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We report numerical simulations of the nonlinear dynamics of Josephson vortices driven by strong
dc currents in layered superconductors. Dynamic equations for interlayer phase differences in a stack
of coupled superconducting layers were solved to calculate a drag coefficient n(J) of the vortex as a
function of the perpendicular dc current density J. It is shown that Cherenkov radiation produced
by a moving vortex causes significant radiation drag increasing n(v) at high vortex velocities v and
striking instabilities of driven Josephson vortices moving faster than a terminal velocity v.. The
steady-state flux flow breaks down at v > v. as the vortex starts producing a cascade of expanding
vortex-antivortex pairs evolving into either planar macrovortex structures or branching flux patterns
propagating both along and across the layers. This vortex-antivortex pair production triggered by
a rapidly moving vortex is most pronounced in a stack of underdamped planar junctions where
it can occur at J > Js; well below the interlayer Josephson critical current density. Both v. and
Js were calculated as functions of the quasiparticle damping parameter, and the dc magnetic field
applied parallel to the layers. The effects of vortex interaction on the Cherenkov instability of
moving vortex chains and lattices in annular stacks of Josephson junctions were considered. It is
shown that a vortex driven by a current density J > Js in a multilayer of finite length excites self-
sustained large-amplitude standing waves of magnetic flux, resulting in temporal oscillations of the
total magnetic moment. We evaluated a contribution of this effect to the power W radiated by the
sample and showed that W increases strongly as the number of layers increases. These mechanisms
can result in nonlinearity of the c-axis electromagnetic response and contribute to THz radiation

from the layered cuprates at high dc current densities flowing perpendicular to the ab planes.

I. INTRODUCTION

The physics of current-driven Josephson (J) vortices'+
and its manifestations in flux flow oscillators®”, THz
radiation sources””, nanoscale superconducting struc-
tures for digital memory'”'" current transport through
grain boundaries'” ' in superconducting polycrystals
and radio-frequency superconducting cavities for parti-
cle accelerators'®, have been areas of active experimental
and theoretical investigations. Particularly, dynamics of
J vortices in layered superconductors has attracted much
attention since the discoveries of the cuprate and iron-
based superconductors which exhibit an intrinsic Joseph-
son effect between weakly coupled ab planes'® . Nu-
merical simulations of stacks of Josephson junctions (JJ)
have revealed instabilities of sliding Josephson vortex
lattices”"?? which affect the power of coherent THz radi-
ation from single crystal BSCCO mesas”” “". New imag-
ing tools have probed vortices at nanometer scales and
revealed hypersonic vortices moving much faster than the
velocity of superfluid condensate”®.

It has been usually assumed that a driven vortex pre-
serves its identity as a topological defect no matter how
fast it moves, because instability of a vortex would vio-
late the fundamental conservation of the winding num-
ber n = #£1 in the superconducting order parameter
¥ = Aexp(iny). One of the outstanding questions is
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whether this topologically protected stability of a mov-
ing vortex remains preserved at any current below the de-
pairing limit or there is a terminal velocity above which
a uniformly moving vortex cannot exist. As far as the
Josephson vortices are concerned, numerical simulations
of long underdamped junctions?’, planar JJ arrays’’
and a few coupled JJs** %7, and discrete sine-Gordon
systems”®“?, have shown that there is indeed a termi-
nal velocity v, above which uniform motion of a vortex
driven by a dc current breaks down due to Cherenkov
radiation. The Cherenkov radiation of a vortex mov-
ing with a constant velocity v is characteristic of high-
J. Josephson junctions (JJ) or arrays of coupled JJs in
which the phase velocity of electromagnetic waves v, (k)
decreases as the wave number k increases’’™°, so that
the Cherenkov condition v > w,(k) can be more easily
satisfied at short wavelengths. The resulting Cherenkov
wake behind a moving J vortex causes a significant radi-
ation drag in addition to the conventional quasiparticle
viscous drag”®*. It turns out that the steady-state motion
of a J vortex in which the Lorentz force is balanced by the
viscous and radiation drag forces can only be sustained
at v < v.. A vortex moving with a velocity v > v, starts
producing a cascade of expanding vortex-antivortex (V-
AV) pairs which form dynamic dissipative patterns®”’**.
Such resistive transition can occur at current densities
J > Js which can be well below the critical current den-
sity of the interlayer junction Jy. Generation of V-AV
pairs by a moving vortex pertains to a broader issue of
stability of driven topological defects that can destroy
global long range order in a way similar to the crack
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propagation resulting from the pileup of dislocations of
opposite polarity*®. Such process was observed in simu-
lations of vortices in long JJs and planar JJ arrays where
driven vortices cause propagating phase cracks in super-
conducting long range order””**.

A question whether a fast Josephson vortex can initiate
the V-AV pair production in layered superconductors is
of interest to the theory of nonlinear flux flow of vortices
along the ab planes in high-T, cuprates and pnictides
or artificial multilayer structures. For instance, reveal-
ing the materials parameters which control the values of
v, and J, are essential for understanding the high-field
electromagnetic response along the c-axis. Another is-
sue pertains to dynamic dissipative structures which ap-
pear due to the V-AV chain reaction triggered by a single
moving vortex. The nonlinear dynamics of these struc-
tures and their effect on the radiation and other elec-
tromagnetic properties of layered superconductors are of
particular interest. The Cherenkov instability of vortices
at high velocities is facilitated in underdamped interlayer
junctions, as characteristic of highly anisotropic Bi-based
cupraes, which can thus be testbeds for the experimental
and theoretical investigations of these issues.

