switch because u actually remains constant), and then u switches sign
and the car starts braking again.

PSfrag replacements
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ẋẋẋ
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Figure 4.15: Bang-bang time-optimal control of the double integrator: (a) trajectories for u ≡ 1, (b) trajec-
tories for u ≡ −1, (c) the switching curve and optimal trajectories

The optimal control law that we just found has two important features. First, as we already
said, it is bang-bang. Second, we see that it can be described in the form of a state feedback law.
This is interesting because in general, the maximum principle only provides an open-loop description
of an optimal control; indeed, u∗(t) depends, besides the state x∗(t), on the costate p∗(t), but we
managed to eliminate this latter dependence here. It is natural to ask for what more general classes
of systems time-optimal controls have these two properties, i.e., are bang-bang and take the state
feedback form. The bang-bang property will be examined in detail in the next two subsections. The
problem of representing optimal controls as state feedback laws is rather intricate and will not be
treated in this book, except for the two exercises below.

Exercise 4.10 Suppose that we modify the above problem by removing the requirement that the
final velocity be 0. In other words, instead of bringing the car to rest at the origin, we now want
to simply hit the origin with an arbitrary speed (“slam into a wall”). Use the maximum principle
to find the optimal control. Is it bang-bang? Can you express it as a state feedback and arrive at
a complete description of the optimal trajectories in the (x, ẋ)-plane? Include an explanation of the
car’s optimal motions.

The next exercise is along the same lines but the solution is less obvious.

Exercise 4.11 Consider the problem of bringing to rest at the origin in minimal time the state of
the forced harmonic oscillator ẍ + x = u using controls satisfying u ∈ [−1, 1]. Answer the same
questions as in Exercise 4.10.
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4.4.2 Bang-bang principle for linear systems

Consider now a system with general linear time-invariant dynamics

ẋ = Ax+Bu (4.51)

where x ∈ R
n and u ∈ U ⊂ R

m. We want to investigate under what conditions time-optimal controls
for this system have a bang-bang property along the lines of what we saw in the previous example.
Of course, we need to specify what the control set U is and exactly what we mean by a bang-bang
property for controls taking values in this U . As a natural generalization of the interval [−1, 1] ⊂ R

to higher dimensions, we take U to be an m-dimensional hypercube:

U = {u ∈ R
m : ui ∈ [−1, 1], i = 1, . . . ,m}. (4.52)

This is a reasonable control set representing independent control actuators. We take the magnitude
constraints on the different components of u to be the same just for simplicity; the extension to
different constraints is immediate.

Suppose that the control objective is to steer x from a given initial state x0 to a given final state
x1 in minimal time. To be sure that this problem is well posed, we assume that there exists some
control u that achieves the transfer from x0 to x1 (in some time). As we will see in Section 4.5
(Theorem 4.3), this guarantees that a time-optimal control u∗ : [t0, t

∗] → U exists. We now use the
maximum principle to characterize it. The Hamiltonian is H(x, u, p, p0) = 〈p,Ax + Bu〉 + p0. The
Hamiltonian maximization condition implies that

〈p∗(t), Bu∗(t)〉 = max
u∈U

〈p∗(t), Bu(t)〉 (4.53)

for all t ∈ [t0, t
∗]. We can rewrite this formula in terms of the input components as

m∑

i=1

〈p∗(t), bi〉u∗i (t) = max
u∈U

m∑

i=1

〈p∗(t), bi〉ui

where b1, . . . , bm are the columns of B. Since the components u∗i (t) of the optimal control can be
chosen independently, it is clear that each term in the summation must be maximized:

〈p∗(t), bi〉u∗i (t) = max
|ui|≤1

〈p∗(t), bi〉ui, i = 1, . . . ,m.

It has now become obvious that we must have

u∗i (t) = sgn(〈p∗(t), bi〉) =





1 if 〈p∗(t), bi〉 > 0

−1 if 〈p∗(t), bi〉 < 0

? if 〈p∗(t), bi〉 = 0

(4.54)

for each i. Observe that (4.54) resembles (4.50). Similarly to how we proceeded from that formula,
we now need to investigate the possibility that 〈p∗, bi〉 ≡ 0 on some interval of time for some i, as
this would prevent us from determining u∗i on that interval.

The adjoint equation is ṗ∗ = −AT p∗, which gives p∗(t) = eA
T (t∗−t)p∗(t∗). From this we obtain

〈p∗(t), bi〉 = 〈p∗(t∗), eA(t∗−t)bi〉. This is a real analytic function of t; hence, if it vanishes on some
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time interval, then it vanishes for all t, together with all its derivatives. Calculating these derivatives
at t = t∗, we arrive at the equalities

〈p∗(t∗), bi〉 = 〈p∗(t∗), Abi〉 = · · · = 〈p∗(t∗), An−1bi〉 = 0. (4.55)

In other words, p∗(t∗) is orthogonal to the vectors bi, Abi, . . . , A
n−1bi. As we know, p∗(t∗) itself

cannot be 0 in a time-optimal control problem (see page 103). Therefore, to rule out (4.55) it is
enough to assume that (A, bi) is a controllable pair. We need this to be true for each i; i.e., the
system should be controllable with respect to each individual input channel. Such linear control
systems are called normal.

Let us now collect the properties of the optimal control u∗ that we are able to derive under the
above normality assumption. None of the functions 〈p∗(·), bi〉 equal 0 on any time interval; being real
analytic functions, they only have finitely many zeros on the interval [t0, t

∗]. Using the formula (4.54),
we see that each function u∗i only takes the values ±1 and switches between these values finitely many
times. Away from these switching times, u∗i is uniquely determined by (4.54). We conclude that the
overall optimal control u∗ takes values only in the set of vertices of the hypercube U , has finitely
many discontinuities (switches), and is unique everywhere else. Generalizing the earlier notion, we
say that controls taking values in the set of vertices of U are bang-bang (or have the bang-bang
property); the result that we have just obtained is a version of the bang-bang principle for linear
systems.

Before closing this discussion, it is instructive to see how the above bang-bang property can be
established in a self-contained way, without relying on the maximum principle. More precisely, the
argument outlined next essentially rederives the maximum principle from scratch for the particular
problem at hand (in the spirit of Section 4.3.1). Solutions of the system (4.51) take the form

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−s)Bu(s)ds.

For t ≥ t0, let us introduce the set of points reachable from x(t0) = x0 at time t:

Rt(x0) :=

{
eA(t−t0)x0 +

∫ t

t0

eA(t−s)Bu(s)ds : u(s) ∈ U, t0 ≤ s ≤ t

}
. (4.56)

We know that

x1 = eA(t∗−t0)x0 +

∫ t∗

t0

eA(t∗−s)Bu∗(s)ds ∈ Rt∗(x0). (4.57)

In fact, the optimal time t∗ is the smallest time t such that x1 ∈ Rt(x0). It follows that x1 must
belong to the boundary of the reachable set Rt∗(x0); indeed, if it were an interior point of Rt∗(x0)
then we could reach it sooner. We will see a little later (in Section 4.5) that the set Rt∗(x0) is
compact and convex. Along the lines of Section 4.2.7, there exists a hyperplane that passes through
x1 and contains Rt∗(x0) on one side; such a hyperplane is said to support Rt∗(x0) at x1. Denoting a
suitably chosen normal vector to this hyperplane by p∗(t∗), we have 〈p∗(t∗), x1〉 ≥ 〈p∗(t∗), x〉 for all
x ∈ Rt∗(x0). Using (4.56) and (4.57), we easily obtain

∫ t∗

t0

〈p∗(t∗), eA(t∗−s)Bu∗(s)〉ds ≥
∫ t∗

t0

〈p∗(t∗), eA(t∗−s)Bu(s)〉ds ∀u : [t0, t
∗] → U
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which, in view of the formula eAT (t∗−s)p∗(t∗) = p∗(s), is equivalent to

∫ t∗

t0

〈p∗(s), Bu∗(s)〉ds ≥
∫ t∗

t0

〈p∗(s), Bu(s)〉ds ∀u : [t0, t
∗] → U.

From this it is not difficult to recover the fact that (4.53) must hold for (almost) all t ∈ [t0, t
∗], and

we can proceed from there as before.

Exercise 4.12 Consider the same time-optimal control problem as above, but take U to be the unit
ball in R

m (with respect to the standard Euclidean norm). Suppose that (A,B) is a controllable pair
(do not assume normality). What can you say about optimal controls?

The assumption of normality, which was needed to prove the bang-bang property of time-optimal
controls for U a hypercube, is quite strong. A different, weaker version of the bang-bang principle
could be formulated as follows. Rather than wishing for every time-optimal control to be bang-bang,
we could ask whether every state x1 reachable from x0 by some control is also reachable from x0 in
the same time by a bang-bang control; in other words, whether reachable sets for bang-bang controls
coincide with reachable sets for all controls. This would imply that, even though not all time-optimal
controls are necessarily bang-bang, we can always select one that is bang-bang. It turns out that this
modified bang-bang principle holds for every linear control system (no controllability assumption is
necessary) and every control set U that is a convex polyhedron. The proof requires a refinement of
the above argument and some additional steps; see [Sus83, Section 8.1] for details.

4.4.3 Nonlinear systems, singular controls, and Lie brackets

Let us now investigate whether the preceding results can be extended beyond the class of linear
control systems. Regarding the bang-bang principle cited in the previous paragraph, the hope that
it might be true for general nonlinear systems is quickly shattered by the following example.

Example 4.1 For the planar system

ẋ1 = x2
2 − 1

ẋ2 = u
(4.58)

with the control constraint u ∈ [−1, 1], consider the problem of going from
(

1
0

)
to
(

0
0

)
in minimal

time. The reader should be able to solve it by inspection. The unique optimal control is u∗ ≡ 0.
Indeed, it accomplishes the desired transfer along the x1-axis in time 1, while any other control would
make x2 deviate from 0, slowing down the decrease of x1 and resulting in a transfer time larger than
1. Note that 0 is an interior point of the control set U = [−1, 1], hence u∗ is not a bang-bang control.

Let us verify that this conclusion is in agreement with the maximum principle. The Hamiltonian
is H = p1(x

2
2 − 1) + p2u + p0. By the Hamiltonian maximization condition, the optimal control

must satisfy the same relation (4.50) as in the example of Section 4.4.1. We see that for u∗ to take
the value 0 (or any other value different from ±1), p∗2 must vanish. Turning our attention to the
adjoint equation, we have ṗ∗1 = 0 and ṗ∗2 = −2p∗1x

∗
2. Compared with Section 4.4.1, this situation is

a bit more complicated because the p∗-dynamics and x∗-dynamics are coupled. We know, however,
that the optimal trajectory is completely contained in the x1-axis, i.e., x∗2 ≡ 0 along the optimal
trajectory. Thus we have ṗ∗2 ≡ 0 and so p∗2 is a constant. The value of this constant is determined
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by the terminal condition p∗(1). Since we are dealing with a fixed-endpoint problem, there are no
constraints on p∗(1). In particular, p∗2(1) can be 0 in which case p∗2 ≡ 0. Note that p∗1 can still be
nonzero, and there is no contradiction with the maximum principle.

A distinguishing feature of the above example is that the function p∗2, whose sign determines the
value of the optimal control u∗, identically vanishes. Consequently, the Hamiltonian maximization
condition alone does not give us enough information to find u∗. In problems where this situation
occurs on some interval of time, the optimal control on that interval is called singular, and the
corresponding piece of the optimal state trajectory is called a singular arc.

Example 4.1 should not be taken to suggest, however, that we must give up hope of formulating
a bang-bang principle for nonlinear systems. After all, we saw in Section 4.4.2 that even for linear
systems, to be able to prove that all time-optimal controls are bang-bang we need the normality
assumption. It is conceivable that the bang-bang property of time-optimal controls for certain
nonlinear systems can be guaranteed under an appropriate nonlinear counterpart of that assumption.

Motivated by these remarks, our goal now is to better formalize the phenomenon of singularity—
and reach a deeper understanding of its reasons—for a class of systems that includes the linear
systems considered in Section 4.4.2 as well as the nonlinear system (4.58). This class is composed of
nonlinear systems affine in controls, defined as

ẋ = f(x) +G(x)u = f(x) +
m∑

i=1

gi(x)ui (4.59)

where x ∈ R
n, u ∈ U ⊂ R

m, G(x) is an n ×m matrix with columns g1(x), . . . , gm(x), and for the
control set U we again take the hypercube (4.52). The Hamiltonian for the time-optimal control
problem is

H(x, u, p, p0) =
〈
p, f(x) +

m∑

i=1

gi(x)ui

〉
+ p0.

From the Hamiltonian maximization condition we obtain, completely analogously to Section 4.4.2,
that the components u∗i (t) of the optimal control are determined by the signs of the functions ϕi(t) :=
〈p∗(t), gi(x

∗(t))〉. These functions of time (always associated with a specific optimal trajectory) are
called the switching functions. To investigate the bang-bang property, we need to study zeros of the
switching functions.

In order to simplify calculations, from this point on we assume that m = 1, so that the input u
is scalar and we have only one switching function

ϕ(t) = 〈p∗(t), g(x∗(t))〉. (4.60)

The optimal control satisfies

u∗(t) = sgn(ϕ(t)) =





1 if ϕ(t) > 0

−1 if ϕ(t) < 0

? if ϕ(t) = 0

(4.61)

The canonical equations are ẋ∗ = f(x∗) + g(x∗)u∗ and

ṗ∗ = −Hx|∗ = −(fx)T
∣∣
∗
p∗ − (gx)T

∣∣
∗
p∗u∗
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where fx and gx are the Jacobian matrices of f and g. Let us now compute the derivative of ϕ:

ϕ̇ = 〈ṗ∗, g(x∗)〉 + 〈p∗, gx(x∗)ẋ∗〉 = −
〈
(fx)

T p∗, g
〉∣∣

∗
−
〈
(gx)T p∗, g

〉∣∣
∗
u∗

+ 〈p∗, gxf〉|∗ + 〈p∗, gxg〉|∗ u∗ = 〈p∗, gxf − fxg〉|∗ .
(4.62)

We see that ϕ̇ is the inner product of p∗ with the vector (gxf − fxg)|∗. Perhaps the vector field
gxf − fxg, which we have not encountered up to now, has some significant meaning?

Example 4.2 Let us take f and g to be linear vector fields: f(x) = Ax and g(x) = Bx for some
n × n matrices A and B. In this case (4.59) reduces to a bilinear (not linear!) control system
ẋ = Ax + Bxu. We have fx ≡ A, gx ≡ B, and (gxf − fxg)(x) = BAx − ABx = [B,A]x, where
[B,A] := BA−AB is the commutator, or Lie bracket, of B and A.

In general, the Lie bracket of two differentiable vector fields f and g is defined as

[f, g](x) := gx(x)f(x) − fx(x)g(x).

Note that the definitions of the Lie bracket for matrices (in linear algebra) and for vector fields (in
differential geometry) usually follow the opposite sign conventions. The geometric meaning of the Lie
bracket—which justifies its alternative name “commutator”—is as follows (see Figure 4.16). Suppose
that, starting at some point x0, we move along the vector field f for ε units of time, then along the
vector field g for ε units of time, after that along −f (backward along f) for ε units of time, and
finally along −g for ε units of time. It is straightforward (although quite tedious) to check that for
small ε the resulting motion is approximated, up to terms of higher order in ε, by ε2[f, g](x0). In
particular, we will return to x0 if [f, g] ≡ 0 in a neighborhood of x0, in which case we say that f and
g commute.
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Figure 4.16: Geometric interpretation of the Lie bracket

We can now write the result of the calculation (4.62) more informatively as

ϕ̇(t) = 〈p∗(t), [f, g](x∗(t))〉. (4.63)

Coupled with the law (4.61), this equation reveals a fundamental connection between Lie brackets
and optimal control.
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Exercise 4.13 For the multiple-input system (4.59), compute ϕ̇i, i = 1, . . . ,m. Express the result
in terms of Lie brackets.

Lie brackets can help us shed light on the bang-bang property. For a singular optimal control to
exist, ϕ must identically vanish on some time interval. In view of (4.60) and (4.63), this can happen
only if p∗(t) stays orthogonal to both g(x∗(t)) and [f, g](x∗(t)). We have seen that in time-optimal
problems p∗(t) 6= 0 for all t. Thus for planar systems (n = 2) we can rule out singularity if g and
[f, g] are linearly independent along the optimal trajectory.

If n > 2 or g and [f, g] are not linearly independent, then we have to look at higher derivatives
of ϕ and see what it takes for them to vanish as well. Rather than differentiating ϕ̇ again, let us
revisit our derivation of ϕ̇ and try to see a general pattern in it. Consider an arbitrary differentiable
function h : R

n → R
n. Following the same calculation steps as in (4.62) and using the definition of

the Lie bracket, we easily arrive at

d

dt
〈p∗(t), h(x∗(t))〉 = 〈p∗(t), [f, h](x∗(t))〉 + 〈p∗(t), [g, h](x∗(t))〉u∗. (4.64)

The formula (4.63) for ϕ̇ is recovered from this result as a special case by setting h := g which gives
[g, h] = [g, g] = 0. Now, if we want to compute ϕ̈, we only need to set h := [f, g] to obtain the
following expression in terms of iterated Lie brackets of f and g:

ϕ̈(t) = 〈p∗(t), [f, [f, g]](x∗(t))〉 + 〈p∗(t), [g, [f, g]](x∗(t))〉u∗. (4.65)

A singular optimal control must make ϕ̈ vanish. The control

u∗(t) = −〈p∗(t), [f, [f, g]](x∗(t))〉
〈p∗(t), [g, [f, g]](x∗(t))〉 (4.66)

can potentially be singular if 〈p∗, g(x∗)〉 = 〈p∗, [f, g](x∗)〉 ≡ 0. However, it should meet the magnitude
constraint |u∗(t)| ≤ 1. If we assume, for example, that the relation

[g, [f, g]](x) = α(x)g(x) + β(x)[f, g](x) + γ(x)[f, [f, g]](x)

holds with |γ(x)| < 1 for all x, then (4.66) would not be an admissible control unless 〈p∗, [f, [f, g]](x∗)〉 ≡
0. To investigate the possibility that this last function does vanish, we need to consider its derivative
given by (4.64) with h := [f, [f, g]], and so on.

Exercise 4.14 Continuing this process, generate a set of conditions that rule out the existence of
singular optimal controls. You might find it convenient to write these conditions in terms of the
operators (ad f)k, k = 0, 1, . . . defined by (ad f)0(g) := g and (ad f)k(g) := [f, (ad f)k−1(g)] for
k ≥ 1.

We are now in a position to gain a better insight into our earlier observations by using the
language of Lie brackets.

Linear systems (Section 4.4.2). In the single-input case, we have f(x) = Ax and g(x) =
b. Calculating the relevant Lie brackets, we obtain [f, g] = −Ab, [f, [f, g]] = A2b, [g, [f, g]] = 0,
[f, [f, [f, g]]] = −A3b, [g, [f, [f, g]]] = 0, etc. A crucial consequence of linearity is that iterated Lie
brackets containing two g’s are 0, which makes the derivatives of the switching function ϕ independent
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of u. It is easy to see that ϕ cannot vanish if the vectors b, Ab, . . . , An−1b span R
n, which is precisely

the controllability condition.

Example 4.1 revisited. For the system (4.58), we have f =
(
x2

2 − 1
0

)
, g =

(
0
1

)
. The first Lie

bracket is

[f, g](x) = −
(

0 2x2

0 0

)(
0
1

)
=

(
−2x2

0

)
.

On the x1-axis, where the singular optimal trajectory lives, [f, g] vanishes and so g and [f, g] do not
span R

2. In fact, 〈p∗, g(x∗)〉 = 〈p∗, [f, g](x∗)〉 = 0 when p∗2 = 0. The next Lie bracket that we should
then calculate is

[f, [f, g]](x) =

(
0 −2
0 0

)(
x2

2 − 1
0

)
−
(

0 2x2

0 0

)(
−2x2

0

)
=

(
0
0

)
.

Since u ≡ 0, (4.65) gives ϕ̈ ≡ 0. All higher-order Lie brackets are obviously 0, hence ϕ ≡ 0. We see
that all information about the singularity is indeed encoded in the Lie brackets.

It is worth noting that singular controls are not necessarily complex. The optimal control u∗ ≡ 0
in Example 4.1 is actually quite simple. For single-input planar systems ẋ = f(x) + g(x)u, x ∈ R

2,
u ∈ [−1, 1], with f and g real analytic, it can be shown that all time-optimal trajectories are
concatenations of a finite number of “bang” pieces (each corresponding to either u = 1 or u = −1)
and real analytic singular arcs. It is natural to ask whether a similar claim holds for other optimal
control problems in R

2 or for time-optimal control problems in R
3. We are about to see that these

two questions are related and that the answer to both is negative.

4.4.4 Fuller’s problem

Consider again the double integrator (4.48) with the same control constraint u ∈ [−1, 1]. Let the
cost functional be

J(u) =

∫ tf

t0

x2
1(t)dt (4.67)

and let the target set be S = [t0,∞) ×
{(

0
0

)}
. In other words, the final time is free and the

final state is the origin, but this is not a minimal-time problem any more. The Hamiltonian is
H = p1x2 + p2u+ p0x

2
1 and the optimal control must again satisfy (4.50), i.e., the switching function

is ϕ(t) = p∗2(t); we can also see this from the general formula (4.60). The adjoint equation is

ṗ∗1 = −2p∗0x
∗
1

ṗ∗2 = −p∗1
(4.68)

We claim that singular arcs are ruled out. Indeed, along a singular arc p∗2 must vanish. Inspecting
the differential equations for p∗2, p

∗
1, and x∗1, we see that p∗1, x

∗
1, and x∗2 must then vanish too. Thus

the only possible singular arc is the trivial one consisting of the equilibrium at the origin.

It follows that all optimal controls are bang-bang, with switches occurring when p∗2 equals 0.
Our findings up to this point replicate those in the time-optimal setting of Section 4.4.1. There, we
used the fact that p∗2 depended linearly on t to go further and show that the optimal control has
at most one switch. The present adjoint equation (4.68) is different from (4.49) and so we can no
longer reach the same conclusion. Instead, it turns out that the optimal solution has the following
properties (which we state without proof):
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1) Optimal controls are bang-bang with infinitely many switches.

2) Switching takes place on the curve
{(

x1
x2

)
: x1 + γ|x2|x2 = 0

}
where γ ≈ 0.445.

3) Time intervals between consecutive switches decrease in geometric progression.

The last property is consistent with the fact that the final time must be finite (as the origin is reach-
able from every initial state in finite time, e.g., by using the time-optimal control). The occurrence
of a switching pattern in which switching times form an infinite sequence accumulating near the
final time is known as Fuller’s phenomenon, or Zeno behavior. We note that the resulting control is
measurable but not piecewise constant (see page 69). Figure 4.17 shows the switching curve5 and a
sketch of an optimal state trajectory.

sw
itching curve
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x2

x1

Figure 4.17: An optimal trajectory for Fuller’s problem

We note that the switching curves in Fuller’s problem and in the time-optimal control problem
for the double integrator (treated in Section 4.4.1) are given by the same formula, but in the time-
optimal problem we had a different value of γ, namely, γ = 1/2. The nature of switching, however,
is drastically different in the two cases. We can embed both problems in the parameterized family
of problems with the cost functional J(u) =

∫ tf
t0

|x1(t)|νdt where ν ≥ 0 is a parameter. For ν = 0 we
recover the time-optimal problem while for ν = 2 we recover Fuller’s problem. Interestingly, one can
prove that there exists a “bifurcation value” ν̄ ≈ 0.35 with the following property: for ν ∈ [0, ν̄] the
optimal control is bang-bang with at most one switch, while for ν > ν̄ we have Fuller’s phenomenon
(Zeno behavior).

The next exercise shows that Fuller’s phenomenon is also observed in time-optimal control prob-
lems starting with dimension 3. Its solution can be based on Fuller’s problem.

Exercise 4.15 Give an example of a control system ẋ = f(x)+g(x)u with x ∈ R
3 and u ∈ [−1, 1] for

which transferring the state to the origin in minimal time involves infinitely many switches between
u = 1 and u = −1 (at least for some initial states x0).

5The shape of the switching curve in the figure is slightly distorted for better visualization; in reality the trajectory
converges to 0 faster.
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4.5 Existence of optimal controls

To motivate the subject of this section, let us consider the following (obviously absurd) claim: The
largest positive integer is 1. To “prove” this statement, let N be the largest positive integer and
suppose that N 6= 1. Then we have N 2 > N , which contradicts the property of N being the largest
positive integer. Therefore, N = 1.

