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Abstract

Python Tools for the Investigation of Optimal Explicit Runge-Kutta
Methods

By

Shivam Singla

The investigation of many real-world applications involves mathematical models that consist
of systems of ordinary differential equations (ODEs). This thesis mainly focuses on the ODEs
with the initial values known as initial value ordinary differential equations. These equations
are typically solved using numerical methods to obtain approximate solutions. A popular class
of numerical methods to solve an initial value ODE are the Explicit Runge-Kutta (ERK) methods.
This thesis considers Python software for the investigation of ERK methods. ERK methods can
be used to obtain approximate solutions at a discrete set of points across the domain of
interest, with h being the distance between the points. An ERK method is said to be of order
p if the error of the numerical solution is proportional to AP. In this thesis, we consider Python
software for the determination of optimal ERK methods of orders 1 to 4. The Python software
also has the capability to solve a set of test problems using various ERK methods in order to
allow for a comparison of the accuracy of the numerical solutions obtained from the ERK
methods. The Python software can also be used to extend the discrete approximate solutions
from the ERK methods to obtain continuous approximate solutions over the entire domain
using Hermite interpolation. To assess the accuracy of the continuous solution approximation,
the software can also be used to compute the defect of the continuous approximate solution,
where defect is the amount by which the continuous approximate solution fails to satisfy the
ODE.

Date: September 09, 2021
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Chapter 1

Introduction

Initial Value Ordinary Differential Equations (ODEs) arise within mathematical models in a wide
variety of applications such as the Predator-Prey problem, COVID-19 models, population
growth and decay problems, survivability with AIDS problems, economics and finance
problems, etc. Typically, these initial value ODEs are too complicated to be solved by hand.
Approximate numerical solutions must be computed. There are a wide variety of numerical
methods for solving initial value ODEs, but in this thesis, we are going to focus on one of the

most popular classes of methods called ‘Explicit Runge-Kutta methods’.

In this thesis, we survey specific examples of Explicit Runge-Kutta methods that have been
developed over the years. We also show the general forms of Explicit Runge-Kutta methods of
orders 2,3 and 4. These general forms have free coefficients. One important part of this thesis
involves determining optimal values for these free coefficients so that the methods are as
accurate as possible. We have developed Python software for determining optimal values for
the free coefficients based on minimization of the Principal Error Coefficient (to be defined in

Chapter 2) of the Runge-Kutta method.

We also compare some standard Explicit Runge-Kutta methods with the Runge-Kutta methods
that have optimal values for the free coefficients. The comparison involves applying these
methods to solve various initial value ODEs. We use a Python tool we have developed for
applying Explicit Runge-Kutta methods to selected test initial value ODEs. The tool computes
the error at the end of the time domain for the problems that have a known exact solution

along with the stepsize used and the order of convergence (to be defined in Chapter 2). For



the problems with an unknown exact solution, the Python tool provides the numerical solution

approximation at the end of the time domain along with the stepsize used.

The Explicit Runge-Kutta methods give discrete solution approximations at certain points
across the domain. Based on the use of Hermite interpolants, we can extend the discrete

solution to produce a continuous solution approximation across the whole domain.

However, the quality of this continuous numerical solution must be assessed. Once we have
computed the continuous solution approximation, we plug it into the initial value ODE to check
how large the defect is. The defect is the amount by which the continuous approximate
solution fails to satisfy the differential equation. The Python tool also computes the defect for
the continuous approximate solution. Then, it provides a plot of the continuous approximate
solution and a plot of the defect, which gives a measure of the accuracy of the continuous

approximate solution.

In this thesis, we investigate an important question regarding choosing the free coefficients of
a general ERK method to minimize the Principal Error Coefficient of the method. The actual
error of a computed numerical solution depends on the linear combination of products of the
components of the Principal Error Coefficient and higher derivatives of the right hand side of
the ODE. On the other hand, the Principal Error Coefficient has components that depend only
on the ERK method. This means that there is a difference between choosing the free
coefficients of an ERK method to minimize the Principal Error Coefficient and minimizing the
actual error of a numerical solution computed by the ERK method. Therefore, we expect that
the optimal ERK methods obtained by minimizing only the Principal Error Coefficient may not
deliver the smallest error, depending on the problem, especially for cases where the standard
methods are nearly optimal. Based on numerical testing on a set of test initial value ODEs, we

investigate how often the optimal ERK methods are actually able to deliver the smallest error.



As mentioned above, a standard use of an ERK method provides a set of discrete solution
approximations at points across the problem domain. A standard ERK solver would employ an
algorithm for estimating the error of the discrete solution approximations and adjusting the
ERK methods so that the error for each discrete solution approximation is less than a user-
provided tolerance. Another important aspect of this thesis is to introduce a simple method
for extending the discrete solution to contain a continuous approximate solution for which the
accuracy can be assessed by examining its corresponding defect. As the continuous numerical
solution is the solution that is returned to the user by current ODE solvers, it is important to
assess the accuracy of the continuous approximate solution rather than only the discrete

approximate solution.

The thesis is organized as follows:

1. Chapter 2 Background: This chapter includes an explanation of the Initial Value ODEs,

general and standard forms of ERK methods, optimal ERK methods along with order
conditions and Principal Error Coefficients, continuous approximate solutions,
Hermite interpolants and the computation of the defect.

2. Chapter 3 Software Implementation: This chapter includes the documentation and

description of the Python software created for optimization of the ERK methods. It
also includes the Python software for testing ERK methods and obtaining a continuous
approximate solution and its defects.

3. Chapter 4 Results and Discussion: This chapter includes the results of the optimization

software and the discussion on the optimal ERK methods and their comparison with
standard methods. It also includes the experimental confirmation of the order of
convergence of the methods along with the comparison between the standard ERK

methods and optimal ERK methods when used on the test initial value ODEs. Finally,



this chapter includes the results and discussions on the continuous approximate
solutions and their corresponding defects.

4. Chapter 5 Summary, Conclusions, and Future Work: This chapter includes the

summary and conclusions of this thesis along with some suggestions for future work.
5. Appendix: The appendix includes the python scripts which build the optimization
software as well as the software for testing the ERK methods and computing

continuous approximate solution and their defects.



Chapter 2

Background

In this chapter, we first introduce Initial Value Ordinary Differential Equations (IVODEs) with
examples as well as numerical methods for solving those IVODEs. We focus on Explicit Runge-
Kutta (ERK) methods [Butc87]. We present the general form for ERK methods and provide
some examples. Then, we discuss order conditions [Butc87] and Principal Error Coefficients
[Butc87] for ERK methods and explain how these can be used to obtain optimal ERK methods
of a given order. This chapter also includes an overview of continuous extensions [Butc87] of
discrete solutions from ERK methods. Finally, we discuss assessment of the quality of the
continuous solution approximation based on the computation of the defect [Enri89] of the

continuous numerical solution.

2.1 |Initial Value Ordinary Differential Equations

An IVODE, also known as Initial Value Problem (IVP), is an ordinary differential equation (ODE)
together with an initial condition. The initial condition specifies the initial value of the solution
to the ODE at a specific point in the domain. In this section, we show the general form for an

IVODE and give some examples that we use later in the thesis as test problems.
2.1.1 General Form
The general form of an IVODE is
y:R->R™ and y'(t) = f(t,y(®)),
in which f: R X R™ — R™. It also has an initial condition which specifies

y(to) = Yo



where t, is a given point and y, € R™ is a given constant vector.

For m > 1, y(t) is the vector (yl(t),yz(t),...,ym(t))T and the differential equation is

replaced by a system of equations,

Yi®) = fi(ty1(0),y2(0), . ym (@),  i=1,2,..,m.
2.1.2 Examplel
First, we start with an example of an IVODE [SAP97],

y' = =2xy?

with initial value, y(0) = 1 and exact solution,

y(x)=1+x2.

The final t value for this IVODE that is used in this thesis is 1.

2.1.3 Example 2

This is another example of an IVODE [SAP97],

with initial value, y(0) = 1 and exact solution,

1
YO = s

The final t value for this IVODE that is used in this thesis is 1.

2.1.4 Example3

The next example of an IVODE is [SAP97],



with initial value, y(0) = 1 and exact solution,

20
yx) =———.
1+419e74

The final t value for this IVODE that is used in this thesis is 1.
2.1.5 Example4

Another example of an IVODE is [SAP97],

! —ax

y =—ay—e sinx,

where «a is a constant between 0 and 1. We choose @ = 0.1 for our computations in this thesis.

The initial value for this IVODE is y(0) = 1 and the exact solution is,

y(x) = e ** cosx.

The final t value for this IVODE that is used in this thesis is 1.

2.1.6 COVID-19 Model Example

This example for an IVODE is a standard COVID-19 model, an example of a SEIR epidemiological

model, involving the following system of equations [Chri20],

' BY1Y3

y=-——p THN—uy,
. Byiy

Vy = #— (a + wy,,

yv: =ay, — (¥ + wys,

Vi = VY3 — UYa,

where

vy, = S: Susceptible,

vy, = E: Exposed,



y3 = I: Infected,
y4 = R: Recovered,
and the constants are,

0,01

1
=—, =0.9, = 0.06, =—), N = 37.741 x 10°.
a=g P 14 =365

The initial conditions for this IVODE are y(0) = [N — y, — y3; ¥2; ¥3; 0], where y, = 103

and y;=1.

The final time that is used in this thesis is tr = 150.

2.2 Numerical Methods for Solving IVODEs: Explicit Runge-Kutta
Methods

To find the approximate solution of IVODEs, we use a popular family of methods known as the
‘Explicit Runge-Kutta (ERK) methods’. These methods are a generalization of the ‘Euler
method’, also known as the ‘Forward Euler method’. A member of the Runge-Kutta family
which is the most widely known method of this type, is the ‘RK4 method’, which is also known
as the ‘classical Runge-Kutta method’ or just ‘the Runge-Kutta method’. The order of
convergence for the ‘RK4 method’ is 4. The global error of an ERK method is the difference
between the numerical solution it computes and the exact solution to an IVODE. The global
error is proportional to some power of h, where h is the stepsize used by the ERK method.
When the global error is proportional to hP, we say that the global error is O (h?), and the ERK

method is said to be of order p.
2.2.1 General Form

An ERK method can be used to obtain discrete numerical solution approximations, y,, = y(t,),
at a set of points, t,, = ty + nh, where h is the stepsize used by the ERK method. (h is the

distance between the t,, values.)



The general form for an s stage ERK method [Butc87] is,
Ynt+1 = Yn + h(biky + byky + -+ + bsky),
forn=20,1,2, ..., where
ki = f(tn yn),
ky = f(ty + c2h, yp + h(az1k1)),

ks = f(tn + c3h, y, + h(ag kg + a32k2)),

kS = f (tn + Csh, Yn + h(a51k1 + aszkz + -+ asls_lks_l)).

The vectors kq, ko, ..., kg, are called the stages of the ERK method. To obtain a specific ERK
method, one must specify the integer s (the number of stages), and the coefficients a;;
(for1<j<i<s),b; (fori =1,2,..,s) and ¢; (fori = 2,3, ...,s). These coefficients are
determined by requiring them to satisfy a set of equations known as Runge-Kutta order

conditions. We discuss these conditions later in this chapter.

The matrix A with the elements qa;; is called the Runge-Kutta matrix, with b; and ¢; known as

the weights and the nodes respectively.

The coefficients that define an ERK method are usually stored in a table, known as a Butcher

tableau (named after John Butcher):

0
(&) azy
C3 asq as;
Cs sy Qs Ass—1
by b, bs_4 b




where (usually)

...
|
=

a;j =¢; fori=23,..,s.
1

j
2.2.2 The First Order ERK Method: The Forward Euler Method

The most basic explicit method for numerical integration of ordinary differential equations is

the ‘Forward Euler (FE) Method’. It is the simplest example of a Runge-Kutta method.
For the general IVODE defined above, i.e.,

y'(®) =f(ty®),  y(to) =vo

and for a given solution approximation, y,, at t,,, with a stepsize h, the FE method has the

form

Yns1 =Vn +h f(ty,yn) forn=0,1,2, ...

This method is simple to use and works reasonably well. It is a first order method which means
that if the stepsize h is reduced by a factor of 2, then the error will also be reduced by a factor
of 2. The FE method has a global error that is O (h), which means that the order for FE method

is 1. The global error for y, is e,, = |y, — ¥ ()|
2.2.3 Second Order ERK Methods

A second order ERK method is a method which has order 2 and provides twice the accuracy of
the FE method. This means that if the stepsize h is reduced by a factor of 2, then the error will

be reduced by a factor of 4. The global error for these methods is 0 (h?).
2.2.3.1 General Form
The general form for a two-stage, second order ERK method is

Yn+1 = Yn + h (biky + byky),

10



forn=20,1,2, ..., where
kl = f(tn) yn)l and
ky = f(tn + c2 h, yu + h(az kq)).

This method is called a two-stage method because it involves two stage evaluations. The first

stage is

ky = f(tn yn)

and the second is

k, = f(tn + ¢ h, yu + h(az, k1))-

The Butcher tableau for a two-stage, second order ERK method is:

0 0 0
C2 az1 0
by b,

Here, the matrix 4 is

0 0
c, 0f

the weights are
1 1 ]

b=[1-5- 5=
2¢c; 2c,

and the nodes are
c=[0 ¢l

In order for this general two-stage ERK method to be second order, the coefficients must be
chosen to satisfy order conditions. These conditions are discussed later in this chapter. When

the conditions for second order are imposed on the coefficients of the general, two-stage,

11



second order ERK method, it turns out that all the coefficients can be expressed in terms of

one free coefficient.

The Butcher tableau storing the coefficients for a two-stage, second order ERK method

[Butc87] is:
0 0 0
cy Cy 0
1
2C2 2C2

Substituting the coefficient values into the general form, we get

1 1
Yn+1=Ynth (1 - _>f(tn'yn) + _f(tn + czh, yu + Czhf(tn'tn)) .
2C2 2C2

There are several well-known two-stage, second order ERK methods, but we discuss only two
of them. Those two methods are the Explicit Midpoint method [Butc87] and Heun’s method

[Butc87].
2.2.3.2 Explicit Midpoint Method

The Explicit Midpoint method is a two-stage, second order ERK method with the coefficient

1
value ¢, = >

I 1.
After substituting the value ¢, = 5 into the general form of two-stage, second order ERK

method, we get

h h
Yn+1 =In + hf<tn +E' In +§ f(tnryn)>

forn =0,1,2,.... The Butcher tableau for the Explicit Midpoint method is:

12



The name of the method itself suggests what’s happening in the formula above. We can see
that the first argument of the function f is evaluated at t,, + %, which is the midpoint between

t, and t, ;1. Note, the second argument of the function f looks like the FE method but with
half the stepsize. In order to utilize this method, we first use the FE method with half the
stepsize to compute a solution approximation and then use that approximation as the second
argument for the function f to obtain the solution approximation at the end of the step. The

two-stages involved in the computation of the Explicit Midpoint method are:

ky = f(tn'Yn) and
h h h h
ky=f tn"'z; Yn+z [t vn) :f(tn+5r Yn+5k1>-

The Explicit Midpoint method provides more accurate results for a given choice of h, but it

requires a bit more computation than the FE method.
2.2.3.3 Heun’s Second Order Method

Heun’s second order method is a two-stage, second order ERK method with the coefficient
value ¢, = 1. After substituting the value ¢, = 1 into the general form of two-stage, second

order ERK method, we get

1 1
Yne1=Ynth (Ef(tn:yn) + Ef(tn +h, yp + hf(tn:yn))>'

h
Yn+1 = Yn + E(f(tn: yn) + f(tn+1: In + hf(tn:yn)))

forn =0,1, 2, .... The Butcher tableau for the Heun’s second order method is:

13



0 0 0
1 1 0
1 1
2 2

Note, in this method, the second argument of the second function f is from the FE method.

We first obtain the solution approximation by using FE method and then use that

approximation as the second argument in the second function f to find the solution

approximation at the end of the step.

2.2.4 Third Order ERK Method

In this subsection, we discuss three-stage, third order ERK methods. This means that if the

stepsize his reduced by a factor of 2, then the error will be reduced by a factor of 8. The global

error for these methods is 0 (h3).

2.2.4.1 General Form

The general form for a three-stage, third order ERK method is

Yn+1 = Yn + h (biky + byk; + b3ks),

forn=20,1,2, ..., where

ky = f(tn'yn)'
k2 = f(tn + Cy h, Yn + h(a21 kl)) and
ks = f(tn + c3h, yp + h(az ky + a32k2)).

The general Butcher tableau for three-stage, third order ERK method is:

14



0 0 0 0
cy ayq 0 0
C3 aszq aszz 0

by b, bs

where

CZ = a21 and C3 = a31 + a32.

The coefficients must satisfy the order conditions for third order. When the order conditions
are imposed, the coefficients of the method can all be expressed in terms of one or two free

coefficients. It turns out that three-stage, third order methods have three different cases

[Butc87].
Case 1. A 2-parameter family of three-stage, third order ERK methods with the conditions,
2
Cy * 0,5 ,C3,C3 * O,Cz.

In this case, there are two free variables ¢, and c3. The Butcher tableau storing

the coefficients for a three-stage, third order method for this case is:

0 0 0 0
cy Cy 0 0
c c3(c3 — 3¢, + 3¢5) c3(c; —c3) 0
3 c,(3¢c, — 2) c,(3¢c, — 2)
2 —3(c; + c3) + 60503 cs _% %_ cy
6c2¢3 2¢5(c3 —¢3) 2¢c3(c3 —¢3)

Here, the matrix 4 is

0 0 0
cy 0 0
" es(ez =3¢, +3¢3) 3, —¢3) ’

0
c2(3c; — 2) c2(3¢c; —2)

15



the weights are

2 2
b= 2_3(C2+C3)+6C2C3 C3_§ §_C2
6cyc3 2c5(c3 — ) 2c3(c3 —¢3)

and the nodes are

c=[0 ¢ c3].

Substituting the coefficient values in the general form, we get

2 2
2_3(C2 +C3) +6C2C3 C3 _g §_C2
=y,+h _— —2 1k
Ynt1 = In ( 6cyc3 ! 2c5(c3 — ¢3) 2 2¢c3(c3 —¢3) 3
forn=20,1,2, ..., where
kl = f(tn'yn)r

k, = f(tn +cyh, oy, + h(C2k1))'

_ c3(c3 — 3¢, +3¢3) c3(cz — ¢3)
ks = f| to +csh, yn+h<< e LR b e L8

Case 2. A l-parameter family of three-stage, third order ERK methods with the condition,

by # 0.

In this case, there is only one free variable, b;. The Butcher Tableau storing the

coefficients for a three-stage, third order method for this case is:

0 0 0 0
2 2
z 2 0 0
3 3
0 ! ! 0
4b, 4b,
1 3
1 2 b
2 b3 4 3

16



Here, the matrix A is

0 0 0
2 0 o0
A=| 3 ,
1 1
4b, 4b,

the weights are
1 3

and the nodes are

Substituting the coefficient values in the general form, we get

1 3
Yne1=Ynth ((Z - b3) ky + Zkz + b3k3>
forn=20,1,2, ..., where

kl = f(tn' yn)'
2h 2k,
o= et gonen(F))

h
ks=f (tn'Yn + m(kz - kl))-

Case3. A l-parameter family of three-stage, third order ERK methods with the condition,

by # 0.

In this case, there is only one free variable, b;. The Butcher Tableau storing the

coefficients for a three-stage, third order method for this case is:

17



0 0 0 0
2 2
- - 0 0
3 3
2 8b; — 3 1 .
3 12b, 4bs
1 3
- 2 b
4 3 bs 3

Here, the matrix A is

0 0 O
2 0 o0
A= 3 ,
8h;—3 1 0
12b; 4bs
the weights are
13
= [z 2 b3 by
and the nodes are
c= [0 2 ]
3

Substituting the coefficient values in the general form, we get

k, /3
Yne1=Ynth (Z + (Z - b3> k, + b3k3>

forn=0,1,2, ..., where

kl = f(tnr yn):

2h 2k,
o= flt 5ot (F)

2h h (/8bs—3
k3=f tn+?,yn+4_b3 ( 3 )kl‘l'kz .

18



There are several well-known three-stage, third order ERK methods, but we discuss only two
of them. The two methods are Heun’s third order method [Butc87] and Ralston’s third order

method [Butc87].
2.2.4.2 Heun’s Third Order Method

Heun’s Third Order method is a three-stage, third order ERK method, Case 1, with the

- 1 2 — 1 2.
coefficient values ¢, = 3 and ¢z = 3 After substituting the values ¢, = 3 and c3 = 5 into the

general form of three-stage, third order ERK method, Case 1, we get

h
Yn+1 =Yn t+ 1 (k1 + 3k3)
where

ky = f(tn'Yn)'
h kq
o= f (3 m+05)

2h 2k2)

k3=f(tn+?,yn+h7

forn =0,1, 2, .... The Butcher Tableau for the Heun’s third order method is:

0 0 0 0
1 1
- - 0 0
3 3
2 2
- 0 - 0
3 3
1
1 0 3
4 4

19



2.2.4.3 Ralston’s Third Order Method

Ralston’s Third Order method is a three-stage, third order ERK method, Case 1, with the

- 1 3 — 1 3.
coefficient values ¢, = > and ¢z = " After substituting the values ¢, = > and c3 = L into the

general form of three-stage, third order ERK method, Case 1, we get

Yn+1 = Yn +g(2k1 + 3k + 4ks3)
where
ki = f(tn, yn),
ky = f(tn _|_ﬁ, Yn t hﬁ),
2 2

3h 3k,
ko= f (6 + 5+ h2)

forn = 0,1, 2, .... The Butcher Tableau for the Ralston’s third order method is:

0 0 0 0
1 1
Z - 0 0
2 2
3 3
Z 0 - 0
4 4
2 1 4
9

2.2.5 Fourth Order ERK Method

For a fourth order ERK method, if the stepsize h is reduced by a factor of 2, then the error will

be reduced by a factor of 16. The global error for these methods is O (h*).