The effects of Cherenkov radiation on a current-driven
vortex in a few coupled junctions®® *" or structural in-
stabilities of driven vortex lattices and their manifesta-
tions in the THz radiation sources’’”? have been thor-
oughly investigated. Yet little is known about dynamics
of macrovortex flux structures resulting from the V-AV
pair production caused by a driven J vortex in multilay-
ered superconductors. In this work we address this issue,
including a nonlinear vortex viscosity controlled by the
ohmic and radiation drag, and the factors determining
the terminal velocity v, and the threshold critical cur-
rent density Js at which the steady state flux flow breaks
down. We investigate spontaneous generation of V-AV
pairs by a moving vortex at v > v, and show that they
result in macrovortex structures spreading both along
and across the layers. It turns out that in a stack of
underdamped JJs of finite length the V-AV pair produc-
tion caused by a vortex shuttle excites large-amplitude
standing waves of magnetic flux, giving rise to oscilla-
tions in the total magnetic moment and magneto-dipole
radiation from the sample. In our simulation we used
the well-established equations that describe J vortices in
layered superconductors modeled as a stack of planar JJs
coupled by inductive currents and charging effects’’ ",

The paper is organized as follows. Sec. II specifies
the geometry of the problem and the equations used in
numerical simulations. In Sec. III we discuss Joseph-
son plasmons and conditions of Cherenkov radiation in
layered superconductors. Sec. IV contains the results
of our calculations of a nonlinear drag coefficient, termi-
nal velocity and critical current density of the Cherenkov
instability Js for a single vortex. It is shown that the
production of V-AV pairs at J > J, results in branching
dynamic patterns and macrovortex structures. In Sec.
V and VI we address the effects of vortex interaction on
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FIG. 1. Stack of intrinsic Josephson junctions (yellow) be-
tween superconducting layers (blue).

the Cherenkov instability of moving vortex chains and
lattices in annular JJ stacks. In Sec VII we consider
dynamics of bouncing macrovortices and self-sustained
flux standing waves of large amplitude excited by a V-
AV shuttle in a JJ stack of finite length. Contribution
of this effect to the power W radiated by the JJ stack,
and a strong increase of W with the number of layers are
addressed. The conclusions and broader implications of
our results are presented in Sec. VIII.

II. COUPLED SINE-GORDON EQUATIONS

Consider vortices in a stack of long JJs between su-
perconducting layers shown in Fig. 1. The dynamics of
the phase difference ;(x,t) across the I-th junction, and
the magnetic field B;(z,t) parallel to the layers can be
described by the coupled sine-Gordon equations”?%*0~*°

(1 — OzAd)GZ/ ==
(1—C¢AD)[(1 — alg)sing, + B +n0, + 6], (1)
By =(1-CAg)7'0;. (2)

Here Ayfi = fis1 + fi—1 — 2f; is the lattice Laplacian,
the prime and overdot denote partial derivatives with
respect to the dimensionless coordinate x/A. and time
wt, respectively, wy = ¢/ /€:Ac is the Josephson plasma
frequency, c is the speed of light, €. is the dielectric con-
stant along the z axis, A, is the magnetic field penetra-
tion depth along the layers (B parallel to the ab planes in
cuprates), and B is measured in units of ¢o/2ms\. where
¢p is the flux quantum. The viscous drag coeflicient 7



and the dimensionless current 8 are defined by:

Tee J
n=22e 8=

e (3)
where J is the density of a uniform bias current flow-
ing across the layers, Jy is the critical current density of
the junctions, o. is the interlayer quasiparticle conduc-
tivity, and €g is the vacuum permittivity. The dimension-
less damping parameter 1 in BSCCO crystals is typically
~ (0.005 — 0.05">"*". The parameters a and ¢ in Eq. (1)
quantify charge and inductive coupling of the layers, re-
spectively:

¢ = (Aav/s)*. (4)

Here 7 is the Thomas-Fermi screening length along the
layers, Aqp is the magnetic field penetration depth for B
parallel to the ¢ axis, and s is the spacing between the
superconducting layers. For a BSCCO crystal with the
anisotropy parameter I' = \./Aap ~ 500, \yp ~ 400 nm,
Ae ~ 200 pym and s = 1.5 nm, ¢ ~ 10° is much larger
than the typical value of o ~ 1. In this case the term
a4 which describes deviations from charge neutrality in
Eq. (1) can be neglected"”, so that Eq. (1) reduces to:

2 2
a=c¢€lrp/s”,

= (1= CAg)(sinb, + B+ nby + 6)). (5)

In this work we performed numerical simulations Eq. (5)
using the method of lines'**’. Charging effects were ne-
glected, unless specified otherwise.

IIT. CHERENKOV RADIATION AND
INSTABILITY

Josephson vortices described by Eq. (5) have two
length scales along the xy planes: the length of the
Josephson core \; = I's and the magnetic penetration
depth A, determining the scale of circulating currents
along the stack. Equation (1) also describes small am-
plitude waves 66 o e*ke@tigz—iwt 1045 Tf the number of
layers N — oo, linearization of Eq. (1) with respect to 66
around the uniform current state sinfy = —f yields the
following dispersion relation w(k,,q) for the Josephson
plasma waves (in the original units):

Wy
6
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Q% = [(14+ay)V/1-p2— 77742]“3 + [1 +aq}(kmci)2,

w(kz7Q) = Q(kmaq) -

¢ =4¢sin? £,

2
where ¢; = A\wy = c/\/e—c is the speed of light in the
dielectric layers. At n — 0 and k, = ¢ = 0 Egs. (6)-
(8) yield w = wy(1 — )4 but at Ak, > 1 the fre-
quency of the Josephson plasmon w(k,,q) = ¢(q)k, de-
pends linearly on the in-plane wave number k.. Here the
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FIG. 2. Colormap of Cherenkov radiation cone in the mag-
netic field B;(x) produced by a vortex moving uniformly in
the middle layer in a stack of N = 101 junctions. Here B;(x) is
obtained by simulations of Egs. (1) with 8 = 0.25, { = 71111,
a=1,1n=0.05 and By = ¢g/2wsA.. Only solutions for 15
neighboring junctions above and below the vortex are shown.
Note that L, = Ns ~ 1073\, so the vortex is strongly elon-
gated along the z direction.

longitudinal phase velocity w/k, = ¢é(q) depends on the
z-component ¢ of the wave vector:

. 1+ 4asin®(gs/2) 1z

‘11 +4¢sin®(gs/2)

élq)=c (9)

For a stack of N junctions, Egs. (6)-(8) with ¢, =
m/(N+1)sand n = 0,1,...N, describe N+1 branches of
plasma waves”. In the case of ( > « characteristic of the
layered cuprates, ¢ decreases strongly as ¢ increases, from
c=ciatq=0to ¢ =c;/2/C < ¢; at ¢ = m/s. Thus, the
plasma wave with alternating ; in the z direction has the
minimum phase velocity ¢s = ¢;/ 2/ = €8/2Xapy/€c COT-
responding to the Swihart velocity in a single junction’.
These features of Q(k.,q) give rise to Cherenkov radia-
tion produced by a moving vortex®°/="7,

Cherenkov radiation occurs if the velocity v of a vor-
tex exceeds the minimum phase velocity Q(ky)/k, of the
Josephson plasmons. As follows from Eq. (9), the condi-
tion v > &(q) at (kzAc)? > 1 and ¢ > 1 is first satisfied
if v > ¢ at ¢ = w/s. For instance, Fig. 2 shows the
Cherenkov radiation cone behind a moving vortex ob-
tained by numerical simulations of Eq. (1).