This argument is known as Perron’s paradox. Although clearly farcical, it highlights a serious issue
which we have been dodging up until now: it warns us about the danger of assuming the existence
of an optimal solution. Indeed, finding the largest positive integer is an optimization problem. Of
course, a solution to this problem does not exist. In the language of this book, the above reasoning
correctly shows that N = 1 is a necessary condition for optimality. Thus a necessary condition can
be useless—even misleading—unless we know that a solution exists.

We know very well that the maximum principle only provides necessary conditions for optimality.
The same is true for the Euler-Lagrange equation and several other results that we have derived along
the way. We have said repeatedly that fulfillment of necessary conditions alone does not guarantee
optimality. However, the basic question of whether an optimal solution even exists has not been
systematically addressed yet, and it is time to do it now.

Suppose that we are given an optimal control problem which falls into the general class of problems
formulated in Section 3.3. How can we ensure the existence of an optimal control? For a start, we
must assume that there exists at least one control u that drives the state of the system from the
initial condition to the target set S (more precisely, the pair (t, x(t)) should evolve from (t0, x0) to S).
Otherwise, the problem is ill posed (has infinite cost). We can view this as a type of controllability
assumption. It may be nontrivial to check, especially for general control sets U . Still, it would be
nice if this controllability assumption were enough to guarantee the existence of an optimal control.
Simple examples show that unfortunately this is not the case.

Example 4.3 For the standard integrator ẋ = u, with x, u ∈ R, consider the problem of steering x
from x0 = 0 to x1 = 1 in minimal time. An optimal solution does not exist: it is easy to see that
arbitrarily small positive transfer times are achievable, but accomplishing the transfer in time 0 is
impossible.

Observe that in the above example, arbitrarily fast transfer is possible because the control set
U = R is unbounded. Let us see if the problem becomes well posed when U is taken to be bounded.

Example 4.4 Consider the same problem as in Example 4.3 except let U = [0, 1). Now the state
can be transferred from 0 to 1 in an arbitrary time larger than 1, but we cannot achieve the transfer
in time 1. Hence, an optimal solution again does not exist.

This time, the difficulty is caused by the fact that the control set is not closed. The reader is
probably beginning to guess that we want to have both boundedness and closedness, i.e., compactness.
To make this statement precise, however, we should be working not with the control set U itself but
with the set of all points reachable from x0 using controls that take values in U . For t ≥ t0, let us
denote by Rt(x0) the set of points reachable from x(t0) = x0 at time t (for a given control set U).
We already worked with reachable sets on page 111, in the context of linear systems. We saw there
that if t∗− t0 is the fastest transfer time from x0 to x1, then x1 must be a boundary point of Rt∗(x0);
this situation is illustrated in Figure 4.18.
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Figure 4.18: Propagation of reachable sets Rt(x0), t0 ≤ t ≤ t∗

In the two scalar examples considered earlier, the reachable set computation is straightforward
and the negative conclusions are readily explained by the above property being impossible to satisfy.
In Example 4.3, Rt(x0) = R for all t > 0, which is unbounded and cannot contain x1 = 1 on its
boundary. In Example 4.4, R1(x0) = [0, 1) which is not closed and does not include the boundary
point 1, while for each t > 1 the set Rt(x0) already contains 1 in its interior. We can now formulate
a refined guess saying that for optimal controls to exist, we want to have compact reachable sets.
We could generalize this discussion to target sets instead of fixed terminal points; we will also see
that compactness of reachable sets is relevant not only for time-optimal control problems.

For nonlinear systems, explicit computation of reachable sets is usually not feasible. Instead, we
can rely on the following general result known as Filippov’s theorem: Given a control system in
the standard form (3.18) with u ∈ U , assume that its solutions exist on a time interval [t0, tf ] for all
controls u(·) and that for every pair (t, x) the set {f(t, x, u) : u ∈ U} is compact and convex. Then
the reachable set Rt(x0) is compact for each t ∈ [t0, tf ].

We do not prove this theorem but make some comments on it. For the result to be valid, controls
must a priori be understood as measurable functions from [t0, tf ] to U ; see the discussion on page 69.
(We can hope to show afterwards that optimal controls belong to a nicer class of functions, e.g., that
they enjoy the bang-bang property.) It is important to note that the first hypothesis in the theorem
(existence of solutions on a given interval) is not implied by the second hypothesis (compactness and
convexity of the right-hand side); for example, solutions of ẋ = x2 +u blow up in finite time even for
U = {0}. Filippov’s theorem actually has a stronger statement, from which compactness of R t(x0)
follows: it says that the set of all trajectories of the system, as a subset of C 0([t0, tf ],Rn), is compact
with respect to the topology induced by the 0-norm ‖ · ‖0, i.e., the topology of uniform convergence.
Boundedness of the reachable sets can be shown without the convexity assumption, but convexity is
crucial for establishing closedness (the argument relies on the separating hyperplane theorem). The
next exercise should help clarify the role of the convexity assumption.

Exercise 4.16 Consider the planar system

ẋ1 = u

ẋ2 = x2
1

with x0 =
(

0
0

)
and U = {−1, 1}. Show that the reachable sets are not closed. Use this fact to define

a cost functional such that the resulting optimal control problem has no solution. Explain how the
situation changes if we “convexify” the problem by redefining U to be the interval [−1, 1].

Filippov’s theorem applies to useful classes of systems, most notably, to systems affine in controls
given by (4.59) with compact and convex control sets U . For such systems, the set {f(x) +G(x)u :



120 DANIEL LIBERZON

u ∈ U} is compact and convex for each x as the image of U under an affine map. As we already
warned the reader, existence of solutions on a time interval of interest needs to be assumed separately.
In the special case of linear systems (4.51), though, global existence of solutions is automatic. The
right-hand side of the system is allowed to depend on time as well. For linear systems the reachable
set Rt(x0) is also convex, as can be easily seen from convexity of U and the variation-of-constants
formula for solutions.

Filippov’s theorem provides sufficient conditions for compactness of reachable sets. Earlier, we
argued that compactness of reachable sets should be useful for proving existence of optimal controls.
Let us now confirm that this is indeed true, at least for certain classes of problems. The connection
between compactness of reachable sets and existence of optimal controls is especially easy to see
for problems in the Mayer form (terminal cost only). Suppose that the control system satisfies the
hypotheses of Filippov’s theorem, that the cost is J(u) = K(xf ) with K a continuous function,
and—in order to arrive at the simplest case—that the target set is S = {t1}×R

n (a fixed-time, free-
endpoint problem). Since K is a continuous function and Rt1(x0) is a compact set, the Weierstrass
Theorem (see page 7) guarantees that K has a global minimum over Rt1(x0). By the definition of
Rt1(x0), there exists at least one control that steers the state to this minimum at time t1, and every
such control is optimal.

For certain fixed-time problems in the Bolza form, it is possible to establish existence of optimal
controls by combining compactness of the set of system trajectories (provided by the stronger form
of Filippov’s theorem) with continuity of the cost functional on this set and invoking the infinite-
dimensional version of the Weierstrass Theorem (see page 19). Alternatively, one can reduce the
problem to the Mayer form (as in Section 3.3.2) and then use the previous result. In general, the
argument needs to be tailored to a particular type of problem at hand. We will now show in detail
how existence of optimal controls can be proved for linear time-optimal control problems, based on
compactness—actually, just closedness—of reachable sets. The next result says that compactness
and convexity of U and a controllability assumption (the existence of some control achieving the
desired transfer) is all we need for an optimal control to exist. (As we know from Section 4.4.2, such
an optimal control is automatically bang-bang if U is a hypercube, or can be chosen to be bang-bang
if U is an arbitrary convex polyhedron.)

Theorem 4.3 (Existence of time-optimal controls for linear systems) Consider the linear con-
trol system (4.51) with a compact and convex control set U . Let the control objective be to steer x
from a given initial state x(t0) = x0 to a given final state x1 in minimal time. Assume that x1 ∈
Rt(x0) for some t ≥ t0. Then there exists a time-optimal control.

Proof. Let t∗ := inf{t ≥ t0 : x1 ∈ Rt(x0)}. The time t∗ is well defined because by the theorem’s
hypothesis the set over which the infimum is being taken is nonempty. (We note that, in view of
boundedness of U , we have t∗ > t0 unless x1 = x0.) We will be done if we show that x1 ∈ Rt∗(x0),
i.e., that t∗ is actually a minimum.6 This will mean that there exists a control u∗ that transfers x0

to x1 at time t∗, and by the definition of t∗ no control does it faster.

By the definition of infimum, there exists a sequence tk ↘ t∗ such that x1 ∈ Rtk(x0) for each k.
Then, by the definition of Rtk(x0), for each k there is a control uk such that

x1 = eA(tk−t0)x0 +

∫ tk

t0

eA(tk−s)Buk(s)ds.

6This situation is to be contrasted with the one in Example 4.4.
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The above equation shows that the same point x1 belongs to the reachable sets Rtk(x0) for different
k. To be able to use the closedness property of reachable sets (guaranteed by Filippov’s theorem),
we would rather work with different points belonging to the same reachable set. To this end, let us
truncate the trajectories corresponding to the controls uk at time t∗ and define, for each k,

xk := eA(t∗−t0)x0 +

∫ t∗

t0

eA(t∗−s)Buk(s)ds. (4.69)

All these points by construction belong to the same reachable set Rt∗(x0).

We now claim that the sequence of points xk converges to x1. If we establish this fact then the
proof will be finished, because the closedness of the reachable set Rt∗(x0) will imply that x1 ∈ Rt∗(x0)
as needed. To prove the convergence claim, let us write

x1 − xk =
(
eA(tk−t∗) − I

)
eA(t∗−t0)x0 +

(
eA(tk−t∗) − I

) ∫ t∗

t0

eA(t∗−s)Buk(s)ds+

∫ tk

t∗
eA(tk−s)Buk(s)ds

=
(
eAεk − I

)
xk +

∫ εk

0
eA(εk−τ)Buk(t

∗ + τ)dτ

where we defined εk := tk − t∗ and made the substitution s = t∗ + τ . Taking the norm on both sides,
we have

|x1 − xk| ≤
∥∥eAεk − I

∥∥|xk| + εk max
{
|eAδBu| : δ ∈ [0, εk], u ∈ U

}
. (4.70)

Similarly, we can take the norm on both sides of (4.69) to obtain the bound

|xk| ≤
∥∥eA(t∗−t0)

∥∥|x0| + (t∗ − t0)max
{
|eAδBu| : δ ∈ [0, t∗ − t0], u ∈ U

}

which is independent of k, implying that the sequence |xk| is uniformly bounded. Using this fact
in (4.70) and noting that εk → 0 hence also ‖eAεk − I‖ → 0, we conclude that |x1 − xk| converges to
0 as claimed.

Existence results are also available for other, more general classes of control problems (see Sec-
tion 4.6 for further information). Although the proofs of such results are usually not constructive,
the knowledge that a solution exists rules out the risks suggested by Perron’s paradox and provides
a basis for applying the maximum principle—which, as we have seen, often allows one to actually
find an optimal control.

4.6 Notes and references for Chapter 4

The Basic Fixed-Endpoint Control Problem and Basic Variable-Endpoint Control Problem match the
Special Problem 1 and Special Problem 2 in [AF66], respectively, and the statements of the maximum
principle for these two problems correspond to Theorem 5-5P and Theorem 5-6P in [AF66, Section 5-
15]. Our proof of the maximum principle is also heavily based on the one presented in [AF66], but
there are significant differences between the two proofs. First, we substantially reorganized the proof
structure of [AF66], changing the main steps and the order in which they are given. Second, we
filled in some details of proving Lemmas 4.1 and 4.2 not included in [AF66]; these are taken from
the proofs of Lemmas 3 and 10 in the original book [PBGM62]. Finally, as we already explained
earlier, our sign convention (maximum versus minimum) is the opposite of that in [AF66]. Among
other expositions of the proof of the maximum principle built around similar ideas, we note the one
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in [LM67] and the more modern approach of [Sus00]. Our derivation of the variational equation
(step 4) proceeded similarly to the argument in [Kha02, Section 3.3].

A precise definition of the topology mentioned in Section 4.3 (uniform convergence for x and L1

convergence for u), which leads to a notion of local optimality suitable for the maximum principle,
can be found in [MO98, p. 23]; that book uses the terminology “convergence in Pontryagin’s sense”
and “Pontryagin minimum.” The book [Vin00] works with the somewhat different concept of a W 1,1

local minimizer (defined there on pp. 287–288). Changes of variables for deriving the maximum
principle for other classes of problems, including those discussed in Section 4.3.1, are thoroughly
covered in [AF66]. For the reader wishing to reconstruct a proof of the maximum principle for
the Mayer problem in more detail, Section 6.1 of [BP07] should be of help. In the majority of the
literature the initial state is assumed to be fixed; references that do deal with variable initial states
and resulting transversality conditions include [LM67] and [Vin00].

The example of Section 4.4.1 is standard and appears in many places, including [PBGM62], [BP07,
Section 7.3], [AF66, Section 7-2], [Kno81], and [Son98, Chapter 10]. The last three references also
discuss the bang-bang principle for linear systems derived in Section 4.4.2. When all eigenvalues of
the matrix A are real, a more precise result can be obtained, namely, each component of the optimal
control can switch at most n − 1 times (see, e.g., [AF66, Theorem 6-8]). For further information
on synthesizing optimal (in particular, time-optimal) controls in state feedback form, see [Sus83,
PS00, BP04] and the references therein. The weaker bang-bang principle mentioned at the end of
Section 4.4.2 remains true for linear time-varying systems and for arbitrary compact and convex
control sets U , provided that by bang-bang controls one understands controls taking values in the
set of extreme points of U ; see, e.g., [LM67, Ces83, Kno81] (the last of which only addresses the
time-varying aspect). However, the proofs become less elementary. Another advantage of U being
a convex polyhedron is that a bound on the number of switches (which in general depends on the
length of the time interval) can be established, as explained in [Sus83, Section 8.1]. Our treatment
of singular optimal controls and their connection with Lie brackets in Section 4.4.3 was inspired
by the nice expositions in [Sus83] and [Sus00, Handout 5]. The characterization of time-optimal
controls in the plane mentioned at the end of Section 4.4.3 is stated in [Sus83] as Theorem 8.4.1.
Fuller’s problem is studied in [Ful85] and in the earlier work by the same author cited in that paper.
The relevant results are conveniently summarized in [Rya87], while a detailed analysis can be found
in [Jur96, Chapter 10]. Fuller’s phenomenon is observed in other problems too, such as controlling
a Dubins car (see [AS04, Section 20.6]).

Perron’s paradox and its ramifications are carefully examined in [You80]. Examples 4.3 and 4.4
are contained in [Son98, Remark 10.1.2]. Filippov’s theorem is commonly attributed to [Fil88, §7,
Theorem 3], although that book cites earlier works. An extra step (the so-called Filippov’s Selection
Lemma) is needed to pass from the differential inclusion setting of [Fil88] to that of control systems;
see, e.g., [Vin00, Section 2.3]. Filippov’s theorem is also discussed, among many other sources,
in [BP07, Section 3.5]. Boundedness of reachable sets without the convexity assumption is shown
in [LSW96, Proposition 5.1]. For linear systems, compactness of reachable sets is addressed in a
more direct fashion in [Son98, Section 10.1]. Existence of optimal controls for the Mayer problem
with more general target sets, as well as for the Bolza problem via a reduction to the Mayer problem,
is investigated in [BP07, Chapter 5]. Our proof of Theorem 4.3 follows [Son98] and [Kno81]. This
argument can be extended to nonlinear systems affine in controls; the essential details are in [Son98,
Lemma 10.1.2 and Remark 10.1.10] and [Sus79, pp. 633–634]. The assumption of convexity of U in
Theorem 4.3 can actually be dropped, as a consequence of available bang-bang theorems for linear
systems (see [BP07, Theorem 5.1.2] or [Sus83, Theorem 8.1.1]). Further results on existence of
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optimal controls can be found in [Kno81] and [LM67]. For an in-depth treatment of this issue we
recommend the book [Ces83] which dedicates several chapters to it. The issue of controllability of
linear systems with bounded controls, which is relevant to the material of Sections 4.4.2 and 4.5, is
considered in [Jur96, Chapter 5] (a necessary condition for controllability is that the matrix A has
purely imaginary eigenvalues).

We must stress that the basic setting of this chapter and the maximum principle that we developed
are far from being the most general possible. As we said earlier, we work with piecewise continuous
controls rather than the larger class of measurable controls considered in [LM67], [Vin00], or [Sus00].
An analogous maximum principle is valid for Lipschitz and not necessarily C 1 systems, but its
derivation requires additional technical tools; see [Cla89], [Vin00], [Sus07], and the references therein.
Although the classical formulation of the maximum principle relies on first-order analysis, high-
order versions are also available; see [Kre77], [Bre85], and [AS04, Chapter 20]. The applicability
of the maximum principle has been extended to other problems; some of these—namely, control
problems on manifolds and hybrid control problems—will be touched upon in Chapter 7, while others
are completely beyond the scope of this book (for example, see [YZ99] for a stochastic maximum
principle). Versions of the maximum principle for discrete-time systems exist and are surveyed
in [NRV84]; see also [Bol78].
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Chapter 5

The Hamilton-Jacobi-Bellman

equation

5.1 Dynamic programming and the HJB equation

Right around the time when the maximum principle was being developed in the Soviet Union, on
the other side of the Atlantic ocean (and of the iron curtain) Bellman wrote the following in his
book [Bel57]: “In place of determining the optimal sequence of decisions from the fixed state of the
system, we wish to determine the optimal decision to be made at any state of the system. Only if
we know the latter, do we understand the intrinsic structure of the solution.” The approach realizing
this idea, known as dynamic programming, leads to necessary as well as sufficient conditions for
optimality expressed in terms of the so-called Hamilton-Jacobi-Bellman (HJB) partial differential
equation for the optimal cost. These concepts are the subject of the present chapter. Developed
independently from—even, to some degree, in competition with—the maximum principle during the
cold war era, the resulting theory is very different from the one presented in Chapter 4. Nevertheless,
both theories have their roots in calculus of variations and there are important connections between
the two, as we will explain in Section 5.2 (see also Section 7.2).

5.1.1 Motivation: the discrete problem

The dynamic programming approach is quite general, but to fix ideas we first present it for the purely
discrete case. Consider a system of the form

xk+1 = f(xk, uk), k = 0, 1, . . . , T − 1

where xk lives in a finite set X consisting of N elements, uk lives in a finite set U consisting of M
elements, and T,N,M are fixed positive integers. We suppose that each possible transition from
some xk to xk+1 corresponding to some control value uk has a cost assigned to it, and there is also a
terminal cost function on X. For each trajectory, the total cost accumulated at time T is the sum of
the transition costs at time steps 0, . . . , T − 1 plus the terminal cost at xT . For a given initial state
x0 we want to minimize this total cost, the terminal state xT being free.

The most naive approach to this problem is as follows: starting from x0, enumerate all possible
trajectories going forward up to time T , calculate the cost for each one, then compare them and

125
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select the optimal one. Figure 5.1 provides a visualization of this scenario. It is easy to estimate the
computational effort required to implement such a solution: there are M T possible trajectories and
we need T additions to compute the cost for each one, which results in roughly O(M TT ) algebraic
operations.

...$
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Figure 5.1: Discrete case: going forward

We now examine an alternative approach, which might initially appear counterintuitive: let us
go backward in time. At k = T , terminal costs are known for each xk. At k = T − 1, for each xk we
find to which xk+1 we should jump so as to have the smallest cost (the one-step running cost plus
the terminal cost). Write this optimal “cost-to-go” next to each xk and mark the selected path (see
Figure 5.2). In case of more than one path giving the same cost, choose one of them at random.
Repeat these steps for k = T − 2, . . . , 0, working with the costs-to-go computed previously in place
of the terminal costs.

...$
$

$

$

$

$

$

$

$

$
PSfrag replacements

t

x

x0

0 1 T−1 T

Figure 5.2: Discrete case: going backward

We claim that when we are done, we will have generated an optimal trajectory from each x0 to
some xT . The justification of this claim relies on the principle of optimality, an observation that
we already made during the proof of the maximum principle (see page 86). In the present context
this principle says that for each time step k, if xk is a point on an optimal trajectory then the
remaining decisions (from time k onward) must constitute an optimal policy with respect to xk as
the initial condition. What the principle of optimality does for us here is guarantee that the paths
we discard going backward cannot be portions of optimal trajectories. On the other hand, in the
previous approach (going forward) we are not able to discard any paths until we reach the terminal
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time and finish the calculations.

Let us assess the computational effort associated with this backward scheme. At each time k,
for each state xk and each control uk we need to add the cost of the corresponding transition to
the cost-to-go already computed for the resulting xk+1. Thus, the number of required operations
is O(NMT ). Comparing this with the O(M TT ) operations needed for the earlier forward scheme,
we conclude that the backward computation is more efficient for large T , with N and M fixed.
Of course, the number of operations will still be large if N and M are large (this is the “curse of
dimensionality”).

Actually, the above comparison is not really accurate because the backward scheme provides
much more information: it finds the optimal policy for every initial condition x0, and in fact it tells
us what the optimal decision is at every xk for all k. We can restate this last property as follows: the
backward scheme yields the optimal control policy in the form of a state feedback law. In the forward
scheme, on the other hand, to handle all initial conditions we would need O(NM TT ) operations, and
we would still not cover all states xk for k > 0; hence, a state feedback is not obtained. We see that
the backward scheme fulfills the objective formulated in Bellman’s quote at the beginning of this
chapter. This recursive scheme serves as an example of the general method of dynamic programming.

5.1.2 Principle of optimality

We now return to the continuous-time optimal control problem that we have been studying since
Section 3.3, defined by the control system (3.18) and the Bolza cost functional (3.21). For con-
creteness, assume that we are dealing with a fixed-time, free-endpoint problem, i.e., the target set is
S = {t1}×R

n. (Handling other target sets requires some modifications, on which we briefly comment
in what follows.) We can then write the cost functional as

J(u) =

∫ t1

t0

L(t, x(t), u(t))dt +K(x(t1)).

As we already remarked in Section 3.3.2, a more accurate notation for this functional would be
J(t0, x0, u) as it depends on the initial data.

The basic idea of dynamic programming is to consider, instead of the problem of minimizing
J(t0, x0, u) for given t0 and x0, the family of minimization problems associated with the cost func-
tionals

J(t, x, u) =

∫ t1

t
L(s, x(s), u(s))ds +K(x(t1)) (5.1)

where t ranges over [t0, t1) and x ranges over R
n; here x(·) on the right-hand side denotes the state

trajectory corresponding to the control u(·) and satisfying x(t) = x. (There is a slight abuse of
notation here; the second argument x of J in (5.1) is a fixed point, and only the third argument
u is a function of time.) In accordance with Bellman’s roadmap, our goal is to derive a dynamic
relationship among these problems, and ultimately to solve all of them.

To this end, let us introduce the value function

V (t, x) := inf
u[t,t1]

J(t, x, u) (5.2)

where the notation u[t,t1] indicates that the control u is restricted to the interval [t, t1]. Loosely
speaking, we can think of V (t, x) as the optimal cost (cost-to-go) from (t, x). It is important to note,
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however, that the existence of an optimal control—and hence of the optimal cost—is not actually
assumed, which is why we work with an infimum rather than a minimum in (5.2). If an optimal
control exists, then the infimum turns into a minimum and V coincides with the optimal cost-to-go.
In general, the infimum need not be achieved, and might even equal −∞ for some (t, x).

It is clear that the value function must satisfy the boundary condition

V (t1, x) = K(x) ∀x ∈ R
n. (5.3)

In particular, if there is no terminal cost (K ≡ 0) then we have V (t1, x) = 0. The boundary
condition (5.3) is of course a consequence of our specific problem formulation. If the problem involved
a more general target set S ⊂ [t0,∞)×R

n, then the boundary condition would read V (t, x) = K(x)
for (t, x) ∈ S.

The basic principle of dynamic programming for the present case is a continuous-time counterpart
of the principle of optimality formulated in Section 5.1.1, already familiar to us from Chapter 4.
Here we can state this property as follows, calling it again the principle of optimality: For every
(t, x) ∈ [t0, t1) × R

n and every ∆t ∈ (0, t1 − t], the value function V defined in (5.2) satisfies the
relation

V (t, x) = inf
u[t,t+∆t]

{∫ t+∆t

t
L(s, x(s), u(s))ds+ V (t+ ∆t, x(t+ ∆t))

}
(5.4)

where x(·) on the right-hand side is the state trajectory corresponding to the control u [t,t+∆t] and
satisfying x(t) = x. The intuition behind this statement is that to search for an optimal control,
we can search over a small time interval for a control that minimizes the cost over this interval plus
the subsequent optimal cost-to-go. Thus the minimization problem on the interval [t, t1] is split into
two, one on [t, t+ ∆t] and the other on [t+ ∆t, t1]; see Figure 5.3.