2.2.5.1 General Form

The general form for a four-stage, fourth order ERK method is

20



Yn+1 = Yn + R (biky + byky + bsks + byky),
forn=20,1,2, ..., where
ki = f(tn, yn),
ky = f(tn + 2 h, yu + h(az k1)):
ks = f(tn +c3 h, y, + h(ag 1k, + a32k2)) and
ky = f(tn + co by Y + h(agiky + agzky + agsks)).

This method is called a four-stage method because it involves the four stage evaluations given

above. The general Butcher tableau for a four-stage, fourth order ERK method is:

0 0 0 0 0
C2 azy 0 0 0
C3 asq aszz 0 0
Ca Asq (P Ay3 0

b, b, bs b,

The coefficients must satisfy the order conditions for fourth order. When these order
conditions are imposed, the coefficients of the method can all be expressed in terms of one or
two free coefficients. It turns out that, the four-stage, fourth order methods have five different

cases [Butc87].

Casel. A2-parameter family of four-stage, fourth order ERK methods with the conditions

0, cy, 3,1 all distinct; ¢, # %and 3 —4(cy; +c3) + 6¢yc5 = 0.

In this case, there are two free variables, ¢, and c3. The Butcher Tableau storing

the coefficients for a four-stage, fourth order ERK method for this case is:

21



0 0 0 0 0
cy cy 0 0 0
c c3(3¢c; — ¢3 — 4cF) c3(c3 — ¢3) 0 0
3 2¢,(1 — 2¢) 2¢,(1 — 2¢)
1 Qg1 Q42 43 0
1—2(c; + c3) + 6c5¢5 2c3—1 1-2¢, 3 —4(c, + c3) + 60,05
12c,¢5 12¢;(c3 — ) (1 —¢3)  12¢3(c3 — c2)(1 —¢3) 12(1 = ¢c2)(1 —¢c3)
where

_ c5(12¢F —12¢, +4) — ¢3(12¢5 — 15¢, +5) + (4c — 6c, + 2)
a1 = 2C2C3(3 - 4‘(C2 + C3) + 6C2C3) ’

(A5 + 503t —2)(A - ¢y)
"~ 2cy(c3 — 3)(3—4(cy + c3) + 6c503)°

Ay42

_ (1=2¢)A —c3)A =)
c3(c3 — ) (3 —4(cy + ¢3) + 6cy03)

QA3

Here, the matrix 4 is

0 0 0 0
Cy 0 0 0
A=|c3Bc; —c3—4c5)  c3(c3—cp) 0o ol
2¢c,(1 — 2¢y) 2¢,(1 — 2¢y)
2% Qg2 ass 0

where a,q, a4, and a,3 are as given above. The weights are

1—2(cy + ¢3) + 6¢5¢5 2c;—1 1-2c, 3 —4(cy + ¢3) + 6¢y¢5
b= [
12¢,¢5 12¢,(c5 —c)(1 —¢3) 12¢5(c3 —c)(1 —c3) 12(1 —¢c)(1 —¢3)

and the nodes are
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Case 2.

A 1-parameter family of four-stage, fourth order ERK methods with the conditions

1
C2=C3=E,b3¢0.

In this case, there is only one free variable, b;. The Butcher Tableau storing the

coefficients for a four-stage, fourth order ERK method for this case is:

0 0 0 0 0
1 1
L - 0 0 0
2 2
3by — 1 1
- — 0 0
2 6bs 6bs
1 0 1 — 3b, 3b, 0
1 2 1
- Z_p b -
3 3 3

Here, the matrix A is

0 0 0 0
! 0 0 0
| 2
A=13p,—1 1 :
— 0 0
6bs 6bs
0 1-3b; 3b; 0

the weights are

and the nodes are

N~
N =
—_
—
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Case 3. A 1-parameter family of four-stage, fourth order ERK methods with the conditions

1
C2 =E,C3=0,b3 :ptO

In this case, there is only one free variable, b;. The Butcher Tableau storing the

coefficients for a four-stage, fourth order ERK method for this case is:

0 0 0 0 0
1 1 0 0 0
2 2
0 ! 1 0 0
12b, 12b,
1 3
1 —Z_6b e 6b 0
2 3 2 3
1 2 1
Z_p z b -
6 3 3 3 6

Here, the matrix 4 is

0 0 0 O
L 0O 0 0
2
_ 1 1
A=l _ 0o of
12b;  12b,
1 3
—5—6bs S 6by 0

the weights are

and the nodes are
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Case 4.

A 1-parameter family of four-stage, fourth order ERK methods with the conditions

1
C2 = 1,C3 =E,b4, :ptO

In this case, there is only one free variable, b,. The Butcher Tableau storing the

coefficients for a four-stage, fourth order ERK method for this case is:

0 0 0 0 0
1 1 0 0 0
1 3 1
— — — 0 0
2 8 8
1 1 ! 1 ! 0
4b, 12b, 3b,
1 1
Z Z_p z b
6 6 ¢ *
Here, the matrix A is
0 0 0 O
1 0 0 O
3 1 0 0
A=l 3 8 '
1 1 1 0
4b, 12b, 3b,
the weights are
_ [1 1 ) 2 b ]
6 6 * 3 *

and the nodes are
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Case 5. A 1-parameter family of four-stage, fourth order ERK methods with the conditions

1
C2 * 0,C3 =E,b2 = 0.

In this case, there is only one free variable, b,. The Butcher Tableau storing the

coefficients for a four-stage, fourth order ERK method for this case is:

0 0 0 0 0
cy Cy 0 0 0
1 4cy, — 1 1
= 2 — 0 0
2 8¢, 8¢,
1 1—2cy 1 ) 0
2c, 2c,
1 2 1
Z 0 Z Z
6 3 6

Here, the matrix A is

0 0 0 0
Cy 0 0 0
4c, — 1 1 0 0
A= 8c, 8c, ’
1—2c, 1 2 0
2c, 2c,
the weights are
_ [1 0 2 1]
6 3 6
and the nodes are
c= [0 C; = 1]-

There are several well-known four-stage, fourth order ERK methods, but we discuss only two

of them. Those two methods are the Classical Runge-Kutta method and the 3/8 Rule method.
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2.2.5.2 The Classical Runge-Kutta Method

The most widely known and used type of Runge-Kutta method is known as the ‘“classical

Runge-Kutta method’, ‘RK4 method’ or ‘the Runge-Kutta method’ [Butc87]. It is a four-stage,

fourth order ERK method, Case 2, with the coefficient value, b; = é After substituting the

value b; = % into the general form of four-stage, fourth order ERK method, Case 2, we get

h
Yn+1 =Yn + 3 (k1 + 2k + 2k3 + ky),

where

ki = £ty
h ky
o= f (g m+07)
h k,
ks =tz m+h=),

ky = f(tn +h yn +hk3)

forn =0,1,2,.... The Butcher Tableau for the classical Runge-Kutta method is:

0 0 0 0 0

1 1

Z - 0 0 0

2 2

1 1

- 0 - 0 0

2 2

1 0 0 1 0
1 1 1
6 3 6
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2.2.5.3 The 3/8 Rule Method

The 3/8 Rule method [Butc87] is a four-stage fourth order ERK method from Case 1 with

- 1 2 — 1 2.
coefficient values, ¢, = 3 andcz = 3 After substituting the values ¢, = 3 and c3 = 3 into the

general form of four-stage, fourth order ERK method, Case 1, we get

1 3 3 1
Y = Y+ B (Sl + 2k +2ks + Sy,
where

kl = f(tnrYn)’

h kq
k; zf(tn +§' Yn +h?),

2h k,
ks=f|ty+—, Yn+h<__+k2) )
3 3
ky = f(tn +h yn+ h(ky — ky + k3)).

forn =0,1,2,.... The Butcher Tableau for the 3/8 Rule method is:

0 0 0 0 0

1 1

= = 0 0 0

3 3

2 1

- —— 1 0 0

3 3

1 1 -1 1 0
1 3 3 1
8 8 8 8

2.3 Optimal ERK methods

From the discussion on ERK methods in the previous section, we now have general forms for

ERK methods for second, third and fourth order. In this section, we are going to discuss the
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order conditions and Principal Error Coefficients for ERK methods. Then we discuss how to

determine optimal values for the free coefficients that appear in the general forms.

2.3.1 Order Conditions

We can obtain Runge-Kutta order conditions by comparing the Taylor series expansion of the
exact solution with the Taylor series expansion of the solution given by the Runge-Kutta
method [HNW87]. In order to give an example of how the order conditions can be obtained,
we consider the case of the general three-stage, third order ERK method. Let’s consider the

IVODE,

y' =f(y)

and assume f is sufficiently smooth. Let

y=y®, y=y@®© y'=y"@O y"=y"®,

af (x, 32f (x,
Ferey), =D g 0T
9%f(x,y) 9%f (x,y)
fxy = fyx = axay_, fyy = —azy .

Using a Taylor series expansion of the exact solution, we have

h? h3
.V(xn+1) = Y(xn) +h y,(xn) + 7}/”(3571) + ?y,”(xn) + 0(h4)-

Now, the derivative of y(x,,) is

y,(xn) = f(xnry(xn)) =f.

The second derivative of y(x,,) is

Loy
9

" (in) = 32 G ¥ i) = 5+ 5 2= Fe fy .

Finally, the third derivative of y(x,,) is
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ym(xn) = ZZT]; (xn: Y(xn)) = % (fx (xru y(xn)) + fy (anY(xn))f(xn' Y(xn)))
= [% (fx (xn; Y(xn)))] + [% (fy (xn’ y(xn))f(xn’ Y(xn)))]

d Jd . ad d d
= [afx + @fx %] + [f(xn;y(xn))afy(xnryocn))] + [fy(xnIY(xn))af(xn:y(xn))]

_ dfy 0f, dy af of dy
_[fxx+fyxf]+[f<a+aa>]+[y(a+$a>]

= [fox + fox f1+ [f iy + - O+ (K (e + £ )]
= fex + 2f fiy + F2fyy + fy (fi + 13-
Let
F=fotffy and G = fio +2ffoy + [P fyys

then

h2 h3
YGtns1) = y(n) + hf +—F + ?(ny +G)+0(hY) ...(D).

Next, let’s consider the three-stage, ERK method that we discussed in Section 2.2.4.1. This

method has the form
Y(xns1) = y(xn) + h(biky + byky + bsks)
where
ki = f (o y (),
ky = f(xn + c2h, y(xn) + heaky),
ks =f (xn + c3h, y(xn) + h((c3 — azx)k; + a32k2)).

The Butcher tableau for this method is given in Section 2.2.4.1. We need to express each of

the stages in terms of f(x,,, y,,) and higher derivatives.
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ki = f(xn'y(xn)) =f,
ky = f(xq + c2h, y(x,) + c2h f).
First, we expand k, using a Taylor series in the first variable:
ky = [f Gen, y(xn) + 20 ] + [(c2h) fi(n, y(xn) + c2h )] +

Gy oy + ot | + 0.

Next, we perform expansions using a Taylor series, for each of the terms in the [ ] brackets

above, in the second variable:

(c2h f)

ky = [f (en, y(en)) + (c2h Oy (e yCen)) + == fry (e, y () + 0(h3)]

+ [(Czh) [fx(anY(xn)) + (Czhf)fxy(xnv)’(xn)) + O(hz)]]

h 2
[(CZ ) [fxx(xnr}’(xn)) + O(h)]

(h) (z)2

ky =f+ (0)ffy + ——fu + O(R®),

2fyy + (D) fe + (D)2 f foy +

(z)

k,=f+ (Czh)(fx + ffy) t+t— (fxx + foxy +f fyy) + 0(h3)

(h)

k,=f+chF+ G + 0(h3).

The expansion for k5 is far more tedious (see [HNW87]) but eventually gives,

ks=f+ h(Cgfx + ((Cg - asz)f + a32k2)fy)

hZ
5 (Bfax + 2¢5((es = aso)f + asy + ko) foy + ((c3 = as)f + aska) foy ) + 0.

Substituting for k, as obtained earlier and solving for k5 using F and G gives
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C2
ks = f + hcy F + h? (agzc2 Ff, +73G> +0(h3).

Substituting the expressions for the stages into
¥(ni1) = y(n) + h(biky + boky + bzks)
gives,
Y(tnt1) = y(xn) + h(by + by + b3)f + h?(bacy + bycs)F

1
13 (Baasae Py + 5 (bch + b3c32)G] +0(hY ..(2).

Next, we need to compare the above with the expansion of the exact solution (1), which was

hZ h3
YGtns1) = y(in) + hf +—F +=(Ff, + G) + O(h").
If we compare like terms to match the numerical and exact solutions, we must have

by +b,+b; =1 (First Order),

1
bycy + bzc3 = > (Second Order),

1
bsas,c, = ‘ (Third Order),

1 1
> (byc? + bsc) = A (Third Order).

These are called Runge-Kutta order conditions for third order. These order conditions can also

be written in the following form:

1 1 1
Ty, — T = — T2=— T = —
b'e=1, b'c > b'c 3 and b'Ac c

where e is a vector of ones and ¢2 = [c¢? ¢Z c¢2]T. The computations required to find the

order conditions for fourth and fifth order methods are far more tedious. But after all the
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computations have been done, we have the following order conditions for fourth order ERK

methods [Butc87]:

pT o3 =%,

bTcAc =%,
bTAc? =%,
bT A%c =%,

and the following order conditions for fifth order ERK methods [Butc87]:

1

bT 4-__’

© 73
(bcz)TAc=i
10’

1
be)TAc? = —
(be) Ac® = ¢,
1
b TAZ =—,
(be)" A%c 30
1

bT(Ac)? = —
(40)? = 5,
bTAc3? = —,
bTAc(Ac) = !
AT
pTA%¢2 = —
1

T3, _
b'A°c 150
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Some of the order conditions above need to be interpreted in a certain manner. For example,
take vector ¢ for instance. The square of vector ¢, that is, c?, is interpreted as component-wise
product instead of the dot product. In component-wise product, the respective components

of the two vectors are multiplied together resulting into a vector of the same size. For 2 vectors

a, by
a=|?|, b= bf,
an b,

the component-wise product of the vectors a and b is

a; by
ab = laz b

anbn

of size n,

Similarly, if the vector is multiplied by itself n times using the component-wise product, then

the resulting vector would be

Later in this thesis, we show how these order conditions are used within the process to

optimize general ERK methods.

2.3.2 Principal Error Coefficients

The collection of order conditions that are one order higher than the order of an ERK method
gives the Principal Error Coefficient of that method; it is denoted by E, where p is the order
of that ERK method. An essential point is that the Principal Error Coefficient gives a method-
dependent but problem independent measure of the leading order term in the error of the

solution that is obtained from the ERK method. Over a sufficiently large class of problems, a
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method with a smaller Principal Error Coefficient is expected to be generally more accurate,
i.e., have a smaller error, than a method with a larger Principal Error Coefficient. However, the
Principal Error Coefficient is not exactly the same as the error of the solution obtained from
the ERK method because, in the actual error, the unsatisfied order conditions that make up
the components of the Principal Error Coefficient are multiplied by problem dependent
derivatives off(t, y(t)). See equation (2) above. We use the results from the previous section
to obtain the Principal Error Coefficients of the ERK methods. Let’s start with the second order

ERK methods. The Principal Error Coefficient for a second order ERK method is the vector

[Butc87]
)
E, = 2 3
2 _— .
bTAc—1
6

These are the weighted, unsatisfied order conditions for third order. Note that (chz — %) is

weighted by 3 because that is how it appears in the Taylor series given in the previous section.

We consider the square of the 2-norm of the Principal Error Coefficient E,; this is

2

2
“55”2_.(2(b 5)) +(brac—2) .

Similarly, the Principal Error Coefficient for a third order ERK method is the vector of weighted,

unsatisfied order conditions for fourth order [Butc87]; it has the form

(o)

bTcAc — =
CAC 3

1 1\ [
- bTA 2__)
(2)( “ 12
1
TAZ _
] b c >4

The square of the 2-norm of the Principal Error Coefficient E5 is
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2 2 2 2

= (=) ety s (a9 w3

||E3||2—<(6>(b 7)) T\bcde—g) +(3)(bTAc? - )| +(bTA%c—57).
Lastly, the Principal Error Coefficient for a fourth order ERK method is the vector of weighted,

unsatisfied order conditions for fifth order [Butc87]; this has the form

() (-3
(&) (@erac-55)
(&) (@ora-55)

1
bc)TA%c — —
(be)"A%c — o5

| ()|

5 (74 - 35)

bTAc(Ac) !
C\AC) — —
40
1 1
- TpA2,.2 _
G)(re-5)
1
TpA3, _ _—
b'Ac 120

The square of the 2-norm of the Principal Error Coefficient Ey is

= () (i) (o)
(@ 2) + (@) rae- )

2

(@ rwe-g)) (e’

An optimal ERK method is obtained by choosing the free coefficients to minimize the 2-norm

+ ((bc)TAzc - %)

2

+ (bTAc(Ac) — %)

of the Principal Error Coefficient of the method. We consider the determination of optimal

ERK methods in Chapter 4.
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2.4 Continuous extensions of discrete solutions from ERK methods

An ERK method provides discrete numerical solutions, y;, at a set of points, t;, on the domain
[to, tf]. However, high quality software for solving initial value ODEs requires that a
continuous numerical solution approximation be available to the user of the software. If we
have a discrete numerical solution at certain points of the domain, we can extend that solution
in order to obtain a continuous numerical solution approximation over the entire domain. This
provides continuity in the numerical solution which then allows the user to plot that solution
on a graph or find a solution value at any point on the domain. It is essential that the order of
accuracy of the continuous solution approximation be at least as high as that of the discrete

solution.
2.4.1 Hermite Interpolation

For orders 1 to 4, a continuous approximate solution of the appropriate order can be obtained
using Hermite interpolation, which involves finding polynomial functions with specified
function and derivative values. Since we want interpolants of fourth order, we need to use
Hermite cubics [SAP97]. Choosing an interpolant that is of fourth order means that the
interpolation error will be at least as small as the error of the discrete solution obtained from

the ERK method.

Let’s assume that t is in the subinterval [t;, t;;,]. Let 8 = [t — t;]/h; where h; = t;1q — t;.
Here, 0 is the relative distance of t from the point t; in the subinterval. For example, 8 will be
% if t is at the midpoint of the subinterval. The Hermite form of the continuous solution
approximation, u;(t), on [t;, ti;1] is

u;(t) = y; hoo(0) + h; fi hio(0) + Yis1 ho1(0) + h; fir1 hi1(0),

where the Hermite basis polynomials, hyo(8), h1(6), ho1(6), and hy,(6), are
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hoo(8) = (1 +26)(1 — 6)?, hio(0) = 6(1 - 6)?,
ho1(0) = 02(3—-26),  hy1(0) =0%(6 - 1),
where

fi = f(ti; yi)) fi+1 = f(ti+1!yi+1)'
yi=y(@t) and  yipq = y(tigeq)-

Using Hermite interpolation allows us to get a continuous numerical solution approximation
at any point on the domain. Hermite interpolants can be used for the ERK methods of order
from 1 to 4. This is because, as mentioned above, the interpolation error for the Hermite
interpolant is O(h*), which is the same as or smaller than the error of the solution from the

ERK method.

2.5 The Defect of the Continuous Approximate Solution

Numerical methods are used to find the approximate solution to equations which don’t have
exact solutions or for which finding an exact solution is too complicated or time consuming
because of the complexity of the problem. The approximate numerical solution will have an
error. Thus, it is essential for the numerical method to also deliver an estimate of the error in

the numerical solution that is returned.

One way of assessing the accuracy of a continuous approximate solution is to consider the
defect of the approximate solution. In the previous section, we discussed Hermite
interpolation and how it extends the discrete numerical solution approximation to give a
continuous numerical solution approximation. But how well does that continuous numerical
solution approximation satisfy the ODE? We answer that question by computing the defect of
the continuous numerical solution approximation. As mentioned earlier, the defect is the

amount by which the continuous approximate solution fails to satisfy the ODE. The defect,
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s =u'® - f(tu®),

of a continuous numerical solution, u(t), is a continuous function of t, and the question is how
to estimate the maximum value of |6 (t)| on each step [t;, t;+1]. We can clearly see above that
the value of the defect is problem dependent and therefore, the location of the maximum

defect can vary from step to step and problem to problem.