IV. SINGLE VORTEX
IV.1. Laterally infinite stack

In this section we present results of simulations of Eq.
(5) describing vortices in a stack of N = 21 junctions



with 7 = 0.05. Solution of Eq. (5) for a stationary vor-
tex in the middle layer is shown in Fig. 3. As the bias
current § increases the vortex velocity v(8) controlled by
the drag of quasiparticle currents and radiational forces
increases. Here the viscous drag dominates at small 5 for
which the driving Lorentz force is balanced by the ohmic
friction due to dissipative quasiparticle currents in the
moving vortex™. At 8 ~ 0.075 the velocity exceeds the
threshold, v > ¢4 at which the vortex starts radiating
Cherenkov waves. As (8 further increases the amplitude
and the wavelength of this Cherenkov wake increase and
radiation spreads across the neighboring junctions. Fig-
ures 4 and 5 show the calculated phase and field profiles
around the moving vortex at 8 = 0.615.

Using the solutions for 6;(z,t), we calculated the
steady-state velocity of the vortex v(f) as a function
of the driving current S at different values of 1. The
so-obtained curves v(f8) shown in Fig. 6 have two dis-
tinct parts corresponding to different mechanisms of vor-
tex drag. At small currents the vortex velocity is lim-
ited by the quasiparticle viscous drag dv/df o n~! and
v(B) increases sharply with § if n < 1. The kink in
the v(f) curve at intermediate § occurs at the onset of
Cherenkov radiation above which the slope of v(5) de-
creases as the radiation friction takes over’”" and v(3)
becomes weakly dependent on the dissipative term in Eq.
(5). At n < 1 the radiation friction dominates at practi-
cally all 8, significantly reducing v(3) which exceeds the
Cherenkov threshold. As 7 increases the kink separat-
ing the ohmic and Cherenkov vortex drag regions of v(f3)
gets less pronounced. All v(8) curves have the endpoints
at f = s and v = v, beyond which Eq. (5) no longer has
solutions for uniformly moving vortices. Figure 7 shows
the calculated critical current 85 and the corresponding
terminal vortex velocity v, as functions of the damping
parameter 7. For underdamped junctions Jg(n) is well
below Jy and increases monotonically with 7, approach-
ing Jy at n > 1. In turn, the terminal velocity increases
from v, &~ 1.35¢; at n < 1 to v, =~ 1.85¢; at n = 1. A
similar behavior of v(/3) and v. was obtained previously
by Goldobin et al. ** in numerical simulations of two and
three inductively coupled planar JJs.

At B > B, in Eq. (5), the moving vortex starts sponta-
neously generating V-AV pairs which spread both along
and across the JJ stack. For instance, at n = 0.05
this process starts at s ~ 0.62 and v, =~ V2¢s. Such
vortex splitting instability in a layered superconductor
turned out to be similar to that of a driven vortex in
a single JJ described by equations of nonlocal Joseph-
son electrodynamics”’. This mechanism is illustrated by
Fig. 8 which shows that a critical nucleus being in the
unstable m—phase state with 57/2 < 6 < 7w /2 forms be-
hind the vortex moving along the central layer where the
maximum of Cherenkov radiation wake 6;(z,t) reaches
the threshold value 6, ~ 8.6. As [ increases the ampli-
tude and the width of this m—phase domain grows and
eventually it splits, triggering a cascade of V-AV pairs
which expand along the middle junction. In turn, the
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FIG. 3. Phase profile of a static vortex in the middle junction
(I = 11) and 6;(z) induced by the vortex on the layers with
[ =10 and ! = 1). Here 6;(z) are symmetric with respect to
the central layer.
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FIG. 4. Phase profiles of a single vortex propagating along
the middle junction (I = 11) and the trailing tail of Cherenkov
radiation produced on the neighboring junctions (I = 1 and
[ = 10) calculated from Eq. (5) at f = 0.615 and n = 0.05.

V-AV pairs in the middle junction induce V-AV pairs on
the neighboring junctions which then start splitting and
propagating along the layers and across the stack. This
process produces an expanding chain of macrovortices
which spread across the entire stack, the macrovortices
of positive polarity accumulating at one edge of the stack
while macrovortices of negative polarity accumulating at
the other edge, as shown in Figs. 9. A simulation video
of this process is available in Ref. 55.

The dynamics of the V-AV pair production caused by
a single moving vortex, and the subsequent formation
of the expanding macrovortex structure does not change
qualitatively as the number of layers increases above N =
21 used in the simulations described above. For instance,
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FIG. 5. A color map of the magnetic field in the vortex moving
along the central junction calculated from Eq. (2) at 8 =
0.615 and n = 0.05. Here Cherenkov radiation behind the
vortex manifests itself as color ripples. Since L. ~ 107%\,
the vortex is strongly elongated along the x direction.
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FIG. 6. Stationary velocities of a vortex moving along the
central JJ as a function of the bias current at different 7. The
instability occurs at the endpoints of the curves. The sharp
change in the slope of v() at 7 < 1 indicates the transition
from the ohmic to radiation vortex drag.

our simulations for a stack with N = 101 have shown that
the V-AV pair production starts at § = 0.625 which is
very close to the instability current of a vortex in a stack
with 21 junctions. Thus, the results obtained for N = 21
can be representative of the BSCCO crystal mesas with
N ~ 1000, consistent with the conclusion of Ref. 52 that
the behavior of vortices would become independent of the
thickness of the stack if N > A\,;/s ~ 200.

