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In Poincaré-covariant continuum treatments of the three valence-quark bound-state problem, the
force behind dynamical chiral symmetry breaking also generates nonpointlike, interacting diquark
correlations in the nucleon and its resonances. We detail the impact of these correlations on
the electromagnetically-induced nucleon-∆ and nucleon-Roper transitions, providing a flavour-
separation of the latter and associated predictions that can be tested at modern facilities.
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1. Introduction. Owing to asymptotic freedom, QCD
is well defined in the absence of a current-quark mass;
and the appearance of a nonzero quark running-mass in
this (chiral) limit is a characteristic signal of dynamical
chiral symmetry breaking (DCSB), which has many
observable consequences [1–3]. An important corollary
of DCSB is the appearance of strong quark-quark
(diquark) correlations within baryons [4–10]. These
nonpointlike correlations are fully interacting, and each
of a baryon’s three dressed-quarks is involved in every
type of correlation to the fullest extent allowed by its
quantum numbers and those of the bound state. One
should therefore expect the spectrum obtained in the
presence of such correlations to be as rich as that allowed
by a three-constituent quark model; and this expectation
is supported by existing calculations [10, 11]. Conversely,
the presence of diquark correlations should have a marked
effect on the contribution from different quark flavours to,
inter alia, nucleon electromagnetic form factors [8, 12]
and distribution functions [13]; and, where data exists,
the associated predictions are confirmed [14–16].
The same picture has also been used to describe

nucleon-to-resonance transition form factors, where the
final state is either the ∆-baryon [∆(1232)(3/2)+] or
Roper resonance [N(1440)(1/2)+] [17–20]. This suggests
the absence of environment sensitivity for DCSB in the
nucleon, ∆ and Roper, i.e. DCSB in these systems
is expressed in ways that can be predicted once its
manifestation is understood in the pion, and this includes
the generation of diquark correlations with the same
character in each of these baryons [21]. To aid the
empirical validation of these ideas, herein we follow
Refs. [19, 20] and present an analysis of the transition
form factors via their separation into contributions from
different correlation sectors and subsequently, where
appropriate, a flavour separation for each of these.

2. Structure and Currents. In relativistic quantum
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field theory, a baryon is described by a Faddeev ampli-
tude, obtained from a Poincaré-covariant Faddeev equa-
tion that sums all exchanges and interactions that can
occur between the three dressed-quarks that express its
valence-quark content [19, 20]. A prediction of Faddeev
equation studies that employ realistic quark-quark inter-
actions [22] is the appearance of nonpointlike diquark cor-
relations within baryons, whose characteristics are deter-
mined by DCSB [8]. To understand the discussion herein,
it is important to bear in mind that, using realistic Fad-
deev kernels, the nucleon (N) and Roper-resonance (R)
contain both scalar and pseudovector diquarks, with the
scalar diquark contributing 62% of their normalisation
[20], but the ∆-baryon involves only pseudovector di-
quarks because it is impossible to form an isospin-3/2
baryon from a quark and isoscalar-scalar diquark [23, 24].
Electromagnetically induced N → ∆, N → R

transitions proceed via the current introduced in Ref. [25]
and refined in Ref. [19]. In two separate ways, this current
can be considered as a sum of three distinct terms, viz.

T1 = diquark dissection: T1A – scalar diquark in
both the initial- and final-state baryon, T1B –
pseudovector diquark in both the initial- and final-
state baryon, and T1C – a different diquark in the
initial- and final-state baryon; and

T2 = scatterer dissection: T2A – photon strikes a
bystander dressed-quark, T2B – photon interacts
with a diquark, elastically or causing a transition
scalar↔ pseudovector, and T2C – photon strikes
a dressed-quark in-flight, as one diquark breaks up
and another is formed, or appears in one of the two
associated “seagull” terms.