Since, we already have the continuous numerical solution approximation, it is straightforward
to evaluate §(t) at a given point t. But generally, it is not straightforward to determine the
location within [¢t;, t; 1] where §(t) is maximum. However, we would like to have an estimate
of the maximum value of §(t) on each step to assess the quality of u(t). The standard
approach to obtain this estimate is to sample the defect at several points within each step and

use the maximum of these samples as an estimate of the maximum defect.

In Chapter 4, we compute the defect for a continuous approximate solution for several IVODEs
and show the form that it has on a given step. We do not consider the task of sampling the
defect to obtain an estimate of the maximum defect on each step. As explained above, this

process is straightforward.
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Chapter 3

Software Implementation

In this chapter, we describe the software implementation for the determination of optimal
ERK methods, the representation of ERK methods and the testing of ERK methods on an ODE
test set. This software also implements Hermite interpolants to provide a continuous solution
approximation, allowing this solution to be plotted, and it implements a defect sampling
algorithm so that plots of the defect can be obtained. We provide a detailed description of the
structure of the software and its capabilities. The software is created in the Python language

and can be found in the Appendix.

3.1 Optimization Software

The purpose of this software is to find the optimal values for the free coefficients by
minimizing the Principal Error coefficient of the ERK method. This software uses the python
library ‘SciPy’, and in particular the ‘minimize()’ function from within that library, in order to
find the optimal values for the free coefficients of a given ERK method. In this software, we
use the Principal Error Coefficients E,, for n = 2, 3,4, which we discussed in Section 2.3. The
script for this software is ‘Optimization.py’, given in the Appendix. We first discuss the

functions that initiate this software.

o displayMenu(): This function prints the available choices to initiate the optimization
software for a specific Principal Error Coefficient. Then, it asks for input from the user
and saves that input in the integer variable ‘choice’ which is then returned by the

function. The available choices are:
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1: Optimize E2
2: Optimize E3
3: Optimize E4
This function is initiated to provide a choice to the initializeOptimizer() function.
e jnitializeOptimizer(choice): This function takes the integer variable ‘choice’ as the
parameter and uses it to initiate the optimizer for a specific Principal Error Coefficient.
Depending upon the value given for the parameter ‘choice’, the function ‘optimize()’

is called with one of the following parameters:

1. E2
2: E3
3: E4

For E,, there are five cases. So, before initiating the function optimize(E,), the
chooseE4Case() function is called to get the ‘case’ value for the optimization of Ej,.
(For third order, we saw earlier that there are three cases, but we show in Chapter 4,
that for two of these cases, we cannot choose the free coefficient to minimize the
Principal Error Coefficient.) When this function has completed, the user will be
provided with the following results:

1: Minimized E,, value, wheren = 2, 3,4

2: Optimal values for the free coefficients

3: Anindicator of whether the optimization software

terminated successfully.
o chooseE4Case(): This function prints all the cases for E, and returns the integer value

for the case provided by the user. The cases for E, that are available in this function

are the cases for four-stage, fourth order ERK methods; (Section 2.2.5).
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3.1.1 Use of the Optimization Software

In order to use this software, the user is first required to install the python library ‘SciPy’ using
pip. After that, the user should run the ‘Optimization.py’ python script. Then, the user should
enter their choice for the order of the method to be optimized and for E,, choose the case as

well. The script will provide the results of the optimization. An example is given below:

==== START: Research-Thesis\Optimization.py ====
1. Optimize E2

2. Optimize E3

3. Optimize E4

Enter your choice: 1

Message: 'Optimization terminated successfully.'
E2: 0.02777777777777779

Free Coefficients: [0.660666665]

3.2 Software for Testing Explicit Runge-Kutta Methods

The purpose of this software is to investigate the performance of the ERK methods identified
in this thesis. In this software, the ERK methods of order 1 to 4 are implemented for all cases
defined in Section 2.2 of this thesis. This software employs several python scripts which can

be found in the Appendix. The scripts are:

® main.py

e config.py

e  EulersMethod.py

e function.py

e Hermitelnterpolation.py
e Methods.py

e jvode.py

e FilelO.py
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The script that is used to initiate this software is ‘main.py’. Let’s first discuss the functions in

this script which initiate the software.

displayMenu(): This function prints the available choices to initiate this software,
which are
1: Specific IVODE on a specific method:
This option will initiate the function which allows the user to
choose an ERK method to solve a specified IVODE and provide the
results as output.
2. Specific IVODE on All Methods and Export results to a file:
This option will initiate the function which allows the user to use
all the ERK methods to solve a specified IVODE and provide the
results in a text file.
Then, it asks for input from the user and saves that input in the integer variable ‘choice’
which is then returned by the function. This function is initiated to provide a choice to
the chooseMenuOption() function.
chooseMenuOption(choice): This function takes the integer variable ‘choice’ as a
parameter and uses it to initiate the testing of one or more ERK methods. Depending
upon the value given for the parameter ‘choice’, one of the following functions is
called:

1: specificl VODESpecificMethod()

2: specificlVODEAIIMethods()
specificlVODESpecificMethod(): This function initiates the specified ERK method to
solve a specific IVODE chosen by the user. First, it asks the user to select the IVODE
with its initial and final values. Then, it asks the user to select the specific ERK method

which it uses to solve that IVODE. To find the numerical solution approximations,
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stepsizes from 271 to 27 are used by the function. If the chosen IVODE has an exact

solution, the function will provide the following information:

1:

Error at ¢

The absolute difference between the approximate and exact
solution of an IVODE at the final time (7).

Stepsize

The stepsize used to obtain the error for that IVODE.

Ratio of the errors

The ratio of the error from the previous stepsize and the error
from the current stepsize.

Order of Convergence

The order of convergence for the ERK method used (See Section
2.2). (The order of convergence is easily determined from the
ratios of the errors.)

Graph for Hermite interpolant

A graph plotting the continuous numerical solution
approximation obtained by using Hermite interpolation. The file
containing the graph will be ‘Hermite Interpolation.html!’ found
in the ‘Plots’ folder.

Graph for Defect

A graph plotting the defect in the continuous numerical solution
approximation obtained by Hermite interpolation. The file
containing the graph will be ‘Defect.html’ found in the ‘Plots’

folder.
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If the IVODE does not have an exact solution, then the information provided will be:

1:

Numerical solution approximation at t¢

The approximate numerical solution of an IVODE at the final time
(tr).

Stepsize

The stepsize used to obtain the approximate numerical solution
for that IVODE.

Graph for Hermite interpolant

A graph plotting the continuous numerical solution
approximation obtained by using Hermite interpolation. The file
containing the graph will be ‘Hermite Interpolation.html’ found in
the ‘Plots’ folder.

Graph for Defect

A graph plotting the defect in the continuous numerical solution
approximation obtained by Hermite interpolation. The file
containing the graph will be ‘Defect.html’ found in the ‘Plots’

folder.

specificlVODEAIIMethods(): This function initiates all the ERK methods to solve a

specific IVODE chosen by the user. First, it asks the user to select the IVODE with its

initial and final values. Next, it uses all the ERK methods to solve that IVODE. Since this

test produces a large amount of output, the results are saved in a text file. It also uses

stepsizes from 271 to 27° to find the numerical solution approximations. If the chosen

IVODE has an exact solution, it will provide the following information:

1:

Error at t¢
The absolute difference between the approximate and exact

solution of an IVODE at the final time (tf).
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Stepsize

The stepsize used to obtain the error for that IVODE.

Ratio of the errors

The ratio of the error from the previous stepsize and the error
from the current stepsize.

Order of Convergence

The order of convergence for the ERK method used (See Section
2.2).

Relative to Minimum Error

The ratio of each error and the smallest error.

If the IVODE does not have an exact solution, then the information provided will be:

1:

Numerical solution approximation at t¢

The approximate numerical solution of an IVODE at the final time
(tr).

Stepsize

The stepsize used to obtain the approximate numerical solution

for that IVODE.

3.2.1 Use of the ERK Testing Software

This software uses the python library named ‘bokeh’ to plot the graph for Hermite interpolants
and defects. In order to use this software, the user is first required to install the python library
‘bokeh’ using pip. After that, run the ‘main.py’ python script. The user should enter their
choice to initiate the software for a single ERK method or for all ERK methods. Then, the user
should choose the IVODE to be solved. For the choice of single ERK method, the user should
choose the specific ERK method to be used to solve the IVODE. The above-mentioned results

will be provided along with a graph for the Hermite interpolant and a graph for defects. On

46



computations will be provided in a text file. An example is given below:

======== START: Research-Thesis\main.py ========
1. Specific IVODE on Specific Method

the other hand, if the initial choice was to use all the ERK methods, then the results of the

2. Specific IVODE on All Methods and Export results to a

file
Enter your choice: 1

Simple: f1 t tfinal yO

Predator Prey: f2 t tfinal x y alpha beta gamma delta

Simple System: f£f3 t tfinal x y
Test F4: f4 t tfinal yO

Test F5: £5 t tfinal yO

Test F6: £f6 t tfinal vyO

Test F7: £7 t tfinal y0 alpha
Sample COVID-19 Model: £f8 t tfinal

Enter the formula with wvalues respectively (Use spaces
between the values like shown above) :

f1 011

1. Forward Euler Method

2. Explicit Midpoint Method

3. Heun’s Second Order Method

4. Second Order RK Method

5. Heun’s Third Order Method

6. Ralston's Third Order Method

7. Third Order RK Method

8. RK4 Method

9. FourthOrderRKMethod

Enter the method with wvalues respectively (Use spaces
between the values like shown above) :

1

ee[0]: 0.11787944117144233 Steps: 0.5

ee[0]: 0.051473191171442334 Steps: 0.25 ceOld/ee: 2.2901133286805546 Order:
ee[0]: 0.024270525365625684 Steps: 0.125 ceOld/ee: 2.120810752796631 Order:
ee[0]: 0.01180531071964952 Steps: 0.0625 eceOld/ee: 2.0558989036373485 Order:
ee[0]: 0.005824151915125697 Steps: 0.03125 eeOld/ee: 2.0269578973361546 Order:
ee[0]: 0.002892916927534961 Steps: 0.015625 ceOld/ee: 2.0132454754200033 Order:
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3.3 How to add a new IVODE

There are several python scripts that are used to create the software as mentioned in Section
3.2. The script related to the IVODEs is ‘ivode.py’. There are a few IVODEs that are already
implemented in this script which can be used as test examples. To add a new IVODE, the user
should create a new function with an appropriate name in the same script. The user should
create three sections in this function using if-else statements with comparison operators on i.
In this software, the IVODEs are implemented in the form of lists, so each section returns the
results in the form of a list. The results returned from each section, with respective to the

value of i, are the following:

1: For i =0, the approximate numerical solution of the IVODE is
returned.
2: Fori =1, the exact value for the IVODE is returned (if exists).

3: Fori = 2, the error associated with the IVODE is returned (if exists).

After the user creates the IVODE function, the user should then edit the ‘Function.py’ python
script. The user should add the function call for that IVODE with a new formulaNumber in the
formula() function. The user should use this formulaNumber to display it in the
displayFormulas() function and set the initial values in setFormulaValues() function. An

example is provided below.

Consider the example IVODE,

y'(t) =—y() with y(0)=1.

The exact solution for this IVODE is

y(t) = et

The script for the IVODE above looks like the following:
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def simple(i, t, y):
# IVODE
if (i == 9):
return [-y[0]]
# Exact solution for the IVODE
elif (i == 1):
return [math.exp(-t)]
# Error associated with the solution for the IVODE
else:
return [y[@] - math.exp(-t)]
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Chapter 4

Results and Discussion

In this chapter, we present results we have obtained using the software discussed in the
previous chapter. We determine optimal ERK methods and compare them with standard ERK
methods. Then, we present experimental confirmation of the order of convergence of the
optimal methods using a test set of ODEs. After that, we apply the standard and optimal ERK
methods to test sets to examine the accuracy of the solution approximations computed by the
methods. The last section of this chapter considers augmenting the discrete numerical
solutions computed using the ERK methods with continuous approximate solutions obtained
by using Hermite interpolation. This section also considers the computation of the defect of a

continuous solution approximation.

4.1 Optimal ERK methods and Comparison with Standard Methods

As we have discussed in Chapter 3, we have employed optimization software which allows us
to minimize the Principal Error Coefficients for ERK methods to obtain optimal values for the

free coefficients of the methods.
4.1.1 Second Order ERK Method Optimization

To optimize the general, two-stage, second order ERK method, we need to minimize the
Principal Error Coefficient, E,. We recall from Chapter 2 that for the general two-stage, second

order ERK method, we have the coefficients in the form of Butcher tableau as follows:

0 0 0
cy Cy 0
1 1

20 26
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We can see that ¢, is the only independent variable and a,, b; and b, are all dependent upon

¢,. From Chapter 2, the Principal Error Coefficient is

()
£ = |2 3
2 — 1 .
bTAc ——
7%

Using the expressions for the coefficients of the general two-stage, second order ERK method,

wehave b = [1 - — — ,c=[0 c,]andthe matrix A = [CO 8] To find the optimal c,
2

2c, 2,

value, we need to choose ¢, to minimize the square of the 2-norm of E:

2

2
||E2||2—<2(b 5)) +(prac-2) .

After substituting the values for b, A and ¢, we get an expression which depends upon c,:

= 5{()et ) + (5
- (3(6)3) +3

The above expression can be minimized by choosing ¢, = % This is the same value provided

by the optimization software. For ¢, = %, we get

2 1
E =—=0.027777776
IEI = 5 .
and the value for ||E2|| is

1
|IE,|| = ¢ = 0.166666.
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As mentioned earlier in this thesis, there are several well-known second order ERK methods,
such as the Explicit-Midpoint method and Heun’s second order method. We compare the

optimal method with these methods by finding their ||E2 || values.

The Explicit-Midpoint method has ¢, = % Putting this value of ¢, into the general expression

for ||E2||z, we get

| 1,1 1\\VY 1
IE1;=(3(G-3)) +36

1 1 17

||2” 576 136 576

|IE, |; = 0.029513888.
So, the value of ||E; || for the Explicit-Midpoint method is
||E,|| = 0.17179606.

Here, we can clearly see that the value of ||E2|| for the Explicit-Midpoint method is slightly

larger than the value of ||E2 || for the optimal method.

Now, let’s have a look at Heun’s second order method, for which ¢, = 1. Putting this value of

. ) 2
¢, into the general expression for ||E2 | |2, we get

. 1,1 1\ 1
IE1;=(3G-3)) +3¢

1 5
144 36 144’

IE, ||, =
|IE, ||; = 0.034722222.

So, the value of ||E2 || for Heun’s second order method is

||E2|| = 0.18633899
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Here, we can clearly see that the value of | |E,| | for Heun’s second order method is larger than

the value of ||E2 || for the optimal method.

Here are the results from all the methods:

Methods Variables Principal Error Coefficient ||E2||
. 2
Optimal Method cy = 3 0.166666
. 1
The Explicit Midpoint Method cy = > 0.17179606
Heun’s second order Method ;=1 0.18633899

From the above table, we can see that the smallest value for Principal Error Coefficient, ||E2 | |,
. 2 2 . .
is ||E2 || = 0.166666 for c, = 3 So, we conclude that ¢, = 3 gives the optimal value for two-

stage, second order ERK method. However, we can see that all three methods have ||E2||
values that are approximately the same which means that the two standard methods are close

to being optimal.
4.1.2 Third Order ERK Method Optimization

Unlike the two-stage, second order ERK method case, we know that the general three-stage,

third order ERK method has three special cases.

From Chapter 2, the Principal Error Coefficient is

(&re-3)

1
bTcAc — =
cAc—g

@) 07 -53)|

1
bTAZ _
)

Then, the square of the 2-norm of E5 is
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= () +ree5) + (G -]

2

1
bT 42 ——).
+( )

We now consider the three cases for a three stage, third order ERK method that we presented

in Chapter 2.

Case 1. A 2-parameter family of three-stage third order ERK methods has the following

. . 2
tableau with the conditions ¢, # 0,5 ,C3;¢3 F 0,¢5.

0 0 0 0
C2 C2 0 0
c c3(c3 — 3¢, + 3¢5) c3(c; — ¢3) 0
; c2(3c; — 2) c;(3c; — 2)
2 —3(cy + c3) + 60503 cs _% %_ ¢y
6¢a¢s 2¢5(c3 — ¢3) 2¢3(c3 — ¢3)

As we can see, ¢, and c3 are the two independent variables and the rest of the

coefficients are dependent upon them.

For this case,

2 2
b= 2—3(C2+C3)+6CZC3 C3_§ §_C2 ,
6c,c3 2c5(c3 — ) 2c3(c3 —¢3)
c=[0 ¢ c3]
and the matrix
0 0 0
cy 0 0

A=
c3(c3 =3¢, +3¢5)  c3(c; — ¢3)

c2(3¢c; —2) c2(3c2 — 2)

To find the optimal ¢, and c3 values, we need to choose ¢, and c3 to minimize the

Principal Error Coefficient by minimizing the square of the 2-norm of E;. After
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substituting in E5 with the above values for b, A and ¢, we get an expression which

depends upon ¢, and c3.

= () G -en-3)) (- + (D e-3) +5

Using the optimization software discussed in Chapter 3 to find the optimal values

of ¢; and ¢3 by minimizing the above expression, we get
¢, = 0.49650476,
c3 = 0.75174749,
yielding
|IE;|[% = 0.0017479988.
So, the value for ||E;]|| is
||Es|| = 0.041809076.

As mentioned earlier in this thesis, there are several well-known third order ERK
methods. We consider two classic third order Runge-Kutta methods, which are
examples of this case, Heun’s third order method and Ralston’s third order
method. We compare our results with these methods by observing what ||E3||

values they have.
We start with Heun’s third order method which has ¢, = % and c3 = g . Now, by
putting these values of ¢, and ¢ in ||E3 | |§, we get

|IE;1[; = 0.0021433470.

So, the value of ||E3 || for Heun’s third order method is

||Es|| = 0.046296296.
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Case 2.

Here, we can clearly see that the value of | |E5] | by using Heun’s third order method

is slightly larger than the value of ||E3 || for the optimal method.

Next, we can consider Ralston’s third order method which has ¢, = %and c3 = 2 .

These values are reported in [Butc87] and agree quite closely with the values of

the optimal method mentioned above. Now, by putting these values of ¢, and c3

in ||E3||z, we get
|IE5||; = 0.0017481674.

So, the value of ||E3|| for Ralston’s third order method is
||Es|| = 0.041811092.

The value of ||E3 || by using Ralston’s third order method is slightly larger than the
value of ||E3 || for the optimal method, but Ralston’s third order method is almost

optimal.

A 1-parameter family of three-stage third order ERK methods has the following

tableau with the condition b3 # 0.

0 0 0 0
2
2 2 0 0
3
0 ! ! 0
4b, 4b,
1 3
——b — b
4 3 4 3

As we can see, bs is the independent variable and the rest of the coefficients are

dependent upon it.

For this case,
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4 4
c= [0 2 0]
3
and the matrix,
0 0 0
2 0 0
A=]| 3 .
1 1
4b; 4b,

After substituting in E5 with the above values for b, A and c, instead of getting an
expression which depends upon b, we get a constant which is independent of the

bs value.

||E3||§ — (_L>2 N (_1)2 N (i)z N (_i)z
216 8 72 24
|IE;|[% = 0.017575445
So, the value for ||Es]| is
||Es|| = 0.13257242.

As ||E3 || does not depend upon bs, the choice of b; is arbitrary. So, the value used

: . 1
in the software is by = 3

Case3. A 1-parameter family of three-stage third order ERK methods has the following

tableau with the condition b3 # 0.

0 0 0 0
2 2
2 z 0 0
3 3
2 8b; — 3 1 .
3 12b, 4b,
1 3
- 2 b
4 7 bs 3
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As we can see, bs is the independent variable and the rest of the coefficients are

dependent upon it.

For this case,

and the matrix,

0 0 0
- 0 0
A=| 3 .
8b; -3 1
12b;  4bs

After substituting in E5 with the above values for b, A and c, instead of getting an

expression which depends upon b, we get a constant which is independent of the

bs value.

[T =(_L)z+(_i>z+(i>z+(_i)z
216 72 72 24
||E;||; = 0.0021433470
So, the value for ||E3]| is
||E5|| = 0.046296296.

As ||E3 || does not depend upon b3, the choice of bs is arbitrary. So, the value used

: : 3
in the software is b; = .
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Here are the results from all the methods:

Methods

Variables

Principal Error Coefficient

|IE5|

Case 1 Optimal

c, = 0.49650476 | c3 = 0.75174749

0.041809076

Heun’s third order 2
Ralston’s third 3
order Method Cr, == C3 = Z 0.041811092
Case 2 N/A 0.13257242
Case 3 N/A 0.046296296

From the above table, we can see that the smallest value for Principal Error Coefficient, ||E3 | |,

is ||E3|| = 0.041809076 for the values ¢, = 0.49650476 and c3 = 0.75174749. So, we

conclude that Case 1 with values ¢, = 0.49650476 and c; = 0.75174749 is the optimal case

for three-stage, third order ERK methods. However, we can see that four of the five methods

have ||E3 || values that are almost the same. This means that the standard methods are close

to optimal. It is only the Case 2 method which has a substantially larger ||E3|| value.