PSfrag replacements

t

x

x0

t t+ ∆t
T−1

T

Figure 5.3: Continuous time: principle of optimality

The above principle of optimality may seem obvious. However, it is important to justify it
rigorously, especially since we are using an infimum and not assuming existence of optimal controls.
We give “one half” of the proof by verifying that

V (t, x) ≥ V (t, x) (5.5)

where V (t, x) denotes the right-hand side of (5.4):

V (t, x) := inf
u[t,t+∆t]

{∫ t+∆t

t
L(s, x(s), u(s))ds + V (t+ ∆t, x(t+ ∆t))

}
.
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By (5.2) and the definition of infimum, for every ε > 0 there exists a control uε on [t, t1] such that

V (t, x) + ε ≥ J(t, x, uε). (5.6)

Writing xε for the corresponding state trajectory, we have

J(t, x, uε) =

∫ t+∆t

t
L(s, xε(s), uε(s))ds+ J(t+ ∆t, xε(t+ ∆t), uε)

≥
∫ t+∆t

t
L(s, xε(s), uε(s))ds+ V (t+ ∆t, xε(t+ ∆t)) ≥ V (t, x)

where the two inequalities follow directly from the definitions of V and V , respectively. Since (5.6)
holds with an arbitrary ε > 0, the desired inequality (5.5) is established.

Exercise 5.1 Complete the proof of the principle of optimality by showing the reverse inequality
V (t, x) ≤ V (t, x).

5.1.3 HJB equation

In the principle of optimality (5.4) the value function V appears on both sides with different argu-
ments. We can thus think of (5.4) as describing a dynamic relationship among the optimal values of
the costs (5.1) for different t and x, which we declared earlier to be our goal. However, this relation-
ship is rather clumsy and not very convenient to use in its present form. What we will now do is pass
to its more compact infinitesimal version, which will take the form of a partial differential equation
(PDE). The steps that follow rely on first-order Taylor expansions; the reader will recall that we
used somewhat similar calculations when deriving the maximum principle. First, write x(t + ∆t)
appearing on the right-hand side of (5.4) as

x(t+ ∆t) = x+ f(t, x, u(t))∆t+ o(∆t)

where we remembered that x(t) = x. This allows us to express V (t+ ∆t, x(t+ ∆t)) as

V (t+ ∆t, x(t+ ∆t)) = V (t, x) + Vt(t, x)∆t+ 〈Vx(t, x), f(t, x, u(t))∆t〉 + o(∆t) (5.7)

(for now we proceed under the assumption—whose validity we will examine later—that V is C 1.)
We also have ∫ t+∆t

t
L(s, x(s), u(s))ds = L(t, x, u(t))∆t+ o(∆t). (5.8)

Substituting the expressions given by (5.7) and (5.8) into the right-hand side of (5.4), we obtain

V (t, x) = inf
u[t,t+∆t]

{L(t, x, u(t))∆t+ V (t, x) + Vt(t, x)∆t+ 〈Vx(t, x), f(t, x, u(t))∆t〉 + o(∆t)} .

The two V (t, x) terms cancel out (because the one inside the infimum does not depend on u and can
be pulled outside), which leaves us with

0 = inf
u[t,t+∆t]

{L(t, x, u(t))∆t+ Vt(t, x)∆t+ 〈Vx(t, x), f(t, x, u(t))∆t〉 + o(∆t)} . (5.9)

Let us now divide by ∆t and take it to be small. In the limit as ∆t→ 0 the higher-order term o(∆t)/∆t
disappears, and the infimum is taken over the instantaneous value of u at time t (in fact, already
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in (5.9) the control values u(s) for s > t affect the expression inside the infimum only through the
o(∆t) term). Pulling Vt(t, x) outside the infimum as it does not depend on u, we conclude that the
equation

−Vt(t, x) = inf
u∈U

{
L(t, x, u) +

〈
Vx(t, x), f(t, x, u)

〉}
(5.10)

must hold for all t ∈ [t0, t1) and all x ∈ R
n. This equation for the value function is called the

Hamilton-Jacobi-Bellman (HJB) equation. It is a PDE since it contains partial derivatives of
V with respect to t and x. The accompanying boundary condition is (5.3).

Note that the terminal cost appears only in the boundary condition and not in the HJB equation
itself. In fact, the specifics about the terminal cost and terminal time did not play a role in our
derivation of the HJB equation. For different target sets, the boundary condition changes (as we
already discussed) but the HJB equation remains the same. However, the HJB equation will not
hold for (t, x) ∈ S just like it does not hold at t = t1 in the fixed-time case, because the principle of
optimality is not valid there.

We can apply one more transformation in order to rewrite the HJB equation in a simpler—and
also more insightful—way. It is easy to check that (5.10) is equivalent to

Vt(t, x) = sup
u∈U

{〈−Vx(t, x), f(t, x, u)〉 − L(t, x, u)} . (5.11)

Let us now recall our earlier definition (3.29) of the Hamiltonian, reproduced here:

H(t, x, u, p) := 〈p, f(t, x, u)〉 − L(t, x, u).

We see that the expression inside the supremum in (5.11) is nothing but the Hamiltonian, with −Vx

playing the role of the costate. This brings us to the Hamiltonian form of the HJB equation:

Vt(t, x) = sup
u∈U

H (t, x, u,−Vx(t, x)) . (5.12)

So far, the existence of an optimal control has not been assumed. When an optimal (in the global
sense) control u∗ does exist, the infimum in the previous calculations can be replaced by a minimum
and this minimum is achieved when u∗ is plugged in. In particular, the principle of optimality (5.4)
yields

V (t, x∗(t)) = min
u[t,t+∆t]

{∫ t+∆t

t
L(s, x(s), u(s))ds + V (t+ ∆t, x(t+ ∆t))

}

=

∫ t+∆t

t
L(s, x∗(s), u∗(s))ds+ V (t+ ∆t, x∗(t+ ∆t))

where x∗(·) and x(·) are trajectories corresponding to u∗(·) and u(·), respectively, both passing
through the same point x∗(t) at time t. From this, repeating the same steps that led us earlier to
the HJB equation (5.10), we obtain

−Vt(t, x
∗(t)) = min

u∈U
{L(t, x∗(t), u) + 〈Vx(t, x∗(t)), f(t, x∗(t), u)〉}

= L(t, x∗(t), u∗(t)) + 〈Vx(t, x∗(t)), f(t, x∗(t), u∗(t))〉 .
(5.13)

Expressed in terms of the Hamiltonian, the second equation in (5.13) becomes

H(t, x∗(t), u∗(t),−Vx(t, x∗(t))) = max
u∈U

H(t, x∗(t), u,−Vx(t, x∗(t))). (5.14)
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This Hamiltonian maximization condition is analogous to the one we had in the maximum principle.
We see that if we can find a closed-form expression for the control that maximizes the Hamiltonian—
or, equivalently, the control that achieves the infimum in the HJB equation (5.10)—then the HJB
equation becomes simpler and more explicit.

Example 5.1 Consider the standard integrator ẋ = u (with x, u ∈ R) and let L(x, u) = x4 + u4.
The corresponding HJB equation is

− Vt(t, x) = inf
u∈R

{x4 + u4 + Vx(t, x)u}. (5.15)

Since the expression inside the infimum is polynomial in u, we can easily find the control that
achieves the infimum: differentiating with respect to u, we have 4u3 + Vx(t, x) = 0 which yields

u = −
(

1
4Vx(t, x)

)1/3
. Plugging this control into the HJB equation (5.15), we obtain

− Vt(t, x) = x4 − 3
(

1
4Vx(t, x)

)4/3
. (5.16)

Assuming that we can solve the PDE (5.16) for the value function V , the optimal control is given

in the state feedback form1 u∗(t) = −
(

1
4Vx(t, x∗(t))

)1/3
. Solving (5.16), however, appears to be

difficult.

Example 5.2 Consider again the minimal-time parking problem from Section 4.4.1. The HJB
equation for this problem is

− Vt(t, x) = inf
u∈[−1,1]

{1 + Vx1(t, x)x2 + Vx2(t, x)u}. (5.17)

Note that this is a free-time, fixed-endpoint problem, for which the boundary condition takes the
form V (t, 0) = 0 for all t, and (5.17) is valid away from x = 0. The infimum on the right-hand side
of (5.17) is achieved by setting

u = −sgn(Vx2(t, x)) =





1 if Vx2(t, x) < 0

−1 if Vx2(t, x) > 0

? if Vx2(t, x) = 0

It is informative to compare this expression for u with (4.50). Substituting it into (5.17), we arrive
at the simplified HJB equation

− Vt(t, x) = 1 + Vx1(t, x)x2 − |Vx2(t, x)|. (5.18)

The optimal control is given by the feedback law u∗(t) = −sgn(Vx2(t, x
∗(t))), whose implementation

of course hinges on our ability to solve (5.18) for V . We end the example here but invite the reader
to play more with it in the next exercise.

Exercise 5.2 Do you see a way to further simplify the HJB equation (5.18) from Example 5.2?
Can you solve this HJB equation and find the value function? Can you use the above analysis to
reproduce the results we obtained in Section 4.4.1 (i.e., the bang-bang principle and the complete
description of the optimal feedback law)? Conversely, can you use those earlier results to obtain
more information about the value function?

1Note the difference between the previous expression for the minimizing control u, which is given pointwise in t and
x, and the current expression for u∗ which is evaluated along the corresponding state trajectory x∗. The claim about
optimality of u∗ is actually somewhat informal at this point, but will be carefully justified very soon (in Section 5.1.4).



132 DANIEL LIBERZON

Infinite-horizon problem

The reader may find it somewhat discouraging that even for simple examples like the ones we
just presented, solving the HJB equation analytically is a challenging task. Nevertheless, the HJB
equation gives a considerable insight into the problem, and one can often apply numerical techniques
to obtain approximate solutions. We now discuss one important situation in which the HJB equation
takes a simpler form. Suppose that both the control system and the cost functional are time-
invariant, i.e., f = f(x, u) and L = L(x, u), and that there is no terminal cost (K ≡ 0). Keeping
the final state free, we let the final time t1 approach ∞; in the limit, the cost functional becomes
J(u) =

∫∞
t0
L(x(t), u(t))dt and we have what is called an infinite-horizon problem.2 It is clear that

in this scenario, the cost does not depend on the initial time, hence the value function depends on x
only: V = V (x). Thus the partial derivative Vt vanishes and the HJB equation (5.10) reduces to

0 = inf
u∈U

{L(x, u) + 〈Vx(x), f(x, u)〉} . (5.19)

We let the reader think of other problem formulations for which the HJB equation simplifies in the
same way.

The PDE (5.19) may still be difficult to solve, but it is certainly more tractable than the general
HJB equation (5.10). In the special case when x is scalar, (5.19) is actually an ODE. Let us consider

the infinite-horizon version of Example 5.1. The HJB equation becomes x4 − 3
(

1
4Vx(x)

)4/3
= 0 from

which we derive Vx(x) = ±
(

1
3

)3/4
4x3. We must choose the plus sign because V should be positive

definite (since L is positive definite). We do not even need to solve for V because the optimal

feedback law is obtained from Vx directly: u∗(t) = −
(

1
4Vx(x∗(t))

)1/3
= −

(
1
3

)1/4
x∗(t).

5.1.4 Sufficient condition for optimality

Together, the HJB equation—written as (5.10) or (5.12)—and the Hamiltonian maximization con-
dition (5.14) constitute necessary conditions for optimality. It should be clear that all we proved so
far is their necessity. Indeed, defining V to be the value function, we showed that it must satisfy
the HJB equation. Assuming further that an optimal control exists, we showed that it must maxi-
mize the Hamiltonian along the optimal trajectory. However, we will see next that these conditions
are also sufficient for optimality. Namely, we will establish the following sufficient condition for
optimality: Suppose that a C1 function V̂ : [t0, t1] × R

n → R satisfies the HJB equation

− V̂t(t, x) = inf
u∈U

{
L(t, x, u) +

〈
V̂x(t, x), f(t, x, u)

〉}
(5.20)

(for all t ∈ [t0, t1) and all x ∈ R
n) and the boundary condition

V̂ (t1, x) = K(x). (5.21)

Suppose that a control û : [t0, t1] → U and the corresponding trajectory x̂ : [t0, t1] → R
n, with the

given initial condition x̂(t0) = x0, satisfy everywhere the equation

L(t, x̂(t), û(t))+
〈
V̂x(t, x̂(t)), f(t, x̂(t), û(t))

〉
= min

u∈U

{
L(t, x̂(t), u)+

〈
V̂x(t, x̂(t)), f(t, x̂(t), u)

〉}
(5.22)

2For this infinite-horizon problem to be well posed, we need to be sure that the value of the integral
∫

∞

t0
L(x(t), u(t))dt

is finite at least for some controls. We will investigate this issue in detail for the linear quadratic regulator problem in
the next chapter. For now we proceed formally, without worrying about the possibility that the problem might be ill
posed.
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which is equivalent to the Hamiltonian maximization condition

H(t, x̂(t), û(t),−V̂x(t, x̂(t))) = max
u∈U

H(t, x̂(t), u,−V̂x(t, x̂(t))).

Then V̂ (t0, x0) is the optimal cost (i.e., V̂ (t0, x0) = V (t0, x0) where V is the value function) and
û is an optimal control. (Note that this optimal control is not claimed to be unique; there can be
multiple controls giving the same cost.)

To prove this result, let us first apply (5.20) with x = x̂(t). We know from (5.22) that along x̂,
the infimum is a minimum and it is achieved at û; hence we have, similarly to (5.13),

−V̂t(t, x̂(t)) = L(t, x̂(t), û(t)) +
〈
V̂x(t, x̂(t)), f(t, x̂(t), û(t))

〉
.

We can move the V̂t term to the right-hand side and note that together with the inner product of V̂x

and f it forms the total time derivative of V̂ along x̂:

0 = L(t, x̂(t), û(t)) +
d

dt
V̂ (t, x̂(t)).

Integrating this equality with respect to t from t0 to t1, we have

0 =

∫ t1

t0

L(t, x̂(t), û(t))dt+ V̂ (t1, x̂(t1)) − V̂ (t0, x̂(t0))

which, in view of the boundary condition for V̂ and the initial condition for x̂, gives

V̂ (t0, x0) =

∫ t1

t0

L(t, x̂(t), û(t))dt+K(x̂(t1)) = J(t0, x0, û). (5.23)

On the other hand, if x is another trajectory with the same initial condition corresponding to an
arbitrary control u, then (5.20) implies that

−V̂t(t, x(t)) ≤ L(t, x(t), u(t)) + 〈V̂x(t, x(t)), f(t, x(t), u(t))〉

or

0 ≤ L(t, x(t), u(t)) +
d

dt
V̂ (t, x(t)).

Integrating over [t0, t1] as before, we obtain

0 ≤
∫ t1

t0

L(t, x(t), u(t))dt + V̂ (t1, x(t1)) − V̂ (t0, x(t0))

or

V̂ (t0, x0) ≤
∫ t1

t0

L(t, x(t), u(t))dt +K(x(t1)) = J(t0, x0, u). (5.24)

The equation (5.23) and the inequality (5.24) show that û gives the cost V̂ (t0, x0) while no other
control u can produce a smaller cost. Thus we have confirmed that V̂ is the optimal cost and û is
an optimal control.

We can regard the function V̂ as providing a tool for verifying optimality of candidate optimal
controls (obtained, for example, from the maximum principle). This optimality is automatically
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global. A simple modification of the above argument yields that V̂ (t, x̂(t)) is the optimal cost-to-go
from an arbitrary point (t, x̂(t)) on the trajectory x̂. More generally, since V̂ is defined for all t and
x, we could use an arbitrary pair (t, x) in place of (t0, x0) and obtain optimality with respect to
x(t) = x as the initial condition in the same way. Thus, if we have a family of controls parameterized
by (t, x), each fulfilling the Hamiltonian maximization condition along the corresponding trajectory
which starts at x(t) = x, then V̂ is the value function and it lets us establish optimality of all
these controls. A typical way in which such a control family can arise is from a state feedback law
description; we will encounter a scenario of this kind in Chapter 6. The next two exercises offer
somewhat different twists on the above sufficient condition for optimality.

Exercise 5.3 Suppose that a control û : [t0, t1] → U , the corresponding trajectory x̂ : [t0, t1] → R
n

with x̂(t0) = x0, and a function V̂ : [t0, t1]×R
n → R are such that V̂ (t0, x0) = J(t0, x0, û) with J as

in (5.1), i.e., V̂ (t0, x0) is the cost corresponding to the control û. Suppose that V̂ satisfies the HJB
equation (5.20) and the boundary condition (5.21). Show that then V̂ (t0, x0) is the optimal cost and
û is an optimal control.

Exercise 5.4 Formulate and prove a sufficient condition for optimality, analogous to the one proved
above, for the infinite-horizon problem described at the end of Section 5.1.3.

5.1.5 Historical remarks

The HJB partial differential equation has its origins in the work of Hamilton, with subsequent
improvements by Jacobi, done in the context of calculus of variations in the late 1830s. At that
time the equation served as a necessary condition for optimality. Its use as a sufficient condition—
still in the calculus of variations setting—was proposed in the work of Carathéodory, begun in the
1920s and culminating in his book published in 1935. (He established local optimality by working
in a neighborhood of a test curve.) Carathéodory’s approach became known as the “royal road” of
calculus of variations.

The principle of optimality seems, in hindsight, an almost trivial observation, which actually
dates all the way back to Jacob Bernoulli’s 1697 solution of the brachistochrone problem. In the
early 1950s, slightly before Bellman, the principle of optimality was formalized in the context of
differential games by Isaacs, who called it the “tenet of transition.” (The fundamental PDE of game
theory bears Isaacs’ initial alongside those of Hamilton, Jacobi, and Bellman.) The term “dynamic
programming” was coined by Bellman, who published a series of papers and the book [Bel57] on this
subject in the 1950s. Bellman’s contribution was to recognize the power of the method to study value
functions globally, and to use it for solving a variety of calculus of variations and optimal control
problems.

It is not clear if Bellman was aware of the close connection between his work and the Hamilton-
Jacobi equation of calculus of variations. This connection was explicitly made in the early 1960s
by Kalman, who was apparently the first to use the name “HJB equation.” Kalman’s derivation of
sufficient conditions for optimal control, combining the ideas of Carathéodory and Bellman, provided
the basis for the treatment given here and in other modern sources. (The work of Kalman will also
be prominently featured in the next chapter, where we discuss linear systems and quadratic costs.)

Quite remarkably, the maximum principle was being developed in the Soviet Union independently
around the same time as Bellman’s and Kalman’s work on dynamic programming was appearing in
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the United States. We thus find it natural at this point to compare the maximum principle with the
HJB equation and discuss the relationship between the two approaches.

5.2 HJB equation versus the maximum principle

Here we focus on the necessary conditions for optimality provided by the HJB equation (5.10) and
the Hamiltonian maximization condition (5.14) on one hand and by the maximum principle on
the other hand. There is a notable difference in how these two necessary conditions characterize
optimal controls. In order to see this point more clearly, assume that the system and the cost are
time-invariant. The maximum principle is formulated in terms of the canonical equations

ẋ∗ = Hp|∗ , ṗ∗ = −Hx|∗ (5.25)

and says that at each time t, the value u∗(t) of the optimal control must maximize H(x∗(t), u, p∗(t))
with respect to u:

u∗(t) = arg max
u∈U

H(x∗(t), u, p∗(t)). (5.26)

This is an open-loop specification, because u∗(t) depends not only on the state x∗(t) but also on the
costate p∗(t) which has to be computed from the adjoint differential equation. Now, in the context
of the HJB equation, the optimal control must satisfy

u∗(t) = arg max
u∈U

H(x∗(t), u,−Vx(t, x∗(t))). (5.27)

This is a closed-loop (feedback) specification; indeed, assuming that we know the value function V
everywhere, u∗(t) is completely determined by the current state x∗(t). The ability to generate an
optimal control policy in the form of a state feedback law is an important feature of the dynamic
programming approach, as we in fact already knew from Section 5.1.1. Clearly, we cannot implement
this feedback law unless we can first find the value function by solving the HJB partial differential
equation, and we have seen that this is in general a very difficult task. Therefore, from the compu-
tational point of view the maximum principle has an advantage in that it involves only ordinary and
not partial differential equations. In principle, the dynamic programming approach provides more
information (including sufficiency), but in reality, the maximum principle is often easier to use and
allows one to solve many optimal control problems for which the HJB equation is intractable.

As another point of comparison, it is interesting to recall how much longer and more complicated
our proof of the maximum principle was compared with our derivation of the necessary conditions
based on the HJB equation. This difference is especially perplexing in view of the striking similarity
between the two Hamiltonian maximization conditions (5.26) and (5.27). We may wonder whether
it might actually be possible to give an easier proof of the maximum principle starting from the HJB
equation. Suppose that u∗ is an optimal control and x∗ is the corresponding state trajectory. Still
assuming for simplicity that f and L are time-independent, we know that (5.27) must hold, where
V is the value function satisfying

− Vt(t, x
∗(t)) = L(x∗(t), u∗(t)) + 〈Vx(t, x∗(t)), f(x∗(t), u∗(t))〉 . (5.28)

To establish the maximum principle, we need to prove the existence of a costate p∗ with the required
properties. The formulas (5.26) and (5.27) strongly suggest that we should try to define it via

p∗(t) := −Vx(t, x
∗(t)). (5.29)
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Then, the desired Hamiltonian maximization condition (5.26) automatically follows from (5.27).
We note also that if V satisfies the boundary condition V (t1, x) = K(x) as in (5.3), then the
boundary condition for the costate (5.29) is p∗(t1) = −Kx(x∗(t1)), and this matches the boundary
condition (4.43) that we had in the maximum principle for problems with terminal cost. Thus far,
the situation looks quite promising, but we do not have any apparent reason to expect that p∗ defined
by (5.29) will satisfy the second differential equation in (5.25). However, this turns out to be true
as well!

Exercise 5.5 Let p∗ be defined by (5.29), with V fulfilling (5.28). Prove that p∗ satisfies the second
canonical differential equation ṗ∗ = −Hx(x

∗, u∗, p∗), where as usualH(x, u, p) = 〈p, f(x, u)〉−L(x, u).

In the proof of the maximum principle, the adjoint vector p∗ was defined as the normal to a
suitable hyperplane. In our earlier discussions in Section 3.4, it was also related to the momentum
and to the vector of Lagrange multipliers. From (5.29) we now have another interpretation of the
adjoint vector in terms of the gradient of the value function, i.e., the sensitivity of the optimal cost
with respect to the state x. In economic terms, this quantity corresponds to the “marginal value,” or
“shadow price”; it tells us by how much we can increase benefits by increasing resources/spending,
or how much we would be willing to pay someone else for resources and still make a profit.

At this point, the reader may be puzzled as to why we cannot indeed deduce the maximum
principle from the HJB equation via the reasoning just given. Upon careful inspection, however, we
can identify one gap in the above argument: it assumes that the value function has a well-defined
gradient and, moreover, that this gradient can be further differentiated with respect to time (to
obtain the adjoint equation as in Exercise 5.5). In other words, we need the existence of second-
order partial derivatives of V . At the very least, we need V to be a C1 function—a property that
we have in fact assumed all along, starting with the Taylor expansion (5.7). The next example
demonstrates that, unfortunately, we cannot expect this to be true in general.

5.2.1 Example: nondifferentiable value function

For the scalar system
ẋ = xu

with x ∈ R and u ∈ [−1, 1], consider a fixed-time, free-endpoint problem with the cost J(u) = x(t1).
The optimal solution is easily found by inspection: if x0 > 0 then apply u ≡ −1 which results in
ẋ = −x, hence the cost is x(t1) = e−(t1−t0)x0; if x0 < 0 then use u ≡ 1 which gives ẋ = x and the
cost is x(t1) = et1−t0x0; finally, if x0 = 0 then x ≡ 0 for all u and the cost is 0. We see that the value
function is given by

V (t, x) =





e−(t1−t)x if x > 0

et1−tx if x < 0

0 if x = 0

(5.30)

Away from x = 0 it indeed satisfies the HJB equation for this example, which is −Vt = infu {Vx xu} =
− |Vx x|, with the boundary condition V (t1, x) = x. For a fixed t < t1, the graph of V as a function
of x is plotted in Figure 5.4. At x = 0 this function is Lipschitz but not C1. It can actually be shown
that the above HJB equation does not admit any C1 solution.

It turns out that this state of affairs is not an exception; in fact, it is quite typical for problems
with bounded controls and terminal cost to have nondifferentiable value functions. On the other
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Figure 5.4: Value function nondifferentiable at x = 0

hand, the local Lipschitz property—which the function (5.30) does possess—is a known attribute of
value functions for some reasonably general classes of optimal control problems (we will say more on
this below).