The anatomy of a given transition is revealed by merging
the information provided by the T1 and T2 dissections.
Having reviewed the physical picture of our calcula-

tion, we now succinctly summarise the computational
framework. The Faddeev equations for the dressed-quark
cores of the nucleon and ∆-baryon, and the N → N
elastic and N → ∆ transition currents are detailed in
Ref. [19]. Regarding the Roper resonance, as elucidated



2

in Ref. [20], the Faddeev equation is precisely the same as
that for the nucleon, one merely obtains the solution for
the radial excitation instead of the ground-state; and sim-
ilarly, apart from switching the final-state, the N → R
transition current is identical to that for the N → N elas-
tic process. Herein, every aspect of Refs. [19, 20] is pre-
served: we use precisely the same solutions, but analyse
them in different ways in order to expose novel features.

3. N → ∆. In the isospin symmetric limit, there is
no difference between γ + p → ∆+ and γ + n → ∆0.
Hence, a flavour separation of the associated form factors
is impossible. We focus, therefore, on γ+p→ ∆+, which
has been measured on a domain of momentum transfers
that extends to Q2 ≈ 6GeV2 [26–30]. This transition
is described by three Poincaré-invariant form factors
[31]: magnetic-dipole, G∗

M ; electric quadrupole, G∗
E ; and

Coulomb (longitudinal) quadrupole, G∗
C . Concerning

G∗
M,C , it has been established that the baryons’ dressed-

quark cores are revealed to probes with x∆ = Q2/m2
∆ &

(1/2) [19, 32]. However, owing to the small magnitude
of G∗

E , meson-baryon final-state interactions (MBFSIs
or “meson cloud” effects) obscure the core on a larger
domain, which likely extends to x∆ & 4 [19].
The anatomy of G∗

M is revealed in Fig. 1. The up-
per panel shows that T1B and T1C diagrams contribute
equally. Hence, since the scalar diquark, [ud], is a larger
part of the nucleon’s Faddeev amplitude, contributions
with a pseudovector diquark, {qq}, in both p and ∆+

contribute more strongly to the transition. The lower
panel shows that the dominant contributions are those
in which the photon strikes a dressed-quark. Hence, the
magnetic component of the transition proceeds predom-
inantly via spin-flip of an uncorrelated quark, T2C for
[ud] in the proton and T2A for {qq}, with slightly greater
transition strength in the latter configuration.
The electric quadrupole transition form factor, G∗

E ,
is dissected in Fig. 2. The upper panel shows that
this component of the transition is dominated by
diagrams involving a scalar diquark in the proton and
a pseudovector diquark in the ∆+ (T1C ); and the lower
panel indicates that photon-diquark interactions control
the transition away from x∆ ≃ 0. It follows that, within
the dressed-quark core, the electric quadrupole transition
proceeds primarily by a photon transforming the 0+-
diquark into a 1+-diquark (δJ = 1) with the overlap
of what may be said to be quark-diquark components in
the rest-frame Faddeev wave functions of the proton and
∆+ that differ by one unit of angular momentum.
Whilst not apparent in Fig. 2, G∗

E possesses a zero
at x∆ ≈ 3 (see Fig. 11 in Ref. [19]). Its origin lies
in the existence of a zero at x∆ ≈ 3 in the (T1C )
[ud] → {ud} diquark transition contribution. However,
its position is also influenced by the size of the dressed-
quark anomalous magnetic moment (κQ) [36–39], shifting
to larger values of x∆ as this moment increases. Our
analysis reveals the cause, viz. greater values of κQ
increase the domain of positive support for the T2A
contribution, and this pushes the zero to larger values of
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FIG. 1. γ p → ∆+ magnetic dipole form factor, G∗
M , com-

puted as described in Ref. [19] (solid black curve). The mis-
match at small-x between data [26–30] and prediction is ex-
plained by meson-cloud effects [19, 33–35]. Upper panel –
diquark dissection: T1B (dot-dashed green), pseudovector di-
quark in both p, ∆+; T1C (dotted blue), scalar diquark in
p, pseudovector diquark in ∆+. Lower panel – scatterer dis-
section: T2A (red dashed), photon strikes an uncorrelated
dressed quark; T2B (dot-dashed green), photon strikes a di-
quark; and T2C (dotted blue), diquark breakup contribu-
tions, including photon striking exchanged dressed-quark.