4.1.3 Fourth Order ERK Method Optimization

From Section 2.2, we know that the general four-stage, fourth order ERK method has five

special cases.

From Chapter 2, the Principal Error Coefficient is
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()" -3
(5) (@7 ae-55)
(&) (@orac-55)

1
b TAZ _
(be)"A%c — o5

bo=| @) ()|
Dorse )

bTAc(Ac) — L
40

OICE)

1
bTA3 _ -
‘120

The square of the 2-norm of E, is

= ()7 =) + (@ oerrae- ) (@) orse )
(B3 + (a0

2

(B (- )) + (74 13)”

Casel. A 2-parameter family of four-stage, fourth order ERK methods has the following

+ ((bc)TAzc — 31—0)

2

+ (bTAc(Ac) - 41—0)

tableau with the conditions 0, ¢, c3,1 all distinct; ¢, # % and 3 —4(c, +¢3) +

6cyc3 = 0.
0 0 0 0 0
cy cy 0 0 0
c3(3c; —c3 — 4022) c3(c3 —¢3)
C3 0 0
2C2 (1 — ZCZ) 2C2(1 - ZCZ)
1 A41 A42 A43 0
1—2(cy + c3) + 6¢5¢5 2¢c;—1 1 - 2c, 3 —4(cy + c3) + 6C,05
12¢,¢5 12¢,(c3 — ¢c)(1 —¢3) 12¢3(cz3 —c)(1 —c3)  12(1 —¢c)(1 —¢3)
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where

c2(12¢2 — 12¢, + 4) — c5(12¢% — 15¢, + 5) + (4¢3 — 6¢, + 2)
2¢c5¢3(3 —4(cy + c3) + 6C303)

Ag1 =

)

_ (_4‘C§ + 5C3 + CZ - 2)(1 - Cz)
N 2C2(C3 — Cz)(3 - 4(C2 + C3) + 6C2C3) ’

(29%)

_ (1-2¢)A = c3)A —c3)
c3(c3 — ¢3)(3 — 4(cy + c3) + 6C3¢3)

Qy3

As we can see, ¢, and c3 are the two independent variables and the rest of the

coefficients are dependent upon them.

For the expressions in E, for this case,

1—2(c, + ¢3) + 6C,y¢5 2c;—1 1-2c, 3 —4(cy + ¢3) + 6,05
b=| ,
12¢;c¢3 12¢c5(c3 = ) (1 —¢z)  12¢5(c5 — ¢2)(1 = ¢3) 12(1 = c2)(1 —¢c3)

and the matrix

0 0 0 0
Cy 0 0 0
A=|c3Bc; —c3—4c5)  c3(c3—cp) 0o ol
2¢c,(1 — 2¢y) 2¢,(1 — 2¢y)
2% Qg2 ass 0

where a,q, a4, and a,3 are mentioned above.

After substituting for b, A and ¢, we get an expression which depends upon ¢, and
c3, but it is too complicated to show here. Using the optimization software to find
the optimal values of ¢, and c3 by minimizing the square of the 2-norm of E4, we

get

¢, = 0.35774159,

c; = 0.59148821,
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yielding
||ELI|; = 0.00014345932.

So, the value for ||E4|| is

||E4|| = 0.011977450.

The above ¢, and c3 values agree reasonably well with the optimal coefficient

values reported in [Butc87] where

¢, = 0.371615,
3
3 = < = 0.6,
yielding
|IELI|; = 0.00014452215.
So, the value for ||E4,|| is
[IE4|| = 0.012021736.
In [Rals62], the optimal values are reported as
c, =04,
c; = 0.455737,
yielding
||EI|; = 0.00018779888.
So, the value for ||E4|| is

[IE4|| = 0.013703973.
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Case 2.

As mentioned in Chapter 2, there is a well-known fourth-order ERK method known
as the 3/8-Rule method; we compare our optimal method with this method by
finding its ||E4,|| value.

The 3/8-Rule method is derived from Case 1 with ¢, = é and ¢c3 = g By putting

these values foe ¢, and c; in ||E4||§, we get
||E4I|; = 0.00016051287.

So, the value of ||E4|| for 3/8-Rule method is

||E4|| = 0.012669367.

Here, we can clearly see that the value of ||E4|| by using the 3/8-Rule method is

slightly larger than the value of ||E4|| for the optimal method.

A 1-parameter family of four-stage fourth order ERK methods has the following

tableau with the conditions ¢, = ¢35 = %,bg * 0.

0 0 0 0 0
1 1
: - 0 0 0
2 2
3b, — 1 1
1 3 — 0 0
2 6bs 6bs
1 0 1 — 3b, 3bs 0
1 2 1
- Z_ b z
6 3 b 3 6

As we can see, b is the only independent variable and the rest of the coefficients

are dependent upon it.

For this case,
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Il
—
(=)
N| =
N =
[Un
L ——

and the matrix

0 0 0 0
! 0 0 0
| 2
A=|3p, -1 1 :
— 0 0
6bs 6bs
0  1-3b; 3b; Ol

After substituting for b, A and ¢, we get an expression which depends upon bs,
but it is too complicated to show here. Using the optimization software to find the

optimal value of b3 to minimize the square of the 2-norm of E,, we get
b; = 0.83316441,

yielding
||E4||§ = 0.00017132040.

So, the value for ||E4|| is

||E4|| = 0.013088942.

The corresponding value reported in [Rals62] for this case is
b; = g = 1.666666,
yielding
||ELI|; = 0.00017566068.

So, the value for ||E4|| is

||E4|| = 0.013253704.
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Case 3.

As mentioned in Chapter 2, there is a well-known fourth-order ERK method known
as the classical Runge-Kutta method which is widely used and is the most well-

known of all Runge-Kutta methods. We find its ||E4|| value.

The classical Runge-Kutta method is obtained from Case 2 when b; = é By putting

2
this value of bs into ||E,]| ,» we get

|IEI|; = 0.0002103829.
So, the value of ||E4|| for the classical Runge-Kutta method is
|IE4|| = 0.014504582.

Here, we can clearly see that the value of ||E4,|| by using the classical Runge-Kutta

method is slightly larger than the value of ||E4,|| for the optimal method.

A 1-parameter family of four-stage fourth order ERK methods has the following

tableau with the conditions ¢, = % c3=0,b; #0.

0 0 0 0 0

1 1

L - 0 0 0

2 2

0 ! ! 0 0

12b, 12b,

1 3

1 ~— 6bs 3 6bs 0
1 2 1
Z_ z b -
g b 3 3 6

As we can see, b is the only independent variable and the rest of the coefficients

are dependent upon it.

For this case,
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and the matrix

0 0 0 0
L 0 0 0
2
_ 1 1
A=| _ o ol

12b;  12b,

! 6b 3 6b, 0

2 3 2 3

After substituting for b, A and ¢, we get an expression which depends upon bs,
but it is too complicated to show here. Using the optimization software to find the

optimal value of b3 by minimizing the square of the 2-norm of E,, we get
b; = —0.03968255,
yielding
||E4||§ = 0.00093086902.
So, the value for ||E4,|| is

[IE4|| = 0.030510146.

The corresponding value from [Rals62] for this case is

5
by = — — = —0.064103
T 78 ’
yielding
|IEI|; = 0.0010003149.

So, the value for ||E4|| is

|IE4|| = 0.031627756.
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Case 4.

A 1-parameter family of four-stage fourth order ERK methods has the following

tableau with the conditions ¢, = 1,¢c3 = % b, # 0.

0 0 0 0 0
1 1 0 0 0
1 3
: i - 0 0
2 8
. L 1 1 .
4b, 12b, 3b,
1 1 2
- “—_p z b
6 6 * 3 4

As we can see, b, is the only independent variable and the rest of the coefficients

are dependent upon it.

For this case,

and the matrix

0 0 0 0

1 0 0 0

3 1 0 o

A=| 3 5 .
L1 1 1
4b,  12b, 3b,

After substituting for b, A and ¢, we get an expression which depends upon b,,
but it is too complicated to show here. Using the optimization software to find the

optimal value of b, by minimizing the square of the 2-norm of E,, we get

b, = 0.17543856,

yielding
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Case 5.

||ELI|; = 0.00047513985.
So, the value for ||E4|| is

||E4|| = 0.021797702.

The corresponding value reported in [Rals62] for this case is

b —10—0196078
4751 ’

yielding
||E4||§ = 0.00047947996.
So, the value for ||E4,|| is
[IE4|| = 0.021897031.

A 1-parameter family of four-stage fourth order ERK methods has the following

tableau with the conditions ¢, # 0,¢c3 = % b, = 0.

0 0 0 0 0
Cy C2 0 0 0
1 4c, — 1 1
- 2 — 0 0
2 8C2 8C2
. 1-2c, 1 , .
2c, 2c,
1 2 1
- 0 z -
6 3 6

As we can see, ¢, is the only independent variable and the rest of the coefficients

are dependent upon it.

For this case,
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1 2 1
b=[z 0 5 &
6 3 6
c= [0 ! 1]
Cy > ,
and the matrix
0 0 0 0
cy 0 0 0
4c, —1 1 0 0
A= 8¢, 8¢,
1—2c, 1
2C2 2C2

After substituting for b, A and ¢, we get an expression which depends upon c,, but
it is too complicated to show here. Using the optimization software to find the

optimal value of ¢, by minimizing the square of the 2-norm of E,, we get
c; = 0.39999999,
yielding
||E4I|; = 0.00016372492.
So, the value for ||E4|| is

[|E4|| = 0.012795504.

Here are the results from all the cases:

Principal Error Coefficient

||E4l|
0.011977450

Methods Variables

Case 1 Optimal c; = 0.35774159 | c; = 0.59148821

1 2
3/8-Rule =3 i =7 0.012669367
Case 2 Optimal b; = 0.83316441 0.013088942
The classical Runge- 1
Kutta Method by = 3 0.014504582
Case 3 Optimal bz = —0.03968255 0.030510146

Case 4 Optimal

b, = 0.17543856

0.021797702

Case 5 Optimal

¢, = 0.39999999

0.012795504
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From the above table, we can clearly see that the smallest value for Principal Error Coefficient,

|IE41|, is ||E4l| = 0.011977450. So, we conclude that Case 1 with values ¢, = 0.35774159

and c; = 0.59148821 is the optimal case for four-stage, fourth order ERK methods. However,
we can see that Case 1, Case 2, Case 5, and the two standard methods have similar ||E4||
values so all of these methods are close to optimal. It is only the Case 3 and Case 4 methods

that have substantially larger ||E4,|| values.
4.2 Experimental Verification of Order of Convergence

In this section, we experimentally verify the order of convergence of some of the methods
based on some numerical experiments performed on a test set of ODEs. For each method, we
provide a table that has error ratios generated by the software for the test set, for several

stepsizes.

Let us first define the term error ratio. For each method and test problem, we use the software
to step from ¢, to t; and we compute the exact error at t;. The ratio between the error from
the previous stepsize and the error from the current stepsize is known as the error ratio. Here,
we are decreasing the stepsize by a factor of 2 to determine its effect on the error ratios. For
a two-stage, second order ERK method, if the stepsize is decreased by a factor of 2, then the
error should reduce by a factor of 4, approximately. This is because a second order method
has an error that is O(h?). So, the error ratio for second order methods should be 4. For a
three-stage, third order ERK method, if the stepsize is decreased by a factor of 2, then the
error should reduce by a factor of 8, approximately, which would make the error ratio equal
to 8 since the error for a third order method is 0(h?). Similarly, for a four-stage, fourth order
ERK method, if the stepsize is decreased by a factor of 2, then the error should reduce by a
factor of 16, approximately, which would make the error ratio equal to 16 since the error for

the fourth order method is O (h*).
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We use the following IVODEs as the test sets.

Name IVODE Initial Condition Exact Solution
IVODE 1 y' = —2xy? y(0) =1 y(x) = -
1+ x2
IVODE 2 '—( 1) 3 ) =1 () = —
y={"2) Y YT T
1 y 20
IVODE 3 y = (_) 2y y(0) =1 y(x) = %
4 ( 20) 1+19e74
y(x) = e **cosx,
IVODE 4 y' =—ay —e *sinx y(0) =1
where a = 0.1

The tables for all the cases of the optimal, two-stage, second order, three-stage, third order,

and four-stage, fourth order ERK methods for the above IVODEs for stepsizes %, %, %, % and

1

— are as follows:

64

Error Ratios for optimal, two-stage, second order ERK Method

IVODE / 1 1 1 1 1
Stepsize 4 8 16 32 64
IVODE 1 31.28 7.06 2.12 3.37 3.74
IVODE 2 4,76 4.42 4.21 4.10 4.05
IVODE 3 3.83 3.92 3.96 3.98 3.99
IVODE 4 4.50 4.26 4.13 4.07 4.03

Error Ratios for optimal, three-stage, third order ERK Method, Case 1

IVODE / 1 1 1 1 1
Stepsize 8 16 32 64
IVODE 1 54.21 13.99 4,09 6.67 7.44
IVODE 2 9.81 8.93 8.47 8.23 8.12
IVODE 3 7.66 7.83 7.91 7.96 7.98
IVODE 4 8.06 8.02 8.01 8.00 8.00
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Error Ratios for optimal, three-stage, third order ERK Method, Case 2

IVODE / 1 1 1 1 1
Stepsize 4 8 16 32 64
IVODE 1 10.38 9.08 8.65 8.32 8.16
IVODE 2 13.34 10.45 9.15 8.55 8.27
IVODE 3 7.95 7.99 8.00 8.00 8.00
IVODE 4 8.05 8.01 8.00 8.00 8.00
Error Ratios for optimal, three-stage, third order ERK Method, Case 3
wope/ | 1 1 1 1 1
Stepsize 4 8 16 32 64
IVODE 1 6.54 8.02 8.144 8.10 8.05
IVODE 2 10.30 9.15 8.56 8.28 8.14
IVODE 3 7.66 7.83 7.91 7.96 7.98
IVODE 4 8.05 8.01 8.00 8.00 8.00
Error Ratios for optimal, four-stage, fourth order ERK Method, Case 1
wooE/ | 1 1 1 1 1
Stepsize 8 16 32 64
IVODE 1 33.36 24.76 20.15 18.01 16.98
IVODE 2 12.78 11.17 14.70 15.55 15.82
IVODE 3 15.27 15.63 15.81 15.90 15.93
IVODE 4 16.08 16.02 16.01 16.00 16.00
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Error Ratios for optimal, four-stage, fourth order ERK Method, Case 2

wooE/ | 1 1 1 1 1
Stepsize 4 8 16 32 64
IVODE 1 4.64 12.17 14.95 15.63 15.85
IVODE 2 17.11 17.13 16.68 16.36 16.18
IVODE 3 15.28 15.63 15.81 15.91 15.94
IVODE 4 16.13 16.04 16.01 16.01 16.00
Error Ratios for optimal, four-stage, fourth order ERK Method, Case 3
wooE/ | 1 1 1 1 1
Stepsize 4 8 16 32 64
IVODE 1 14.15 19.75 18.35 17.26 16.64
IVODE 2 9.07 17.81 18.08 17.31 16.72
IVODE 3 15.40 15.70 15.85 15.92 15.92
IVODE 4 16.13 16.04 16.01 16.01 16.00
Error Ratios for optimal, four-stage, fourth order ERK Method, Case 4
wopE/ | 1 1 1 1 1
Stepsize 4 8 16 32 64
IVODE 1 10.04 15.23 15.91 16.01 16.02
IVODE 2 8.71 14.15 15.40 15.77 15.90
IVODE 3 15.19 15.59 15.79 15.90 15.94
IVODE 4 16.05 15.99 15.99 15.99 16.00
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Error Ratios for optimal, four-stage, fourth order ERK Method, Case 5

IVODE / 1 1 1 1 1
Stepsize 4 8 16 32 64

IVODE 1 1.044 15.23 15.91 16.01 16.02
IVODE 2 8.71 14.15 15.40 15.77 15.90
IVODE 3 15.19 15.59 15.79 15.90 15.94
IVODE 4 16.05 15.99 15.99 15.99 16.00

Looking at the tables above, we can see that when the stepsize is decreased by a factor of 2 at

each step, the error ratios for each method are approximately as follows:
Two-stage second order ERK methods: 4

Three-stage third order ERK methods: 8

Four-stage fourth order ERK methods: 16

For bigger stepsizes, the error ratios might not be close to the expected values. But the smaller
the stepsize gets, the more the error ratios approach the expected results. So, for the smallest
stepsize results in the table, you can see that the ratios are approximately the same as we
expect from the theory. This confirms that the ERK methods are correct since each method

provides the order that is expected.

4.3 Comparison of standard and optimal ERK methods: Accuracy

and Efficiency
4.3.1 Accuracy

Here we consider some standard methods along with the optimal 2"¢, 3™ and 4" order ERK
methods and compare them on several test problems. For each IVODE, we provide a table

which has all the methods grouped according to their order. We check the accuracy of all the

L1
methods for the stepsize " For the error results for each order, we take the smallest error

74



and then divide all the other errors from all the methods by the smallest error. The results are
presented in the ‘Rel. to Min.” column of the tables. The method with ‘1.0" as the value of ‘Rel.
to Min.” is the most accurate method of that order for that IVODE.

We first consider the IVODE,

y' = —2xy?

with initial value, y(0) = 1 and exact solution,

y(x)=1+x2.

Using the software discussed in Chapter 3, we apply all the methods to this IVODE to find the

approximate solutions and corresponding errors. The results are shown in the table below:

Methods Errors Rel. to Min.

Explicit Midpoint Method (Second Order) 7.19 x 10706 2.4

Heun’s Second Order Method 2.34x 1079 7.7

Optimal Second Order ERK Method 3.05 x 1070 1.0

Heun’s Third Order Method 4,06 x 10798 2.1
Ralston’s Third Order Method 2.11x 10798 1.1
Optimal Third Order ERK Method Case 1 1.90 x 107°8 1.0
Optimal Third Order ERK Method Case 2 3.78 x 1077 19.8
Optimal Third Order ERK Method Case 3 1.29 x 10797 6.8
The Classical Runge-Kutta Method 4,07 x 10710 1.4
3/8 Rule Method (Fourth Order) 438 x 10710 1.6
Optimal Fourth Order ERK Method Case 1 2.81 x 10710 1.0
Optimal Fourth Order ERK Method Case 2 5.34 x 10710 1.9
Optimal Fourth Order ERK Method Case 3 431x 10710 1.5

Optimal Fourth Order ERK Method Case 4 3.21x 1079 11.4
Optimal Fourth Order ERK Method Case 5 3.21x 1079 11.4

Table 4.3.1: Errors and Rel. to Min. values for all the ERK methods applied to IVODE y' = —2xy2, y(0) = 1.
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We next consider the IVODE,

with initial value, y(0) = 1 and exact solution,

1
YO = s

We apply all the methods to this IVODE to find the approximate solutions and corresponding

errors. The results are shown in the table below:

Methods Errors Rel. to Min.
Explicit Midpoint Method (Second Order) 9.58 x 1079 1.8
Heun’s Second Order Method 5.43 x 107 1.0
Optimal Second Order ERK Method 8.20 x 1079¢ 1.5
Heun’s Third Order Method 5.31 x 1078 1.4
Ralston’s Third Order Method 3.67 x 1078 1.0
Optimal Third Order ERK Method Case 1 3.67 x 10708 1.0
Optimal Third Order ERK Method Case 2 1.03 x 10797 2.8
Optimal Third Order ERK Method Case 3 3.71x 10708 1.0
The Classical Runge-Kutta Method 1.13 x 10711 2.3
3/8 Rule Method 494 x 10712 1.0
Optimal Fourth Order ERK Method Case 1 3.88 x 10711 7.8
Optimal Fourth Order ERK Method Case 2 7.77 x 10711 15.7
Optimal Fourth Order ERK Method Case 3 2.52x 10711 5.1
Optimal Fourth Order ERK Method Case 4 2.98 x 10711 6.0
Optimal Fourth Order ERK Method Case 5 2.98 x 10711 6.0

Table 4.3.2: Errors and Rel. to Min. values for all the ERK methods applied to IVODE y’ = (—%) y3,y(0) = 1.
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We next consider the IVODE,

with initial value, y(0) = 1 and exact solution,

20
y(x) =——.
1+ 19e 4

We apply all the methods to this IVODE to find the approximate solutions and corresponding

errors. The results are shown in the table below:

Methods Errors Rel. to Min.
Explicit Midpoint Method (Second Order) 5.72 x 10797 1.0
Heun’s Second Order Method 6.32 x 1077 1.1
Optimal Second Order ERK Method 5.92 x 10797 1.0
Heun’s Third Order Method 4,67 x 10710 1.4
Ralston’s Third Order Method 5.13 x 10710 1.6
Optimal Third Order ERK Method Case 1 5.13 x 10710 1.6
Optimal Third Order ERK Method Case 2 3.29 x 10710 1.0
Optimal Third Order ERK Method Case 3 5.13 x 10710 1.6
The Classical Runge-Kutta Method 430x 10713 1.1
3/8 Rule Method 427 x 10713 1.1
Optimal Fourth Order ERK Method Case 1 4,04 x 10713 1.0
Optimal Fourth Order ERK Method Case 2 3.93x 10713 1.0
Optimal Fourth Order ERK Method Case 3 430x 10713 1.1
Optimal Fourth Order ERK Method Case 4 4,67 x 10713 1.2
Optimal Fourth Order ERK Method Case 5 4,67 x 10713 1.2

Table 4.3.3: Errors and Rel. to Min. values for all the ERK methods applied on IVODE y' = (—) (1 -x

y(0) = 1.