IV.2. Annular stack

To investigate how the vortex dynamics changes by
imposing the periodic boundary conditions, we consider

J
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FIG. 7. The threshold instability current (a) and the terminal
velocity (b) as functions of 1 calculated for ¢ = 71111.

an annular stack in which

O)(x = —L/2) = 0;(x = L/2) + 2nm,
Oy(x = —L/2) = b0j(z = L/2), (10)

where n = ny — n, is the difference of the number of
fluxons (n) and antifluxons (n,) on the I—th layer, and
L is the circumference of the stack along the x direction.
In our simulations we choose L = A, > A; in which case
the structure of a static vortex in the annular stack at
[ = 0 is nearly identical to the vortex in the infinite stack
shown in Fig. 3. If a transport current flows across the
annular stack, a vortex moving along the central junc-
tion radiates Cherenkov waves in a way similar to that
is shown in Fig. 4. Likewise, the vortex starts producing
V-AV pairs at a critical value § = 5 that is very close to
Bs for the laterally infinite stack considered above. The
initial stages of the V-AV pair production spreading both
along and across the junctions proceeds like it does in the
infinite stack, resulting in expanding piles of vortices and
antivortices. However, in the annular JJ stack the propa-
gating macrovortices of opposite polarity eventually col-
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FIG. 8. Initial stages of generation of V-AV pairs by a vortex
moving along the central junction (top panel), and snapshots
of field distribution solutions showing the two dimensional
growth of instability for junctions with [ = 9,10 and 11 at
three different times (bottom panel). The results are calcu-
lated at n = 0.05, ¢ = 71111 and 8 = 0.62.

lide and partly annihilate as they go through each other.
The transient solution then evolves into a chaotically os-
cillating distribution of ;(z, t) resulting in unidirectional
traveling waves of magnetic field with nearly constant
amplitudes in each junction, as shown in Fig. 10. Even-
tually these traveling electromagnetic waves on different
layers become more synchronized as shown in Fig. 11.
Imposing the boundary condition 6; = 65 models a
periodic chain of vortices spaced by N layers along the z
direction in an infinite annular JJ stack. Our simulations
for this case show that, because of the symmetry of this
geometry, the solutions for 0;(x,t) and Bj(x,t) are the
same as in the above case of a finite annular stack.

V. VORTEX CHAIN IN AN ANNULAR STACK

The above results show that the initial stage of the
continuous V-AV pair production triggered by a single
driven vortex is not very sensitive to the boundary con-
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FIG. 9. Cross sectional view of the field distribution profiles in
the stack after the instability (top panel, ¢ = 125) along with
a close-up view of giant vortices moving to the left (bottom
panel, ¢ = 225). Similar macro vortices with opposite polarity
form at the other side of the stack (as shown in the top panel).

ditions either across or along the stack. In this section
we present the simulation results for a chain of M vor-
tices placed equidistantly in the middle junction of the
21 JJ stack. If vortices are far apart from each other,
so that the spacing between vortices d = L/M > A\,
the initial stage of the V-AV pair production proceeds in
the way similar to that of a single vortex. Namely, each
vortex starts radiating Cherenkov wakes at g ~ 0.075
which matches that of a single vortex for up to M = 9.
The onset of the V-AV pair production at M = 9 oc-
curs at B = 0.625 close to B for a single vortex. In this
case the intervortex spacing d ~ 30\ is large so that no
significant overlap between the Cherenkov wakes from
neighboring vortices happens, as shown in Fig. 12.

For M = 9, moving vortices start generating V-AV
pairs at 8 = 0.625. The expanding pairs then overlap,
resulting in the phase profile 611 (x,t) increasing nearly
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FIG. 10. Snapshots of representative solutions for 6;(z,t)
(top) and B;(z,t) (bottom) along the middle JJ at the critical
current 8 = s = 0.62.

FIG. 11. Snapshots of the magnetic field (top) and electric
field (bottom) in junctions 1-11 calculated at 8 = 8s = 0.62,
where Eo = ¢owy/2mcs. Here the largest oscillation ampli-
tude corresponds to the middle junction and the lowest am-
plitude corresponds to the top/bottom junction.

linearly with time while preserving the net winding num-
ber of the initial 9 vortices. In turn, the V-AV pair pro-
duction in the central junction induces V-AV pairs in the
neighboring junctions, causing propagation of the resis-
tive state across the stack. Eventually 6;(z,t) evolves
into a superposition of traveling waves propagating on
the phase background increasing linearly with t. Our
simulations of M = 14 vortices in the middle layer have
shown a similar dynamics of 6;(x,t) as for 9 vortices,
except that the V-AV pair production starts at a lower
value B =~ 0.59. The latter may result from stronger over-
lap and the constructive interference of the Cherenkov
radiation tails which extend over the length L, ~ \;/n

behind a moving vortex.

The dynamics of vortices changes as the intervortex
spacing d = L/M becomes of the order of A;. For in-
stance, at M = 50 and d ~ 5\; the radiation tails of
adjacent vortices overlap even at § < [B,. As a result,
vortices get trapped in the radiation wakes of neighbor-
ing vortices, and the unidirectional motion of the vortex
chain at J slightly below Js is accompanied by a low am-
plitude traveling wave in which the relative position of
the adjacent vortices and their instantaneous velocities
oscillate, as shown in Fig. 13. The vortex chain starts
producing V-AV pairs at § = 0.445 resulting in a quick
transition of the central junction into a resistive state in
which 611 (z,t) becomes nearly a straight line in = and in-
creases linearly with ¢. Unlike the case of smaller M, the
quick resistive transition of the central junction does not
spread across the stack and no V-AV pairs are generated
on other junctions where only small amplitude plasma
traveling waves appear. The electromagnetic oscillations
in all layers are phase-locked, the amplitude of oscilla-
tions decreasing with the distance from the central layer.
Snapshots of these solutions are shown in Fig. 14.