The above example clarifies why we cannot derive the maximum principle from the HJB equation.
There really is no “easy” proof of the maximum principle (except in settings much less general than
the one we considered). More importantly, the difficulty that we just exposed has implications
not only for relating the HJB equation and the maximum principle, but for the HJB theory itself.
Namely, we need to reconsider the assumption that V ∈ C1 and instead work with some generalized
concept of a solution to the HJB partial differential equation.3 Because of this difficulty, the theory
of dynamic programming did not become rigorous until the early 1980s when, after a series of
related developments, the notion of a viscosity solution was introduced by Crandall and Lions; that
work completes the historical timeline of key contributions listed in Section 5.1.5. (The maximum
principle, on the other hand, was on solid technical ground from the beginning.) We turn to viscosity
solutions in the next section, postponing a discussion of further links between the HJB equation and
the maximum principle until Section 7.2.

5.3 Viscosity solutions of the HJB equation

We first need to familiarize ourselves with a few basic notions and results from nonsmooth analysis.

5.3.1 One-sided differentials

Let v : R
n → R be a continuous function (nothing beyond continuity is required from v). A vector

ξ ∈ R
n is called a super-differential of v at a given point x if for all y near x we have the relation

v(y) ≤ v(x) + 〈ξ, y − x〉 + o(|y − x|). (5.31)

Geometrically, ξ is a super-differential if the graph of the linear function y 7→ v(x)+ 〈ξ, y−x〉, which
has ξ as its gradient and takes the value v(x) at y = x, lies above the graph of v at least locally near
x (or is tangent to the graph of v at x). Figure 5.5 (a) illustrates this situation for the scalar case

3We note that generalized solution concepts, particularly those relaxing the continuous differentiability requirement,
are important in the theory of ordinary differential equations as well. One such solution concept (albeit a very simple
one) is provided by the class of absolutely continuous functions, as we discussed in Section 3.3.1.
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(n = 1), in which ξ is the slope of the line. A super-differential ξ is in general not unique; we thus
have a set of super-differentials of v at x, which is denoted by D+v(x).
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Figure 5.5: (a) super-differential, (b) sub-differential

Similarly, we say that ξ ∈ R
n is a sub-differential of v at x if

v(y) ≥ v(x) + 〈ξ, y − x〉 − o(|y − x|). (5.32)

The graph of the linear function with gradient ξ touching the graph of v at x must now lie below the
graph of v in a vicinity of x (or be tangent to it at x); see Figure 5.5 (b). The set of sub-differentials
of v at x is denoted by D−v(x).

Example 5.3 For the function

v(x) =





0 if x < 0√
x if 0 ≤ x ≤ 1

1 if x > 1

plotted in Figure 5.6, the reader should have no difficulty in verifying that D+v(0) = ∅, D−v(0) =
[0,∞), D+v(1) = [0, 1/2], and D−v(1) = ∅. As we will see shortly, these points at which v is not
differentiable are the only “interesting” points to check.
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Figure 5.6: The function in Example 5.3

We now establish some useful properties of super- and sub-differentials.

Test functions. ξ ∈ D+v(x) if and only if there exists a C1 function ϕ : R
n → R such that

∇ϕ(x) = ξ, ϕ(x) = v(x), and ϕ(y) ≥ v(y) for all y near x, i.e., ϕ − v has a local minimum at x.
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Similarly, ξ ∈ D−v(x) if and only if there exists a C1 function ϕ such that ∇ϕ(x) = ξ and ϕ− v has
a local maximum at x. (Note that we can always arrange to have ϕ(x) = v(x) by adding a constant
to ϕ, which does not affect the other conditions.)
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Figure 5.7: Characterization of a super-differential via a test function

The function ϕ is sometimes called a test function. For the case of D+v(x), an example of such
a function is shown in Figure 5.7. The above result, whose proof we will not give, will be used for
proving the other facts that follow.

Relation with classical differentials. If v is differentiable at x, then

D+v(x) = D−v(x) = {∇v(x)}. (5.33)

If D+v(x) and D−v(x) are both nonempty, then v is differentiable at x and the relation (5.33) holds.

We prove both claims with the help of test functions. First, suppose that v is differentiable at
x. It is clear that the gradient ∇v(x) is both a super-differential and a sub-differential of v at x
(indeed, with ξ = ∇v(x) both (5.31) and (5.32) become equalities). If ϕ − v has a local minimum
or maximum at x for some ϕ ∈ C1, then ∇(ϕ − v)(x) = 0 hence ∇ϕ(x) = ∇v(x). This shows that
ξ = ∇v(x) is the only element in D+v(x) and D−v(x).

To prove the second claim, let ϕ1, ϕ2 ∈ C1 be such that ϕ1(x) = v(x) = ϕ2(x) and ϕ1(y) ≤ v(y) ≤
ϕ2(y) for y near x. Then ϕ1 −ϕ2 has a local maximum at x, implying that ∇(ϕ1 −ϕ2)(x) = 0 hence
∇ϕ1(x) = ∇ϕ2(x). For y > x (the case y < x is completely analogous) we can write

ϕ1(y) − ϕ1(x)

y − x
≤ v(y) − v(x)

y − x
≤ ϕ2(y) − ϕ2(x)

y − x
.

As y → x, the first fraction approaches ∇ϕ1(x), the last one approaches ∇ϕ2(x), and we know that
the two gradients are equal. Therefore, by the “Sandwich Theorem” the limit of the middle fraction
exists and equals the other two. This limit must be ∇v(x), and everything is proved.

Non-emptiness and denseness. The sets {x : D+v(x) 6= ∅} and {x : D−v(x) 6= ∅} are both
nonempty, and actually dense in the domain of v.

The idea of the proof is sketched in Figure 5.8. The highly irregular graph in the figure is that
of v. Take an arbitrary point x0. Choosing a C1 function ϕ steep enough (see the solid curve in the
figure), we can force ϕ− v to have a local maximum at a nearby point x, as close to x0 as we want.
(For clarity, we also shift the graph of ϕ vertically to produce the dotted curve in the figure which
touches the graph of v at x.) We then have ∇ϕ(x) ∈ D−v(x). A similar argument works for D+.
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Exercise 5.6 Give an example of a continuous function v with the property that for some x in its
domain both D+v(x) and D−v(x) are empty.

5.3.2 Viscosity solutions of PDEs

We are now ready to introduce the concept of a viscosity solution for PDEs. Consider a PDE of the
form

F (x, v(x),∇v(x)) = 0 (5.34)

where F : R
n ×R×R

n → R is a continuous function. A viscosity subsolution of the PDE (5.34) is a
continuous function v : R

n → R such that

F (x, v(x), ξ) ≤ 0 ∀ ξ ∈ D+v(x), ∀x. (5.35)

As we know, this is equivalent to saying that at every x we must have F (x, v(x),∇ϕ(x)) ≤ 0 for every
C1 test function ϕ such that ϕ− v has a local minimum at x. Similarly, v is a viscosity supersolution
of (5.34) if

F (x, v(x), ξ) ≥ 0 ∀ ξ ∈ D−v(x), ∀x (5.36)

or, equivalently, at every x we have F (x, v(x),∇ϕ(x)) ≥ 0 for every C1 function ϕ such that ϕ − v
has a local maximum at x. Finally, v is a viscosity solution if it is both a viscosity subsolution and
a viscosity supersolution.

The above definitions of a viscosity subsolution and supersolution impose conditions on v only
at points where D+v, respectively D−v, is nonempty. We know that the set of these points is dense
in the domain of v. At all points where v is differentiable, the PDE must hold in the classical sense.
If v is Lipschitz, then by Rademacher’s theorem it is differentiable almost everywhere.

Example 5.4 Consider the scalar case (n = 1) and let F (x, v, ξ) = 1−|ξ|, for which the PDE (5.34)
is 1 − |∇v(x)| = 0. The functions v(x) = x and v(x) = −x are both classical solutions of this PDE
(so are the functions v(x) = ±x+ c where c is a constant). We claim that the function v(x) = |x| is
a viscosity solution. For all x 6= 0 this v is differentiable and the PDE is satisfied, thus we only need
to check what happens at x = 0. First, D+v(0) = ∅ hence (5.35) is true. Second, D−v(0) = [−1, 1]
and the inequality 1 − |ξ| ≥ 0 holds for all ξ ∈ [−1, 1], making (5.36) true as well.
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Note the lack of symmetry in the definition of a viscosity solution: the sign convention used when
writing the PDE is important. In the above example, if we rewrite the PDE as |∇v(x)|−1 = 0, then
it is easy to see that v(x) = |x| is no longer a viscosity solution.

The terminology “viscosity solutions” is motivated by the fact that a viscosity solution v of the
PDE (5.34) can be obtained from smooth solutions vε to the family of PDEs

F (x, vε(x),∇vε(x)) = ε∆vε(x) (5.37)

(parameterized by ε > 0) in the limit as ε → 0. The operator ∆ on the right-hand side of (5.37)
denotes the Laplacian (∆v = vx1x1 + · · ·+vxnxn); in fluid mechanics it appears in the PDE describing
the motion of a viscous fluid. To understand the basic idea behind this convergence result, let
ξ ∈ D−v(x0) for some x0. Consider a test function ϕ such that ∇ϕ(x0) = ξ and ϕ − v has a local
maximum at x0. Assume that ϕ ∈ C2 (if not, approximate it by a C2 function). If vε is close to v
for small ε, then ϕ− vε has a local maximum at some xε near x0, implying that ∇ϕ(xε) = ∇vε(xε)
and ∆ϕ(xε) ≤ ∆vε(xε). Since vε solves (5.37), this gives F (xε, vε(xε),∇ϕ(xε)) ≥ ε∆ϕ(xε). Taking
the limit as ε → 0, by continuity of F we have F (x0, v(x0),∇ϕ(x0)) ≥ 0, which means that v is a
supersolution of (5.34). The argument showing that v is a subsolution is similar.

5.3.3 HJB equation and the value function

Let us finally go back to our fixed-time optimal control problem from Section 5.1.2 and its HJB
equation (5.10) with the boundary condition (5.3), with the goal of resolving the difficulty identified
at the end of Section 5.2.1. Specifically, our hope is that the value function (5.2) is a solution of the
HJB equation in the viscosity sense. In order to more closely match the PDE (5.34), we first rewrite
the HJB equation as

− Vt(t, x) − inf
u∈U

{L(t, x, u) + 〈Vx(t, x), f(t, x, u)〉} = 0. (5.38)

As we saw in the previous subsection, flipping the sign in a PDE affects its viscosity solutions; it
will turn out that the above sign convention is the correct one. The PDE (5.38) is still not in the
form (5.34) because it contains the additional independent variable t. However, the concepts and
results of Sections 5.3.1 and 5.3.2 extend to this time-space setting without difficulties. Alternatively,
we can absorb t into x by introducing the extra state variable xn+1 := t, a trick already familiar to
us from Chapters 3 and 4. Then the PDE (5.38) takes the form (5.34) with the obvious definition of
the function F , except that the domain of v is the subset4 [t0, t1] × R

n of R
n+1. The control u does

not appear as an argument of F since the definition of F includes taking the infimum over u.

Now the theory of viscosity solutions can be applied to the HJB equation. Under suitable technical
assumptions on the functions f , L, and K, we have the following main result: The value function
V is a unique viscosity solution of the HJB equation (5.38) with the boundary condition (5.3). It
is also locally Lipschitz (but, as we know from Section 5.2.1, not necessarily C1). Regarding the
technical assumptions, we will not list them here (see the references in Section 5.4) but we mention
that they are satisfied if, for example, f , L, and K are uniformly continuous, fx, Lx, and Kx are
bounded, and U is a compact set.

4In Sections 5.3.1 and 5.3.2 we could have easily taken the domain of v to be a subset of R
n rather than the entire

R
n.
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We will not attempt to establish the uniqueness and the Lipschitz property, but we do want to
understand why V is a viscosity solution of (5.38). To this end, let us prove that V is a viscosity
subsolution. The additional technical assumptions cited above are actually not needed for this claim.
Fix an arbitrary pair (t0, x0). We need to show that for every C1 test function ϕ = ϕ(t, x) such that
ϕ− V attains a local minimum at (t0, x0), the inequality

−ϕt(t0, x0) − inf
u∈U

{L(t0, x0, u) + 〈ϕx(t0, x0), f(t0, x0, u)〉} ≤ 0

must be satisfied. Suppose that, on the contrary, there exist a C1 function ϕ and a control value
u0 ∈ U such that

ϕ(t0, x0) = V (t0, x0), ϕ(t, x) ≥ V (t, x) ∀ (t, x) near (t0, x0) (5.39)

and
− ϕt(t0, x0) − L(t0, x0, u0) − 〈ϕx(t0, x0), f(t0, x0, u0)〉 > 0. (5.40)

Taking (t0, x0) as the initial condition, let us consider the state trajectory x(·) that results from
applying the control u ≡ u0 on a small time interval [t0, t0 + ∆t]. We will now demonstrate that
the rate of change of the value function along this trajectory is inconsistent with the principle of
optimality. As long as we pick ∆t to be sufficiently small, we have

V (t0 + ∆t, x(t0 + ∆t)) − V (t0, x0) ≤ ϕ(t0 + ∆t, x(t0 + ∆t)) − ϕ(t0, x0) =

∫ t0+∆t

t0

d

dt
ϕ(t, x(t))dt

=

∫ t0+∆t

t0

(
ϕt(t, x(t)) + 〈ϕx(t, x(t)), f(t, x(t), u0)〉

)
dt < −

∫ t0+∆t

t0

L(t, x(t), u0)dt

where the first inequality is a direct consequence of (5.39) and the last inequality follows from (5.40)
by virtue of continuity of all the functions appearing there. We thus obtain

V (t0, x0) >

∫ t0+∆t

t0

L(t, x(t), u0)dt+ V (t0 + ∆t, x(t0 + ∆t)). (5.41)

On the other hand, the principle of optimality (5.4) tells us that

V (t0, x0) ≤
∫ t0+∆t

t0

L(t, x(t), u0)dt+ V (t0 + ∆t, x(t0 + ∆t))

and we arrive at a contradiction. Provided that optimal controls exist, here is a slightly different
way to see why (5.41) cannot be true: it would imply that the optimal cost-to-go from (t0, x0) is
higher than the cost of applying the constant control u ≡ u0 on [t0, t0 + ∆t] followed by an optimal
control on the remaining interval (t0 + ∆t, t1], which is clearly impossible.

Exercise 5.7 Use a similar argument to show that the value function is a viscosity supersolution of
the HJB equation (5.38).

We now have at our disposal a more rigorous formulation of the necessary conditions for optimality
from Section 5.1.3. The above reasoning is of course quite different from our original derivation of
the HJB equation, but we see that the principle of optimality still plays a central role. The sufficient
condition for optimality from Section 5.1.4 can also be generalized, a task that we leave as an exercise.

Exercise 5.8 Formulate and prove a sufficient condition for optimality analogous to that of Exer-
cise 5.3 in the framework of viscosity solutions.
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5.4 Notes and references for Chapter 5

The treatment of the discrete problem in Section 5.1.1 is based on [Son98, Section 8.1]. The ma-
terial of Sections 5.1.2–5.1.4 is quite standard; it is assembled from the texts [AF66, BP07, LM67,
Son98, YZ99] which further elaborate on some aspects of this theory. The brief historical remarks
of Section 5.1.5 are compiled largely from [YZ99]; for additional reading on how the subject has
evolved we recommend [Bry96] and [PB94] (the latter paper is more technical and explains how
Carathéodory’s work was, along with subsequent work of Hestenes, also a precursor of the maximum
principle). A derivation of the Hamilton-Jacobi PDE as a necessary condition for optimality in the
context of calculus of variations (via the general formula for the variation of a functional), as well as
an explanation of its connection to Hamilton’s canonical equations, can be found in [GF63, Section
23]; see also [YZ99, pp. 222–223].

Our discussion of the relationship between the HJB equation and the maximum principle in
Section 5.2 follows [YZ99, pp. 229–230] and [Vin00, Section 1.6]. The economic interpretation of the
adjoint vector and the value function is developed in more detail in [YZ99, pp. 231–232]; similar ideas
appear in [Lue84, Section 4.4]. The example of Section 5.2.1 is Example 2.3 in [YZ99, Chapter 4],
where it is proved that the corresponding HJB equation admits no C1 solution. The same example
is also studied in [Vin00, Section 1.7], and a different example with similar features is Example 7.2
in [BP07]. For results showing—under different assumptions—that the value function is locally
Lipschitz, see Theorem 2.5 in [YZ99, Chapter 4], Lemma 8.6.2 in [BP07], or Proposition 12.3.5
in [Vin00].

Section 5.3 is heavily based on the exposition in [BP07, Chapter 8]. The original reference on
viscosity solutions is [CL83]. The convergence result sketched at the end of Section 5.3.2 is Theo-
rem 8.4.2 in [BP07]; for background on the motion of viscous fluids the reader can consult [FLS63,
Chapter II-41]. A complete proof of the main result in Section 5.3.3, again under different technical
assumptions, can be found in [BP07] and [YZ99]. Other generalized solution concepts for HJB equa-
tions have been proposed; see the notes and references in [YZ99, Chapter 4] and [Vin00, Chapter 12].
For an in-depth study of HJB equations and their viscosity solutions, including numerical methods,
see [BCD97].
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Chapter 6

The Linear Quadratic Regulator

6.1 Finite-horizon LQR problem

In this chapter we will focus on the special case when the system dynamics are linear and the cost
is quadratic. While this additional structure certainly makes the optimal control problem more
tractable, our goal is not merely to specialize our earlier results to this simpler setting. Rather,
we want to go further and develop a more complete understanding of optimal solutions compared
with what we were able to achieve for the general scenarios treated in the previous chapters. (We
could have followed a different path in our studies and started with this specific problem class
before tackling more difficult problems. From the pedagogical point of view, each approach has its
own merits. Historically, however, the general nonlinear results—having their origins in calculus of
variations—appeared first.)

The (finite-horizon) Linear Quadratic Regulator (LQR) problem is the optimal control problem
from Section 3.3 with the following additional assumptions: the control system is a linear time-
varying system

ẋ = A(t)x+B(t)u, x(t0) = x0 (6.1)

with x ∈ R
n and u ∈ R

m (the control is unconstrained); the target set is S = {t1} × R
n, where t1 is

a fixed time (so this is a fixed-time, free-endpoint problem); and the cost functional is

J(u) =

∫ t1

t0

(
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

)
dt+ xT (t1)Mx(t1) (6.2)

where Q(·), R(·), M are matrices of appropriate dimensions satisfying M = M T ≥ 0 (symmetric
positive semidefinite), Q(t) = QT (t) ≥ 0 (symmetric positive semidefinite), and R(t) = RT (t) > 0
(symmetric positive definite) for all t ∈ [t0, t1]. The quadratic cost (6.2) is very reasonable: since both
Q and R are positive (semi)definite, it penalizes both the size of the state and the control effort, with
Q and R determining their relative weights. Incidentally, the formula L(t, x, u) = xTQ(t)x+uTR(t)u
for the running cost is another justification of the acronym LQR. We require R to be strictly positive
definite because we will soon need its inverse. Additional assumptions will be introduced later as
necessary. More general target sets can also be considered.

145
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6.1.1 Candidate optimal feedback law

We begin our analysis of the LQR problem by inspecting the necessary conditions for optimality
provided by the maximum principle. After some further manipulation, these conditions will reveal
that an optimal control must be a linear state feedback law. The Hamiltonian is given by

H(t, x, u, p) = pTA(t)x+ pTB(t)u− xTQ(t)x− uTR(t)u.

Note that, compared to the general formula (4.40) for the Hamiltonian, we took the abnormal multi-
plier p0 to be equal to −1. This is no loss of generality because, for the present free-endpoint problem
in the Bolza form, a combination of the results in Section 4.3.1 would give us the transversality con-
dition 0 = p∗(t1)− p∗0Kx(x∗(t1)) = p∗(t1)− 2p∗0Mx∗(t1) which, in light of the nontriviality condition,
guarantees that p∗0 6= 0. It is also useful to observe that the LQR problem can be adequately treated
with the variational approach of Section 3.4, which yields essentially the same necessary conditions
as the maximum principle but without the abnormal multiplier appearing. Indeed, the control is
unconstrained, the final state is free, and H is quadratic—hence twice differentiable—in u; therefore,
the technical issues discussed in Section 3.4.5 do not arise here. In Section 3.4 we proved that along
an optimal trajectory we must have Hu|∗ = 0 and Huu|∗ ≤ 0, which is in general different from the
Hamiltonian maximization condition, but in the present LQR setting this difference disappears as
we will see in a moment. In fact, when solving part a) of Exercise 3.8, the reader should have already
written down the necessary conditions for optimality from Section 3.4.3 for the LQR problem (with
M = 0). We will now rederive these necessary conditions and examine their consequences in more
detail.

The gradient of H with respect to u is Hu = BT (t)p − 2R(t)u, and along an optimal trajectory
it must vanish. Using our assumption that R(t) is invertible for all t, we can solve the resulting
equation for u and conclude that an optimal control u∗ (if it exists) must satisfy

u∗(t) =
1

2
R−1(t)BT (t)p∗(t). (6.3)

Moreover, since Huu = −2R(t) < 0, the above control indeed maximizes the Hamiltonian (globally).
We see that (6.3) is the unique control satisfying the necessary conditions, although we have not yet
verified that it is optimal.

Since the formula (6.3) expresses u∗ in terms of the costate p∗, let us look at p∗ more closely. It
satisfies the adjoint equation

ṗ∗ = −Hx|∗ = 2Q(t)x∗ −AT (t)p∗ (6.4)

with the boundary condition

p∗(t1) = −Kx(x∗(t1)) = −2Mx∗(t1) (6.5)

(see Section 4.3.1), where x∗ is the optimal state trajectory. Our next goal is to show that a linear
relation of the form

p∗(t) = −2P (t)x∗(t) (6.6)

holds for all t and not just for t = t1, where P (·) is some matrix-valued function to be determined.
Putting together the dynamics (6.1) of the state, the control law (6.3), and the dynamics (6.4) of the
costate, we can write the system of canonical equations in the following combined closed-loop form:

(
ẋ∗

ṗ∗

)
=

(
A(t) 1

2B(t)R−1(t)BT (t)
2Q(t) −AT (t)

)(
x∗

p∗

)
=: H(t)

(
x∗

p∗

)
. (6.7)
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The matrix H(t) is sometimes called the Hamiltonian matrix. Let us denote the transition ma-

trix for the linear time-varying system (6.7) by Φ(·, ·). Then we have, in particular,
(x∗(t)
p∗(t)

)
=

Φ(t, t1)
(x∗(t1)
p∗(t1)

)
; here Φ(t, t1) = Φ−1(t1, t) propagates the solutions backward in time from t1 to t.

Partitioning Φ into n× n blocks as

Φ =

(
Φ11 Φ12

Φ21 Φ22

)

gives the more detailed relation

(
x∗(t)
p∗(t)

)
=

(
Φ11(t, t1) Φ12(t, t1)
Φ21(t, t1) Φ22(t, t1)

)(
x∗(t1)
p∗(t1)

)

which, in view of the terminal condition (6.5), can be written as

x∗(t) = (Φ11(t, t1) − 2Φ12(t, t1)M)x∗(t1) (6.8)

p∗(t) = (Φ21(t, t1) − 2Φ22(t, t1)M)x∗(t1) (6.9)

Solving (6.8) for x∗(t1) and plugging the result into (6.9), we obtain

p∗(t) =
(
Φ21(t, t1) − 2Φ22(t, t1)M

)(
Φ11(t, t1) − 2Φ12(t, t1)M

)−1
x∗(t).

We have thus established (6.6) with

P (t) := −1

2

(
Φ21(t, t1) − 2Φ22(t, t1)M

)(
Φ11(t, t1) − 2Φ12(t, t1)M

)−1
. (6.10)

A couple of remarks are in order. First, we have not yet justified the existence of the inverse
in the definition of P (t). For now, we note that Φ(t1, t1) = I2n×2n, hence Φ11(t1, t1) = In×n,
Φ12(t1, t1) = 0n×n, and so Φ11(t1, t1)−2Φ12(t1, t1)M = In×n. By continuity, Φ11(t, t1)−2Φ12(t, t1)M
stays invertible for t close enough to t1, which means that P (t) is well defined at least for t near t1.
Second, the minus sign and the factor of 1/2 in (6.10), which stem from the factor of −2 in (6.6),
appear to be somewhat arbitrary at this point. We see from (6.5) and (6.6) that

P (t1) = M. (6.11)

The reason for the above conventions will become clear later, when we show that P (t) is symmetric
positive semidefinite for all t (not just for t = t1) and is directly related to the optimal cost.