1
4

20

).
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The next IVODE we consider is

! —ax

y =—-ay—e sinx

where «a is a constant between 0 and 1. We choose a = 0.1 for our computations. The initial

value for this IVODE is y(0) = 1 and exact solution is,

y(x) = e ** cosx.

We apply all the methods to this IVODE to find the approximate solutions and corresponding

errors. The results are shown in the table below:

Methods Errors Rel. to Min.
Explicit Midpoint Method (Second Order) 8.48 x 1079¢ 3.1
Heun’s Second Order Method 8.74 x 1076 3.2
Optimal Second Order ERK Method 2.75 x 10796 1.0
Heun’s Third Order Method 6.80 x 1079 1.0
Ralston’s Third Order Method 7.07 x 1079° 1.0
Optimal Third Order ERK Method Case 1 6.89 x 10799 1.0
Optimal Third Order ERK Method Case 2 1.27 x 107°8 1.9
Optimal Third Order ERK Method Case 3 1.27 x 107%8 1.9
The Classical Runge-Kutta Method 8.88 x 10712 1.8
3/8 Rule Method 491 x 10712 1.0
Optimal Fourth Order ERK Method Case 1 7.47 x 10712 1.5
Optimal Fourth Order ERK Method Case 2 8.88 x 10712 1.8
Optimal Fourth Order ERK Method Case 3 8.88 x 10712 1.8
Optimal Fourth Order ERK Method Case 4 5.37 x 10712 1.1
Optimal Fourth Order ERK Method Case 5 5.37 x 10712 1.1
Table 4.3.4: Errors and Rel. to Min. values for all the ERK methods applied on IVODE y’ = —ay — e~%* sin x where

a=0.1,y>0)=1.
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For second order methods, referring to Tables 4.3.1 and 4.3.4, we see that the optimal second
order ERK method has ‘Rel. to Min.” value to be ‘1.0’, which means it gives the most accuracy
in those tables. However, in the case of Tables 4.3.2 and 4.3.3, Heun’s Second Order method
and the Explicit Midpoint method provide the most accurate results, respectively. For third
order methods, Tables 4.3.1 and 4.3.2 show that the optimal third order ERK method, case 1,
provides the most accurate results. However, in case of Tables 4.3.3 and 4.3.4, the optimal
third order ERK method, case 2, and Heun’s Third Order method provide the most accuracy,
respectively. For fourth order methods, Table 4.3.1 shows that the optimal fourth order ERK
method, case 1, provides the most accuracy, whereas Table 4.3.3 shows that the optimal
fourth order ERK method, case 2, provides the most accuracy. However, Tables 4.3.2 and 4.3.4

show that the 3/8 Rule provides the most accurate results.

Recall from Chapter 2 that the components of the Principal Error Coefficient are multiplied by
problem dependent factors in the actual error. This is the reason why we get different results
for each IVODEs. For second order, the optimal second order ERK method has an Average Rel.
to Min. (ARM) of 1.125, while the other two second order methods have ARMs of 2.075 and
3.25. For third order, the optimal third order ERK method, Case 1, has an ARM of 1.15,
Ralston’s third order method has an ARM of 1.175, and Heun’s third order method and cases
2 and 3 have ARMs of 1.475, 6.375, and 2.825, respectively. For fourth order, the 3/8 Rule
method has an ARM of 1.175, the classical Runge-Kutta method has an ARM of 1.65, and cases
1 through 5 have ARMs of 2.825, 5.1, 2.375, 4.925, and 4.925, respectively. So, for second
and third orders, the optimal method has the best ARM, while for fourth order, the 3/8 Rule
method has the best ARM. We must note that substantially more testing on a much larger test

set should be performed before any specific conclusions can be made.
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4.3.2 Efficiency

In this subsection, we demonstrate that better accuracy implies better efficiency. We begin
with second order ERK methods, which include the optimal second order ERK method, the
Explicit Midpoint method and Heun’s method, but instead of determining which one gives the
smallest error, we set a specific error as the goal, and determine which method is able to
compute a solution with that error most quickly i.e., in the fewest number of steps. We
determine this by changing the stepsizes and running the software so that all methods achieve

approximately the same error.

For this analysis, we start with the IVODE,

! —ax

y =—ay—e sinx,
where @ = 0.1. The initial value for this IVODE is y(0) = 1. As one can see from Section 4.3.1,
the smallest stepsize that we have used is 614 = 0.015625 and for this stepsize, Heun’s method

has an error of 8.74 x 107° for this IVODE. We now find out how large a stepsize the other

methods use while still obtaining approximately the same accuracy.

We find that for the stepsize of 0.02765, the optimal second order ERK method achieves the
same accuracy as Heun’s method using the stepsize of 0.015625, whereas the Explicit
Midpoint method achieves that accuracy using the stepsize of 0.01578. Since ty = 1, this
means that the optimal second order ERK method computes a solution of the desired accuracy
using = 36 steps, while the other two methods require about 63 steps indicating that the

optimal method is about 40% more efficient.
Next, we consider the three-stage, third order ERK methods applied to the IVODE,

!

y' = —2xy?,
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with initial value, y(0) = 1. We use all the third order ERK methods identified in Section 4.3.1.

In that section, we saw that for this IVODE, the optimal third order ERK methods, Case 2, has

the largest error of 3.78 X 1077 for the stepsize of6—14 = 0.015625.

We find that at the stepsize of 0.04209, the optimal third order ERK method, Case 1, gives the
same accuracy as the optimal third order ERK method, Case 2 using the stepsize of 0.015625.
Ralston’s Third Order method obtains the desired accuracy with a stepsize of 0.037035, Heun’s
Third Order method obtains the desired accuracy with a stepsize of 0.03445 and the optimal

third order ERK method, Case 3, obtains the desired accuracy with a stepsize of 0.0223.

Since ty =1, this means that the optimal third order ERK method, Case 1, computes a solution
of the desired accuracy using = 24 steps, while Ralston’s Third Order method requires = 27
steps, Heun’s Third Order method requires = 29 steps, the optimal third order ERK method,
Case 3, requires = 45 steps and the optimal third order ERK method, Case 2, requires = 64
steps to obtain the desired accuracy. This indicates that the optimal third order ERK method,
Case 1, is about 62% more efficient, Ralston’s Third Order method is about 58% more
efficient, Heun’s method is about 55% more efficient and the optimal third order ERK method,

Case 3, is about 30% more efficient than the optimal third order ERK method, Case 2.

Finally, we use the four-stage, fourth order ERK methods to compute a numerical solution for
the IVODE,
y' = -2xy?,

with initial value, y(0) = 1. We use all the fourth order ERK methods identified in Section

4.3.1. In that section, we saw that for this IVODE, the optimal fourth order ERK methods, Case

4 and Case 5, have the largest error of 3.21 x 10~° for a stepsize ofﬁ—l4 = 0.015625.

We find that for the stepsize of 0.02885, the optimal fourth order ERK method, Case 1, gives

the same accuracy as the optimal fourth order ERK methods, Case 4 and Case 5. The classical
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Runge-Kutta method obtains that accuracy with a stepsize of 0.02601, the optimal fourth
order ERK method, Case 3, obtains the desired accuracy with a stepsize of 0.02105, the 3/8
Rule method obtains the desired accuracy with a stepsize of 0.025925, and the optimal fourth

order ERK method, Case 2, obtains the desired accuracy with a stepsize of 0.02425.

Since ty = 1, this means that the optimal fourth order ERK method, Case 1, computes a
solution of the desired accuracy using = 35 steps, while the classical Runge-Kutta method
requires ~ 38 steps, the optimal fourth order ERK method, Case 3, requires ~ 48 steps, 3/8
Rule method requires = 39 steps, the optimal fourth order ERK method, Case 2, requires =
41 steps and the optimal fourth order ERK method, Case 4 and Case 5, both require = 64 steps
to obtain the desired accuracy. This indicates that the optimal fourth order ERK method, Case
1, is about 55% more efficient, the classical Runge-Kutta method and the 3/8 Rule method are
about 40% more efficient, the optimal fourth order ERK method, Case 3, is about 25% more
efficient and the optimal fourth order ERK method, Case 2, is about 36% more efficient than

the optimal fourth order ERK method, Case 4 and Case 5.

4.4 Continuous Approximate Solutions and Corresponding Defects

As we have discussed in Chapter 2, the approximate solutions provided by the ERK methods
are not continuous. In order to make the approximate solutions continuous, we use Hermite
interpolation. In this section, we investigate continuous approximate solutions as well as

defects for these continuous approximate solutions.
4.4.1 Continuous Approximate Solutions

In this subsection, we provide some plots of the continuous approximate solutions for some
of the test IVODEs computed using the optimal ERK methods. For IVODEs with the exact

solutions, we compare the continuous approximate solutions with the exact solutions.

82



We begin with second order ERK methods. We use the optimal second order ERK method to

compute a discrete approximate solution to the IVODE,

! —ax

y' =—ay—e sinx,

where a = 0.1, with initial value, y(0) = 1, and then compute a continuous approximate
solution using Hermite interpolation. The graph, plotting the continuous approximate solution

and exact solution, is shown in Figure 4.4.1.

Figure 4.4.1: Exact solution and continuous approximate solution using the optimal second order ERK method and
Hermite interpolation for the IVODE y' = —ay — e **sinx, y(0) = 1.

In the graph above, one can clearly see that the continuous approximate solution and exact

solution agree quite well.

We next consider third order ERK methods. We use the optimal third order ERK method, Case

1, to compute a discrete approximate solution to the IVODE,

with initial value, y(0) = 1, and then compute a continuous approximate solution using
Hermite interpolation. The graph, plotting the continuous approximate solution and exact

solution, is shown in Figure 4.4.2.
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Figure 4.4.2: Exact solution and continuous approximate solution using the optimal third order ERK method, case

1, and Hermite interpolation for the IVODE y’ = (— i) y3, y(0) = 1.
In the graph above, one can clearly see that the continuous approximate solution and exact

solution agree quite well.

We next consider fourth order ERK methods. We use the optimal fourth order ERK method,

case 1, to compute a discrete approximate solution to the IVODE,

!

y' = —2xy?

with initial value, y(0) = 1, and then a compute continuous approximate solution using
Hermite interpolation. The graph, plotting the continuous approximate solution and exact

solution, is shown in Figure 4.4.3.
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Figure 4.4.3: Exact solution and continuous approximate solution using the optimal fourth order ERK method, case
1, and Hermite interpolation for the IVODE y’ = —2xy?2, y(0) = 1.

In the graph above, one can clearly see that the continuous approximate solution and exact

solution agree quite well.

Finally, we consider the COVID-19 model introduced in Section 2.1, and we use the optimal
fourth order ERK method, Case 1, to obtain an approximate solution for t from 0 to 150. We
use Hermite interpolation to obtain a corresponding continuous approximate solution. This
IVODE does not have an exact solution. We therefore only show the continuous approximate

solution in Figure 4.4.4.
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Figure 4.4.4: Continuous approximate solution using the optimal fourth order ERK method, Case 1, and Hermite
interpolation to solve the COVID-19 model.

4.4.2 Defect of Continuous Approximate Solutions

In this subsection, we plot defects for the continuous approximate solutions of the IVODEs
computed using optimal ERK methods of each order, together with Hermite interpolants. We
consider the same IVODEs that we considered in Section 4.4.1. We plot the defect on one step.

Recall that for a continuous approximate solution, u(t), the defect is,

@) =u'(t) — f(t,u®).

We begin with second order ERK methods. We use the optimal second order ERK method to

obtain a discrete approximate solution to the IVODE,

! —ax

y =—ay—e sinx,

where a = 0.1, with initial value, y(0) = 1 at a stepsize of 0.015625, and then we use
Hermite interpolation to find a continuous approximate solution as we did in Section 4.4.1.
We plot the defect based on this continuous approximate solution. For this test, we choose,
arbitrarily, step number 23. The graph plotting the defect in steps 23 is shown in Figure 4.4.5.

We see that the maximum defect is quite small = 5 x 10~ in magnitude.
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Figure 4.4.5: Defect, Step 23, of the continuous approximate solution of the IVODE y' = —ay — e ®*sinx,
y(0) = 1 computed by using the optimal second order ERK method, and Hermite interpolation.

Next, we consider third order ERK methods. We use the optimal third order ERK method, Case

1, to obtain a discrete approximate solution to the IVODE,

1
[ 3
y'=(=3)»",

with initial value, y(0) = 1 at a stepsize of 0.01, and then we use Hermite interpolation to
find a continuous approximate solution as we did in Section 4.4.1. We plot the defect based
on this continuous approximate solution. For this test, we choose, arbitrarily, step number 11.
The graph plotting the defect in step 11 is shown in Figure 4.4.6. We see that the maximum

defect is quite small; it has a magnitude of = 2.5 x 1077,
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Figure 4.4.6: Defect, Step 11, of the continuous approximate solution of the IVODE y' = (—%) y3, y(0) =1

computed by using the optimal third order ERK method, case 1, and Hermite interpolation.

Finally, we consider fourth order ERK methods. We use the optimal fourth order ERK method,

Case 1, to obtain a discrete approximate solution to the IVODE,
y' = —2xy?,

with initial value, y(0) = 1, and then we again use Hermite interpolation to find a continuous
approximate solution as we did in Section 4.4.1. We plot the defect based on this continuous
approximate solution. For this test, we choose, arbitrarily, step number 8. The graph plotting
the defect in step 8 is shown in Figure 4.4.7. We can see that the maximum defect is quite

small; it has a magnitude of ~ 6 X 1077.
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Figure 4.4.7: Defect, Step 8, of the continuous approximate solution of the IVODE y' = —2xy?, y(0) =1

computed by using the optimal fourth order ERK method, case 1, and Hermite interpolation.

We observe that the defects in all cases are quite small which indicates that the approximate

continuous solution almost satisfies the given ODE.
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Chapter 5

Summary, Conclusions, and Future Work

In this thesis, we have presented the general form for Initial Value ODEs along with some
examples. We have presented general forms for Explicit Runge-Kutta methods of orders 2 to
4 and found the optimal values for the free coefficients based on minimizing the Principal Error
Coefficient of the method using optimization software. We observed that the Principal Error
Coefficients of several of the standard ERK methods are very close to those of the optimal ERK
methods. We have also provided a comparison between the standard and optimal ERK
methods by testing them on various IVODEs. We note that the problem itself has an effect on
the error of the approximate numerical solution as the unsatisfied order conditions that make
up the components of the Principal Error Coefficient are multiplied by problem dependent
factors. We confirmed the order of convergence of the optimal methods that we obtained
based on discrete approximate solutions computed by the ERK methods. We used Hermite
interpolants to augment the discrete approximate solutions to obtain continuous approximate
numerical solutions across the whole domain. This allowed us to plot the continuous
approximate solution and to find the defect associated with it. We observed that the
continuous approximate numerical solutions were quite accurate as their corresponding

defects were quite small.

Regarding future work, further testing of the ERK methods using a larger test set would be
helpful in order to determine how frequently the optimal methods actually lead to more
accurate results. The next step would be to develop a new software that is able to perform
adaptive step control based on some estimate of the maximum defect on each step. This

would allow the python tool to provide more efficient results by adjusting the stepsizes. The
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idea here is to adjust the stepsize in order to keep the maximum defect below the user-
provided tolerance. Another idea would be to extend the research to higher order methods.
That will also include using an interpolant of higher order than Hermite interpolation. Along
with that, it would be helpful to add a graphical user interface aspect to the Python software.

It would allow the user to use the software and enter new IVODEs more easily.
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Appendix

This software is available at https://github.com/CYBRPHRK/Research-Thesis.
Optimization.py
import scipy.optimize as scope

case = 0

Name: optimize
Description: This function finds the optimal values to minimize the given
Principal Error Coefficient and provides the results in
the console.
Parameters:
bl : £ is the name of the function used as Principal Error
Coefficient.
Returns: None
T
def optimize(f):
if (£ == E2):
alpha = [0.1]
elif (f == E3):
alpha = [0.01, 0.01]
elif (f == E4):
if (case == 1):
alpha = [0.1, 0.2]
elif (case == 3):
alpha = [-0.1]
elif ((case == 2) or (case == 4) or (case == 5)):
alpha = [0.1]

res = scope.minimize (f, alpha, tol=le-8)
print ("Message: ", res.message)

print ("E2: ", res.fun)

print ("Free Coefficients: ", res.x)

Name: E2
Description: This function represents as the Principal Error Coefficient
for second order ERK methods. Provided the value of the
free coefficient (alpha), this function provides the
Principal Error Coefficient value.
Parameters:
alpha : alpha is the list of values for the free coefficients.
Returns:
result : result is the Principal Error Coefficient value for the
given free coefficient.
LI B
def E2 (alpha):
b [1 - (1 / (2 * alpha[01)), 1 / (2 * alphal0])]
c = [0, alpha([0]]
A [[0, 01, [alpha[O], 011
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csq = [c[0] ** 2, c[1l] ** 2]
becsg = (b[0] * csg[0]) + (b[1] * csqgll])

Ac = [(A[O][O] * c[O]) + (A[O][1] * c[1]), (A[1][O] * c[O]) + (A[1][1]
cl1])]

bAc = (b[0] * Ac[0]) + (b[1l] * Ac[l])

result = (((1/2) * (bcsg - (1/3))) ** 2) + ((bAc - (1/6)) ** 2)

return result

Name: setValuesForThirdOrderCasel
Description: This function sets and returns the values for all the
coefficients for Case 1 of the third order ERK methods.
Parameters:
alpha : alpha is the list of values for the free coefficients.
Returns:
c2, c3, bl, b2, b3, a3l, a32: coefficients for Case 1 of the
third order ERK methods.
T
def setValuesForThirdOrderCasel (alpha) :
c2 = alphal0]

c3 = alphall]

bl = (2 - (3 * (c2 + c3)) + (6 * c2 * c3)) / (6 * c2 * c3)

b2 = (¢c3 - (2/3)) / (2 * c2 * (c3 - c2))

b3 = ((2/3) - c2) / (2 * ¢3 * (c3 - c2))

a3l = (¢3 * (c3 - (3 * c2) + (3 * c2 * c2))) / (c2 * ((3 * c2) - 2))
a32 = (¢c3 * (c2 - c3)) / (c2 * ((3 * c2) - 2))

return c2, c3, bl, b2, b3, a3l, a32

v

Names: E3Eqgl, E3Eg2, E3Eg3, E3Eg4

Description: These functions compute and return the weighted values of
the order conditions of Principal Error Coefficient
of third order ERK methods.

Parameters:
c : c are the nodes.
b : b are the weights.
A : A is the matrix.
Returns:

weighted values of the order conditions of Principal Error
Coefficient of third order ERK methods.
LI B
def E3Eqgl(c, b, A):
#For Equation 1, find b*c”3

ccube = [c[0] ** 3, c[1] ** 3, c[2] ** 3]
bccube = (b[0] * ccube[0]) + (b[1l] * ccubel[l]) + (b[2] * ccube[2])
return ((1/6) * (bccube - (1/4)))

def E3Eg2(c, b, A):
#For Equation 2, find b*c*A*c

bc = [(b[0] * c[0]), (b[1] * c[1]), (b[2] * c[2])]

Ac = [((A[O][O] * c[O0]) + (A[O][1] * c[1]) + (A[O][2] * c[2])),
((A[1][0] * c[O]) + (A[1][1] * c[1]) + (A[1]([2] * c[2])),
((A[2][0] * c[0]) + (A[2][1] * c[1]) + (A[2]1([2] * c[2]))]

bcAc = (bc[0] * Ac[0]) + (bc[l] * Ac[l]) + (bc[2] * Ac[2])

return (bcAc - (1/8))

def E3Eg3(c, b, A):
#For Equation 3, find b*A*c"2
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csq = [c[0] ** 2, c[1l] ** 2, c[2] ** 2]

Acsg = [((A[O0][O] * csq[0]) + (A[O][1] * csql[l]) + (A[O][2] * csql2])),
((A[L1][0] * csqlO]) + (A[1][1] * csqlll) + (A[1][2] * csql2])),
((A[2][0] * csql0]) + (A[2][1] * csqll]l) + (A[2][2] * csqgl2]))]

bAcsg = (b[0] * Acsg[0]) + (b[1l] * Acsqgll]) + (b[2] * AcsqglZ2])

return ((1/2) * (bAcsg - (1/12)))

def E3Eg4(c, b, A):
#For Equation 4, find b*A"2*c
Asq = []
for i in range (0, len(A)):
Asqg.append([])
for j in range (0, len(Ad)):
Asqli].append ((A[i][0] * A[O][3]) + (A[i]1[1] * A[1]1([3]) +
(ATi1[2]1 * A[21031))
(Asq[O0][1] * c[1]) + (AsqlO0]l[2] * c[2])),
Asq[l][1l] * cI[l + (Asqll][2] * c[2])),

+
(Asq[1][0] * c[0] ( 1)
(Asq[2][1] * c[1]) + (Asql2][2] * c[2]))]
b +

Asqc = [((Asq[0][0] * c[O]
( )
((Asq[2][0] * c[O])

)
+
+

bAsqgc (b[0] * Asgc[0]) + (b[1l] * Asqgc[l]) (b[2] * Asqgc[2])
return (bAsgc - (1/24))
Name: E3

Description: This function represents as the Principal Error Coefficient
for third order ERK methods. Provided the values of the
free coefficients (alpha), this function provides the
Principal Error Coefficient value.