Our simulations have shown that the dynamics of 100
vortices with d ~ 2.6\; appears similar to that of 50
vortices. Yet because of stronger overlap of vortices and
their Cherenkov radiation tails, the onset of the V-AV
pair production 85 = 0.455 is slightly higher than for
50 vortices. This trend becomes more apparent for 200
vortices for which 5 ~ 0.665 not only exceeds (s for 100
vortices but also 35 for a single vortex. The increase of
Bs with M at large M may result from the fact that,
if vortices and their radiation tails overlap strongly, the
spatial modulations of 6(z,t) along the vortex chain get
reduced, and the critical = phase nucleus which triggers
the V-AV pair production can only appear at higher .
For a very dense vortex chain with d < A\, the V-AV pair
production does not occur before the central junction
switches to the resistive state at § = 1.

VI. VORTEX LATTICE

In this section we present the results of our simula-
tions for the driven Josephson vortex lattice in an annular
stack of planar junctions.

VI.1. Annular stack with finite N

Consider vortices initially placed along a line slightly
tilted from being perpendicular to the layers with one
vortex per layer in an annular stack with N = 21. At
zero current this structure then relaxes to that is shown
in the top panel of Fig. 15. The corresponding field dis-
tributions Bj(x) are shown in the bottom panel of Fig.
15 for the top most, bottom most and middle layer. Af-
ter a bias current is applied the vortices start moving
uniformly and radiating Cherenkov waves with the am-
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FIG. 12. Comparison between 0;(x) in a single vortex and a

chain of 9-vortices (only three are shown) moving along the
central junction at 8 = 0.6.
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FIG. 13. Snapshots of 6;(z,t) in a moving chain of 50 vortices
at 8 = 0.44 near the instability threshold. The two profiles are
superimposed for ease of comparison. Interaction of vortices
with Cherenkov wakes causes temporal variations in the shape
and velocity of moving vortices.

plitude and wavelengths increasing with 5. As shown
in Fig. 16, the average velocities of vortices in different
layers are almost the same and their relative positions
remain constant as the current is ramped up to the onset
of the V-AV pair production, f = 0.54. At Bs = 0.55
the vortex moving with the velocity v ~ 1.34¢, along the
20-th junction starts generating V-AV pairs which then
spread to other junctions, driving the whole stack into a
resistive state. As a result, the initial vortex structure
evolves to 0;(x,t) which appears chaotic in both z and ¢
on each junction, similar to that was obtained for a single
vortex shown in Fig. 10.
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FIG. 14. Snapshots of the final form of the solution in elec-
tric field (top) and magnetic field (bottom) representations in
junctions 1-11 for instability current S = 0.445. The oscilla-
tions are both in phase and periodic for all layers with ampli-
tudes decaying from the middle junction across the stack.

In our numerical simulations we observed that the sym-
metry of static vortex structures can depend strongly on
the initial arrangement of vortices which can relax to
many metastable states. This issue has been recognized
in the literature as one of the main reasons why vortices
do not necessarily form a triangular lattice in numerical
simulations”"?°. To produce a static vortex configura-
tion with equidistant arrangement of vortices, we initially
put chains of equidistant vortices in each layer with vor-
tices on neighboring layers shifted with respect to each
other. As a result, vortices relax to a periodic struc-
ture, as shown in Fig. 17 for ten vortices per layer. We
found that, for a current-driven vortex lattice, the onset
of the V-AV pair production is mostly determined by the
vortex density within each layer and depends weakly on
the symmetry of the vortex lattice. For instance, for the
structure shown in Fig. 17, the V-AV pair production
occurs at 8 ~ 0.32 irrespective of the arrangement of
vortices as long as the linear density of vortices per junc-
tion is fixed. From our calculations, it follows that the
threshold current J, decreases monotonically with the in-
crease of the linear density vortices per layer as shown in
Fig. 18. Hence, J; is reduced if a weak parallel magnetic
field is applied to the stack.

As the density of vortices is increased the vortex config-
uration becomes closer to a triangular lattice, as shown
in Fig. 19 for a lattice of 50 vortices per layer. If a
bias current is applied, Cherenkov radiation occurs once
the velocity of the lattice exceeds the threshold for the
minimum plasma mode, but the radiation wakes are re-
duced due to strong overlap of vortices in both direc-
tions. Here the chain of vortices in the middle junction
become unstable first at 8, = 0.195 producing only one
V-AV pair after which the pair production stops. At a



0.5

*x107

0
X/A
C

FIG. 15. Color map of the magnetic field across the stack for
a stationary vortex lattice with one fluxon per layer (top) and
By(z) for the middle and surface JJs (bottom).

slightly larger current of § = 0.2 two more V-AV pairs
are generated in the neighboring 10-th and 12-th junc-
tions, while larger number of V-AV pairs are produced in
the middle junction. As current is increased to § = 0.205
some vortices in the 9-th and 13-th junctions produce a
few V-AV pairs. This stepwise process of limited V-AV
pair production spreads across more and more junctions
as the current further increases. Finally, at g = 0.2225
the middle junction starts generating V-AV pairs, which
triggers the V-AV pair production in all JJs. As a re-
sult, at 8 > 0.2225 the stack eventually switches into a
dynamic resistive state comprised of propagating phase-
locked waves which are synchronized for all junctions.

VI.2. Annular stack with 6; = 0y

Here we impose the periodic boundary condition of
01, = On which model periodic vortex structures in an
annular stack infinite along z. Due to the symmetry of
the problem, this boundary condition reduces the num-
ber of variables 6;(x,t) in Egs. (1) to (N 4 1)/2 for odd
N. Consider one fluxon per layer for which the situa-
tion is similar to that considered in the previous section.
Bcause of the exact same position of vortices in 10-th
and 12-th junctions, the magnitude of the image induced
by these vortices on the middle junction (I = 11) dou-
bles. As a result, the onset of the V-AV pair production
on the central junction is reduced down to S5 = 0.175.
At B = pBs this image in the middle junction converts
to a V-AV pair which then expand in such a way that
two vortices move to the left and the antivortex moves
to the right until it gets trapped between two vortices
in the neighboring junctions 10 and 12. Shown in Fig.
20 are snapshots of magnetic field maps at 5 < s and
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FIG. 16. Color map of the magnetic field across the stack
for a uniformly moving vortex lattice with one fluxon per
layer (top) and B;(x) for the middle and surface JJs (bottom)
calculated at 8 = 0.54.
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FIG. 17. Color map of the magnetic field across the stack for
a stationary vortex lattice with ten fluxon per layer (top) and
B (z) for the middle and surface JJs (bottom).