Combining (6.3) and (6.6), we deduce that the optimal control must take the form

u∗(t) = −R−1(t)BT (t)P (t)x∗(t) (6.12)

which, as we announced earlier, is a linear state feedback law. This is a remarkable conclusion, as it
shows that the optimal closed-loop system must be linear.1 Note that the feedback gain in (6.12) is
time-varying even if the system (6.1) is time-invariant, because P from (6.10) is always time-varying.
We remark that we could just as easily derive an open-loop formula for u∗ by writing (6.8) with t0 in

1Of course, the idea that quadratic optimization problems lead to linear update laws goes back to Gauss’s least
squares method.
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place of t, i.e., x0 = (Φ11(t0, t1) − 2Φ12(t0, t1)M)x∗(t1), solving it for x∗(t1) and plugging the result
into (6.9) to arrive at

p∗(t) =
(
Φ21(t, t1) − 2Φ22(t, t1)M

)(
Φ11(t0, t1) − 2Φ12(t0, t1)M

)−1
x0

(provided that the inverse exists), and then using this expression in (6.3). However, the feedback
form of u∗ is theoretically revealing and leads to a more compact description of the closed-loop
system.

As we said, there are two things that we still need to check: optimality of the control u∗ that
we found, and global existence of the matrix P (t). These issues will be tackled in Sections 6.1.3
and 6.1.4, respectively. But first, we want to obtain a nicer description for the matrix P (t), as
the formula (6.10) is rather clumsy and not very useful (since calculating the transition matrix Φ
analytically is in general impossible).

6.1.2 Riccati differential equation

We will now derive a differential equation that the matrix P (·) defined in (6.10) must satisfy. First,
differentiate both sides of the equality (6.6) to obtain

ṗ∗(t) = −2Ṗ (t)x∗(t) − 2P (t)ẋ∗(t).

Next, expand ṗ∗ and ẋ∗ using the canonical equations (6.7) to arrive at

2Q(t)x∗(t) −AT (t)p∗(t) = −2Ṗ (t)x∗(t) − 2P (t)A(t)x∗(t) − P (t)B(t)R−1(t)BT (t)p∗(t).

Applying (6.6) to eliminate p∗ and dividing by 2, we conclude that the equation

Q(t)x∗(t) +AT (t)P (t)x∗(t) = −Ṗ (t)x∗(t) − P (t)A(t)x∗(t) + P (t)B(t)R−1(t)BT (t)P (t)x∗(t) (6.13)

must hold (for all t at which P (t) is defined). Since the initial state x0 is arbitrary and x∗ is the state
of the linear time-varying system given by (6.1) and (6.12) whose transition matrix is nonsingular,
x∗(t) can be arbitrary. It follows that P must be a solution of the matrix differential equation

Ṗ (t) = −P (t)A(t) −AT (t)P (t) −Q(t) + P (t)B(t)R−1(t)BT (t)P (t) (6.14)

which is called the Riccati differential equation (RDE). We already know that the boundary
condition for it is specified by (6.11). The solution P (t) is to be propagated backward in time from
t = t1; its global existence remains to be addressed.

It is interesting to compare the two descriptions that we now have for P (t). The RDE (6.14)
is a quadratic matrix differential equation. The formula (6.10), on the other hand, is in terms of
the transition matrix Φ which satisfies a linear matrix differential equation d

dtΦ(t, t1) = H(t)Φ(t, t1)
but has size 2n × 2n (while P is n × n). Ignoring the computational effort involved in computing
the matrix inverse in (6.10), we can say that by passing from (6.10) to (6.14) we reduced in half
the size of the matrix to be solved for, but traded a linear differential equation for a quadratic one.
Actually, if we prefer matrix differential equations that are linear rather than quadratic, it is possible
to compute P (t) somewhat more efficiently by solving a linear system of size 2n×n, as shown in the
next exercise.
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Exercise 6.1 Let X(t), Y (t) be n× n matrices satisfying the linear differential equation

(
Ẋ

Ẏ

)
= H(t)

(
X
Y

)

with the boundary condition X(t1) = I, Y (t1) = −2M , where H(t) is defined in (6.7). Check that
the matrix

P (t) := −1

2
Y (t)X−1(t) (6.15)

satisfies the RDE (6.14) and the boundary condition (6.11).

The idea of reducing a quadratic differential equation to a linear one of twice the size is in fact
not new to us; we already saw it in Section 2.6.2 in the context of deriving second-order sufficient
conditions for optimality in calculus of variations. In the single-degree-of-freedom case, we passed
from the first-order quadratic differential equation (2.64) to the second-order linear differential equa-
tion (2.67) via the substitution (2.66). In the multiple-degrees-of-freedom setting, scalar variables
need to be replaced by matrices but a similar transformation can be applied, as we stated (without
including the derivations) at the end of Section 2.6.2. Associating the matrix W there with the
matrix P here, the reader will readily see the correspondence between that earlier construction and
the one given in Exercise 6.1.

The outcome of applying the necessary conditions of the maximum principle to the LQR prob-
lem can now be summarized as follows: a unique candidate for an optimal control is given by the
linear feedback law (6.12), where the matrix P (t) satisfies the RDE (6.14) and the boundary condi-
tion (6.11). This is as far as the maximum principle can take us; we need to employ other tools for
investigating whether P (t) exists for all t and whether the control (6.12) is indeed optimal.

6.1.3 Value function and optimality

We now proceed to show that the control law (6.12) identified by the maximum principle is globally
optimal. We already asked the reader to examine this issue via a direct analysis of the second
variation in part b) of Exercise 3.8. Since then, however, we learned a general method for establishing
optimality—namely, the sufficient condition for optimality from Section 5.1.4—and it is instructive
to see it in action here.

Specialized to our present LQR problem, the HJB equation (5.10) becomes

− Vt(t, x) = inf
u∈Rm

{
xTQ(t)x+ uTR(t)u+ 〈Vx(t, x), A(t)x +B(t)u〉

}
(6.16)

and the boundary condition (5.3) reads

V (t1, x) = xTMx. (6.17)

Since R(t) > 0, it is easy to see that the infimum of the quadratic function of u in (6.16) is a minimum
and to calculate (similarly to how we arrived at the formula (6.3) earlier) that the minimizing control
is

u = −1

2
R−1(t)BT (t)Vx(t, x). (6.18)
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We substitute this control into (6.16) and, after some term cancellations, bring the HJB equation to
the following form:

− Vt(t, x) = xTQ(t)x− 1

4
(Vx(t, x))TB(t)R−1(t)BT (t)Vx(t, x) + (Vx(t, x))TA(t)x. (6.19)

In order to apply the sufficient condition for optimality proved in Section 5.1.4, we need to find
a solution V (·, ·) of (6.19). Then, for the feedback law (6.12) to be optimal, it should match the
feedback law given by (6.18) for this V . (The precise meaning of the last statement is provided by
the formula (5.22) on page 132.) This will in turn be true if we have

1

2
Vx(t, x) = P (t)x (6.20)

for all t and x. The equation (6.20) suggests that we should look for a function V that is defined
in terms of P . Another observation that supports this idea is that in view of (6.11), the boundary
condition (6.17) for the HJB equation can be written as

V (t1, x) = xTP (t1)x. (6.21)

Armed with these facts, let us apply a certain amount of “wishful thinking” in solving the partial
differential equation (6.19). Namely, let us try to guess a function V that satisfies the simple
conditions (6.20) and (6.21), and then see if it satisfies the complicated equation (6.19). If it does,
then it must be the value function and by the previous reasoning our control (6.12) must be optimal,
hence everything will be proved. (In this last step, we are using the fact that (6.12) is a feedback
law which does not depend on the initial condition; see the remarks immediately following the proof
of the sufficient condition for optimality on page 134.)

For the moment, let us proceed under the assumption (which will be validated momentarily) that
P (t) is symmetric for all t. A guess for V is actually fairly obvious, and might have already occurred
to the reader:

V (t, x) = xTP (t)x. (6.22)

This function clearly satisfies (6.21), and since its gradient with respect to x is Vx(t, x) = 2P (t)x
we see that (6.20) is also fulfilled. Now, let us check whether the function (6.22) satisfies (6.19).
Since V ∈ C1, the viscosity solution concept is not needed here. Noting that Vt(t, x) = xT Ṗ (t)x and
plugging the two expressions for the partial derivatives of V into (6.19), we obtain

−xT Ṗ (t)x = xTQ(t)x− xTP (t)B(t)R−1(t)BT (t)P (t)x+ 2xTP (t)A(t)x

or, equivalently,

− xT Ṗ (t)x = xT
(
Q(t) − P (t)B(t)R−1(t)BT (t)P (t) + P (t)A(t) +AT (t)P (t)

)
x. (6.23)

Since P (t) satisfies the RDE (6.14), it immediately follows that (6.23) is a true identity. We conclude
that, indeed, the function (6.22) is the value function (optimal cost-to-go) and the linear feedback
law (6.12) is the optimal control. (We already know from Section 6.1.1 that an optimal control
must be unique, and we also know that the sufficient condition of Section 5.1.4 guarantees global
optimality.)

It is useful to reflect on how we found the optimal control. First, we singled out a candidate
optimal control by using the maximum principle. Second, we identified a candidate value function
and verified that this function and the candidate control satisfy the sufficient condition for optimality.
Thus we followed the typical path outlined in Section 5.1.4. The next exercise takes a closer look at
properties of P (t) and closes a gap that we left in the above argument.
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Exercise 6.2 Let t ≤ t1 be an arbitrary time at which the solution P (t) of the RDE (6.14) with
the boundary condition (6.11) exists.

a) Prove that P (t) is a symmetric matrix.

b) Prove that P (t) ≥ 0 (positive semidefinite).

c) Can you prove that P (t) > 0 (positive definite)? If not, can you prove this by strengthening one
of the standing assumptions?

It was both insightful and convenient to employ the sufficient condition for optimality in terms
of the HJB equation to find the expression for the optimal cost and confirm optimality of the con-
trol (6.12). However, having the solution P (t) of the RDE (6.14) with the boundary condition (6.11)
in hand, it is also possible to solve the LQR problem by direct algebraic manipulations without
relying on any prior theory.

Exercise 6.3 Confirm the facts that (6.12) is the unique optimal control and (6.22) is the value
function using nothing more than square completion.

6.1.4 Global existence of solution for the RDE

We are finally in a position to prove that the solution P (·) of the RDE (6.14), propagated backward
in time from the terminal condition (6.11), exists for all t ≤ t1. It follows from the standard theory
of local existence and uniqueness of solutions to ordinary differential equations that P (t) exists for
t sufficiently close to t1. (We already came across such results in Section 3.3.1, with the difference
that there solutions were propagated forward in time; we also know about local existence of P (t)
from a different argument based on the formula (6.10), which we gave on page 147.) As for global
existence, the problem is that some entry of P may have a finite escape time. In other words, there
may exist a time t̄ < t1 and some indices i, j ∈ {1, . . . , n} such that Pij(t) approaches ±∞ as t↘ t̄.
Such behavior is actually quite typical for solutions of quadratic differential equations of Riccati
type, as we discussed in detail on page 51. In the context of the formula (6.10), this would mean
that the matrix Φ11(t, t1) − 2Φ12(t, t1)M becomes singular at t = t̄. Similarly, in the context of
the formula (6.15) the finite escape would mean that the matrix X(t) becomes singular at t = t̄.
In Section 2.6.2, we encountered a closely related situation and formalized it in terms of existence
of conjugate points. Fortunately, in the present setting it is not very difficult to show by a direct
argument that all entries of P (t) remain bounded for all t, relying on the fact—established in the
previous subsection—that xTP (t)x is the optimal LQR cost-to-go from (t, x).

Seeking a contradiction, suppose that there is a t̄ < t1 such that P (t) exists on the interval
(t̄, t1] but some entry of P (t) becomes unbounded as t ↘ t̄. We know from Exercise 6.2 that for
all t ∈ (t̄, t1] the matrix P (t) is symmetric and positive semidefinite, hence all its principal minors
must be nonnegative. If an off-diagonal entry Pij(t) becomes unbounded as t↘ t̄ while all diagonal
entries stay bounded, then a certain 2 × 2 principal minor of P (t) must be negative for t sufficiently
close to t̄; namely, this is the determinant of the matrix

i j

i
j

(
∗ Pij(t)

Pij(t) ∗

)
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formed by the i-th and the j-th row and column of P (t). Thus this scenario is ruled out, and the
only remaining possibility is that a diagonal entry Pii(t) becomes unbounded as t ↘ t̄. Consider
the vector ei := (0, . . . , 1, . . . , 0)T ∈ R

n, with 1 in the i-th position and zeros everywhere else; then
eTi P (t)ei = Pii(t) → ∞ as t↘ t̄. Suppose that the system is in state ei at some time t > t̄. We know
that eTi P (t)ei is the optimal cost-to-go from there, and so this cost must be unbounded as we take
t to be closer to t̄. On the other hand, this cost cannot exceed the cost of applying, e.g., the zero
control on [t, t1]. The state trajectory corresponding to this control is x(s) = ΦA(s, t)ei for s ∈ [t, t1],
where ΦA(·, ·) is the transition matrix for A(·), and the associated cost is

∫ t1

t

(
eTi ΦT

A(s, t)Q(s)ΦA(s, t)ei

)
ds+ eTi ΦT

A(t1, t)MΦA(t1, t)ei.

It is quite clear that this cost remains bounded as t approaches t̄, since the quantity inside the
integral is bounded for t̄ ≤ t ≤ s ≤ t1. The resulting contradiction proves that a finite escape time t̄
cannot exist.

The existence of the solution P (·) to the RDE (6.14) on the interval [t0, t1] is now established.
Thus we can be sure that the optimal control (6.12) is well defined, and the finite-horizon LQR
problem has been completely solved. We must be able to explicitly solve the RDE, though, if we
want to obtain a closed-form expression for the optimal control law.

Example 6.1 To obtain the simplest possible finite-horizon LQR problem, consider the standard
(scalar) integrator ẋ = u and let the cost be J(u) =

∫ t1
t0

(x2(t) + u2(t))dt. All the matrices become
scalars here: A = 0, B = 1, Q = 1, R = 1, M = 0. The RDE is the scalar differential equation
Ṗ = P 2 − 1, with the boundary condition P (t1) = 0. Our theory tells us that its solution exists
globally backward in time.2 Let us see if we can compute this solution explicitly. Separating the
variables and integrating, we have

∫ 0

P (t)

dP

P 2 − 1
=

∫ t1

t
ds.

The integral on the left-hand side evaluates to tanh−1 P (t), hence the solution we were seeking is
P (t) = tanh(t1−t). Consequently, the feedback law u(t) = − tanh(t1−t)x(t) is the optimal control.

If analytically solving the RDE is not a completely trivial task even for such an elementary
example, we expect closed-form solutions to be obtainable only in very special cases. Yet, the
LQR problem is much more tractable compared to the general optimal control problem studied in
Chapter 5. The main simplification is that instead of trying to solve the HJB equation which is a
partial differential equation, we now have to solve the RDE which is an ordinary differential equation,
and this can be done efficiently by standard numerical methods. In the next section, we define and
study a variant of the LQR problem which lends itself to an even simpler solution; this development
will be in line with what we already saw, in a more general context but in much less detail, towards
the end of Section 5.1.3.

2It is interesting to digress briefly and note that if we had R = −1 then the RDE would be Ṗ = −P 2−1, which looks
very similar but is fundamentally different in that its solutions do not exist globally backward in time (cf. page 51).
Thus our standing assumption that R is nonnegative is important. We invite the reader to figure out exactly where
this assumption comes into play in the preceding argument.
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6.2 Infinite-horizon LQR problem

The infinite-horizon version of the LQR problem is a special case of the general infinite-horizon
problem constructed in Section 5.1.3. Starting with the finite-horizon LQR problem defined in
Section 6.1, we first assume that both the control system and the cost functional are time-invariant
and that there is no terminal cost; this simply means that A, B, Q, and R are now constant matrices
and M = 0. Then, we want to consider the limit as the final time t1 approaches ∞. The resulting
problem does not directly fit into the basic problem formulation of Section 3.3 and its well-posedness
needs to be proved; in particular, we do not know a priori whether the optimal cost is finite (cf.
footnote 2 on page 132). We did not try to settle this issue in the general context of Section 5.1.3,
but we will do it here for the LQR problem. In this section we assume that the reader is familiar
with basic concepts of linear system theory such as controllability and observability.

In preparation for studying the limit as t1 → ∞, let us treat the final time t1 as a parameter which,
unlike in Section 6.1, is no longer fixed. We want to make our notation more explicit by displaying
the dependence of relevant quantities on this parameter. Specifically, from now on let us write V t1

for the value function and denote by P (t, t1) the solution at time t of the RDE (6.14) with the
boundary condition P (t1) = 0. For each t1, let us also relabel the optimal control and the optimal
state trajectory (passing through the given initial condition x0 at time t0) for the corresponding
finite-horizon LQR problem as u∗t1 and x∗t1 , respectively. In this notation, the results of Section 6.1.3
say that

u∗t1(t) = −R−1BTP (t, t1)x
∗
t1(t) (6.24)

and
V t1(t, x) = xTP (t, t1)x. (6.25)

In particular,
V t1(t0, x0) = xT

0 P (t0, t1)x0 (6.26)

is the finite-horizon optimal cost.

6.2.1 Existence and properties of the limit

We begin by making a series of observations about the behavior of P (t0, t1) as a function of t1, with the
goal of establishing that limt1→∞ P (t0, t1) exists (under the additional assumption of controllability)
and has some interesting properties. This path will eventually lead us to a complete solution of the
infinite-horizon LQR problem.

Monotonicity. It is not hard to see that the finite-horizon optimal cost xT
0 P (t0, t1)x0 is a mono-

tonically nondecreasing function of the final time t1. Indeed, let t2 > t1. Using (6.25), the definition
of the value function, and the standing assumptions that Q ≥ 0 and R > 0, we have

xT
0 P (t0, t2)x0 = V t2(t0, x0) =

∫ t2

t0

(
(x∗t2)

T (t)Qx∗t2(t) + (u∗t2)
T (t)Ru∗t2(t)

)
dt

≥
∫ t1

t0

(
(x∗t2)

T (t)Qx∗t2(t) + (u∗t2)
T (t)Ru∗t2(t)

)
dt ≥ V t1(t0, x0) = xT

0 P (t0, t1)x0.

Boundedness. It is not true in general that the optimal cost xT
0 P (t0, t1)x0 remains bounded as

t1 → ∞. For example, if the system is ẋ = x (no control) then its solutions are growing exponentials
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and the infinite-horizon cost is clearly unbounded. However, we now show that the finite-horizon
optimal cost xT

0 P (t0, t1)x0 remains bounded as t1 → ∞ assuming that (A,B) is a controllable pair.
Indeed, controllability guarantees the existence of a time t̄ and a control ū that steers the state from
x0 at time t0 to 0 at time t̄. After time t̄, set ū equal to 0. This control yields a state trajectory x̄
satisfying x̄(t) = 0 for all t ≥ t̄, and we have

xT
0 P (t0, t1)x0 = V t1(t0, x0) ≤ J(ū) =

∫ t̄

t0

(
x̄T (t)Qx̄(t) + ūT (t)Rū(t)

)
dt ∀ t1 ≥ t̄.

Since the above integral does not depend on t1, it provides a uniform bound for the optimal cost—
a single bound that is valid for all sufficiently large t1, as desired. We leave the controllability
assumption in force for the rest of this chapter (except for Exercise 6.5 on page 159 where its
necessity will be re-examined).

Existence of the limit. From the previous two claims it immediately follows that xT
0 P (t0, t1)x0

has a limit as t1 → ∞. It turns out that more is true, namely, the matrix limt1→∞ P (t0, t1) is well
defined. To see why, let us consider some specific initial conditions x0 (we can do this because all the
facts established so far are valid for arbitrary x0). First, let x0 = ei with ei as defined on page 152 for
some i ∈ {1, . . . , n}. Then xT

0 P (t0, t1)x0 = Pii(t0, t1), implying that each diagonal entry of P (t0, t1)
has a limit as t1 → ∞. Next, let x0 = ei + ej for some i 6= j. Recalling that P (t0, t1) is symmetric
(Exercise 6.2), we have xT

0 P (t0, t1)x0 = Pii(t0, t1)+2Pij(t0, t1)+Pjj(t0, t1), from which we can deduce
that the off-diagonal entries of P (t0, t1) converge as well. We can think of limt1→∞ P (t0, t1) as the
solution of the RDE (6.14) that, starting from the zero matrix, has flown backward for infinite time
and reached steady state; Figure 6.1 should help visualize this situation.
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Pij(t)Pij(t)
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Figure 6.1: Steady-state solution of the RDE

Properties of the limit. Since the RDE (6.14) is now a time-invariant differential equation, its
solution P (t0, t1) actually depends only on the difference t1−t0. Thus it is clear that the steady-state
solution limt1→∞ P (t0, t1), whose existence we just established, does not depend on t0, i.e., it is a
constant matrix. Denoting it simply by P , we have

P = lim
t1→∞

P (t, t1) ∀ t. (6.27)

Next, passing to the limit as t1 → ∞ on both sides of the RDE (6.14), we see that limt1→∞ Ṗ (t, t1)
must also exist and be a constant matrix, which must then necessarily be the zero matrix. We thus
conclude that P is a solution of the algebraic Riccati equation (ARE)

PA+ATP +Q− PBR−1BTP = 0 (6.28)
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Conceptually, the step of passing from the RDE (6.14), which is a matrix differential equation, to the
ARE (6.28), which is a static matrix equation, mirrors our earlier step of passing from the general
HJB equation (5.10) to its infinite-horizon counterpart (5.19). In both cases, the time derivative is
eliminated; in the present case, we are left with no derivatives at all! The ARE (6.28) can be solved
analytically or numerically without difficulties. It may happen that the ARE has “spurious” extra
solutions other than (6.27). In this regard, it is useful to note that the matrix P given by (6.27)
must be symmetric positive semidefinite (because so is P (t, t1) for each t1). We can hope that the
ARE has only one solution with this additional property. This is the case in the next exercise, and
we will show in Section 6.2.4 that this is always the case under appropriate assumptions.

Exercise 6.4 Consider the double integrator ẋ1 = x2, ẋ2 = u and the cost J(u) =
∫∞
t0

(x2
1(t) +

x2
2(t) + u2(t))dt. Find P by solving the ARE (6.28). Verify (either analytically or numerically) that

it is indeed the steady-state solution of the RDE. Is the validity of the last statement affected by
changing the terminal condition for the RDE (i.e., picking M 6= 0)?

6.2.2 Infinite-horizon problem and its solution

We have now prepared the ground for taking the limit as t1 → ∞ and considering the infinite-horizon
LQR problem with the cost

J(u) =

∫ ∞

t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt. (6.29)

Recalling the optimal cost (6.26) and the optimal control (6.24) for the finite-horizon case, and
passing to the limit as t1 → ∞, it is natural to guess that the infinite-horizon optimal cost and
optimal control will be3

V (x0) = xT
0 Px0 (6.30)

and

u∗(t) = −R−1BTPx∗(t) (6.31)

where P is the matrix limit (6.27) which satisfies the ARE (6.28). Note that the quadratic cost (6.30)
is independent of t0 and the linear feedback law (6.31) is time-invariant, which is consistent with
the problem formulation and with our earlier findings in Section 5.1.3. Still, optimality of (6.31) is
far from obvious, and it is not even clear whether a control yielding a bounded cost exists. Strictly
speaking, the use of the asterisks in (6.31) is not yet justified; at this point, x∗ is simply the trajectory
of the system under the action of the feedback law (6.31) with x∗(t0) = x0.

We now show that the above guess is indeed correct. Consider the function V̂ (x) := xTPx. Its
derivative along the trajectory x∗ is

d

dt
V̂ (x∗(t)) = (x∗)T (t)P (A −BR−1BTP )x∗(t) + (x∗)T (t)(AT − PBR−1BT )Px∗(t)

= (x∗)T (t)(PA +ATP − 2PBR−1BTP )x∗(t)

= −(x∗)T (t)(Q+ PBR−1BTP )x∗(t)

3For consistency with our previous notation, it would have been more accurate to denote the limiting quantities by
V ∞, u∗

∞, etc. We omit the superscripts and subscripts ∞ for simplicity, since we will be focusing on the infinite-horizon
problem from now on.
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where the last equality follows from the ARE (6.28). We can then calculate the portion of the
corresponding cost over an arbitrary finite interval [t0, T ] to be

∫ T

t0

(
(x∗)T (t)Qx∗(t) + (u∗)T (t)Ru∗(t)

)
dt =

∫ T

t0

(x∗)T (t)(Q+ PBR−1BTP )x∗(t)dt

= −
∫ T

t0

d

dt
V̂ (x∗(t))dt = V̂ (x0) − V̂ (x∗(T )) = xT

0 Px0 − (x∗)T (T )Px∗(T ) ≤ xT
0 Px0

where the last inequality follows from the fact that P ≥ 0. Taking the limit as T → ∞, we obtain

J(u∗) ≤ xT
0 Px0. (6.32)

In particular, we can now be sure that the infinite-horizon problem is well posed, because u∗ gives
a bounded cost. On the other hand, consider another trajectory x with the same initial condition
corresponding to an arbitrary control u. Since xT

0 P (t0, t1)x0 is the finite-horizon optimal cost, we
have for every finite t1 that

xT
0 P (t0, t1)x0 ≤

∫ t1

t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt ≤

∫ ∞

t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt = J(u)

where the second inequality relies on the positive (semi)definiteness of Q and R. Passing to the limit
as t1 → ∞ yields

xT
0 Px0 ≤ J(u).