Parameters:

alpha : alpha is the list of values for the free coefficients.
Returns:

result : result is the Principal Error Coefficient value for the

given free coefficients.
Tr

def E3(alpha):
if ((alpha[0] == 0) or (alpha[0] == 2/3) or (alphal[l] == 0) or (alphal0]
== alpha[l])):
return 1

c2, c3, bl, b2, b3, a3l, a32 = setValuesForThirdOrderCasel (alpha)
c = [0, c2, c3]

b = [bl, b2, b3]
A= [[0, O, O], [c2, O, O], [a31, a32, O]]

#For Equation 1
eql = E3Egl(c, b, A)

#For Equation 2
eg2 = E3Eg2(c, b, A)

#For Equation 3
eg3 = E3Eg3(c, b, A)

#For Equation 4
eg4 = E3Eqg4 (c, b, A)

#E3"2
result = (egl ** 2) + (eg2 ** 2) + (eg3 ** 2) + (egd ** 2)

return result



v

Name:

Description:

Parame

Return

setValuesForFourthOrder

This function sets and returns the values for all the

coefficients for the fourth order ERK methods.

ters:
alpha
N

c2, c3, c4, bl, b2, b3

, b4, a3l,

a32, a4l,

a4z,

ad3:

coefficients for the fourth order ERK methods.

def setValuesForFourthOrder (alpha) :

alpha is the list of values for the free coefficients.

if (case == 1):
c2 = alphal0]
c3 = alphall]
cd4d =1
a3l = (c3 * ((3 * c2) = c3 = (4 * c2 *c2))) / (2 *c2* (1 - (2 *
c2)))
a32 = (¢3 * (c3 = c2)) / (2 * c2 * (1 - (2 * c2)))
a4l = (((c3 ** 2) * ((12 * c2 * c2) - (12 * c2) + 4)) - (c3 * ((12 *
c2 * c2) - (15 * c2) + 5)) + ((4 * c2 * c2) - (6 * c2) + 2)) /
((2 * c2 * c3) * (3 - (4 * (c2 + c3)) + (6 * c2 * c3)))
ad2 = (((-4 * ¢3 * c3) + (5 * c3) + c2 - 2) * (1L - c2)) / ((2 * c2) *
(c3 - c2) * (3 - (4 * (c2 + c3)) + (6 * c2 * c3)))
ad3 = ((1 - (2 * c2)) * (1 - c3) * (1 - c2)) / (c3 * (c3 - c2) * (3 -
(4 * (c2 4+ c3)) + (6 * c2 * c3)))
bl = (1 - (2 * (c2 + c3)) + (6 * c2 * c3)) / (12 * c2 * c3)
b2 = ((2 * ¢c3) = 1) / ((12 * ¢c2) * (¢c3 - c2) * (1 - c2))
b3 = (1 - (2 * c2)) / ((12 * c3) * (¢c3 - c2) * (1 - c3))
bd = (3 - (4 * (c2 + ¢c3)) + (6 * c2 * c3)) / (12 * (1L - c2) * (1 -
c3))
elif (case == 2):
b3 = alphal0]
c2 =c¢c3 =1/2
cd =1
a3l = ((3 * b3) - 1) / (6 * b3)
a32 =1/ (6 * b3)
a4l = 0
a42 =1 - (3 * b3)
a43 = 3 * b3
bl = 1/6
b2 = (2 / 3) - b3
b4 = 1/6
elif (case == 3):
b3 = alphal0]
c2 =1/2
c3 =0
cd =1
a3l = -1 / (12 * Db3)
a32 =1/ (12 * b3)
a4l = (-1/2) - (6 * Db3)
ad2 = 3/2
a4d3 = 6 * b3
bl = (1/6) - b3
b2 = 2/3
b4 = 1/6
elif (case == 4):
b4 = alphal0]
c2 =1
c3 =1/2
cd =1
a3l = 3/8
a32 = 1/8
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adl
adz
ad3
bl =
b2
b3

(cas
c2
c3
c4
a3l
a32
adl
adz
ad3
bl
b2
b3
b4

elif

return c2

Names: E4Eql,
Description:

Parameters:
c
b
A
Returns:
weigh
C
Tr
def E4Eql (c,
#For Equa
cquad = [
bcquad =

((

return

def E4EqQ2 (c,
#For Equa
csq = [cl
bcsg [b
Ac [((A

((A
((A

((A

bcsgAc
((

return

def E4Eqg3(c,

1 - (1 7/ (4 * b4))

-1 / (12 * b4)

1/ (3 * b4)
1/6
1/6 - b4
2/3
e == 5):
alphal0]
1/2
1

((4 * c2) - 1) / (8 * c2)
1/ (8 * c2)

(1 = (2 * c2)) / (2 * c2)
-1/ (2 * c2)

2
1/6
0
2/3
1/6
, ¢c3, c4, bl, b2, b3, b4, a3l, a32, adl, a4d2, a43
E4Eqg2, E4Eq3, E4Eg4, E4Eg5, E4Eg6, E4EqQ7, E4Eg8, E4EQ9

These functions compute and return the weighted values of
the order conditions of Principal Error Coefficient
of fourth order ERK methods.

c are the nodes.

: b are the weights.
: A is the matrix.

ted values of the order conditions of Principal Error
oefficient of fourth order ERK methods.

b, A):

tion 1, find b*c"4

c[0] ** 4, c[1l] ** 4, c[2] ** 4, c[3] ** 4]

(b[0] * cquad[0]) + (b[l] * cquad[l]) + (b[2] * cquad[2]) +
(b[3] * cquadl[3])

1/24) * (bcquad - (1/5)))

b, A):

tion 2, find b*c”"2*A*c

0] ** 2, c[l] ** 2, c[2] ** 2, c[3] ** 2]

[0] * csql[0], b[1l] * csqll], bl[2] * csql2], b[3] * csql3]]
[0]1[0] * c[0]) + (A[O][1] * c[1]) + (A[Q][2] * c[2]) + (A[O][3]
* c[31)),

[11[0] * c[0]) + (A[1][1] * c[1]) + (A[1]1[2] * c[2]) + (A[1]I[3]
* cl[31)),

[2][0] * c[O0]) + (A[2][1] * c[1]) + (A[2]1[2] * cl[2]) + (A[2][3]
* cl[31)),

[31[0] * c[0]) + (A[3]1[1] * cl[1]) + (A[3]1[2] * c[2]) + (A[3]I[3]
* c[3]))]

(bcsg[0] * Ac[0]) + (bcsgll] * Ac[l]) + (bcsqgl[2] * Ac[2]) +
(bcsgl[3] * Ac[3])

1/2) * (bcsghAc - (1/10)))

b, A):
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def

def

def

#For Equation 3,

csq = [c[0] ** 2, c[l] ** 2, c[2] ** 2, c[3] ** 2]
bc = [b[0] * c[0], b[1] * c[1], b[2] * c[2], b[3] * c[3]]
Acsg = [((A[O0][O] * csq[0]) + (A[O][1] * csqll]) + (A[O][2] * csql[2]) +
(A[O][3] * csql31)),
((A[1][0] * csqlO]) + (A[1][1] * csql[l]) + (A[1][2] * csql2]) +
(A[1][3] * csql3])),
((A[2][0] * csql0]) + (A[2][1] * csqll]) + (A[2][2] * csql2]) +
(A[2] 3] * csql31)),
((A[3]1[0] * csql0]) + (A[3][1] * csqlll) + (A[3]1[2] * csql2]) +
(A[3]1[3] * csql3]1))]
bcAcsg = (bc[0] * Acsqg[0]) + (bc[l] * Acsqgl[l]l) + (bc[2] * Acsql2]) +
(bc[3] * Acsqgl3])
return ((1/2) * (bcAcsqg - (1/15)))
E4Eg4 (c, b, A):
#For Equation 4, find b*c*A"2*c
bc = [b[0] * c[0], b[1l] * c[1], b[2] * c[2], b[3] * c[3]]
Ac = [((A[O][O] * c[O]) + (A[O][1] * c[1]) + (A[O][2] * c[2]) + (A[O][3]
* c[31)),
((A[1][0] * c[O]) + (A[1][1] * c[1]) + (A[1][2] * c[2]) + (A[1][3]
* c[3]1)),
((A[2]1[0] * c[0]) + (A[2][1] * c[1]) + (A[2][2] * c[2]) + (A[2][3]
* c[31)),
((A[3][0] * c[0]) + (A[3][1] * c[1]) + (A[31[2] * c[2]) + (A[3]I[3]
* c[3]1))]
AAc = [((A[O][O] * Ac[O]) + (A[O][1] * Ac[l]) + (A[O][2] * Ac[2]) +
(A[O0][3] * Ac[3])),
((A[11[0] * Ac[O]) + (A[1][1] * Ac[l]) + (A[1l][2] * Ac[2]) +
(A[1][3] * Ac[3])),
((A[2][0] * Ac[O0]) + (A[2][1] * Acll]) + (A[2][2] * Ac[2]) +
(A[2][3] * Ac[3])),
((A[3][0] * Ac[0]) + (A[3]1[1] * Acll]) + (A[3][2] * Ac[2]) +
(A[3][3] * Ac[3]))]
bcAAc = (bc[0] * AAc[0]) + (bc[l] * AAc[l]) + (bc[2] * AAc[2]) + (bc[3]
AAcI[3])
return (bcAAc - (1/30))
E4Eg5(c, b, A):
#For Equation 5, find b* (A*c) "2
Ac = [((A[O][O] * c[O]) + (A[O][1] * c[1]) + (A[O][2] * c[2]) + (A[O][3]
* c[31)),
((A[1][0] * c[0]) + (A[1]1[1] * c[1]) + (A[11([2] * c[2]) + (A[1]I[3]
* c[31)),
((A[2]1[0] * c[0]) + (A[2][1] * c[1]) + (A[2][2] * c[2]) + (A[2][3]
* c[3]1)),
((A[3][0] * c[0]) + (A[3][1] * c[1]) + (A[3][2] * c[2]) + (A[3][3]
* c[3]1))]
AcAc = [Ac[0] ** 2, Ac[l] ** 2, Ac[2] ** 2, Ac[3] ** 2]
bAcAc = (b[0] * AcAc[0]) + (b[1l] * AcAc[l]) + (b[2] * AcAc[2]) + (b[3] *
AcAc[3])
return ((1/2) * (bAcAc - (1/20)))
E4Eg6(c, b, A):
#For Equation 6, find b*A*c”3
ccube = [c[0] ** 3, c[1l] ** 3, c[2] ** 3, c[3] ** 3]
Accube = [((A[0][0] * ccube[0]) + (A[O][1] * ccube[l]) + (A[0][2] *
ccube[2]) + (A[0][3] * ccube[3])),

find b*c*A*c"2
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def

def

def

((A[1]1[0] * ccube[0]) + (A[1][1] * ccube[l]) + (A[1][2] *
]

ccube[2]) + (A[1][3] * ccube[3])),
((A[2]1[0] * ccubel0]) + (A[2]I
ccube[2]) + (A[2][3] * ccube[3] ,

1
)
1]
))

1
)

* ccube[1l]) + (A[2][2] *

((A[3][0] * ccube[0]) + (A[3][1] * ccubel[l]) + (A[3][2] *
]

ccube[2]) + (A[3]1[3] * ccube[3]1))]

bAccube = (b[0] * Accube[0]) + (b[1l] * Accube[l]) + (b[2] * Accube[2]) +

(b[3] * Accube[3])
return ((1/6) * (bAccube - (1/20)))

E4Eq7(c, b, A):
#For Equation 7, find b*A*c* (A*c)
Ac = [((A[O][O] * c[O]) + (A[O][1] * c[1]) + (A[O][2] * c[2])
* c[3])),
((A[1][0] * c[0]) + (A[1][1] * c[1l]) + (A[1][2] * c[2])
* c[3])),
((A[2][0] * c[0]) + (A[2][1] * c[1l]) + (A[2][2] * c[2])
* c[31)),
((A[3][0] * c[0]) + (A[3]1[1] * cl[1]) + (A[3]1[2] * cl2])
* c[3]))]
cAc = [c[0] * AcIO
AcAc = [((A[0][O0]
(A[O0][3]

c[l] * Ac[l], c[2] * Ac[2], c
cAc[0]) + (A[0][1l] * cAc[l]) +
cAc[3]))

[3]1 * Ac[3]]
(

(A[1][3]
((afz] o]
(A[2] [3]

cAc[3]))

cAc[3])),

((A[3][0] * cAcl[O]) +

(A[3][3] * cAcl3]))]

bAcAc = (b[0] * AcAc[0]) + (b
AcAc[3])

[1] * AcAc[l]) + (b[2] * AcAc[2])

return (bAcAc - (1/40))

E4Eg8(c, b, A):
#For Equation 8, find b*A"2*c"2
csq = [c[0] ** 2, c[l] ** 2, c[2] ** 2, c[3] ** 2]

+

(¢]

C

C

C

(A[O] [3]

(A[1][3]

(A[2] [3]

(A[3][3]

]
A[0][2] * cAcl[2]) +

1,
*
* 4

((A[1][0] * cAc[O]) + (A[1][1] * cAc[l]) + (A[1][2] * cAc[2]) +
* cAc[0]) + (A[2][1] * cAc[l]) + (A[2][2] * cAc[2]) +
*

(A[3][1] * cAcll]) + (A[3][2] * cAc[2]) +

+ (b[3] *

sql2]) +
sql[2]) +
sql[2]) +
sql2]) +
* Acsqlz])
* Acsqlz])
* Acsql[2])

* Acsql2])

Acsqg = [((A[O][O] * csq[0]) + (A[O]I[1] * csqg[l]) + (A[O][2] *
(ATO][3] * csql3])),
((A[1][0] * csqlO]) + (A[1][1] * csqlll]l) + (A[1][2] ~*
(A[1][3] * csql31)),
((A[2][0] * csqlO]) + (A[2][1] * csqlll]l) + (A[2][2] ~*
(A[2][3]1 * csql3])),
((A[31[0] * csql0]) + (A[3]1[1] * csqll]) + (A[3][2] *
(A[31[3] * csql3]1))1
AAcsqg = [((A[O][O] * Acsql[O0]) + (A[O][1] * Acsqlll]l) + (A[O0][2]
+ (A[O][3] * Acsql3])),
((A[1]1[0] * AcsqlO]) + (A[1][1] * Acsqlll) + (A[1][2]
+ (A[1]1[3] * Acsql31)),
((A[2][0] * Acsql[0]) + (A[2][1] * Acsql[l]) + (A[2][2]
+ (A[2]1[3] * Acsql31)),
((A[3]1[0] * Acsql[0]) + (A[3]1[1] * Acsqgll]) + (A[3]1[2]
+ (A[3]1I[3] * Acsql3]))]
bAAcsg = (b[0] * AAcsqg[0]) + (b[1l] * AAcsqg[l]l) + (b[2] * AAcsqgl2]) +

(b[3] * AAcsql[3])
return ((1/2) * (bAAcsg - (1/60)))

E4Eq9(c, b, A):

#For Equation 9, find b*A"3*c

Ac = [((A[O]J[O] * c[O]) + (A[O]J[1] * c[1l]) + (A[O][2] * c[2])
* cl3])),

+

(A[O] [3]
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((A[1][0] * c[0]) + (A[1][1] * c[1l]) + (A[1][2] * c[2]) + (A[1][3]

* cl[31)),

((A[2][0] * cl0]) + (A[2][1] * c[1l]) + (A[2][2] * c[2]) + (A[2][3]

* cl[31)),

((A[3]110] * cl0]) + (A[3]1[1] * c[1l]) + (A[3][2] * c[2]) + (A[3]1[3]

* c[3]1))]
AAc = [((A[O][O0] * Ac[O]) + (A[O][1] * Ac[l]) + (A[O0][2] * Ac[2]) +
(A[O0][3] * Ac[3])),
((A[1]1[0] * Ac[O]) + (A[1][1] * Ac[l]) + (A[1l][2] * Ac[2]) +
(A[1]1[3] * Ac[3])),
((A[2][0] * Ac[O0]) + (A[2][1] * Ac[l]) + (A[2][2] * Ac[2]) +
(A[2][3] * Ac[3])),
((A[3]1[0] * Ac[0]) + (A[3][1] * Ac[1l]) + (A[3][2] * Ac[2]) +
(A[3][3] * Ac[3]))]
AAAc = [((A[O][O] * AAc[O]) + (A[O][1] * AAc[1l]) + (A[O][2] * AAc[2])
(A[O][3] * Ac[3])),
((A[1][0] * AAc[O]) + (A[1][1] * AAc[1l]) + (A[1l][2] * AAc[2])
(A[1]1[3] * Ac[3])),
((A[2][0] * AAc[O]) + (A[2][1] * AAc[1l]) + (A[2][2] * AAc[Z2])
(A[2][3] * Ac[3])),
((A[3][0] * AAc[O]) + (A[3][1] * AAc[1l]) + (A[3][2] * AAc[2])
(A[3][3] * Ac[3]))]
bAAAc = (b[0] * AAAc[O0]) + (b[1l] * AAAc[1l]) + (b[2] * AAAc[2]) + (b[3]
AAAcC([3])
return (bAAAc - (1/120))

Name: E4

Description: This function represents as the Principal Error Coefficient
for fourth order ERK methods. Provided the values of the
free coefficients (alpha), this function provides the
Principal Error Coefficient wvalue.

Parameters:

alpha : alpha is the list of values for the free coefficients.
Returns:

result : result is the Principal Error Coefficient value for the

given free coefficients.
LI B

def E4 (alpha):

if (case == 1):
if ((alphal[0] <= 0) or (alpha[l] <= 0) or (alpha[0] == 1) or
(alphal[l] == 1)
or (alphal[0] == alpha[l]) or (alpha[0] == 1/2) or ((3 - (4 *
(alpha[0] + alpha[l])) + (6 * alpha[0] * alphall])) == 0)):
return 1
elif ((case == 2) or (case == 3) or (case == 4) or (case == 5)):
if (alphal[0] == 0):
return 1

c2, c3, c4, bl, b2, b3, b4, a3l, a32, adl, a4d2, a43 =
setValuesForFourthOrder (alpha)

c = [0, c2, c3, c4]
b [bl, b2, b3, b4]
A (ro, o, o, 0], f[c2, 0, 0, 0],[a31, a32, 0, 01, [a41l, a42, a43, 0]]

#For Equation 1
eql = E4Eql (c, b, A)

#For Equation 2
eg2 = E4Eg2(c, b, A)

+

*
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#For Equation 3
eq3 = E4Eg3(c, b, A)

#For Equation 4
eq4 = E4Eqg4 (c, b, A)

#For Equation 5
egqb = E4Eg5(c, b, A)

#For Equation 6
eg6 = E4Eqg6(c, b, A)

#For Equation 7
eq’7 = E4Eq7(c, b, A)

#For Equation 8
eq8 = E4Eg8(c, b, A)

#For Equation 9
eq9 = E4Eg9(c, b, A)

result = (eqgl ** 2) + (eq2 ** 2) + (eq3 ** 2) + (eqd ** 2) + (egd ** 2) +
(eg6 ** 2) + (eql ** 2) + (eqg8 ** 2) + (eqd ** 2)

return result

Name: displayMenu
Description: This function displays the menu and asks the user to input
a choice.
Parameters: None
Returns:
choice : the interger value given by the user.