8 > Bs which illustrate the formation of transient V-
AV-V triplets. The antivortex trapped in the V-AV-V
triplet slows it down relative to other vortices, so when
the vortices from junction 9 and 13 reach the triplet, the
antivortex escapes, producing a V-AV pair which then
annihilates, as shown in the simulation movie””. The pro-
cess of creation and then annihilation of pairs during the
disintegraion of the triplet occurs as § further increases.
Finally, at § = 0.3 after the disintegration of the triplet,
a cascade of V-AV pairs generated continuously in the
central junction spreads across the whole stack, resulting
in a McCumber-type resistive state in which 6;(¢) on each
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FIG. 18. Calculated dependence of Js on the linear density
of vortices per length \. along the layer in a vortex lattice.
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FIG. 19. Color map of the magnetic field in a stationary
vortex lattice composed of fifty fluxons per layer. The close
up in the top left corner shows a triangle formed by three
vortices in two adjacent layers.

junction increases nearly linear with time’”.

VII. FINITE SIZE EFFECTS AND VORTEX
BOUNCING

Proliferation of branching V-AV patterns or macrovor-
tex (MV) structures caused by a single vortex is essen-
tially a bulk effect which occurs in a sufficiently long sam-
ple or an annular JJ stack. However, in a JJ stack of
finite length L,, the expanding MV chain eventually hits
the edges of the JJs, where the boundary conditions of
zero current §; = 0 are imposed. In this section we con-
sider peculiarities of vortex dynamics resulting from the
finite size effects. It turns out that interaction of a MV
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FIG. 20. Magnetic field color map in moving vortices in junc-
tions 10, 11 and 12 at 8 = 0.1 (top). Bottom panel illustrates
how a transient triplet is formed out of the conversion of the
image of vortices from 10th and 12th junction in the central
JJ to a pair of V-AV at g8 = 0.175.

with the edges of the stack occurs in a way similar to
that of a moving J vortex in a single long JJ (see, e.g.,
Ref. 14). This interaction proceeds as follows. As V
approaches the edge of a JJ, it induces penetration of a
counter-propagating AV which collides with the incom-
ing vortex. The outcome of this collision depends on the
damping parameter 7. In an overdamped JJ (n 2 1),
the colliding V and AV annihilate, fully extinguishing
the fluxon of the initial vortex as it exits the junction.
However in an underdamped JJ with n < 1, the colliding
V and AV do not annihilate but go through each other,
as characteristic of non-dissipative solitons described by
the sine-Gordon equation'. As a result, the incoming V
exits while the AV moves into the JJ. This process can
be regarded as a vortex analog of the Andreev reflection.
A current-driven V in an underdamped JJ stack gets
periodically reflected from the edge where it transforms
into a counter-propagating AV which in turn gets re-
flected as a vortex from the opposite edge. Such V-AV
shuttle causes oscillations of the magnetic moment M (t)
with the flight frequency v = v/2L,, depending on the JJ
length. Here M (t) = ¢(t)L, and the instantaneous mag-
netic flux threading the stack ¢(t) are calculated using

Ly
M(t) :MOZZ:/O By(z)dz, (11)

where My = BosAcLy/ 1o = ¢oLy /2710, Ly is the length
of the stack along y, and the integral is expressed in
terms of the dimensionless field B; and coordinates de-
fined in Sec. II. Shown in Fig. 2la is M(¢) calculated
for a vortex driven along the central layer at § < 5 in
a stack with L, = A\, and N = 21. The magnitude of
|M(t)| ~ 0.0055M, in Fig. 21a indicates that the vortex
flux ¢ ~ 9-10"*¢o is much smaller than ¢o. This effect



is similar to the well-known reduction of magnetic flux in
a parallel Abrikosov vortex in a thin film”° °®. Calcula-
tion of ¢ of a vortex in a long JJ stack with NV > 1 and
L, > \; given in Appendix A yields the same result as
for the Abrikosov vortex”:

cosh(u/Aap)

o) =0 |1 = T ) |

(12)

Here u is the position of the vortex relative to the center
of the film. Notice that ¢(u) decreases as u increases and
vanishes at the surface u = +L./2 where the vortex flux
is extinguished by AV images”®”’. For the J vortex in
the center of a thin JJ stack (v =0, L, = sN < 2\sp),
Eq. (12) gives:

doN2? [ s \? 22a
¢~ 08 )\—b ) N < Sb' (13)

Taking here N = 21, s = 1.5 nm and \,; = 400 nm for
BSCCO, we obtain ¢ ~ 8-10%¢, in agreement with the
simulation results presented in Fig. 21a.

Shown in Fig. 21b is M(t) calculated for a dynamic
flux state with one vortex per layer below the Cherenkov
instability threshold at 8 < Bs. Here the magnitude of
M (t) for 21 vortices is about 12 times larger than for
a single vortex. The fact that M(¢) for one vortex per
layer is not 21 times larger than M (t) for a single vortex
is consistent with Eq. (12) according to which the flux of
vortices on outer layers is smaller than ¢ for the vortex
on the central layer. The shape of M (t) changes from
rectangular pulses for a single vortex to triangular pulses
for many vortices. This happens because the repelling
vortices tend to arrange themselves to maximize the in-
tervortex spacing so the reflections of vortices from the
edges on different layers occur at different times.