Comparing this inequality with (6.32) and remembering that u was arbitrary (and could in particular
be equal to u∗), we see that

J(u∗) = xT
0 Px0 ≤ J(u) ∀u

hence xT
0 Px0 is the infinite-horizon optimal cost and u∗ is an optimal control, as claimed.

6.2.3 Closed-loop stability

In the previous subsection we were able to obtain a complete solution to the infinite-horizon LQR
problem, under the assumption (enforced since Section 6.2.1) that the system is controllable. Here
we investigate an important property of the optimal closed-loop system which will motivate us to
introduce one more assumption.

Example 6.2 Consider the scalar system ẋ = x+ u and the cost J(u) =
∫∞
t0
u2(t)dt. The optimal

control is, quite obviously, u∗ ≡ 0 because it gives the zero cost. It corresponds to P = 0. (Inci-
dentally, the ARE has another solution P = 2 which must be discarded.) The optimal closed-loop
system ẋ∗ = x∗ is unstable.

An optimal control that causes the state to grow unbounded is hardly acceptable. The reason for
this undesirable situation in the above example is that the cost only takes into account the control
effort and does not penalize instability. It is natural to ask under what additional assumption(s) the
optimal control (6.31) automatically ensures that the state converges to 0. One option is to require
Q to be strictly positive definite, but we will see in a moment that this would be an overkill. It
is well known and easy to show (for example, via diagonalization) that every symmetric positive
semidefinite matrix Q can be written as

Q = CTC
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where C is a p× n matrix with p ≤ n. Introducing the auxiliary output

y := Cx

we can rewrite the cost (6.29) as

J(u) =

∫ ∞

t0

(
yT (t)y(t) + uT (t)Ru(t)

)
dt.

Let us now assume that our system is observable through this output, i.e., assume that (A,C)
is an observable pair. Note that if Q > 0 then C = Q1/2 (matrix square root) which is n × n
and nonsingular, and the observability assumption automatically holds. On the other hand, in
Example 6.2 we had Q = 0 hence C = 0 and the observability assumption fails.

It is not difficult to see why observability guarantees that the optimal closed-loop system is
asymptotically stable. We know from (6.32) that the optimal control u∗ gives a bounded cost (for
arbitrary x0). This cost is

J(u∗) =

∫ ∞

t0

(
(y∗)T (t)y∗(t) + (u∗)T (t)Ru∗(t)

)
dt (6.33)

where y∗(t) = Cx∗(t) is the output along the optimal trajectory. Next, recall that u∗ is generated
by the linear feedback law (6.31), which means that the optimal closed-loop system is a linear time-
invariant system. Its solution x∗ is thus given by a linear combination of (complex) exponential
functions of time, and the same is true about y∗ and u∗. This observation and the fact that R > 0
make it clear that in order for the integral in (6.33) to be bounded we must have y∗(t) → 0 and
u∗(t) → 0 as t → ∞. It is well known that if the output and the input of an observable linear
time-invariant system converge to 0, then so does the state. (One way to see this is as follows:
by observability, there exists a matrix L such that A − LC has arbitrary desired eigenvalues with
negative real parts; rewriting the system dynamics as ẋ = (A− LC)x+ Ly +Bu, it is easy to show
that x → 0 when y, u → 0.) Therefore, the optimal closed-loop system must be asymptotically—in
fact, exponentially—stable.

6.2.4 Complete result and discussion

We now collect the results obtained in this section so far, as well as a few additional claims not yet
proved, into a single theorem summarizing the solution of the infinite-horizon LQR problem and its
main properties.

Theorem 6.1 (Main results for the infinite-horizon LQR problem) Consider the linear time-
invariant control system

ẋ = Ax+Bu

and the cost functional

J(u) =

∫ ∞

t0

(
xT (t)CTCx(t) + uT (t)Ru(t)

)
dt

where (A,B) is a controllable pair, (A,C) is an observable pair, and R is symmetric positive definite
(all vectors and matrices have arbitrary compatible dimensions). Then the following statements are
true:
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1) The limit P := limt1→∞ P (t0, t1) of the solution at time t0 of the RDE (6.14) with the boundary
condition P (t1) = 0 exists; this is a constant matrix (independent of t0) and it is a unique
symmetric positive definite solution of the ARE (6.28).

2) The optimal cost is V (x0) = xT
0 Px0, which is the limit as t1 → ∞ of the finite-horizon optimal

cost (6.26).

3) The unique optimal control has the linear time-invariant state feedback form u∗(t) = −R−1BTPx∗(t),
which is the limit as t1 → ∞ of the finite-horizon optimal feedback law (6.24).

4) The closed-loop system ẋ∗ = (A−BR−1BTP )x∗ is exponentially stable.

Proof (remaining claims). Statement 1 of the theorem was proved in Section 6.2.1 with the exception
of two claims: the strict positive definiteness of P (we only showed that P = P T ≥ 0) and the
uniqueness property. Statements 2 and 3 were proved in Section 6.2.2, except for the uniqueness of
the optimal control. Statement 4 was proved in Section 6.2.3. With these results in place, we now
establish the remaining claims.

Let us first prove that P > 0. We already know that P ≥ 0. Suppose that xT
0 Px0 = 0 for

some x0, which in view of statement 2 means that for this initial condition x0 the optimal cost∫∞
t0

((x∗)T (t)CTCx∗(t) + (u∗)T (t)Ru∗(t))dt equals 0. This is possible only if Cx∗ ≡ 0 and u∗ ≡ 0
(since R > 0). By observability we must then have x∗ ≡ 0, as it is well known that the output of
an observable linear time-invariant system (with the zero input) can be identically 0 only along the
zero trajectory. Thus x0 = 0 which proves that P is indeed positive definite.

Let us now prove that P is a unique solution of the ARE in the class of positive definite matrices.
In fact, we will show that it is unique even in the class of positive semidefinite matrices. Suppose
that the ARE has another positive semidefinite solution P̄ . Consider the new cost

J̄ t1(u) :=

∫ t1

t0

(
xT (t)Qx(t) + uT (t)R(t)u(t)

)
dt+ xT (t1)P̄ x(t1)

and its infinite-horizon counterpart

J̄∞(u) := lim
t1→∞

(∫ t1

t0

(
xT (t)Qx(t) + uT (t)R(t)u(t)

)
dt+ xT (t1)P̄ x(t1)

)
.

By statements 4 and 2 of this theorem, the same control u∗ as in statement 3 gives

J̄∞(u∗) =

∫ ∞

t0

(
(x∗)T (t)Qx∗(t) + (u∗)T (t)Ru∗(t)

)
dt = xT

0 Px0

and this is the optimal cost with respect to J̄∞ because for every other control u we have

J̄∞(u) ≥
∫ ∞

t0

(
xT (t)Qx(t) + uT (t)R(t)u(t)

)
dt ≥ xT

0 Px0.

We also know from the results of Section 6.1 that the optimal cost with respect to J̄ t1(u) is
xT

0 P (t0; P̄ , t1)x0, where P (t0; P̄ , t1) denotes the solution at time t0 of the RDE (6.14) with the
boundary condition P (t1) = P̄ . But this solution must be P̄ itself, for every t1, because P̄ is an
equilibrium solution of the RDE (by virtue of satisfying the ARE). It follows that P̄ = P , and the
uniqueness property is confirmed.



CALCULUS OF VARIATIONS AND OPTIMAL CONTROL 159

Finally, to show that the optimal control is unique, recall the equations (5.13) and (5.14) in
Section 5.1.3 which say that an optimal control must satisfy

u∗(t) = arg min
u∈U

{L(t, x∗(t), u) + 〈Vx(t, x∗(t)), f(t, x∗(t), u)〉}

or, what is the same,

u∗(t) = arg max
u∈U

H(t, x∗(t), u,−Vx(t, x∗(t))).

For the infinite-horizon LQR problem and the value function V (x) = xTPx this condition takes the
form

u∗(t) = arg min
u∈Rm

{
(x∗)T (t)Qx∗(t) + uTRu+ 2(x∗)T (t)PAx∗(t) + 2(x∗)T (t)PBu

}

and it is easy to check (cf. Section 6.1.3) that this uniquely identifies the feedback law given in
statement 3.

We can see from the proof that the observability assumption was only used for establishing
exponential stability of the optimal closed-loop system (statement 4) and the positive definiteness
and uniqueness of P in statement 1 (the uniqueness proof relied on observability indirectly because
it invoked statement 4). The controllability assumption, on the other hand, was used for showing the
existence of P which is crucial for all the other claims. Nevertheless, there remains the possibility
that some or all claims could be proved without relying on these assumptions.

Exercise 6.5 Suppose that the assumptions of controllability of (A,B) and observability of (A,C)
are replaced by stabilizability and detectability, respectively. Examine the validity of each claim of
Theorem 6.1. (If still true, justify; otherwise, explain why not and how the statement should be
modified to become true.)

In view of statement 1 of Theorem 6.1 and its proof, we know that the ARE has exactly one
positive semidefinite solution P , and this solution is in fact positive definite and gives the optimal
cost and optimal control via statements 2 and 3. For example, consider the infinite-horizon version of
Example 6.1, with the system ẋ = u and the cost J(u) =

∫∞
t0

(x2(t) + u2(t))dt. The ARE P 2 − 1 = 0

has two solutions, P = ±1, of which P = 1 is the one we want. The optimal cost is V (x0) = x2
0

and the optimal control is u∗ = −x∗. The result that the reader obtained in Exercise 6.4 should also
immediately yield the optimal cost for that problem and the exponentially stable optimal closed-loop
system.

Linearity, time-invariance, and exponential stability are very desirable features of the optimal
closed-loop system, indicating that the infinite-horizon LQR problem provides good control design
guidelines. The choice of the matrices Q and R is often part of the design process, which helps shape
the behavior of the state and the control signal.

Exercise 6.6 Consider the scalar system ẋ = ax + bu and the cost J(u) =
∫∞
t0

(qx2(t) + ru2(t))dt,
where a, q, r > 0 and b is arbitrary. Suppose that a, b, q are fixed but r can vary. Show that for r → 0
(the “cheap control” case) the eigenvalue of the optimal closed-loop system moves off to −∞, while
for r → ∞ (the “expensive control” case) the eigenvalue of the optimal closed-loop system tends to
−a, i.e., the opposite of the open-loop eigenvalue.
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6.3 Notes and references for Chapter 6

The linear quadratic regulator problem is a classical subject covered in many textbooks. This chap-
ter has particularly benefited from the expositions in [AF66, AM90, Bro70, KS72]; basic background
facts from linear system theory can also be found in these books, as well as in more recent texts such
as [Hes09]. Kalman’s original LQR paper [Kal60] is a must-read, as it contains the first treatment of
controllability for linear systems and a few other fundamental concepts and techniques. Among sev-
eral possible ways of deriving the solution to the finite-horizon LQR problem, we favor the approach
followed in [AF66] and [KS72] where the linear state feedback form of the optimal control is estab-
lished independently of the Riccati differential equation (which is derived later). Section 24 of [Bro70]
contains an insightful discussion of Riccati differential equations and their solutions. Various meth-
ods for numerical solution of the RDE are described in [AM90, Appendix E], [KS72, Section 3.5], and
the references therein. For the infinite-horizon LQR problem, different sources again take different
routes to arrive at the main results. In particular, [AM90] gives a purely linear-algebraic proof of
closed-loop stability which does not rely on the Lyapunov argument that we used in Section 6.2.2.

Many generalizations of the LQR problem are not discussed here. These include: more general
quadratic costs involving cross-terms; tracking problems; the output feedback version of the LQR
problem and its relation to optimal state estimation (the Kalman filter). The references [AF66,
AM90, KS72] cited earlier can be consulted for detailed information on these topics. In Section 7.3,
we will discuss robust control problems which can be considered as extensions of the LQR problem.



Chapter 7

Advanced Topics

In this chapter we discuss four additional topics (independent from one another) which extend the
developments of Chapters 4–6. The objective of the present chapter is twofold: to enhance the
reader’s understanding of the earlier material, and to indicate some of the possible avenues for
further study. We will not strive for the same level of completeness and rigor here as in the previous
chapters, and instead will limit ourselves to an introductory discussion. The references provided at
the end of the chapter, as usual, can be consulted for precise statements of technical results and
other details.

7.1 Maximum principle on manifolds

Ever since we formulated the general optimal control problem in Section 3.3, we have allowed the
state x to take arbitrary values in R

n. However, in many situations of interest R
n is not an adequate

state space (just like U = R
m is not always an adequate control space). Recall, for example, the

pendulum dynamics (2.55) that we derived on page 46. The angle variable θ naturally lives on a
circle. Combining it with the angular velocity θ̇ ∈ R, we obtain the state that evolves on a cylinder.
State spaces of this kind are quite typical for mechanical systems.

Surfaces such as a sphere, a cylinder, or a torus are all examples of (differentiable) manifolds.
The purpose of this section is to reformulate our optimal control problem and the maximum principle
in the geometric language of manifolds. Besides a higher level of generality, casting the maximum
principle in the framework of manifolds has another important benefit: it clarifies the intrinsic
meaning of the adjoint vector (costate), thereby greatly elucidating the essence of the maximum
principle even in the familiar setting of control problems in R

n. We begin this task in Section 7.1.1
where we describe manifolds more precisely as surfaces defined by equality constraints and discuss
some fundamental objects associated with manifolds. It is worth noting that scenarios in which a
state space is characterized by inequality constraints, although equally significant, are not captured
by the present set-up.

161
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7.1.1 Differentiable manifolds

We say that M is a k-dimensional differentiable manifold embedded in R
n, or simply a manifold, if

it is given by

M = {x ∈ R
n : h1(x) = h2(x) = · · · = hn−k(x) = 0} (7.1)

where hi, i = 1, . . . , n − k are C1 functions from R
n to R such that the gradient vectors ∇hi(x),

i = 1, . . . , n− k are linearly independent for each x ∈M . This is actually not a new object for us: it
is just a k-dimensional surface in R

n already considered in Section 1.2.2 and later in the formulation
of the Basic Variable-Endpoint Control Problem in Chapter 4. The linear independence assumption
imposed on the gradients means, in the terminology of Section 1.2.2, that all points of M are regular.

Intuitively speaking, a k-dimensional manifold M is a subset of R
n that locally “looks like” R

k.
This idea can be made precise by equipping M with local coordinates, as follows. Fix an arbitrary
x ∈M . Since by assumption the (nonsquare) Jacobian matrix




(h1)x1
(x) · · · (h1)xn

(x)
...

. . .
...

(hn−k)x1
(x) · · · (hn−k)xn

(x)




is of rank n − k, it has n − k linearly independent columns; shuffling the variables x1, . . . , xn if
necessary, we can assume that these are the last n−k columns. Using the Implicit Function Theorem,
we can then solve the equations in (7.1) for the variables xk+1, . . . , xn in terms of x1, . . . , xk in some
neighborhood of x. Consequently, the components x1, . . . , xk can be used to describe points in M
near x, i.e., they provide a local coordinate chart for M . A simple example of a 1-dimensional
manifold in R

2 is the unit circle, for which we invite the reader to work out the above construction.

The standard definition of a manifold is actually stated in terms of the existence of local coordinate
charts satisfying suitable compatibility conditions, without any explicit reference to the ambient space
R

n. However, it is known that every manifold defined in this way can be embedded in R
n for some

n large enough. The above more concrete notion of an embedded manifold is sufficient for our
purposes, but the concept of local coordinates will be useful for us as well. Basically, we have the
choice of representing points in M as n-vectors or locally as k-vectors (cf. the discussion of holonomic
constraints in Section 2.5.2).

Let M be a k-dimensional manifold. We know that at each point x ∈ M we can define the
tangent space TxM (see page 9). This is a k-dimensional linear vector space, spanned by the tangent
vectors associated with all possible curves in M passing through x. Recall that for a curve x(·)
lying in M , with x(0) = x, the corresponding tangent vector is ẋ(0). In local coordinates, if the
curve has components x1(·), . . . , xk(·) then the components of the tangent vector ξ = ẋ(0) are
(ξ1, . . . , ξk) = (ẋ1(0), . . . , ẋk(0)). It is also useful to consider the union

TM :=
⋃

x∈M

TxM

which is called the tangent bundle of M . This is a manifold of dimension 2k. We note that in general,
TM is not globally diffeomorphic to the direct product M × R

k (well-known counterexamples are
obtained by taking M to be the two-dimensional sphere or the Mobius band). It is convenient to
think of vector fields on M as sections of the tangent bundle, i.e., functions f : M → TM such that
f(x) ∈ TxM for all x.
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Given a point x on a manifold M , the linear vector space of linear R-valued functions on TxM
is called the cotangent space to M at x, and is denoted by T ∗

xM . This is the dual space1 to TxM ;
its elements are called cotangent vectors, or simply covectors. The simplest example of a covector is
the differential of a function. Let g : M → R be a C1 function. For each x ∈ M , the linear function
dg|x : TxM → R is defined as follows. Given a tangent vector ξ ∈ TxM and an arbitrary curve x(·)
in M with x(0) = x having ξ as its tangent vector (so that ẋ(0) = ξ), let

dg|x (ξ) :=
d

dα

∣∣∣∣
α=0

g(x(α)).

In local coordinates this is given by dg|x (ξ) =
∑k

i=1 gxi
(x)ẋi(0) =

∑k
i=1 gxi

(x)ξi, which clearly does
not depend on the choice of a specific curve x(·). The map dg|x assigns to each tangent vector ξ the
derivative of g in the direction of ξ. If x1, . . . , xk are local coordinates on M , then the corresponding
differentials dx1, . . . , dxk form a basis for T ∗

xM and hence yield local coordinates on the cotangent
space. For a tangent vector ξ ∈ TxM , the numbers dxi(ξ) give the components ξi of ξ. One also
defines the cotangent bundle

T ∗M =
⋃

x∈M

T ∗
xM

which is itself a manifold, of dimension 2k. Combining local coordinates x1, . . . , xk on M with local
coordinates on T ∗

xM relative to the basis given by dx1, . . . , dxk, one obtains local coordinates on the
cotangent bundle T ∗M known as canonical coordinates.

7.1.2 Re-interpreting the maximum principle

Suppose that we are given a (time-invariant) control system

ẋ = f(x, u) (7.2)

whose state x takes values in some k-dimensional manifold M and whose control u takes values in
some control set U . For its solution x(·) to stay in M , the velocity vector f(x, u) must be tangent
to M at x for all x and u. Thus we see that there is an important difference between the states and
the velocity vectors: the former live in M while the latter live in the tangent bundle TM . When we
worked over R

n, which is its own tangent space, we never explicitly made this distinction. In local
coordinates, the system description takes the form



ẋ1
...
ẋk


 =



f1(x, u)

...
fk(x, u)


 ∈ R

k

and the difference between states and tangent vectors becomes “hidden” once again.

Let us assume for simplicity that an optimal control problem is formulated in the Mayer form
(i.e., with terminal cost only). We know that problems with running cost can always be converted
to this form by appending an additional state x0, which would yield a system on the augmented
manifold R ×M (cf. Sections 3.3.2 and 4.2.1). The basic ingredients of the maximum principle are

1The use of an asterisk for the dual space is not to be confused with the use of the same symbol throughout the
book to indicate optimality.
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the costate p and the Hamiltonian H. In the case when M = R
n, the Hamiltonian for the Mayer

problem took the form H(x, u, p) = 〈p, f(x, u)〉. For a general manifold M , we need to ask ourselves
which space p should belong to and how H should be (re)defined. Our first natural guess might
be that p, like f(x, u), should be a tangent vector to M . However, in contrast with f(x, u), there
is no clear geometric reason why p should be a tangent vector. Also, taking p to be a tangent
vector, we cannot assign a new meaning to our earlier definition of H unless we equip the tangent
space with an inner product. (Introducing an inner product on each tangent space TxM—called
a Riemannian metric on M—is possible but, as we will see, is neither necessary nor relevant for
our present purposes.) Another option that might come to mind is that p should live in M itself;
however, this choice offers even fewer clues towards any natural interpretation of the Hamiltonian.

Can we perhaps take a more direct guidance from the fact that in our old definition of the
Hamiltonian, p appears in an inner product with the velocity vector f(x, u)? In fact, we already
remarked in Section 3.4.2 that p never appears by itself but always inside inner products such as
〈p, ẋ〉; in other words, it acts on velocity vectors. This observation suggests that the intrinsic role
of the costate p is not that of a tangent vector, but that of a covector. To better understand the
difference between these two types of objects and why the latter one correctly captures the notion
of a costate, let us look at how they propagate along a flow induced by a dynamical system on M .

Fix a number τ > 0 and let Φτ : M →M be a C1 map. While the construction that we are about
to describe is valid for every such map, the map that we have in mind here is the one obtained by
flowing forward for τ units of time along the trajectory of the system (7.2) corresponding to some
fixed control u (which, ultimately, is taken to be an optimal control for a given initial condition). Let
us first discuss the transformation that Φτ induces on tangent vectors. Pick a point x ∈ M and a
tangent vector ξ ∈ TxM . We know that ξ is tangent to some curve in M passing through x, namely,
ξ = ẋ(0) where x(α) ∈ M for real α (around 0) and x(0) = x. The image Φτ (x(·)) of this curve
under the map Φτ is a curve in M which passes through Φτ (x), as illustrated in Figure 7.1. Denote
the tangent vector at Φτ (x) associated with this new curve by dΦτ |x (ξ); in other words, define

dΦτ |x (ξ) :=
d

dα

∣∣∣∣
α=0

Φτ (x(α)).

The above quantity depends only on the vector ξ and not on the choice of a particular curve x(·)
with this tangent vector. In this way we obtain a natural definition of a linear map

dΦτ |x : TxM → TΦτ (x)M

called the derivative (or differential) of Φτ at x. It extends to manifolds the standard notion of the
differential of a function (described by its Jacobian matrix) from vector calculus; more generally,
functions from M to another manifold N can be considered, and we already discussed the case
N = R in Section 7.1.1. In fact, in the proof of the maximum principle we performed a closely
related computation, showing that an infinitesimal state perturbation ξ propagates along an optimal
trajectory of (7.2) according to the variational equation

ξ̇ = fx|∗ ξ (7.3)

(see Section 4.2.4). The derivative map dΦτ pushes the tangent vectors forward in the direction of
action of the original map Φτ on M . Objects such as tangent vectors, which propagate forward along
a flow on M in this sense, are called contravariant.
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Figure 7.1: Tangent vectors propagate forward

Now suppose that we are given a covector at x, i.e., a linear function on TxM . Let us denote it
by p|x so as to have p|x (ξ) ∈ R for each ξ ∈ TxM . For the same map Φτ : M → M as before, can
we define in a natural way a linear function p|Φτ (x) on TΦτ (x)M? We must decide what the value
p|Φτ (x) (η) should be for every η ∈ TΦτ (x)M . While it is tempting to say that p|Φτ (x) (η) should equal
the value of p|x on the preimage of η under the map Φτ , this preimage is not well defined unless
the map Φτ is invertible. In fact, the reader will quickly realize that there is no apparent candidate
map for propagating covectors along Φτ similarly to how the derivative map dΦτ acts on tangent
vectors. The reason is that, instead of trying to push covectors forward, we should pull them back.
This revised objective is readily accomplished as follows: given a covector p|Φτ (x) on TΦτ (x)M , define
a covector p|x on TxM by

p|x (ξ) := p|Φτ (x) (dΦτ |x (ξ)). (7.4)

As we indicated earlier, the intended meaning of Φτ is that of flowing forward for τ units of time
along an optimal trajectory of (7.2), and the infinitesimal (as τ → 0) transformation induced by
the derivative map dΦτ is the variational equation (7.3). We can now recognize the formula (7.4) as
expressing—in an intrinsic, coordinate-free fashion—the adjoint property from Section 4.2.8; indeed,
it guarantees that p(ξ) stays constant along the trajectory. The familiar adjoint equation ṗ =
−(fx)

T
∣∣
∗
p is nothing but the infinitesimal version of (7.4) written in local coordinates. A fact not

really revealed by this differential equation is that covectors are covariant objects, in the sense that
they propagate backward along a flow on M . This is exactly why we always have terminal rather
than initial conditions for the costate!