T
def displayMenu() :

print ("1. Optimize E2")

print ("2. Optimize E3")

print ("3. Optimize E4")

choice = input ("Enter your choice: ")

return int (choice);

v

Name: chooseE4Case
Description: This function displays a menu for the cases of the fourth
order ERK methods and asks the user to input a choice.
Parameters: None
Returns:
choice : the interger value given by the user.
T
def chooseE4Case():
print ("1. Case 1: 0, c2, c3, 1 all distinct,",
"\nc2#1/2 and 3 - 4(c2 + c3) + 6*c2*c3 # 0")
print ("2. Case 2: c2 = c3 = 1/2, b3#0")
print ("3. Case 3: c2 = 1/2, c3 = 0, b3#0")
print ("4. 4: c2 =1, c3 = 1/2, b4#0")
print ("5. Case 5: c2#0, ¢c3 = 1/2, b2 = 0")
choice = input ("\nEnter your case choice: ")

"

"

return int (choice)
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Name: initializeOptimizer
Description: This function initializes the optimization process for the
Principal Error Coefficient of user's choice.
Parameters:
choice : the interger value given by the user.
Returns: None
T
def initializeOptimizer (choice):
global case
if (choice == 1):
optimize (E2)
elif (choice == 2):
optimize (E3)
elif (choice == 3):
case = chooseE4Case ()
if ((case < 1) or (case > 5)):
initializeOptimizer (choice)
else:
optimize (E4)
else:
print ("Invalid choice. Please try again.")
initializeOptimizer (displayMenu())

initializeOptimizer (displayMenu () )
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main.py

import EulersMethod as em

import Function as f

import Methods as m

import FileIO.FileIO as FileIO
import config

import HermitelInterpolation as hi

Name: displayMenu
Description: This function displays a menu and asks the user to input
a choice.
Parameters: None
Returns:
choice : the integer value given by the user.
T
def displayMenu() :
print ("1. Specific IVODE on Specific Method")
print ("2. Specific IVODE on All Methods and Export results to a file")
choice = input ("Enter your choice: ")
print ("")
return int (choice)

v

Name: chooseMenuOption
Description: This function runs the specific function to initiate
the testing of one or more ERK methods.
Parameters:
choice : the integer value given by the user.
Returns: None
T
def chooseMenuOption (choice):
if (choice == 1):
specificIVODESpecificMethod ()
elif (choice == 2):
specificIVODEAl1Methods ()
else:
print ("Invalid Choice.\n")
chooseMenuOption (displayMenu () )

Name: specificIVODESpecificMethod
Description: This function initiates the specific ERK method
to solve a specific IVODE chosen by the user.

Parameters : None

Returns : None

Tr

def specificIVODESpecificMethod() :
t0, tf, y0 = f.setFormulavValues (f.displayFormulas())
em.setInitialvValues (t0, tf, yO0)

m.displayMethods ()

3 =1
while(j <= 6):
if (f.exactExists):
ee, tt, yy = em.eulersMethod(j)
order = em.findOrder (ee, 7j)
for x in order:
print (em.dictToString(x))
print ()
else:
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k=0
tt, yy = em.eulersMethod(j)

for yv in yyllen(yy) - 1]:
print ("Steps:"™, (2 ** (3 * (=1))), "\ty[" + str(k) + "]:",
Y)
k += 1
print ()
j=3+1

hi.plotHermite ()

Name: specificIVODEAllMethods
Description: This function initiates all the ERK methods
to solve a specific IVODE chosen by the user.
Parameters : None
Returns : None
T
def specificIVODEAllMethods () :
t0, tf, y0 = f.setFormulaValues (f.displayFormulas/())
em.setInitialValues (t0, tf, yO0)

config.file = FileIO.FileIO("Test Results/F" + str (f.formulaNumber) +

"Loxt", "w")
fname = "F" + str(f.formulaNumber) + " " + str(t0) + " " 4+ str(tf)
for y in yO:
fname = fname + " " + str(y)

config.file.write (fname, end='\n\n"')

orders = []

methodNumber = 1

i=1

while (methodNumber < 10):
case = 1
methodInfo = "methodNumber: " + str (methodNumber)
if (methodNumber == 7) or (methodNumber == 9):

methodInfo = methodInfo + " Case: " + str(case)

config.file.write (methodInfo, end="'")
m.setMethodValues (methodNumber, True, case)
J =1
while(j <= 6):
if (f.exactExists):
ee, tt, yy = em.eulersMethod (j)
order = em.findOrder (ee, j)
for x in order:
config.file.write(em.dictToString(x))
config.file.write("")
else:
k=20
tt, yy = em.eulersMethod(j)
for y in yyllen(yy) - 1]:
config.file.write ("Steps: " + str (2 ** (3 * (-1))) +
"Nty [" + str(k) + "]: " + str(y))
k += 1
config.file.write("")
j=3+1
if (f.exactExists):
orders.append (order)

if ((methodNumber != 7) and (methodNumber != 9)):
methodNumber += 1
else:
if (((methodNumber == 7) and (i == 3)) or ((methodNumber == 9)
and (1 == 5))):
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methodNumber += 1
i=1
else:
i+=1
if (f.exactExists):
em.relToMinError (orders)

chooseMenuOption (displayMenu () )

del config.file

105



config.py

# Object created to be used for filelIO

file = None

# Object to store the
interpolation
t =1

# Object to store the
y = [1

# Object to store the
interpolation
£ =11

# Object to store the
ffy = [1

list

list

list

list

of lists of

of lists of

of lists of

of function

time intervals for Hermite

y values for Hermite interpolation

function values for Hermite

values per Eulers Method call
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EulersMethod.py

import math

import bokeh.plotting as bp
import Methods as m

import Function as f

import config

t0 = tf =0
ee0ld = y0 = []

Name: setInitialValues
Description: This function sets the initial values for a method.
Parameters:

t : t is the initial time.

tfinal : tfinal is the final time.

% : y is the initial value for the given IVODE.
Returns: None

v

def setInitialValues(t, tfinal, vy):
global t0, tf, yO
t0, tf, y0 = t, tfinal, yl[:]

Name: eulerMethod
Description: This function computes the approximate solution for an IVODE
using a
given ERK method.

Parameters:
steps : steps 1s the parameter provided to compute the stepsize.
Returns:
if (f.exactExists = True):
ee : ee is the list of lists of errors in approximate numerical
solutions for the IVODE.
tt : tt is the list of points on the domain where the
approximate
numerical solution for the IVODE is computed.
yy : yy is the list of approximate numerical solutions for the
IVODE
computed at points (tt) on the domain.
if (f.exactExists = False):
tt : tt is the list of points on the domain where the
approximate
numerical solution for the IVODE is computed.
yy : yy is the list of approximate numerical solutions for the
IVODE

computed at points (tt) on the domain.
LI B

def eulersMethod(steps):
# Setting up all the initial values

t = t0

tfinal = tf

y = y0[:]

h = math.pow (2, (steps * (-1)))
tt = [t]

vy = [yl:1]

ee = []

config.ffy = []

# Computing the approximate numerical solution
while (t < tfinal):
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fy = m.method(t, y[:], h)
for i in range (0, len(y)):
y[i]l = y[i] + (h * fy[i])

t =t +h

tt.append(t)

yy.append(y[:])
m.method (t, y[:], h)
config.t.append(tt[:])
config.y.append(yyl[:])
config.f.append(config.ffy[:])

if (f.exactExists):
# Computing the error
for j in range (0, len(yy)):
e = f.formula(2, ttljl, yyl3il)
for i in range (0, len(e)):
e[i] = abs(e[i])
ee.append(e[:])
return ee, tt, yy
else:
return tt, yy

LI B

Name: findOrder

Description: This function computes the ratio of the errors and
order of convergence of a given ERK method.

Parameters:
ee : ee is the list of lists of errors in approximate numerical
solutions for the IVODE.
steps : steps 1s the parameter provided to compute the stepsize.
Returns:
orders : orders is the list of dictionaries which has error(s),

stepsize,
ratio of the errors and order of convergence of the
method.
Tr
def findOrder (ee, steps):
global eeOld

i=20
orders = []
for e in ee[len(ee) -11]:
order = {}
order["ee[" + str(i) + "I"] = e

order["Steps"] = math.pow (2, (steps * (-1)))
if (steps > 1):

ratio = eeOld[i]/e

order|['eeOld/ee'] = ratio

if (ratio == 0):

order['Order'] = 'n/a'
else:
order['Order'] = round(math.log(ratio, 2))
i+=1
orders.append (order)
ee0ld = eellen(ee) - 1]

return orders

LI B
Name: relToMinError
Description: This function computes the relative to minimum error for each
order of
ERK method and print them in the results text file.
Parameters:
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orders : orders is the list of dictionaries which has error(s),

Returns:
T

stepsize,
ratio of the errors and order of convergence of the
method.
None

def relToMinError (orders) :
config.file.write("Rel. To Min. Errors:")
for j in range (0, len(orders([0])):
minError = min(orders[1l][]j].get("ee[" + str(j) + "1"),

orders[2] [j].get ("ee[" + str(j) + "1™,
orders[3][j].get("ee[" + str(j) + "1™))

orders([1l][j]['RelError'] = (orders[l][j].get("ee[" + str(j) + "]
minError

orders([2] [j]['RelError'] = (orders([2][j].get("ee[" + str(j) + "]
minError

orders([3][j]['RelError'] = (orders([3][j].get("ee[" + str(j) + "]
minError

minError = min(orders[4][]j].get("ee[" + str(3) + "1"),

[

orders([5][j].get ("ee[" + str(j) + "1™
orders[6][j].get("ee[" + str(j) + "1"),

orders([7]1[j].get("ee[" + str(j) + "1M),
orders[8][j].get("ee[" + str(j) + "1M))

orders([4][j]['RelError'] = (orders([4][j].get("ee[" + str(j) + "]
minError

orders([5] [j]['RelError'] = (orders[5][j].get("ee[" + str(j) + "]
minError

orders([6] [j]['RelError'] = (orders([6][j].get("ee[" + str(j) + "]
minError

orders([7][j]['RelError'] = (orders[7]1[j].get("ee[" + str(j) + "]
minError

orders([8] [j]['RelError'] = (orders([8][j].get("ee[" + str(j) + "]
minError

minError = min(orders[9][]j].get ("ee[" + str(j) + "1"M),

orders[10] [j].get ("ee[" + str(j) + "1™,
orders[1l1l][j].get("ee[" + str(j) + "1M)

orders([12][j].get ("ee[" + str(j) + "1"),
orders[13][j].get("ee[" + str(j) + "1"M)

orders([14][j].get ("ee[" + str(j) + "1™))
orders([9][j]['RelError'] = (orders([9][j].get("ee[" + str(j) + "]
minError
orders[10] [j] ['RelError'] = (orders[1l0][]j].get("ee[" + str(j) +

/ minError

orders([11][j] ['RelError'] = (orders[l1l][]j].get("ee[" + str(j) +

/ minError

orders([12] [j] ['RelError'] = (orders[12][]].get("ee[" + str(j) +

/ minError

orders([13][j] ['RelError'] = (orders[13][]J].get("ee[" + str(j) +

/ minError

orders([14] [j] ['RelError'] = (orders[l4][]j].get("ee[" + str(j) +

/ minError

for x in orders:

for

y in x:
config.file.write(dictToString(y))

config.file.write("")

Name: dictToString

Description:

This function converts the data stored in a dictionary into
string.

")/

")/

"))/

")/

")/

")/

")/

")/

")/

n]n))

n]n))

"]"))

n]n))

"]"))
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Parameters:
dict : dict is the dictionary in which the data is stored.
Returns:

dictString : dictString is the string converted from the dictonary.
LI B

def dictToString(dict):
dictString = ""
# Fetching data from the dictonary and saving it in the string
for x in dict:
dictString = dictString + x + ": " + str(dict.get(x)) + "\t"
# Returning the string after removing the extra whitespace
return dictString.strip()
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Function.py

import ivode as iv
import config

formulaNumber = 0
exactExists = True

Name: displayFormulas
Description: A function to get the formula number along
with the respective values.
Parameters:
None
Returns:
fname : returns a string with the formula number
and values provided by the user
T
def displayFormulas() :
print ("Simple: f1 t tfinal y0O")

print ("Predator Prey: f2 t tfinal x y alpha beta gamma delta")
print ("Simple System: f£3 t tfinal x y")
print ("Test F4: f4 t tfinal yO0O")

(
(
(
print ("Test F5: £5 t tfinal yO0O")
(
(
(

print ("Test F6: f6 t tfinal y0")

print ("Test F7: £7 t tfinal y0 alpha")

print ("Sample COVID-19 Model: £8 t tfinal")

fname input ("\nEnter the formula with values respectively" +

" (Use spaces between the values like shown above) :\n")
return fname

v

Name: setFormulaValues
Description: A function to set formula number and the
respective values for the formulas accordingly.

Parameters:
fname : fname has the formula number as well as the
respective values for the formulas to be used
Returns:
datal[l] : The value of t0O for the initial time of the
formula
datal[2] : The value of tf for the final time of the
formula (tfinal)
y[0] : A list of initial values of y at time tO

v

def setFormulaValues (fname) :
global formulaNumber, exactExists
vy0 = [1]
data = fname.split ()
for i in range(l, len(data)):
data[i] = float(datali])

formulaNumber = int (data([0][1:])

if (formulaNumber == 2):

exactExists = False

y0.append(data[3])

y0.append (datal4])

iv.setConstants (data[5], data[6], datal7], datal8])
elif (formulaNumber == 3):

y0.append(datal3])

y0.append(datal4])
elif (formulaNumber == 7):
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y0.append(datal3])
iv.setConstants (data[4])

elif

exactExists

y0 =

elif
6))):

(formulaNumber

((formulaNumber == 1)

== 8):

False
iv.sampleCOVID19ModelInitializer ()

or ((formulaNumber

y0.append(data[3])

else:
print
exit (0)

return datall],

Name: formula
Description:

1 =
1 =

by calling the respective formula function

datal2],

0:
1:
2:

("No formula with that name.")

y0

A function to get the:
i =

approximate values of y
exact values of y

error values at t with a given y

according to the formula number.

Parameters:

t : The value of t after a certain steps

y : The list of values of y at step t

Returns:

v

1

v

for i = 0:

>= 4)

and

(formulaNumber <=

The list of approximate values of y from

the respective formula function for the
next step t + h

for i =1
yv(it] The list of exact values of y from the
respective formula function for the
step t
for i = 2:
e : The list of error values with a given y

from the respective formula function
for the step t

def formula (i, t, vy):

if (formulaNumber == 1):

return iv.simple (i, t, V)
elif (formulaNumber == 2):

return iv.predatorPrey (i, t, vy)
elif (formulaNumber == 3):

return iv.simple sys (i, t, y)
elif (formulaNumber == 4):

return iv.TestF4 (i, t, vy)
elif (formulaNumber == 5):

return iv.TestF5(i, t, vy)
elif (formulaNumber == 6):

return iv.TestF6(i, t, V)
elif (formulaNumber == 7):

return iv.TestF7(i, t, vy)
elif (formulaNumber == 8):

return iv.sampleCOVID19Model (1,

t,

y)
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Hermitelnterpolation.py

import bokeh.plotting as bp
import Function as f
import config

v

Names: h00O(t), hl10(t), hOl(t) and hll(t)
Description: The functions given below work as Hermite Basis Polynomials,
h00(t), hl0(t), hOl(t) and hll(t).
Parameters:
t : The quantity t measures the relative distance across the
subinterval
Returns:
result for the Hermite Basis Polynomial at t.
LI B
def hO0O(t):
return ((1 + (2 * t)) * (1 - t)**2)

def hl0(t):

return (t * (1 - t)**2)
def hO01(t):

return ((t**2) * (3 - (2 * t)))
def hll(t):

return ((t**2) * (t - 1))

Names: h00 d(t), hl10 d(t), hOl d(t) and hll d(t)
Description: The functions given below work as derivatives of Hermite Basis
Polynomials,
h00(t), hl0(t), hOl(t) and hll(t).

Parameters:

t : The quantity t measures the relative distance across the
subinterval
Returns:

result for the derivative of Hermite Basis Polynomial at t.

def h00 d(t):
return (6 * t * (t - 1))

def hl0 d(t):
return (1 + (3 * (t**2)) - (4 * t))

def h0l1 d(t):
return (6 * t * (1 - t))

def h1l d(t):
return ((3 * (t**2)) - (2 * t))

T
Name: hermite
Description: This function evaluates Hermite form for u i(t i + (theta *
h 1))
and the associated defect.

Parameters:

tt : tt is the list of times after each step.

vy : yy is the list of lists of y values at the given times at
each step.

ffy : ffy is the function value for f(t, y) using the above values.
Returns:

t : t is the list of points on the whole domain.
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uu
points
ffe
delta
approximate

uu is the list of lists of lists of Hermite forms at uniform
for system of equations in each interval. These are known as
the continuous approximate numerical solutions.

ffe is the list of exact solutions at all the t values.

delta is the defect associated with the continuous

numerical solution.

def hermite (tt, yy, ffy):
h = tt[1l] - tt[0]
# To store all the t values from start to end
t =[]
# To store the u value computed at (t_i + (theta * h_i)).
u = []
# To store the derivative of u computed at (t i + (theta * h i)).
ud= []
# To store the defect at (t i + (theta * h i)).
d = 1]
# To store all the u values computed
uu = []
# To store all the exact solutions at all the t values
ffe = []
# To store all the defect values in variable 'delta'
delta = []
for k in range (0, len(yyI[0])):
# For the first value, u 0(t 0)
u.append((yy[0] [k] * h00(0)) + (h * £fy[O0][k] * h10(0)) + (yy[l]lTlk] *
h01(0)) + (h * ffy[1][k] * h11(0)))
# For the first derivative value, u 0'(t 0)
u_d.append ( ((yy[0][k] / h) * h00 d(0)) + (ffy[0][k] * h10 d(0)) +
((yy[11([k]l / h) * h01l d(0)) + (ffy[1]([k] * hll d(0)))
# Here fu = £(t 0, u 0(t_0))
fu = f.formula (0, tt[0], ul:1])
if (f.exactExists):
# Exact value at t 0
fe = f.formula(l, tt[0], ul:])
# Storing the value in the list named 'ffe'
ffe.append(fe)
#d 0(t 0) =u0'(t 0) - £(t 0, u 0(t_0))
for k in range (0, len(u)):

d.append (u_d[k]

# Storing

fulkl])

the values in their corresponding lists

t.append (tt[0])

uu.append (

u)

delta.append (d)

# Performing hermite interpolation on all the intervals

for i in range (0, len(tt) - 1):
for j in range (1, 11):
theta = 3/10
u = []
ud =[]
d = []
for k in range (0, len(yyl[i])):

hl0 (theta)) +

#ou i(c i+
u.append ( (yy[i] [k]
(yy[i + 11[k] * hOl(theta))

(theta * h_ 1))
* h0O0 (theta)) + (h * ffy[i][k]
+ (h * ffy[i + 1][k] * hll(theta)))

*
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h10
h1l

(theta * h i), u i(t i + (theta *

v

# u i'(t_ i + (theta * h 1))

# Here u_d denotes the derivative of u

u d.append(((yy[il[k] / h) * hOO d(theta)) + (ffy[i][k] *
d(theta)) + ((yy[i + 11[k]l / h) * hOl d(theta)) + (ffy[i + 1]1[k] *

d(theta)))

# Here fu = f(t_i + (theta * h i), u i(t i + (theta * h i)))
fu = f.formula(0, (tt[i] + (theta * h)), ul:])

if (f.exactExists):
# Exact value at (t_ i + (theta * h i))
fe = f.formula(l, (tt[i] + (theta * h)), ul:])
# Storing the value in the list named 'ffe'
ffe.append(fe)

# d i(t 1 + (theta * h 1i))
)))
) :
k1)

)
h i
for k in range (0, len (u)
fu

d.append(u_d[k] - [

# Storing the values in their corresponding lists
t.append(tt[i] + (theta * h))
uu.append (u)
delta.append (d)
return t, uu, ffe, delta

Name: displayResults

This function performs Hermite interpolation and displays the

Description:
results in the console.
Parameters:
reset reset is used to check if the lists containing the data
require
a reset or not. The default value for reset is False.
Returns: None

def displayResults (reset=False):

# For a full display of hermite interpolant
for i in range (0, len(config.t)):
t, u, fe, d = hermite(config.t[i], config.y[i], config.f[i])
if (f.exactExists):
print ("i\t\t\tt\t\t\tult\eNef\eNte\td™)
for i in range (0, len(t)):

= u i'(t i + (theta * h i)) - f(t_ i +

print (i+1, "\t", t[i], "\t", uli], "\t", fe[i], "\t", d[i])

else:

print ("ilt\t\ttlt\el\tult\t\td")

for i in range (0, len(t)):

print (i+1, "\t", t[i], "\t", uflil, "\t", d[i])
input ("Press Enter to continue")
if (reset) :

config.t = []
config.y = []
config.f = []

Name: plotHermite

This function performs Hermite interpolation and plots those

Description:

results
on the graph. It provides two graphs:
Hermite Interpolant.html
Defect.html

Parameters : None

Returns : None
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def plotHermite():

11,

# Calling the hermite () function on the data at the smallest stepsize

t, u, fe, d = hermite(config.t[len(config.t)-1], config.y[len(config.y)-

config.f[len(config.f)-1])

# Creating lists to prepare them for plotting
t list = []
u list = []
if (f.exactExists):
f list = []
d list = []
for j in range (0, len(ul0])):
t list.append(t)
u list.append([])
if (f.exactExists):
f list.append([])
d list.append([])

# Preparing the lists for plotting
for i in range (0, len(t)):
for j in range (0, len(uli
u list[j].append(uli] [
if (f.exactExists):
f list[j].append(fe[i][]])
d_list([j].append(d[i][3])

1))
3l)

# Creating an object to create an HTML file for plotting
bp.output file("Plots/Hermite Interpolant.html")

# Creating a figure to plot in the HTML file
p = bp.figure(plot width = 1366, plot height = 768)

# Plotting the data
if (f.exactExists):

p.multi line(t 1list + t list, u list + f list)
else:

p.multi line(t list, u list)