Above the Cherenkov instability threshold 5 > [,
a single V-AV shuttle excites counter-propagating MVs
and anti-macrovortices (AMV) which then get reflected
from the edges in the same way as single Vs and AVs.
For instance, the collision of MVs with the edge of an
underdamped stack with n = 0.1 is shown in Fig. 22.
As the MV exits the stack it induces penetration of a
counterpropagating AMYV, the structure of this AMV re-
mains preserved as it goes through the incoming MV
without fragmentation into single vortices. Such bounc-
ing MVs and AMVs generated by a V-AV shuttle give
rise to temporal oscillations of the magnetic moment
M(t) = Lyo(t)/po, where ¢(t) is the net magnetic flux
produced by all Vs and AVs. As shown in Fig. 23, the
magnitude of M (t) is of the order of that of a stable flux
structure with one vortex per layer (see Fig. 21b). Notice
that M (t) for bouncing MVs contains multiple harmon-
ics with frequencies much higher than those for the stable
flux structures shown in Fig. 21.

A big transient spike in M (t) at the onset of the MV
formation can be understood as follows. At 5 > s the
initial vortex placed near the right edge of the stack accel-
erates and starts producing V-AV pairs which form the
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FIG. 21. Temporal oscillations of a magnetic moment M (t)
due to periodic reflections of driven vortices and antivortices
from the sample edges at n = 0.1. (a) M (t) caused by a vortex
shuttle in which a single vortex gets reflected from the edges
as antivortex at § = 0.585 < ;. The features marked by the
arrows result from Cherenkov and bremstrahlung radiation
after reflection of a V or AV. (b) M(t) caused by a bouncing
flux structure with one vortex per layer at § = 0.53 < (.

MYV structures spreading both along and across the JJ
stack. Here MVs move to the left along with the initial
vortex while AMVs move to the right and get reflected as
MYVs from the right edge before the leading MV reaches
the left edge. As a result, the number of vortices in the
stack keeps growing until the leading MV reaches the left
edge, after which the process reverses as the number of
AMVs increases and exceeds the number of MVs. After
a few bouncing of MVs and AMVs back and forth, gen-
eration of new V-AV pairs stops and a standing wave,
resulting in self-sustained oscillations of M(¢) forms, as
shown in Fig. 23. A snapshot of this standing wave in
Fig. 24 indicates nonlinear interference and multiplica-
tion of harmonics with frequencies ranging from w ~ w;
to much lower frequencies w ~ v/d determined by the
velocity v(8) and the spacing d(3) between MVs. Simu-
lation movies of this process are available in Ref. 55.
Self-sustained MV standing waves excited by a V-AV
shuttle at J > J, increase the power of electromagnetic
radiation W caused by temporal oscillations of M (¢) and
a charge density at the surface of the stack. We do not
consider here all essential contributions to W which de-
pend on the geometry of the stack and details of its elec-
tromagnetic coupling with surrounding structures (see,
e.g., reviews 0, 7, and 45 and the references therein) but
only estimate a magneto-dipole part of W which has not
been addressed in the literature. As follows from the in-
set in Fig. 23, each MV at N = 21 has ~ N¢y bunched
vortices lined perpendicular to the layers. Such bouncing
multi-quanta MVs greatly increase the magneto-dipole
radiation power W oc M? as compared to the V-AV shut-
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FIG. 22. Magnetic field color map in moving macrovortices
colliding with the edge of the stack at /. = —0.5. Top: A
chain of macrovortices reaching the edge just before the colli-
sion. Bottom: The same chain after the leading macrovortex
collided with the edge and got transformed into a counter-
propagating anti-macrovortex.
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FIG. 23. Temporal magnetic moment M (t) due to bouncing
macrovortices excited by a single V-AV shuttle. Inset shows
M (t) caused by self-sustained MV standing waves superim-
posed onto M (t) due to stable oscillations of the flux structure
with one vortex per layer taken from Fig. 21.
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FIG. 24. A snapshot of beating standing waves of B;(z,t) on
different layers in a finite stack with N = 41 calculated for
self-sustained oscillations of M (t) shown in Fig. 23.

tle at § < fBs. Indeed, once J exceeds Js, both the mag-
nitude and the frequency of M (t) shown in Figs. 21 and
23 increases by more than an order of magnitude, which
translates to ~ 107 fold increase in W.

Both the magnitudes and the frequencies of different
harmonics in M () change significantly as the number of
layers increases. Shown in Fig. 25 are M(t) = ¢(t)L,
calculated at N = 21, N = 41, and N = 81 after the
transient spikes in M (t) decayed completely. Parts of
these M (t) curves calculated with much finer time steps
At = 0.01w; " shown in Fig. 26 clearly exhibit multiple
harmonics with high frequencies w ~ w; and low beating
frequencies w < w; which increase nearly linearly with
N. As was mentioned above, the low-frequency part of
M (t) is related to traveling times of MVs. Characteris-
tic magnitudes My of M (t) also increase as N increases:
Mgy ~ 4Myy and My; ~ (4 — 5)Ma;. This trend is qual-
itatively comnsistent with the quadratic increase of the
magnetic flux per vortex My o« ¢ o< N2 in JJ stacks
with L, < 2)\4 given by Eq. (13).

The mean radiation power W = pug(M?)/6mc® for
JJ stacks smaller than the radiated wavelength®” can
be estimated using M (¢) from Eq. (11), where My =
¢oLy/2mpo and wy = ¢/\/€:A.. Hence, W can be pre-

sented in the form
L,)?G ot T dt
W~ C(¢0 y) N GN :/ T.Y.LQT, (14)
t

T 24m3pge2Nd )
where m(t) = M(t)/My. The dimensionless factor Gn
takes into account the effect of the number of layers on
the amplitudes and frequencies of different harmonics in
M which contribute to W, where t; ~ 800. We evalu-
ated Gy by averaging numerical derivatives in 712 for the
calculated M (t) over the time interval T = 200. Calcu-
lations of Gy for different N using the results shown in
Fig. 26 give G21 = 00336, G41 = 2.05 and Ggl = 154.1.
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FIG. 25. Self-sustained oscillations of M (¢) calculated for
N =21, N =41 and N = 81 at 8§ = 0.6 and n = 0.1 after
complete decay of initial transient spikes in M(t).
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FIG. 26. Parts of M(t) at N =41 and N = 81 shown in Fig.
25 but calculated with the finer time steps At = O.Ola);1 to
reveal high-frequency harmonics in M(t).
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Such strong increase of Gy with N is much faster than
W o N* resulting from only the quadratic increase of
the magnetic flux of the vortex with N. Another part
of this rapid growth of G comes from the enhancement
of higher-frequency harmonics at larger N evident from
Figs. 25 and 26. All in all, the calculated G roughly
follows the N® dependence at N < 102.