x∆. The impact of κQ is also a signal that meson-cloud
effects are important to the behaviour ofG∗

E because they
act, inter alia, to increase the magnitude of κQ [40–42].
It is worth recalling here that helicity conserva-

tion at large momentum scales requires REM(x∆) =
−G∗

E/G
∗
M → 1 as x∆ → ∞ [18, 43], so G∗

E must exhibit
a zero once the dressed-quark core becomes the domi-
nant contribution. Apparently, however, this is not the
case on the measured domain, within which many fac-
tors compete in producing G∗

E . The analysis in Ref. [19]
suggests that the zero occurs on x∆ & 6.
Figure 2 also compares our calculation with the dynam-

ical coupled-channels (DCC) analysis of G∗
E in Ref. [34].

In contrast to G∗
M in Fig. 1, here the DCC-inferred bare

contribution (triangles) is zero, within errors, and hence
differs markedly from our prediction for the dressed-
quark core contribution. Instead, the complete DCC
result (circles) is aligned with our curve. Given that
Poincaré-covariance entails the presence of rest-frame
quark-diquark orbital angular momentum in bound-state
Faddeev amplitudes, we judge that our result is the bet-
ter estimate of the dressed-quark core contribution in this
case, with the analysis in Ref. [34] failing here owing to
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FIG. 2. γ p → ∆+ electric quadrupole form factor,
G∗

E , computed as described in Ref. [19] (solid black curve).
The “data” are drawn from the dynamical coupled channels
analysis in Ref. [34]: circles, complete result; and triangles, an
estimate of G∗

E as it would appear in the absence of MBFSIs.
The legend is otherwise as it appears in Fig. 1.

the very small size of G∗
E on the measured domain.

The anatomy of G∗
C is revealed in Fig. 3. The upper

panel indicates that T1B contributions dominate, i.e.
transition processes with a pseudovector diquark in both
the proton and ∆+. The lower panel shows that photon-
diquark interactions control the transition at small x∆,
but photon-quark scattering dominates on x∆ & 1/8.
Regarding the dressed-quark core, these observations
suggest that on x∆ ≃ 0 this C2 transition is influenced
a little by the strength of the pseudovector diquark’s
own quadrupole moment, but otherwise it is a measure
of an overlap between what may be called S- and D-
wave quark-diquark angular momentum components in
the rest-frame proton and ∆+ Faddeev wave functions.
It is worth remarking thatG∗

C is an order-of-magnitude
larger than G∗

E ; and in this case, as with G∗
M , the DCC-

inferred bare contribution to G∗
C , computed in Ref. [34]

and depicted in Fig. 3, agrees well with our prediction for
the dressed-quark core component.

4. N → R. The nature of the Roper resonance has
long been controversial, see e.g. Refs. [45–58], but a
new case has recently been made [20, 21, 59, 60] in
support of the view that the observed Roper resonance
is at heart the nucleon’s first radial excitation, consisting
of a well-defined dressed-quark core augmented by a
meson cloud that reduces its (Breit-Wigner) mass by
approximately 20%. As part of this explanation, a
meson-cloud obscures the dressed-quark core from long-
wavelength probes, but that core is revealed to probes
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FIG. 3. γ p → ∆+ Coulomb quadrupole form factor, G∗
C ,

computed as described in Ref. [19] (solid black curve). The
legend is as it appears in Fig. 2, with the results from Ref. [34]
multiplied by “−1” in order to match our conventions for this
form factor.

with xN = Q2/m2
N & 3. Here we dissect the associated

nucleon-Roper transition form factors and describe their
flavour separation. Since experiments have already
yielded precise information on proton-Roper transition
form factors [30, 44, 61–64], these predictions could
be validated following electroproduction experiments on
(bound-) neutron targets.

The anatomy of the γ p → R+ Dirac transition form
factor is revealed in Fig. 4. Plainly, this component
of the transition proceeds primarily through a photon
striking a bystander dressed quark that is partnered by
[ud], with lesser but non-negligible contributions from all
other processes. In exhibiting these features, F ∗

1,p shows
marked qualitative similarities to the proton’s elastic
Dirac form factor (cf. Fig. 3 in Ref. [12]).