# Showing the data in the browser
bp.show (p)

# Creating an object to create an HTML file for plotting
bp.output file("Plots/Defect.html")

# Creating a figure to plot in the HTML file
p = bp.figure(plot width = 1366, plot height = 768)

# Plotting the data
p.multi line(t list, d list)

# Showing the data in the browser
bp.show (p)
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Methods.py

import Function as f
import config

methodNumber = alpha = beta = case = 0

def displayMethods() :
print ("1. Forward Euler Method")

print ("2. Explicit Midpoint Method")

print ("3. Heun's Second Order Method")

print ("4. Second Order RK Method")

print ("5. Heun's Third Order Method")

print ("6. Ralston's Third Order Method")

print ("7. Third Order RK Method")

print ("8. RK4 Method")

print ("9. FourthOrderRKMethod")

mname = input ("\nEnter the method with values respectively (Use spaces

between the values like shown above) :\n")
setMethodValues (mname, False)

def setMethodValues (mname, auto, caseNumber=None) :
global methodNumber, case

methodNumber = int (mname)
if ((methodNumber < 1) or (methodNumber > 9)):
print ("No Method with that number.\n")
displayMethods ()
else:
if (auto):
case = caseNumber
autoChooseCase ()
else:
userChooseCase ()

def autoChooseCase () :
# To fully automate this, the coefficients are assigned with the optimal
values
global alpha, beta
caseInfo = ""
if (methodNumber == 4):
alpha = 2/3

caseInfo = " alpha=" + str(alpha)
elif (methodNumber == 7):
if (case == 1):

alpha = 0.49650476

beta = 0.75174749

caseInfo = " c2=" + str(alpha) + " c3=" + str(beta)
elif (case == 2):

alpha = 1/8

caseInfo = " b3=" + str(alpha)
else:
alpha = 3/8
caseInfo = " b3=" + str(alpha)
elif (methodNumber == 9):
if (case == 1):

alpha = 0.35774159

beta = 0.59148821

caseInfo = " c2=" + str(alpha) + " c3=" + str(beta)
elif (case == 2):

alpha = 0.83316441

caseInfo = " b3=" + str(alpha)
elif ((case == 3) or (case == 4)):
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alpha = 1/6

caseInfo = " b" + str(case) + "="+ str(alpha)
else:

alpha =1

caseInfo = " c2=" + str (alpha)

config.file.write (caselInfo)

def userChooseCase () :
global alpha, beta, case
if (methodNumber == 4):
alpha = input ("Enter the alpha: ")
if ("/" in str(alpha)):
res = alpha.split('/")
alpha = int(res([0]) / int(res[1l])
else:
alpha = float (alpha)
elif (methodNumber == 7):
print ("Case 1: if c2#0, 2/3, c3; c3#0, c2, then enter: 1 c2 c3")
print ("Case 2: if b3#0, where c3=0, then enter: 2 b3")
print ("Case 3: if b3#0, where c3#0, then enter: 3 b3")
choice = input ("\nEnter your case choice: ")
data = choice.split()
for i in range(l, len(data)):
if ("/" in str(datali])):
res = data[i].split('/")

data[i] = int(res[0]) / int(res[1l])
else:
datal[i] = float(datalil)
case = int(datal0])
if (case == 1):
alpha, beta = data[l], datal2]
elif ((case == 2) or (case == 3)):
alpha = datal[l]
else:
print ("No case of that choice.")
exit (0)

elif (methodNumber == 9):
print ("Case 1: 0, c2, c3, 1 all distinct,",
"\nc2#1/2 and 3 - 4(c2 + c3) + 6*c2*c3 # 0, then enter: 1 c2

c3")
print ("Case 2: c2 = c3 = 1/2, b3#0, then enter: 2 b3")
print ("Case 3: c2 = 1/2, ¢c3 = 0, b3#0, then enter: 3 b3")
print ("Case 4: c2 = 1, c3 = 1/2, b4#0, then enter: 4 b4d")
print ("Case 5: c2#0, c¢3 = 1/2, b2 = 0, then enter: 5 c2")
choice = input ("\nEnter your case choice: ")
data = choice.split()

for i in range(l, len(data)):
if ("/"™ in str(data[i])):
res = datal[i].split('/")

data[i] = int(res[0]) / int(res[1])
else:
data[i] = float(datali])
case = int(datal0])
if (case == 1):
alpha, beta = data[l], datal2]
elif ((case == 2) or (case == 3) or (case == 4) or (case == 5)):
alpha = datal[l]
else:
print ("No case of that choice.")
exit (0)
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def

def

def

def

def

method(t, vy, h):

if (methodNumber == 1):

return forwardEulersMethod(t, vy)
elif (methodNumber == 2):

return explicitMidpointMethod(t, vy, h)
elif (methodNumber == 3):

return HeunsSecondOrderMethod(t, y, h)
elif (methodNumber == 4):

return secondOrderRKMethod(t, vy, h)
elif (methodNumber == 5):

return HeunsThirdOrderMethod (t, y, h)
elif (methodNumber == 06):

return RalstonsThirdOrderMethod(t, vy, h)
elif (methodNumber == 7):

return thirdOrderRKMethod(t, vy, h)
elif (methodNumber == 8):

return RK4Method(t, vy, h)
elif (methodNumber == 9):

return FourthOrderRKMethod(t, vy, h)

forwardEulersMethod (t, y):
fy = f.formula(0, t, y[:1])
config.ffy.append(fy)
return fy

explicitMidpointMethod (t, y, h):

kl = f.formula(0, t, yl[:])

config.ffy.append(kl)

yn = []

for i in range (0, len(kl)):
yn.append(y[i] + ((h/2) * k1[i]))

fy = f.formula(0, (t + (h/2)), ynl:])

return fy

HeunsSecondOrderMethod (t, vy, h):
kl = f.formula(0, t, y[:1])
config.ffy.append (kl)
yn = []
for i in range (
yn.append(y[i] + (h * k1[i]))
k2 = f.formula (0
fy = [
for i in range (0, len(k2)):
fy.append ((1/2) * (k1[i] + k2[i]))

0, len(kl)):

(t + h), ynl[:])

return fy

secondOrderRKMethod (t, vy, h):
global alpha
kl = f.formula (0, t, yl[:])
config.ffy.append (kl)
yn = []
for i in range (0, len(kl)):
yn.append(y[i] + (h * (alpha * k1[i])))
k2 = f.formula(0, (t + (alpha * h)), yn[:])

fy = [
for i in range (0, len(kl)):
fy.append (((1 - (1/(2 * alpha))) * k1[i])
k2[1i]))

return fy

+

((1/(2 * alpha))

*
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def HeunsThirdOrderMethod(t, y, h):

c2 = 1/3
c3 = 2/3
bl = 1/4
b2 =0

b3 = 3/4
a3l =0
a32 = 2/3

kl = f.formula(0, t, y[:1])
config.ffy.append(kl)

yn = []
for i in range
yn.append(y[i]

(
[ + (h * (c2 * k1[i])))
k2 = f.formula (0

0, len(kl)):
, (&£ + (c2 * h)), ynl:])
yn.clear ()
for i in range (0, len(k2)):
yn.append(y[i] + (h * ((a31 * k1[i]) + (a32 * k2[1]))))
k3 = f.formula(0, (t + (c3 * h)), yn[:])

fy = [
for i in range (0, len(y)):
fy.append ((bl * k1[i]) + (b2 * k2[i]) + (b3 * k3[i]))

return fy

def RalstonsThirdOrderMethod(t, vy, h):

c2 =1/2
c3 = 3/4
bl = 2/9
b2 =1/3
b3 = 4/9
a3l = 0

a32 = 3/4

kl = f.formula(0, t, y[:1])
config.ffy.append (kl)

yn = []
for i in range (0, len(kl)):

yn.append (y[1i] + (h * (c2 * k1[i])))
k2 = f.formula(0, (t + (c2 * h)), yn[:])

yn.clear ()
for i in range (0, len(k2)):

yn.append(y[i] + (h * ((a31 * k1[i]) + (a32 * k2[i]))))
k3 = f.formula(0, (t + (c3 * h)), yn[:])

fy = [l
for i in range (0, len(y)):
fy.append ((bl * k1[i]) + (b2 * k2[i]) + (b3 * k3[i]))

return fy

def setValuesForThirdOrder (alpha) :

if (case == 1):
c2 = alphal0]
c3 = alphall]
bl = (2 - (3 * (c2 + c3)) + (6 * c2 * c3)) / (6 * c2 * c3)
b2 = (c3 - (2/3)) / (2 * c2 * (c3 - c2))
b3 = ((2/3) - c2) / (2 * ¢3 * (c3 - c2))
a3l = (c3 * (¢3 - (3 * c2) + (3 * c2 * c2))) / (c2 * ((3 * c2) - 2))
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def

def

a32 = (¢3 * (c2 - c3)) / (c2 * ((3 * c2)

elif (case == 2):

c2 = 2/3

c3 =0

b3 = alphal0]

bl = (1/4) - b3

b2 = 3/4

a3l = -1 / (4 * b3)

a32 =1/ (4 * b3)
else:

c2 = c3 =2/3
b3 = alphal0]

bl = 1/4
b2 = (3/4) - b3
a3l = ((8 * b3) - 3) / (12 * b3)

a32 =1/ (4 * b3)
return c2, c3, bl, b2, b3, a3l, a32

thirdOrderRKMethod (t, y, h):

2))

#Here, alpha is used for c2 or b3 and beta for c3

global alpha, beta

c2, c3, bl, b2, b3, a3l, a32 = setValuesForThirdOrder ([alpha,

""'print ("\nc2 =", c2)
print ("c3 =", c3

)
print ("bl =", bl)
print ("b2 =", b2)
print ("b3 =", b3)
print ("a31l =", a3l)
print ("a32 =", a32)'"!'

kl = f.formula(0, t, yl[:])
config.ffy.append(kl)

yn = []

for i in range (0, len(kl)):
yn.append(y[i] + (h * (c2 * k1[i])))

k2 = f.formula (0, (t + (c2 * h)), yn[:])

yn.clear ()

for i in range (0, len(k2)):
yn.append(y[i] + (h * ((a31 * k1[i])

k3 = f.formula (0, (t + (c3 * h)), yn[:])

fy = [
for i in range (0, len(y)):

fy.append ((bl * k1[i]) + (b2 * k2[i])

return fy

RK4Method (t, vy, h):
kl = f.formula(0, t, yI[:])
config.ffy.append(kl)
yn = []
for i in range (0, len(kl)):
yn.append(y[i] + ((h / 2) * k1[i]))
k2 = f.formula(0, (¢t + (h / 2)), yn[:]1)
yn.clear ()
for i in range (0, len(k2)):
yn.append (y[i] + ((h / 2) * k2[i]))
k3 = f.formula(0, (t + (h / 2)), yn[:]1)

(a32 * k2[1i]))))

(b3 * k3[1]))

betal)
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def

yn.clear ()

for i in range (0, len(k3)):

(
yn.append(y[i] + (h * k3[i]))
k4 = f.formula(0, (t + h), yn[:])
fy = [
for i in range (0, len(y)):
fy.append((1/6) * (k1[i] + (2 * k2[i]) + (2 * k3[i]) + k4[i]))
return fy
FourthOrderRKMethod (t, y, h):
#Here, alpha is used for c2, b3 or b4 and beta for c3
global alpha, beta
if (case == 1):
c2 = alpha
c3 = beta
cd =1
a3l = (¢3 * ((3 * c2) - c3 - (4 * c2 *c2))) / (2 *xc2* (1 - (2 *
c2)))
a32 = (¢3 * (c3 = c2)) / (2 * c2 * (1 - (2 * c2)))
adl = (((c3 ** 2) * ((12 * c2 * c2) - (12 * c2) + 4)) - (c3 * ((12 *
c2 * ¢c2) - (15 * ¢c2) + 5)) + ((4 * c2 * ¢c2) - (6 * c2) + 2)) /
((2 * c2 * c3) * (3 - (4 * (c2 + c3)) + (6 * c2 * c3)))
ad42 = (((-4 * c3 * c3) + (5 * c3) + c2 - 2) * (1 - c2)) / ((2 * c2) *
(c3 = c2) * (3 - (4 * (c2 + c3)) + (6 * c2 * c3)))
ad3 = ((1 - (2 * c2)) * (1 - c3) * (1 - c2)) / (c3 * (c3 - c2) * (3 -
(4 * (c2 + c3)) + (6 * c2 * c3)))
bl = (1 - (2 * (c2 + ¢c3)) + (6 * c2 * c3)) / (12 * c2 * c3)
b2 = ((2 * ¢c3) = 1) / ((12 * ¢c2) * (¢c3 - c2) * (1 - c2))
b3 = (1 - (2 * ¢c2)) / ((12 * ¢c3) * (¢c3 - c2) * (1 - c3))
bd = (3 - (4 * (c2 + c3)) + (6 * c2 * c3)) / (12 * (1L - c2) * (1 -
c3))
elif (case == 2):
b3 = alpha
c2 =c3 =1/2
cd =1
a3l = ((3 * b3) - 1) / (6 * b3)
a32 =1/ (6 * b3)
adl = 0
a42 =1 - (3 * b3)
a43 = 3 * b3
bl = 1/6
b2 = (2 / 3) - b3
bd = 1/6
elif (case == 3):
b3 = alpha
c2 =1/2
c3 =0
cd =1
a3l = -1 / (12 * Db3)
a32 =1 / (12 * b3)
a4l = (-1/2) - (6 * Db3)
ad2 = 3/2
a43 = 6 * b3
bl = (1/6) - b3
b2 = 2/3
bd = 1/6
elif (case == 4):
b4 = alpha
c2 =1
c3 =1/2
c4d =1
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a3l = 3/8

a32 = 1/8
a4l =1 - (1 / (4 * b4d))
ad2 = -1 / (12 * Db4)
ad3 =1 / (3 * b4)
bl = 1/6
b2 = 1/6 - b4
b3 = 2/3
elif (case == 5):
c2 = alpha
c3 =1/2
cd =1
a3l = ((4 * c2) - 1) / (8 * c2)
a32 =1/ (8 * c2)
a4l = (1 - (2 * c2)) / (2 * c2)
ad2 = -1 / (2 * c2)
ad43 = 2
bl = 1/6
b2 =0
b3 = 2/3
bd = 1/6

kl = f.formula(0, t, y[:1])
config.ffy.append(kl)

yn = []

for i in range (0, len(kl)):
yn.append(y[i] + (h * (c2 * k1[i])))

k2 = f.formula(0, (t + (c2 * h)), yn[:])

yn.clear ()
for i in range (0, len(k2)):

yn.append(y[i] + (h * ((a3l * k1[i]) + (a32 * k2[i]))))

[
k3 = f.formula(0, (t + (c3 * h)), yn[:])

yn.clear ()
for i in range (0, len(k3)):
yn.append(y[i] + (h * ((ad4l * k1[i]) + (a4d42 * k2[i])
k3[i]))))
k4 = f.formula (0, (t + (c4 * h)), yn[:])

fy = [
for i in range (0, len(y)):

fy.append ((bl * k1[i]) + (b2 * k2[i]) + (b3 * k3[i])

return fy

+

+

(a43 *

(b4 * k4[1i]))
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ivode.py

import math

# global constants for the IVODEs
alpha = beta = gamma = delta = theta = 0

v

Name: setConstants
Description: This function sets the constants for the chosen IVODE.

Parameters:

a : contant for the IVODE.

b, ¢, d, e : contant for the IVODE (optional).
Returns: None

v

def setConstants(a, b=None, c=None, d=None, e=None) :
global alpha, beta, gamma, delta, theta
alpha, beta, gamma, delta, theta = a, b, c, d, e

v

Names: simple, predatorPrey, simple sys, TestF4, TestF5, TestF6, TestF7
Description: These functions return the derivative values, exact

values or associated error for the IVODEs with

respect to user's choice.

Parameters:
i : i is an integer value to return the respective value.
t : t is the point on the domain.
y : y is the approximate numerical solution for the IVODE.
Returns:
if (1 == 0):
the IVODE value.
if (1 == 1):
exact value for the IVODE. (if exists)
else:

Error associated with the IVODE. (if exists)
T
def simple(i, t, y):
# IVODE
if (1 == 0):
return [y[0] * (-1)]
# Exact value for the IVODE

elif (1 == 1):

return [math.exp((-1) * t)]
# Error associated with the IVODE
else:

return [y[0] - math.exp((-1) * t)]

def predatorPrey (i, t, y):

# IVODE
if (i == 0):
return [((alpha * y[0]) - (beta * y[0] * y[1])), ((delta * y[O] *

y[11) - (gamma * y[1]))]

def simple sys(i, t, y):
# IVODE
if (i == 0):
return [y[1l], (y[O0] * (-1))]
# Exact value for the IVODE
elif (i == 1):
return [math.sin(t), math.cos(t)]
# Error associated with the IVODE
else:
return [y[0] - math.sin(t), y[l] - math.cos(t)]
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def TestF4 (i, t, y):

# IVODE
if (i == 0):
return [(-1/2) * (y[0] ** 3)]
# Exact value for the IVODE
elif (i == 1):

return [(1 / math.sqrt(l + t))]
# Error associated with the IVODE
else:
return [y[0] - (1 / math.sqgrt(l + t))]

def TestF5(i, t, y):

# IVODE
if (i == 0):
return [-2 * t * (y[0] ** 2)]
# Exact value for the IVODE
elif (i == 1):

return [(1 / (1 + (t ** 2)))]
# Error associated with the IVODE
else:
return [y[0] - (1 / (1 + (t ** 2)))]

def TestF6 (i, t, y):

# IVODE
if (i == 0):
return [(1/4) * y[0] * (1 - (y[0] / 20))]
# Exact value for the IVODE
elif (1 == 1):
return [(20 / (1 + (19 * math.exp(((-1) * t) / 4))))]
# Error associated with the IVODE
else:
return [y[0] - (20 / (1 + (19 * math.exp(((-1) * t) / 4))))]

def TestF7(i, t, y):

# IVODE
if (i == 0):
return [(-1 * alpha * y[0]) - (math.exp(-1 * alpha * t) *

math.sin(t))]
# Exact value for the IVODE
elif (i == 1):
return [ (math.exp (-1 * alpha * t) * math.cos(t))]
# Error associated with the IVODE
else:
return [y[0] - (math.exp(-1 * alpha * t) * math.cos(t))]

Name: sampleCOVID19ModelInitializer
Description: This function sets the constants for the COVID-19 model
and returns its initial wvalues.
Parameters: None
Returns:
initial values of the COVID-19 model.
T
def sampleCOVID19ModelInitializer():
setConstants (0.125, 0.9, 0.06, (0.01/365), 37.741e06)

y03 =1
y02 = 103
return [theta-y03-y02, y02, y03, 0]

Names: sampleCOVIDI19Model
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Description: This function returns the derivative values for the IVODEs.
Parameters:

i : i is an integer value to return the respective value.

t : t is the point on the domain.

y : y is the approximate numerical solution for the IVODE.
Returns:

if (1 == 0):

the IVODE value.

def sampleCOVID19Model (i, t, y):

# IVODE
if (1 == 0):
yl = ((-beta * y[0] * y[2]) / theta) + (delta * theta) - (delta *
yI[0])
y2 = ((beta * y[0] * y[2]) / theta) - ((alpha + delta) * yI[1l])
y3 = (alpha * y[1l]) - ((gamma + delta) * y[2])
y4 = (gamma * y[2]) - (delta * y[3])

return [yl, y2, y3, y4]
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FilelO/FilelO.py

import os

class FileIO:

def

def

def

def

def

def

__init (self, filename, accessMode):

if accessMode in ['r', 'rb', 'r+', 'rb+', 'w', 'w+', 'wb', 'wb+',
'a', 'a+', 'ab', 'ab+']:
if ((accessMode in ['r', 'rb', 'r+', 'rb+']) and not
(os.path.exists (filename))) :
print ("The given path is not a file, directory or a valid
symlink.™")
else:
self.file = open(filename, accessMode)
else:
print ("Invalid access mode.")

changeAccessMode (self, accessMode) :
if (self.isCreated()):
self.file.close ()

self.file = open(self.file.name, accessMode)
else:
print ("The object is not initialized. Check the file path or the
accessMode.")

read(self) :
if (self.isCreated()):
if not (self.file.readable()):
self.changeAccessMode ("r")
return self.file.read()
else:
print ("The object is not initialized. Check the file path or the
accessMode.")
return "Nothing to read"

readLine (self) :
if (self.isCreated()):
if not (self.file.readable()):
self.changeAccessMode ("r")
data = self.file.readline()
return data
else:
print ("The object is not initialized. Check the file path or the
accessMode.")
return "Nothing to read"

write(self, data, end='\n'):
if (self.isCreated()):
if not (self.file.writable()):
self.changeAccessMode ("a")
data = data + end
self.file.write (data)
else:
print ("The object is not initialized. Check the file path or the
accessMode.")

name (self) :
return self.file.name

def mode (self) :

def

return self.file.mode

isCreated(self) :
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return hasattr(self, 'file')
def del (self):

if (self.isCreated()):
self.file.close()
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