Now everything is beginning to fall into place. The Hamiltonian for our Mayer problem on a
manifold M should be defined as

H(x, u, p) = p(f(x, u)) (7.5)

where the costate p is a covector at x (strictly speaking, it would be more accurate to write it as
p|x). The maximum principle postulates the existence of a costate p∗(t) ∈ T ∗

x∗(t)M for each t, where

x∗ is the optimal trajectory being analyzed. The terminal value p∗(tf ) uniquely specifies p∗(t) for all
t ∈ [t0, tf ] as explained above. The Hamiltonian maximization condition takes the same form as in
Chapter 4. For a formal statement of the maximum principle on manifolds along these lines, see the
references listed in Section 7.5. There is, however, one more concept that is usually involved when
such results are stated in the literature, and we examine it briefly in the next subsection.
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7.1.3 Symplectic geometry and Hamiltonian flows

In our discussion of Hamiltonian mechanics in Section 2.4, the Hamiltonian was given a clear physical
interpretation as the total energy of the system. Hamilton’s canonical differential equations, on
the other hand, were derived formally from the Euler-Lagrange equation and we never paused to
consider their intrinsic meaning. We fill this gap here by exposing the important connection between
symplectic geometry and Hamiltonian flows, which provides one further insight into the geometric
formulation of the maximum principle.

Let us return to the cotangent bundle T ∗M which, as explained at the end of Section 7.1.1, is
a 2k-dimensional manifold equipped with canonical local coordinates. On this manifold there is a
natural differential 2-form ω2, called a symplectic form (or symplectic structure). This is a bilinear
skew-symmetric form on the tangent space to T ∗M at each point; in other words, it acts on pairs of
tangent vectors to T ∗M (and, moreover, it depends smoothly on the choice of a point in T ∗M). In
canonical coordinates (x, p) = (x1, . . . , xk, p1, . . . , pk) on T ∗M , the symplectic form that we consider
here is given by

ω2 := dx1 ∧ dp1 + · · · + dxk ∧ dpk

where the exterior multiplication ∧ is defined by

(ω1 ∧ ω2)(ξ1, ξ2) := ω1(ξ1)ω2(ξ2) − ω2(ξ1)ω1(ξ2).

(The exterior product is the oriented area spanned by the vectors
(
ω1(ξ1)
ω1(ξ2)

)
and

(
ω2(ξ1)
ω2(ξ2)

)
, or the

determinant of the corresponding matrix.) Given two tangent vectors to T ∗M with components
(y, q) = (y1, . . . , yk, q1, . . . , qk) and (z, r) = (z1, . . . , zk, r1, . . . , rk), it is straightforward to check that

ω2
(
(y, q), (z, r)

)
=

k∑

i=1

(yiri − qizi). (7.6)

The symplectic form allows us to establish a one-to-one correspondence between tangent vectors
to T ∗M and covectors on T ∗M , as follows. To a tangent vector ξ (at a fixed point of T ∗M) we
associate a covector ω1

ξ which acts on another tangent vector η to T ∗M according to

ω1
ξ (η) := ω2(ξ, η). (7.7)

The map ξ 7→ ω1
ξ is a linear map between vector spaces, whose matrix with respect to the canonical

basis is

(
0 −I
I 0

)
.

Now, we can view our Hamiltonian (7.5) as a function on the cotangent bundle T ∗M (i.e., a
function of the variables x and p) parameterized additionally by the controls u. Then the differential
dH of the Hamiltonian gives us a covector on T ∗M at each point. Applying the inverse of the map
constructed above to this covector, we obtain a tangent vector at each point of T ∗M , or a vector field
on T ∗M . This vector field is called the Hamiltonian vector field and is denoted by ~H. In canonical
coordinates, the flow along ~H is described by the familiar differential equations

ẋ = Hp, ṗ = −Hx. (7.8)
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Indeed, for an arbitrary tangent vector η to T ∗M with components (z, r) = (z1, . . . , zk, r1, . . . , rk),
we can easily check using (7.6) that with ~H defined via (7.8) we have

ω2( ~H, η) =

k∑

i=1

(Hxi
zi +Hpi

ri) = dH(η)

and the desired conclusion follows from (7.7). Therefore, the statement of the maximum principle
about the existence of a costate satisfying the adjoint equation (the second canonical equation) can
be reformulated as saying that an optimal state trajectory can be lifted to an integral curve of the
Hamiltonian vector field. (The control u remains an argument on the right-hand side of (7.8), but
the maximum principle is of course applied with an optimal control u∗ plugged in.)

7.2 HJB equation, canonical equations, and characteristics

We know from Section 5.1.3 that the HJB equation is a PDE and is difficult to solve in general. In
Section 5.2 we compared the HJB equation with the necessary conditions of the maximum principle
and demonstrated, in particular, how solving the HJB equation for the value function V formally
leads to a solution of the canonical equations (via p := −Vx). In this section we discuss an important
piece of the PDE theory which enables one, in principle, to solve a PDE with the help of a suitable
system of ODEs called the characteristics. We will show that the canonical equations arise as the
characteristics of the HJB equation. Thus, compared to Section 5.2, the method of characteristics
takes us in the opposite direction. We will first introduce this method in the context of general PDEs
and then specialize it to the setting of the HJB equation.

7.2.1 Method of characteristics

Suppose that we are looking for a function v : R
n → R that solves the PDE

F (x, v(x),∇v(x)) = 0 (7.9)

where F : R
n × R × R

n → R is a given continuous function. This is the same equation as (5.34)
but here we assume that v is differentiable in the classical sense. We are especially interested in
the situation where F depends linearly on ∇v; such PDEs are called quasi-linear. In addition, for
simplicity and better geometric intuition, we start with the case when n = 2. Then (7.9) takes the
form

a(x1, x2, v)vx1 + b(x1, x2, v)vx2 = c(x1, x2, v) (7.10)

for some functions a, b, and c. Here and below, we omit some or all arguments of functions wherever
convenient.

The graph of a solution v = v(x1, x2) to (7.10) is a surface in the (x1, x2, v)-space defined by the
equation h(x1, x2, v) := v(x1, x2)−v = 0. The gradient vector ∇h = (vx1 , vx2 ,−1)T is normal to this
surface at each point. Noting that the PDE (7.10) can be equivalently written as

〈(
a
b
c

)
,

(
vx1

vx2

−1

)〉
= 0
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we conclude that the vector (a, b, c)T is everywhere orthogonal to the normal ∇h, hence it lies in
the tangent space to the solution surface. This is the geometric interpretation of the quasi-linear
PDE (7.10): the vector field (a, b, c)T is tangent to the solution surface v = v(x1, x2) at each point.
The system of ODEs associated with this vector field can be written as

dx1

ds
= a(x1, x2, v),

dx2

ds
= b(x1, x2, v),

dv

ds
= c(x1, x2, v). (7.11)

These are called the characteristic ODEs of the PDE (7.10), and their solution curves are called the
characteristics. With a slight abuse of terminology, we sometimes use the term “characteristics” not
only for the solution curves of the equations (7.11) but also for these equations themselves.

The characteristic curves “fill” our solution surface v = v(x1, x2); skipping ahead to Figure 7.2
may help the reader visualize this situation. As an example, it is useful to think about the case when
c ≡ 0. Then (7.10) says that the derivative of v in the direction of the vector (a, b)T is 0, implying
that v stays constant along solutions of the equations ẋ1 = a, ẋ2 = b. Every function v whose level
sets are solution curves of these two equations in the (x1, x2)-plane is a solution of the PDE, and the
characteristics are horizontal slices of the corresponding solution surface. Of course, in general (for
nonzero c) characteristics are not horizontal.

Now, in principle we should be able to solve the characteristic ODEs and obtain the characteris-
tics. How does this help us solve the original PDE (7.10)? Without additional specifications, there
are “too many” characteristics to identify a desired solution surface v = v(x1, x2); indeed, there is a
characteristic passing through every point in the (x1, x2, v)-space, so they fill the entire space. We
know that for ODEs, to fix a particular solution we must specify a point through which it passes
(an initial condition). The counterpart of this for the PDE (7.10) is that we must specify a suitable
curve in the (x1, x2, v)-space through which the solution surface passes; we then obtain what is called
a Cauchy (initial value) problem. Geometrically, the idea is that characteristics that pass through
points on this initial curve will determine the solution surface of the PDE, as illustrated in Figure 7.2
(with the thick curve representing an initial curve).

PSfrag replacements

x1

v

x2

Figure 7.2: Characteristics for an initial value problem

An initial curve can be defined in parametric form as

x1 = x1(r), x2 = x2(r), v = v(r)
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where r ∈ R. Then, the desired characteristics—i.e., the solutions of the characteristic equa-
tions (7.11) whose initial conditions lie on this initial curve—are given by

x1 = x1(r, s), x2 = x2(r, s), v = v(r, s) (7.12)

which yields a description of the solution surface of our PDE (7.10). However, we are looking for a
different representation of this surface, namely, v = v(x1, x2). To bring (7.12) to the desired form,
we need to express r, s as functions of x1, x2 and plug them into v(r, s). For this to be possible, the
map (r, s) 7→ (x1(r, s), x2(r, s)) must be invertible. It follows from the Inverse Function Theorem
that invertibility of this map, at least in some neighborhood of the initial curve, is in turn guaranteed
if the corresponding Jacobian matrix (

(x1)r (x1)s
(x2)r (x2)s

)

is nonsingular along the initial curve. What is the geometric significance of this latter condition?
The columns of the above Jacobian matrix are the (x1, x2)-components of the tangent vectors to
the initial curve and to a characteristic, respectively, and they must be linearly independent. In
other words, when projected onto the (x1, x2)-plane, the characteristics and the initial curve must be
transversal to each other. We conclude that under this transversality condition, the Cauchy problem
for (7.10) is (locally) uniquely solvable, at least in principle, via the method of characteristics. To
calculate the actual value of v(x1, x2) for some specific x1 and x2, we need to find a characteristic
that connects the initial curve to a point with these (x1, x2)-coordinates and then integrate the last
equation in (7.11) along that characteristic segment. We will discuss this procedure in more detail
later for the case of the HJB equation.

Characteristics can also be defined for the general PDE (7.9) which for n = 2 takes the form

F (x1, x2, v, vx1 , vx2) = 0. (7.13)

In the case of the quasi-linear PDE (7.10), we saw that the tangent vector (a, b, c)T to the solution
surface does not depend on the partial derivatives vx1 and vx2 (which give the first two components
of the normal vector (vx1 , vx2 ,−1)T to this surface); consequently, the characteristic equations (7.11)
involve x1, x2, and v only. For the more general PDE (7.13), this is no longer guaranteed and so five
differential equations—describing the joint evolution of the variables x1, x2, v, vx1 , vx2—are needed
instead of three. The solution curves of these equations are called the characteristic strips. To
simplify the notation, let us introduce the symbols

ξ1 := vx1 , ξ2 := vx2 .

Then the characteristic strips are defined by the following equations:

dx1

ds
= Fξ1 ,

dx2

ds
= Fξ2 ,

dv

ds
= ξ1Fξ1 + ξ2Fξ2 ,

dξ1
ds

= −Fx1 − ξ1Fv,
dξ2
ds

= −Fx2 − ξ2Fv. (7.14)

We do not give a complete derivation of (7.14) but note that the first three equations in (7.14) reduce
to the earlier characteristic equations (7.11) in the case of the quasi-linear PDE (7.10), whereas to
arrive at the fourth equation in (7.14) it is enough to write dξ1

ds = (ξ1)x1

dx1
ds + (ξ1)x2

dx2
ds , use the

first two characteristic equations to rewrite this result as (ξ1)x1
Fξ1 + (ξ1)x2

Fξ2 , and then apply the
identity Fx1 + Fvξ1 + Fξ1(ξ1)x1

+ Fξ2(ξ2)x1
= 0 which follows by differentiating the PDE (7.13) with

respect to x1; the last equation in (7.14) is derived in the same manner. The last two equations
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in (7.14), which describe the evolution of the normal vector to the solution surface of the PDE, will
play an important role in the next subsection where we turn to the HJB equation.

In the above discussion we assumed that the independent variable x lives in the plane (i.e., n = 2).
However, it is straightforward to write down the equations of the characteristic strips for a general
dimension n ≥ 2: we must simply replace the indices 1, 2 in (7.14) by i ∈ {1, . . . , n}. In the next
subsection we will work in this more general setting.

7.2.2 Canonical equations as characteristics of the HJB equation

We will now show that Hamilton’s canonical equations arise as the characteristics—or, more precisely,
characteristic strips—of the HJB equation. With some abuse of notation, let us write the HJB
equation as

Vt(t, x) −H(t, x,−Vx(t, x)) = 0. (7.15)

Note that we did not include the control u as an argument in H; instead, we assume that the control
that maximizes the Hamiltonian has already been plugged in. (This formulation also covers the
calculus of variations and mechanics settings, where the velocity variable is eliminated via the Leg-
endre transformation.) We know that we can bring the PDE (7.15) to the form (7.9) by introducing
the extra state variable xn+1 := t (cf. Section 5.3.3). We can thus write down the characteristic
equations (7.14) for this particular PDE. Since the time t is present in (7.15), we can use it as the
independent variable and write ẋ1, etc. We also define the costates pi := −ξi = −vxi

, which is
consistent with our earlier convention (see Section 5.2). Then the equations (7.14) immediately yield

ẋi = Hpi
, i = 1, . . . , n

(plus one additional equation ẋn+1 = 1 which is redundant) as well as

ṗi = −Hxi
, i = 1, . . . , n+ 1

where we used the fact that H does not depend on V (hence the term Fv in (7.14) vanishes). Thus
we have indeed recovered the familiar canonical differential equations.

Finally, there is one more equation in (7.14) which describes the evolution of v. Here it tells us
that the value function satisfies

V̇ =

n∑

i=1

ξiẋi + ξn+1 = H −
n∑

i=1

piHpi
(7.16)

where we applied the HJB equation (7.15) one more time to arrive at the second equality. (Actually,
it is also easy to obtain this result directly by writing V̇ = Vt + 〈Vx, ẋ〉.) It is the equation (7.16)
that enables a solution of the HJB equation via the method of characteristics. We know that the
Cauchy problem for the HJB equation is given by V (t1, x) = K(x), where K is the terminal cost and
t1 is the terminal time (this initial value problem involves flowing backward in time). To calculate
the value V (t, x) for some specific time t and state x, we must first find a point x̄ such that x = x(t)
where (x(·), p(·)) is the solution of the system of canonical equations with the boundary conditions
x(t1) = x̄, p(t1) = −Kx(x̄). Then, V (t, x) is computed by integration along the corresponding
characteristic:

V (t, x(t)) = K(x̄) −
∫ t1

t

(
H(s, x(s), p(s)) −

n∑

i=1

pi(s)Hpi
(s, x(s), p(s))

)
ds.

Again, the fact that H does not depend on V is helpful here. Figure 7.3 illustrates the procedure.
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Figure 7.3: Solving the HJB equation with the help of characteristics

7.3 Riccati equations and inequalities in robust control

This section builds on Chapter 6, with the goal of demonstrating that the tools and results of that
chapter—in particular, optimality conditions expressed in terms of algebraic Riccati equations—
continue to play a central role in the context of more general control problems. The first problem
studied here is a special case of the infinite-horizon LQR problem except that the matrix Q in the
cost functional is no longer positive semidefinite, which leads to its interpretation as the problem
of characterizing the disturbance-to-output L2 gain. Afterwards, we take a brief look at the H∞

control problem, which has been an important benchmark problem in robust control theory.

7.3.1 L2 gain

We consider a linear time-invariant system

ẋ = Ax+Bu, y = Cx (7.17)

and the cost functional

J(u) =

∫ ∞

t0

(
γuT (t)u(t) − 1

γ
yT (t)y(t)

)
dt (7.18)

with γ > 0. In this cost, the squared norms of the input and the output inside the integral are
multiplied by scalar weights of the opposite signs (and we assume the two weights to have been
normalized so that their product equals −1). Consequently, it is clear that the optimal cost will now
be nonpositive (just set u ≡ 0). Nevertheless, as we will see, the form of the optimal solution is very
similar to the one we saw in Section 6.2 and can be established using similar calculations. Suppose
that there exists a matrix P with the following three properties:

1) P = P T ≥ 0.

2) P is a solution of the ARE

PA+ATP +
1

γ
CTC +

1

γ
PBBTP = 0. (7.19)
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3) The matrix A+ 1
γBB

TP is Hurwitz.2

Then, we claim that the optimal cost is

V (x0) = −xT
0 Px0 (7.20)

and the optimal control is the linear state feedback

u∗(t) =
1

γ
BTPx∗(t). (7.21)

(Notice the “wrong” signs in the formulas (7.19)–(7.21) compared to Section 6.2; this sign difference
could be reconciled by working with −P instead of P here.)

To prove this claim, let us define the function V̂ (x) := xTPx. Its derivative along solutions of
the system (7.17) is d

dt V̂ (x(t)) = xT (t)(PA + ATP )x(t) + 2xT (t)PBu(t), which is easily checked to
be equivalent to

d

dt
V̂ (x(t)) = xT (t)

(
PA+ATP +

1

γ
CTC +

1

γ
PBBTP

)
x(t)

− γ
(
u(t) − 1

γ
BTPx(t)

)T(
u(t) − 1

γ
BTPx(t)

)
+ γuT (t)u(t) − 1

γ
yT (t)y(t).

(7.22)

We now introduce the auxiliary finite-horizon cost

J̄ t1(u) :=

∫ t1

t0

(
γuT (t)u(t) − 1

γ
yT (t)y(t)

)
dt− xT (t1)Px(t1). (7.23)

Using the formula (7.22) and noting that the first term on its right-hand side vanishes by (7.19), we
can rewrite this cost as

J̄ t1(u) =

∫ t1

t0

γ
∣∣∣u(t) − 1

γ
BTPx(t)

∣∣∣
2
dt+ xT (t)Px(t)

∣∣t1
t0
− xT (t1)Px(t1)

=

∫ t1

t0

γ
∣∣∣u(t) − 1

γ
BTPx(t)

∣∣∣
2
dt− xT

0 Px0

which makes it clear that (7.20) and (7.21) are the optimal cost and optimal control for the cost
functional (7.23). We want to show that they are also optimal for the original cost functional (7.18).
To this end, we first note that since P ≥ 0, the following bound holds for all u:

J(u) = lim
t1→∞

∫ t1

t0

(
γuT (t)u(t) − 1

γ
yT (t)y(t)

)
dt

≥ lim
t1→∞

(∫ t1

t0

(
γuT (t)u(t) − 1

γ
yT (t)y(t)

)
dt− xT (t1)Px(t1)

)

= lim
t1→∞

J t1(u) ≥ lim
t1→∞

(−xT
0 Px0) = −xT

0 Px0.

On the other hand, we can pass to the limit as t1 → ∞ in the already established relation

J̄ t1(u∗) =

∫ t1

t0

(
γ(u∗)T (t)u∗(t) − 1

γ
(y∗)T (t)y∗(t)

)
dt− (x∗)T (t1)Px

∗(t1) = −xT
0 Px0

2A matrix is called Hurwitz if all its eigenvalues have negative real parts.
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where y∗ := Cx∗. In view of the fact that A+ 1
γBB

TP is a Hurwitz matrix, the closed-loop system

ẋ∗ = Ax∗ + Bu∗ = (A+ 1
γBB

TP )x∗ is exponentially stable. We thus obtain J(u∗) = −xT
0 Px0, and

the desired result is proved.

While the formulas appearing here and in Section 6.2 are similar, the meanings of the two
problems are very different. The cost (7.18) no longer reflects the objective of keeping both y and
u small. Instead, this cost is small when y is large relative to u. We can regard u here not as a
control that regulates the output but as a disturbance that tries to make the output large, with the
optimal input being in some sense the worst-case disturbance. Let us try to formulate this idea in
more precise terms. The fact that (7.20) is the optimal cost for the functional (7.18) implies that
the inequality

− xT
0 Px0 ≤

∫ ∞

t0

(
γ|u(t)|2 − 1

γ
|y(t)|2

)
dt (7.24)

holds for all u, with the equality achieved by the optimal control u∗. From now on we focus on the
case when x0 = 0. Specializing (7.24) to this case, after simple manipulations we reach

sup
u∈L2\{0}

√∫∞
t0

|y(t)|2dt
√∫∞

t0
|u(t)|2dt

≤ γ. (7.25)

The fraction on the left-hand side of (7.25) is the ratio of the L2 norms3 of the input and the
output, and the supremum is being taken over all nonzero inputs with finite L2 norms. If we
view the system (7.17), with the zero initial condition, as an input/output operator from L2 to L2,
then (7.25) says that the induced norm of this operator does not exceed γ. This induced norm is
called the L2 gain of the system.

We see that if, for a given value of γ, we can find a matrix P with the three properties listed
at the beginning of this subsection, then the system’s L2 gain is less than or equal to γ. (We do
not know whether γ is actually achieved by some control; note that the optimal control (7.21) is
excluded in (7.25) because it is identically 0 when x0 = 0.) A converse result also holds: if the L2

gain is less than γ, then a matrix P with the indicated properties exists. If we sidestep the original
optimal control problem and only seek sufficient conditions for the L2 gain to be less than or equal
to γ, then it is not hard to see from our earlier derivation that the conditions on the matrix P can be
relaxed. Namely, it is enough to look for a symmetric positive semidefinite solution of the algebraic
Riccati inequality

PA+ATP +
1

γ
CTC +

1

γ
PBBTP ≤ 0. (7.26)

The formula (7.22) then yields

d

dt
V̂ (x(t)) ≤ γ|u(t)|2 − 1

γ
|y(t)|2.

Integrating both sides from t0 to an arbitrary time T , rearranging terms, and using the definition of
V̂ and the fact that P ≥ 0, we have

1

γ

∫ T

t0

|y(t)|2dt ≤ γ

∫ T

t0

|u(t)|2dt+ V̂ (0) − V̂ (x(t)) ≤ γ

∫ T

t0

|u(t)|2dt

3See the definition (1.32) on page 15.
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and in the limit as T → ∞ we again arrive at (7.25).

In the frequency domain, the system (7.17) is characterized by the transfer matrix G(s) =
C(Is − A)−1B. Using Parseval’s theorem, it can be shown that the L2 gain equals the largest
singular value of G(jω) supremized over all frequencies ω ∈ R; for systems with scalar inputs and
outputs, this is just supω∈R |g(jω)| where g is the transfer function. In view of this fact, the L2 gain
is also called the H∞ norm.

7.3.2 H∞ control problem

We saw in the previous subsection how u can play the role of a disturbance input, in contrast with
the standard LQR setting of Chapter 6 where, as in the rest of this book, it plays the role of a
control input. Now, let us make the situation more interesting by allowing both types of inputs
to be present in the system, the task of the control being to stabilize the system and attenuate
the unknown disturbance in some sense. Such control problems fall into the general framework of
robust control theory, which deals with control design methods for providing a desired behavior in
the presence of uncertainty. (We can also think of the control and the disturbance as two opposing
players in a differential game.) In the specific problem considered in this subsection, the level of
disturbance attenuation will be measured by the L2 gain (or H∞ norm) of the closed-loop system.

The H∞ control problem concerns itself with a system of the form

ẋ = Ax+Bu+Dw, y = Cx, z = Ex

where u is the control input, w is the disturbance input, y is the measured output (the quantity
available for feedback), and z is the controlled output (the quantity to be regulated); for simplicity,
we assume here that there are no feedthrough terms from u and w to y and z. The corresponding
feedback control diagram is shown in Figure 7.4. We will first consider the simpler case of state
feedback, obtained by setting C := I so that y = x. In this case, we also restrict our attention to
controllers that take the static linear state feedback form u = Kx.

PSfrag replacements

u

w z

ySystem

Controller

Figure 7.4: H∞ control problem setting

The control objective is to stabilize the internal dynamics and attenuate w in the H∞ sense.
More specifically, we want to design the feedback gain matrix K so that the following two properties
hold:

1) The closed-loop system matrix Acl := A+BK is Hurwitz.
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2) The L2 gain of the closed-loop system from w to z (or, what is the same, the H∞ norm of
the closed-loop transfer matrix G(s) = E(Is − Acl)

−1D) does not exceed a prespecified value
γ > 0.

Note that this is not an optimal control problem because we are not asking to minimize the gain γ
(although ideally of course we would like γ to be as small as possible). Controls solving problems of
this kind are known as suboptimal.