The γ p → R+ Pauli transition form factor is dis-
sected in Fig. 5. In this case, a single contribution
is overwhelmingly important, viz. photon strikes a
bystander dressed-quark in association with [ud] in the
proton and R+. No other diagram makes a significant
contribution. A comparison with Fig. 4 in Ref. [12]
reveals that the same may be said for the dressed-quark
core component of the proton’s elastic Pauli form factor.

In hindsight, given that the diquark content of the
proton and R+ are almost identical, with the ψ0 ∼
u[ud] component contributing roughly 60% of the charge
of both systems, the qualitative similarity between the
proton elastic and proton-Roper transition form factors
is not surprising. This observation immediately raises the
issue of whether and how that similarity is transmitted
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FIG. 4. γ p → R+ Dirac transition form factor, F ∗
1,p

as a function of x = Q2/m2
N , computed as described in

Ref. [20] (solid black curve). Data: circles (blue) [30] and
squares (purple) [44]. Upper panel – diquark breakdown:
T1A (dashed red), scalar diquark in both p, R+; T1B (dot-
dashed green), pseudovector diquark in both p, R+; T1C
(dotted blue), scalar diquark in p, pseudovector diquark in
R+, and vice versa. Lower panel – scatterer breakdown:
T2A (red dashed), photon strikes an uncorrelated dressed
quark; T2B (dot-dashed green), photon strikes a diquark; and
T2C (dotted blue), diquark breakup contributions, including
photon striking exchanged dressed-quark.

into the flavour separated form factors.
Supposing s-quark contributions to N → R transitions

are negligible, as in nucleon elastic form factors, and
assuming isospin symmetry, then a flavour separation of
the transition form factors is accomplished by combining
results for the γ p→ R+ and γ n→ R0 transitions:

F ∗
1(2),u = 2F ∗,p

1(2) + F ∗,n

1(2), F
∗
1(2),d = 2F ∗,n

1(2) + F ∗,p

1(2), (1)

where p and n are superscripts that indicate, respectively,
the charged and neutral nucleon-Roper reactions. Our
conventions are that F ∗

1(2),u and F ∗
1(2),d refer to the u-

and d-quark contributions to the equivalent Dirac (Pauli)
form factors of the γp → R+ reaction, and the results
are normalised such that the elastic Dirac form factors
of the proton and charged-Roper yield F1u(Q

2 = 0) = 2,
F1d(Q

2 = 0) = 1, thereby ensuring that these functions
count u- and d-quark content in the bound-states.
We computed the γ n → R0 transition form factors,

using the framework in Ref. [20], and employed Eqs. (1)
to determine the flavour separation of the nucleon-Roper
transition. The results are depicted in Figs. 6, 7.
The upper panels of Figs. 6, 7, depicting the flavour-
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FIG. 5. γ p → R+ Pauli transition form factor, F ∗
2,p as a

function of x = Q2/m2
N , computed as described in Ref. [20]

(solid black curve). Data: circles (blue) [30]; squares (purple)
[44]; triangle (gold) [61]; and star (green) [65]. Upper panel –
diquark breakdown; lower panel – scatterer breakdown; and
legend as in Fig. 4.

separated Dirac transition form factor, show an obvious
similarity to the analogous elastic form factor: the d-
quark contribution is less-than half the u-quark contribu-
tion for momenta sufficiently far outside the neighbour-
hood of xN = 0 within which they both vanish; and the
d-quark contribution falls more rapidly after their almost
coincident maxima. The noticeable difference, however,
is the absence of a zero in F ∗

1,d, which is a salient feature
of the analogous proton elastic form factor.

The lower panels of Figs. 6, 7 depict the flavour-
separated Pauli transition form factor. In this instance
the similarities are less obvious, but they are revealed
once one recognises that the rescaling factors satisfy
|κ∗d/κ

∗
u| <

1
6 cf. a value of ∼ 2

5 in the elastic case [12].
Accounting for this, the behaviour of the u- and d-quark
contributions to the charged-Roper Pauli transition form
factor are comparable with the kindred contributions to
the elastic form factor, especially insofar as the d-quark
contribution falls dramatically on x & 4 whereas the u-
quark contribution evolves more slowly.