Taking A, = 200 pm, L, = 1 mm, €, = 10, and Gg; =
154 in Eq. (14), we obtain W ~ 1.32 nW of the order
of the lower end of radiated power observed on BSCCO
mesas’*® with a much larger number of layers N ~ 103.
Yet given the very rapid increase of Wy oc N revealed
in our simulations at N < 102, a much greater W at N ~
10% may occur. Direct calculation of W for N ~ 103 is
beyond our current computational capabilities. Yet if the
trend W oc N6 would continue up to N ~ 2X\;;/s ~ 500
at which the flux per vortex reaches ¢ (see Egs. (12) and
(13)), one might expect Wsoo ~ Wg1(500/81)% ~ 1 mW
(for an ideal cooling of the sample and no Joule heating
caused by the motion of MVs).

VIII. DISCUSSION

In this paper we show that uniform motion of a Joseph-
son vortex driven by a dc current in layered superconduc-
tors breaks down as the velocity of the vortex exceeds
the terminal velocity v. at current densities J > J,. If
v > v, the moving vortex starts emitting V-AV pairs,
causing a dendritic flux branching in which vortices and
antivortices become spatially separated and form dissi-
pative structures which depend on the sample geometry.
For instance, a single vortex in a long stack can produce a
chain of dissipative macrovortices that extend across the
entire stack as shown in Fig. 9. The breakdown of the
dc flux flow state caused by V-AV pair production can
occur at current densities J; well below the Josephson
critical currents Jy across the stack.

In an underdamped JJ stack of finite length L, a vor-
tex driven by a dc current at J < Js turns into a V-AV
shuttle in which the vortex periodically changes its polar-
ity and direction of motion after each reflection from the
sample edge. This process results in oscillations of the
magnetic moment M (¢) with the flight frequency v/2L,
depending on the length of the stack. At J > J, the
V-AV shuttle produces propagating macrovortices con-
sisting of bunched vortices aligned perpendicular to the
layers. These macrovortices periodically change both the
polarity and the direction of motion without fragmen-
tation into single vortices after each reflection from the
edges of the JJ stack. Such bouncing macrovortices even-
tually form large-amplitude flux standing waves, giving
rise to oscillations of M (t). Here M (t) contains multi-
ple harmonics the amplitudes and frequencies of which
increase as the number of layers increases.

Proliferation of V-AV pairs at J > Js can manifest it-
self in hysteretic jumps on the V-I curves. These jumps
appear similar to those produced by heating effects®’



yet the initial stage of the Cherenkov vortex instability
is affected by neither cooling conditions nor the nonequi-
librium kinetics of quasiparticles. Moreover, heating is
most pronounced in overdamped junctions with > 1 in
which radiation is suppressed, whereas the Cherenkov in-
stability is most pronounced in weakly-dissipative under-
damped interlayer junctions characteristic of the BSCCO
cuprates. The V-AV pair production can be facilitated
by interaction of vortices with edges or materials defects,
resulting in vortex bremsstrahlung and further reduction
of the terminal velocity v. and the threshold of instability
current density Js. These effects are similar to those re-
vealed in our previous simulations of current-driven vor-
tices in a single Josephson junction of finite length”.

The V-AV pair production and bouncing macrovortices
caused by a single vortex at JJ > .J; can contribute to the
power of radiation W from a JJ stack. As was shown in
Sec. VII, the V-AV shuttle generates self-sustained MV
standing waves and oscillations of the total magnetic mo-
ment. In turn, oscillations of M (t) gives a contribution to
the radiation power which increases greatly as the num-
ber of layers increases. For the parameters of BSCCO
and N < 81 our calculations gave W ~ 1 nW, so one
might expect W ~ 1 mW at N ~ 10% characteristic
of the BSCCO mesas. Hence, bouncing macrovortices
could contribute to the radiation power observed in the
BSCCO mesas, although specifying the fraction of this
contribution in the total W requires more elaborate cal-
culations taking into account the sample geometry and
cooling conditions. The nonlinear MV standing wave at
J > Js eventually give rise to strong dissipation which
can produce hotspots in the sample®”“!, even though
heating is not the underlying cause for the V-AV pair
production but rather its consequence. Our results thus
suggest a mechanism by which the formation of hotspots
may be linked to peaks in the radiation power, as was
indeed observed on the BSCCO mesas"* ",
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Appendix A: Magnetic flux of a parallel J vortex

We calculate the magnetic flux ¢ of a vortex in a long
JJ stack with N > 1 and L, > A;. The vortex core has
the length Ay = sI" along the layer and a width ~ s across
the layers. At I' > 1 the magnetic field varies slowly
across the neighboring layers, so the discrete B;(z) can
be approximated by a continuous function B(z,y) which
satisfies the anisotropic London equation:

2
M —— /\26 B _p_ —@a—‘ps( u), (A1)
where o(z ) is a 27rxk1nk of length )\ J which describes
the phase difference between the layers where the vortex
core is located at z = u. The boundary conditions of zero
current through the surface requires B(z,+L./2) = 0.
The magnetic flux is given by

L. /2 L./2
o= / dx/ (x,2)dz —/ g(2)dz,
L. /2

L2

where ¢(z f B(xz,z)dx, and z = 0 is taken in the
center of the stack. The equation for g(z) is obtained
by integrating Eq. (Al) over z from —oo to oo, using
the boundary conditions 0, B(+00,z) = 0 and ¢(c0) —
p(—00) = 2m. Hence,

8B

(A2)

2 09

/\aba = —¢od(z —u). (A3)

The solution of Eq. (A3) satisfying the boundary condi-
tion g(+L,/2) =0 is then"":

g(z) = — G3eA SiniELz/)\ab) { cosh[(z + u))\;bl]
—cosh[(L, — |z — u|)/\;b1]}. (A4)

Integration of this g(z) in Eq. (A2) yields Eq. (12)
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