It follows from the results of the previous subsection—applied with the change of notation from
A,B,C, u, y to Acl, D,E,w, z, respectively—that to have property 2 (the bound on the L2 gain) it
is sufficient to find a positive semidefinite solution of the Riccati inequality

PAcl +AT
clP +

1

γ
ETE +

1

γ
PDDTP ≤ 0. (7.27)

To also guarantee property 1 (internal stability of the closed-loop system) requires slightly stronger
conditions: P needs to be positive definite and the inequality in (7.27) needs to be strict. The latter
condition can be encoded via the Riccati equation

PAcl +AT
clP +

1

γ
ETE +

1

γ
PDDTP + εQ = 0 (7.28)

where Q = QT > 0 and ε > 0. (This implies PAcl + AT
clP < 0 which is the well-known Lyapunov

condition for Acl to be a Hurwitz matrix.) Next, we need to convert (7.28) into a condition that
is verifiable in terms of the original open-loop system data. Introducing a matrix R = RT > 0 as
another design parameter (in addition to Q and ε), suppose that there exists a solution P > 0 to the
Riccati equation

PA+ATP +
1

γ
ETE +

1

γ
PDDTP − 1

ε
PBR−1BTP + εQ = 0. (7.29)

Then, if we let K := − 1
2εR

−1BTP , a straightforward calculation shows that the feedback law u = Kx
enforces (7.28) and thus achieves both of our control objectives. Conversely, it can be shown that if
the system is stabilizable with an L2 gain less than γ, then (7.29) is solvable for P > 0.

The general case—when the full state is not measured and the controller is a dynamic output
feedback—is more interesting and more complicated. Without going into details, we mention that a
complete solution to this problem, in the form of necessary and sufficient conditions for the existence
of a controller achieving an L2 gain less than γ, is available and consists of the following ingredients:

1) Finding a solution P1 of a Riccati equation from the state feedback case.

2) Finding a solution P2 of another Riccati equation obtained from the first one by the substitu-
tions B → C and D ↔ E.

3) Checking that the largest singular value of the product P1P2 is less than γ2.

These elegant conditions in terms of two coupled Riccati equations yield a controller that can be
interpreted as a state feedback law combined with an estimator (observer).
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7.3.3 Riccati inequalities and LMIs

As we have seen, a representative example of Riccati matrix inequalities encountered in robust control
is

PA+ATP + CTC + PBBTP ≤ 0 (7.30)

(this is (7.26) with γ = 1). Similar Riccati inequalities arise in the context of several other control
problems. The inequality (7.30) is quadratic in the matrix variable P . However, it can be shown to
be equivalent to the linear matrix inequality (LMI )

(
PA+ATP + CTC PB

BTP −I

)
≤ 0. (7.31)

The matrix on the left-hand side of (7.31) is called the Schur complement of the matrix on the
left-hand side of (7.30). The constraint P ≥ 0 can also be naturally incorporated into this LMI.

Being convex feasibility problems, LMIs can be efficiently solved by known numerical algorithms
from convex optimization. Several dedicated software packages exist for solving LMIs. This makes
conditions expressed in terms of LMIs attractive from the computational point of view.

7.4 Maximum principle for hybrid control systems

Hybrid systems are systems whose dynamics involve a combination of continuous evolution and
discrete transitions. More specifically, in this section we consider hybrid systems described by a
finite collection of control systems and a finite sequence of times (called switching times) which
partition the time interval into subintervals. On each subinterval, the state of the system flows in
accordance with one of the systems from a given collection; at a switching time, the state experiences
an instantaneous jump, and another system from the collection is selected for the next subinterval.
While providing a much richer modeling framework than the continuous control systems considered
elsewhere in this book, hybrid systems definitely violate the assumptions under which we developed
the maximum principle in Chapter 4. In this section, we discuss a suitably extended version of the
maximum principle which applies to hybrid systems.

7.4.1 Hybrid optimal control problem

We begin by defining the class of hybrid control systems and associated optimal control problems that
we want to study. The first ingredient of our hybrid control system is a collection of (time-invariant)
control systems

ẋ = fq(x, u), q ∈ Q (7.32)

where Q is a finite index set; for simplicity, we assume that all the systems in the collection (7.32)
share the same state space R

n and control set U ⊂ R
m. The second ingredient is a collection of

switching surfaces (or guards) Sq,q′ ⊂ R
2n, one for each pair (q, q′) ∈ Q×Q. A function x : [t0, tf ] →

R
n is an admissible trajectory of our hybrid system corresponding to a control u : [t0, tf ] → U if

there exist time instants

t0 < t1 < · · · < tk < tk+1 := tf
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and indices q0, q1, . . . , qk ∈ Q such that x(·) satisfies

ẋ(t) = fqi
(x(t), u(t)) ∀ t ∈ (ti, ti+1), i = 0, 1, . . . , k (7.33)

and (
x(t−i )
x(t+i )

)
∈ Sqi−1,qi

, i = 1, . . . , k.

Here x(t−i ) and x(t+i ) are the values of x right before and right after ti, respectively, and the value
x(ti) is taken to be equal to one of these one-sided limits, depending on the desired convention.
At each possible discontinuity ti, a discrete transition (or switching event) is said to occur. The
function q : [t0, tf ] → Q defined by q(t) := qi for t ∈ [ti, ti+1) describes the evolution of q along the
trajectory; q is often called the discrete state of the hybrid system. We can use it to rewrite (7.33)
more concisely as ẋ(t) = fq(t)(x(t), u(t)) for t 6= ti, i = 1, . . . , k.

We consider cost functionals of the form

J(u, {ti}, {qi}) :=
k∑

i=0

∫ ti+1

ti

Lqi
(x(t), u(t))dt +

k∑

i=1

Φqi−1,qi
(x(t−i ), x(t+i )) (7.34)

where Lq : R
n × U → R is the usual running cost and Φq,q′ : R

n × R
n → R is the switching cost,

for q, q′ ∈ Q. For simplicity, we do not include a terminal cost (this is no loss of generality, as
terminal cost can be easily incorporated into the above running-plus-switching cost along the lines
of Section 3.3.2). We also introduce an endpoint constraint, characterized by a set Eq,q′ ⊂ R

2n for
each pair (q, q′) ∈ Q×Q, according to which the trajectory x(·) must satisfy

(
x(t0)
x(tf )

)
∈ Eq0,qk

. (7.35)

(Here Eq0,qk
plays the same role as S2 at the end of Section 4.3.1.) Then, the hybrid optimal

control problem consists in finding a control that minimizes the cost (7.34) subject to the endpoint
constraint (7.35). We emphasize that the choice of a control u is accompanied by the choice of
two finite sequences {ti} and {qi}, to which we henceforth refer as the time sequence and switching
sequence, respectively.

7.4.2 Hybrid maximum principle

The maximum principle that we are about to state provides necessary conditions for a trajectory x∗(·)
of the hybrid control system corresponding to a control u∗(·), a time sequence {ti}, and a switching
sequence {qi} to be locally optimal over trajectories x(·) with the same switching sequence {qi} and
such that x is close to x∗ on each subinterval (ti, ti+1). Most of the statements of this hybrid maximum
principle are more or less familiar to us from Chapter 4. We proceed with the understanding that
suitable technical assumptions are in place so that all derivatives, tangent spaces, and other objects
appearing below are well defined.

Define the family of Hamiltonians

Hq(x, u, p, p0) := 〈p, fq(x, u)〉 + p0Lq(x, u), q ∈ Q.
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The abnormal multiplier must satisfy p∗0 ≤ 0 as usual. The costate p∗(·) is allowed to be discontinuous
at the switching times ti of x∗, while between these times it must satisfy the adjoint equation

ṗ∗(t) = − (Hqi
)x
∣∣
∗
(t) ∀ t ∈ (ti, ti+1), i = 0, 1, . . . , k.

The transversality condition says that the vector
( p∗(t0)
−p∗(tf )

)
must be orthogonal to the tangent space

to the endpoint constraint set Eq0,qk
at
(x∗(t0)
x∗(tf )

)
, which we write as

(
p∗(t0)
−p∗(tf )

)
⊥ T(x∗(t0)

x∗(tf )

)Eq0,qk
. (7.36)

At the switching times, we also have a set of switching conditions saying that

(
−p∗(t−i )
p∗(t+i )

)
+ p∗0∇Φqi−1,qi

(x∗(t−i ), x∗(t+i )) ⊥ T(x∗(t−i )
x∗(t+i )

)Sqi−1,qi
, i = 1, . . . , k. (7.37)

The nontriviality condition says that either p∗0 6= 0 or p∗ 6≡ 0. The Hamiltonian maximization
condition must hold in the usual sense for each Hqi

on the corresponding interval (ti, ti+1). Moreover,
the Hamiltonian remains constant along the optimal trajectory (in particular, its value is not affected
by the switching events). Finally, for free-time problems the Hamiltonian is 0.

The transversality condition (7.36) is completely analogous to the transversality condition (4.46)
for the case of initial sets discussed at the end of Section 4.3.1. As for the switching conditions (7.37),
the intuition behind them is similar and can be understood as follows. Consider the continuous por-
tions of x∗ which correspond to the subintervals (ti, ti+1), i = 0, . . . , k. Reparameterize the time
individually for each of them so that their domains are all mapped onto the same interval, say,
[s0, sf ]. This allows us to “stack” them all together, i.e., treat them as if they evolve simultaneously.
Then, the transversality condition (7.36) and the switching conditions (7.37) become one aggregate
transversality condition induced by the endpoint constraint and the switching surfaces. The ap-
pearance of the gradient of the switching cost in this transversality condition is also not surprising
because the switching cost becomes a combination of terminal and initial cost (see Section 4.3.1 for
a discussion of transversality conditions for problems with terminal cost).

7.4.3 Example: light reflection

To illustrate the hybrid maximum principle, we apply it to the familiar light reflection example from
Section 2.1.2. We model the propagation of a light ray through the n-dimensional space via the
control system

ẋ = c(x)u, |u| = 1 (7.38)

where x ∈ R
n, c : R

n → (0,∞) is a C1 function that determines the (varying) speed of light, and u
taking values on the unit sphere in R

n defines the direction of motion. We assume that the reflecting
surface is a hyperplane, and without loss of generality we take it to be S := {x : xn = 0}. The initial
point and the final point are assumed to lie in the same open half-space relative to S.

We seek to derive a necessary condition for a trajectory x∗ that starts at a given initial point
x0 at time t0, gets reflected off S at some time t1, and arrives at a given final point xf at time tf
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to be locally time-optimal with respect to trajectories that hit S at nearby points. This optimal
control problem is not inherently hybrid, since (7.38) is a standard control system and it is capable
of producing reflected trajectories. However, the classical formulation of the maximum principle does
not allow us to incorporate the fact that we are only interested in trajectories that hit S along the
way. With the hybrid formulation, it is easy to do so by considering a hybrid system with a single

discrete state location q (i.e., Q = {q}) and the guard Sq,q :=
{(

x
x′
)

: x = x′ ∈ S
}

. In this hybrid

system, discrete transitions occur when the trajectory hits S, but the underlying control system (7.38)
does not change and the trajectory remains continuous. The switching sequence associated with our
candidate optimal trajectory x∗ is {q, q}, and the hybrid maximum principle captures local optimality
over nearby trajectories with the same switching sequence—which is precisely what we want.

Applying the hybrid maximum principle to this problem entails just a few straightforward com-
putations. The Hamiltonian is H = 〈p, c(x)u〉 + p0. The Hamiltonian maximization condition gives
u∗ = p∗/|p∗| and H|∗ = c(x∗)|p∗| + p∗0. Since the final time is free, we have H|∗ ≡ 0 which in
view of the nontriviality condition implies that p∗0 6= 0 and p∗(t) 6= 0 for all t. Normalizing them
so that p∗0 = −1, we obtain c(x∗)|p∗| ≡ 1 hence u∗ = p∗c(x∗). Both the costate p∗ and the opti-
mal control u∗ are continuous except possibly at the switching time t1. Since there is no switching

cost, the switching condition tells us that the vector
(−p∗(t−1 )

p∗(t+1 )

)
must be orthogonal to the tan-

gent space to Sq,q at
(x∗(t1)
x∗(t1)

)
. This tangent space is Sq,q itself, and vectors in it have the form

(x1, . . . , xn−1, 0, x1, . . . , xn−1, 0)
T . It follows that p∗i (t

+
1 ) = p∗i (t

−
1 ) for i = 1, . . . , n−1; in other words,

p∗1, . . . , p
∗
n−1 are continuous at t1, hence so are u∗1, . . . , u

∗
n−1. Only the last component of u∗ can be

discontinuous at t1. But since |u∗| =
√

(u∗1)
2 + · · · + (u∗n)2 is to remain equal to 1, it must be that

u∗n(t+1 ) = ±u∗n(t−1 ), i.e., u∗n either stays continuous or flips its sign at t1. Of these two options, only
the latter is possible because the light ray cannot pass through S. We conclude that the velocity
vectors before and after the reflection differ only in the component orthogonal to the reflection sur-
face, and the difference is only in the minus sign. We have of course recovered the well-known law
of reflection.

7.5 Notes and references for Chapter 7

Our primary reference on manifolds and related mathematical facts was [Arn89] (see in particular
Sections 18, 34, and 37 of that book). Most of this material is also presented in [Jur96] where the
maximum principle on manifolds is discussed too. Two other good sources of basic information
about manifolds, on which we occasionally relied in Section 7.1, are [Arn92, Chapter 5] and [Isi95,
Appendix A]; for further reading on this subject we recommend [Boo03] or [War83]. An in-depth
treatment of the maximum principle on manifolds can be found in [Sus97] as well as in [AS04,
Chapter 12]; see also [Cha11].

A general source of information on PDEs and the method of characteristics is [Gar86]; in our
presentation in Section 7.2 we drew upon Chapter 2 of that book (which also has a section on
the Hamilton-Jacobi theory). References dealing specifically with the connection between the HJB
equation and the canonical equations via characteristics (without going into the details of the general
PDE theory) are [YZ99, Chapter 5] and [BP07, Chapter 7].

All the ingredients of our treatment of the L2 gain are contained in [Bro70, Sections 23 and 25]
and [Kha02, Section 5.3]. Our derivation of the state feedback H∞ controller follows the pa-
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per [Pet87], whereas the general output feedback H∞ controller is presented in the paper [DGKF89]
as well as the book [ZDG96]. A good reference on LMIs, methods for solving them, and their role
in system and control theory is [BGFB94], while [HJ85] supplies relevant technical details on Schur
complements. Although we only considered linear systems for simplicity, most of the concepts de-
scribed in Section 7.3 can be as naturally developed for nonlinear systems (with Hamilton-Jacobi
partial differential inequalities replacing Riccati matrix inequalities); besides the already mentioned
text [Kha02], this topic is discussed in much greater detail in [vdS96].

Section 7.4 is based on the paper [Sus99]. Related work is reported in the papers [GP05]
and [DK08], the latter of which contains the “stacking” argument to which we alluded at the end of
Section 7.4.2. A general reference on hybrid systems is [vdSS00]. Optimal control of hybrid systems
is an active research area; see, e.g., [BWEV05] and the references therein.
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Index

0-norm, 15, 27
1-norm, 15, 27
E-function, see Weierstrass excess function
Ck function, 15
H∞ control problem, 174
H∞ norm, 174
L2 gain, 173

of a nonlinear system, 180
Lp norm, 15

abnormal multiplier, 43, 82
absolutely continuous function, 68
accessory equation, see Jacobi equation
action integral, 40
adjoint system, 75, 96
adjoint vector, 75, 97, 136, see also costate
admissible perturbation, 16
applications of optimal control, 2, 20
arclength, 22

asymptotic stability, 157
augmented cost, 13, 43, 45
augmented system, 85

bang-bang control, 109, 111

bang-bang principle, 111, 112, 122
basic calculus of variations problem, 26
basic fixed-endpoint control problem, 81
basic variable-endpoint control problem, 82
Bellman, 125, 134
Bernoulli, Johann, 24, 25
Bolza problem, 69
boundary conditions

correct number of, 31, 35, 44, 61, 83
brachistochrone, 24, 34, 55, 66, 82
Brouwer’s fixed point theorem, 95

canonical coordinates, 163
canonical equations, 36, 74, 166

as characteristics of HJB equation, 170
canonical variables, 36
Carathéodory, 134, 143
catenary, 23, 44, 55, 58
Cauchy initial value problem, 168

Cauchy-Schwarz inequality, 54
characteristic, 168

characteristic strip, 169

cheap control, 159

commutator, see Lie bracket

compactness, 7, 18, 19

of reachable sets, 119, 123

conjugate point, 52

conservation law, 40

conservative force, 39

constrained optimization, 9

constraint

equality, 9, 82, 162

holonomic, 45

integral, 42

non-integral, 44

nonholonomic, 46, 56

contravariance, 164

control set, 1, 67

control system, 1, 67

normal, 111

on a manifold, 163

controllability, 111, 123, 154, 159

convexity, 7, 8, 19, 20, 96, 119, 176

coordinate chart, 162

corner point, 57

cost functional, 1

augmented, 43, 45

Bolza form, 69

Lagrange form, 70

Mayer form, 70

costate, 75, see also adjoint vector

as covector, 164

cotangent bundle, 163

cotangent space, 163

cotangent vector, see covector

covariance, 165

covector, 163

critical point, 8

cycloid, 25

Dido’s isoperimetric problem, 21, 44

differentiable manifold, see manifold

differential game, 134, 174

differential of a function, 163, 164

disturbance attenuation, 174
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dual space, 163

dynamic programming, 125
discrete, 125

equality constraint, 9, 82, 162
Erdmann, 61

Euler, 31
Euler-Lagrange equation, 30

coordinate invariance, 33, 55

for multiple degrees of freedom, 32
integral form, 33

existence and uniqueness of solution, 67

existence of optimal solution, 31, 55, 118, 123
for linear time-optimal problems, 120

for Mayer problems, 120
for nonlinear time-optimal problems, 123

expensive control, 159

exponential stability, 157
extremal, 31

broken, 58
extremum, 3, 15

strong, 26

weak, 26

feasible direction, 7

Fermat’s principle, 13, 23
Filippov’s theorem, 119, 123

final state, 1, 69

final time, 1, 69
finite escape time, 51, 151

finite-dimensional optimization, 3
first variation, 16

alternative definition, 17, 29

first-order necessary condition, 4, 16
for constrained optimality, 11, 43, 44

for weak extremum, 30
fixed-time, free-endpoint problem, 70

Fréchet derivative, 17, 20

free-time, fixed-endpoint problem, 70
Fuller’s phenomenon, 117

Fuller’s problem, 116, 122

function
Ck, 15

absolutely continuous, 68
locally Lipschitz, 68

measurable, 69

piecewise C1, 27

piecewise continuous, 67
functional, 14

bilinear, 17
linear, 16
quadratic, 17

Gateaux derivative, 16, 20
global minimum, 3, 8, 15, 19

gradient, 4
guard, see switching surface

Hamilton, 36, 134
Hamilton-Jacobi-Bellman (HJB) equation, 130

and maximum principle, 135, 167

characteristics of, 170
for infinite-horizon problems, 132
in calculus of variations, 134, 143

solving, 131, 143
Hamiltonian, 34, 36, 73, 81

as energy, 40

classical vs. modern formulation, 38
Hamiltonian matrix, 147

Hamiltonian maximization condition, 37, 50,
65, 77, 82, 98, 131

Hessian matrix, 6
holonomic constraint, 45
Hurwitz matrix, 172

hybrid system, 176
discrete state, 177

hyperplane
separating, 95, 102
supporting, 112

infinite-dimensional optimization, 14
infinite-horizon problem, 70, 132, 153

integral constraint, 42
inverse function theorem, 12, 44
Isaacs, 134

Jacobi, 51, 134
Jacobi equation, 52

Jacobian matrix, 12

Kalman, 134, 160

Lagrange, 13, 26, 31, 44, 51
Lagrange multiplier, 11, 42, 75

distributed, 45
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Lagrange problem, 70
Lagrangian, 26, see also running cost

augmented, 43, 44
differentiability assumptions, 32, 55

Legendre, 50, 51

Legendre transformation, 37, 55
Legendre’s condition, 50, 64

for multiple degrees of freedom, 50, 56

Legendre-Clebsch condition, 76
Lie bracket, 114
light

reflection, 13, 23, 178
refraction, 23, 25, 55

linear matrix inequality (LMI), 176
linear quadratic regulator (LQR) problem

finite-horizon, 145
infinite-horizon, 153

linearization, 72, 90

Lipschitz condition, 67, 68
local coordinates, 162

canonical, 163

local minimum, 3, 15
locally Lipschitz function, 68
Lyapunov-like function, 155, 172

manifold, 161
embedded, 162

maximum, 3, 15

vs. minimum, 3, 26, 77
maximum principle

and HJB equation, 135, 167

for basic fixed-endpoint control problem,
81

for basic variable-endpoint control prob-
lem, 83

for fixed-time problems, 104
for Mayer problems, 105, 122

for problems with terminal cost, 105
for time-varying problems, 105
higher-order, 123

hybrid, 177
in discrete time, 123
local optimality, 103, 122

nonsmooth, 123
on manifolds, 165
sign convention, 77

stochastic, 123

Mayer problem, 70
McShane, 64, 87
measurable function, 69
minimal time, see time-optimal problem
minimum

global, 3, 8, 15, 19
local, 3, 15
strict, 3, 15
vs. maximum, 3, 26, 77

momentum, 34, 36
angular, 41

multiple degrees of freedom, 26

necessary condition, 77, see also maximum prin-
ciple

first-order, 4, 16
for constrained optimality, 11, 43, 44
for weak extremum, 30

for strong extremum, 60
for strong maximum, 64
for strong minimum, 61
second-order, 6, 18, 49

for constrained optimality, 14
needle perturbation, 87
Newton’s second law, 39
Noether’s theorem, 41, 55
non-integral constraint, 44
nonholonomic constraint, 46, 56
nontriviality condition, 104
norm, 15
normal system, 111

observability, 157, 159
optimal control, 1, 71

bang-bang, 109, 111
singular, 113

optimal control problem, 1, 67
Bolza form, 69
hybrid, 176
Lagrange form, 70
Mayer form, 70
on a manifold, 163

parking problem, 2, 108
partial differential equation (PDE), 130, 140,

167
pendulum, 45, 161
Perron’s paradox, 118
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perturbation
admissible, 16
needle, 87
spatial, 87
temporal, 87

piecewise C1 function, 27
piecewise continuous function, 67
Pontryagin, 83, 87
principle of least action, 40, 54, 55
principle of optimality, 86, 128, 134

quadratic form, 17

reachable set, 111, 119
regular point, 9
Riccati equation

algebraic, 154
unique positive definite solution, 158

differential, 51, 54, 148
global existence of solution, 151
reduction to linear differential equation,

51, 54, 149
solving, 152, 160
steady-state solution, 154

Riccati inequality, 173, 175
reduction to LMI, 176

robust control, 174
running cost, 1, 26, 69

Schur complement, 176
second variation, 18

alternative definition, 19
second-order necessary condition, 6, 18, 49

for constrained optimality, 14
second-order sufficient condition, 6, 18, 53

for constrained optimality, 14
separating hyperplane, 95, 102
single degree of freedom, 26
singular arc, 113
Snell’s law, 23, 25
spatial control perturbation, 87
stability, 156
state feedback, 109, 122, 127, 135, 147
stationary point, 4
strict minimum, 3, 15
strong extremum, 26
sub-differential, 138
suboptimal control, 175

sufficient condition, 6, 18, 78, 132
for constrained optimality, 14
for strong minimum, 65, 80
for weak minimum, 53

super-differential, 137
supporting hyperplane, 112
surface, 8, 82, 162
switching condition, 178
switching cost, 177
switching curve, 109, 117
switching function, 113
switching surface, 176
switching time, 176
symplectic form, 166

tangent bundle, 162
tangent space, 9, 162

characterization of, 10, 20, 83
tangent vector, 9
target set, 70
temporal control perturbation, 87
terminal cone, 93
terminal cost, 1, 69
terminal state, 1, 69
terminal time, 1, 69
test function, 139
time-optimal problem, 2, 66, 107, 120, 122
transition matrix, 91
transversality condition, 35, 55, 83, 100

for Cauchy problem, 169
for initial sets, 107, 178

unconstrained optimization, 3
completely, 3

value function, 127
as viscosity solution, 141
nondifferentiable, 136

variable initial state, 107, 177
variable-endpoint problem, 82

in calculus of variations, 34, 55
variation

alternative definition, 17, 19
first, 16
second, 18

variational equation, 53, 90
viscosity

physical interpretation, 141, 143



190 DANIEL LIBERZON

solution, 140
of HJB equation, 141

subsolution, 140
supersolution, 140

weak extremum, 26
Weierstrass, 61, 64
Weierstrass excess function, 61
Weierstrass necessary condition, 61
Weierstrass theorem, 7, 19
Weierstrass-Erdmann corner conditions, 60, 64

Zeno behavior, see Fuller’s phenomenon
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