An explanation for the pattern of behaviour in Figs. 6,
7 is much the same as that for the analogous proton
elastic form factors [8] because the diquark content of
the proton and its first radial excitation are almost
identical. In both systems, the dominant piece of the
associated Faddeev wave functions is ψ0, namely a u-
quark in tandem with a [ud] (scalar diquark) correlation,
which produces 62% of each bound-state’s normalisation
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Upper panel – Dirac transition form factor. Lower panel –
Pauli transition form factor, with κ∗

u = F ∗
2,u(0) = −0.91,

κ∗
d = F ∗

2,d(0) = 0.14.

[20]. If ψ0 were the sole component in both the proton
and charged-Roper, then γ–d-quark interactions would
receive a 1/xN suppression on xN > 1, because the
d-quark is sequestered in a soft correlation, whereas a
spectator u-quark is always available to participate in a
hard interaction. At large xN , therefore, scalar diquark
dominance leads one to expect F ∗

d ∼ F ∗
u/xN . Naturally,

precise details of this xN -dependence are influenced by
the presence of pseudovector diquark correlations in
the initial and final states, which guarantees that the
singly-represented quark, too, can participate in a hard
scattering event, but to a lesser extent.

The infrared behaviour of the flavour-separated γp →
R+ transition form factors owes to a complicated
interference between the influences of orthogonality,
which forces F ∗

1,u(xN = 0) = 0 = F ∗
1,d(0), and quark-core

and MBFSI contributions. However, whilst the latter
pair act in similar ways for both elastic and transition
form factors, orthogonality is a fundamental difference
between the two processes and it is therefore likely to be
the dominant effect at infrared momenta.

The information contained in Figs. 4 – 7 provides clear
evidence in support of the notion that many features in
the measured behaviour of γN → R electromagnetic
transition form factors are primarily driven by the
presence of strong diquark correlations in the nucleon
and its first radial excitation. In our view, inclusion of
a “meson cloud” cannot qualitatively affect the salient

0.0

1.0

2.0

3.0

x
2
F

1,
d
*

,
x

2
F

1,
u
*

0 2 4 6 8 10

-3.0

-2.0

-1.0

0.0

x=Q 2
�mN

2

Κ
d-

1
x

2
F

2
,d
*

,
Κ

u-
1
x

2
F

2
,u
*

FIG. 7. x2 = (Q2/m2
N )2-weighted behaviour of the flavour

separated γ p → R+ transition form factors: u-quark, solid
black; and d-quark, dashed blue. Upper (lower) panel – Dirac
(Pauli) transition form factor.

features of these transition form factors, any more than
it does the analogous nucleon elastic form factors [41, 42].

5. Epilogue. Dynamical chiral symmetry breaking
(DCSB) entails the presence of strong, nonpointlike, in-
teracting diquark correlations in the nucleon and its res-
onances. Their existence has numerous observable con-
sequences, an array of which are detailed above in con-
nection with transitions of the nucleon to its two lowest-
lying excitations. These signals are most prominent for
momentum transfers Q2 & 2GeV2, whereupon contri-
butions from meson-baryon final state interactions are
typically negligible. Precise measurements already exist
[30, 55, 66], novel experiments are approved at JLab12,
and others are either planned or under consideration as
part of an international effort to measure transition elec-
trocouplings of all prominent nucleon resonances [66–68].
Our predictions can therefore be thoroughly tested in the
foreseeable future, and such efforts have the potential to
deliver empirical information that would address a wide
range of issues, including, e.g.: is there an environment
sensitivity of DCSB; and are quark-quark correlations an
essential element in the structure of all baryons?
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[54] D. J. Wilson, I. C. Cloët, L. Chang and C. D. Roberts,

Phys. Rev. C 85, 025205 (2012).
[55] I. Aznauryan and V. Burkert, Phys. Rev. C 85, 055202

(2012).
[56] G. P. Engel, C. Lang, D. Mohler and A. Schäfer, Phys.
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